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Background: Seizure prediction can increase independence and allow preventative treatment for patients with
epilepsy. We present a proof-of-concept for a seizure prediction system that is accurate, fully automated,
patient-specific, and tunable to an individual's needs.
Methods: Intracranial electroencephalography (iEEG) data of ten patients obtained from a seizure advisory
system were analyzed as part of a pseudoprospective seizure prediction study. First, a deep learning classifier
was trained to distinguish between preictal and interictal signals. Second, classifier performance was tested on
held-out iEEG data from all patients and benchmarked against the performance of a random predictor. Third,
the prediction system was tuned so sensitivity or time in warning could be prioritized by the patient. Finally, a
demonstration of the feasibility of deployment of the prediction system onto an ultra-low power neuromorphic
chip for autonomous operation on a wearable device is provided.
Results: The prediction system achieved mean sensitivity of 69% and mean time in warning of 27%, significantly
surpassing an equivalent random predictor for all patients by 42%.
Conclusion: This study demonstrates that deep learning in combination with neuromorphic hardware can
provide the basis for a wearable, real-time, always-on, patient-specific seizure warning system with low
power consumption and reliable long-term performance.
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1. Introduction

Epilepsy is singularly unusual amongother serious neurological con-
ditions because seizures are brief and infrequent, so that for at least 99%
of the time patients are unaffected by seizure activity. Although seizure
activity is infrequent, the disability caused by epilepsy can be significant
due to the uncertainty around the occurrence and the consequences of
the events. The constant uncertainty impairs the quality of life for these
individuals. A recent survey confirmed that themajority of patients find
this unpredictability to be the most debilitating aspect of epilepsy
(“2016 Community Survey,” 2016). There is an unmet need for a device
that provides a warning when there is an increased risk of a seizure.

Awarning system could support new treatment approaches and im-
prove a patient's quality of life. For example, such a system could inform
er@au.ibm.com
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patients' daily routines and help them to avoid dangerous situations
when at higher risk of seizure. Tracking fluctuations in seizure likeli-
hood could also be used to titrate therapeutic interventions, reducing
the time spent using anti-epileptic drugs or electrical stimulation.

Given the nature of epilepsy, there are undeniably technological and
theoretical hurdles to creating a viablewarning system for seizures; how-
ever, such a system is no longer considered impossible to build (Freestone
et al., 2015;MormannandAndrzejak, 2016). A key developmenthas been
the use of long-term electroencephalography (EEG) data. After a long-
term clinical trial, Cook et al. were able to demonstrate success of an im-
plantable recording system, seizure prediction algorithm, and handheld
patient advisory device (Cook et al., 2013). Using this device, the group re-
corded a dataset that comprises a total of over 16 years of continuous in-
tracranial electroencephalography (iEEG) recording and thousands of
seizures. Cook et al. established the feasibility of seizure prediction in a
clinical setting, and provided inspiration for the development of further
seizure prediction algorithms (Freestone et al., 2017).

Despite the trial's success, there were also limitations (Elger and
Mormann, 2013). While pre-seizure patterns in the iEEG data were
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Concept of seizure advisory system: a) Training phase: iEEG signal is recorded via
intracranial electrodes (magenta circles indicate a possible configuration) and
recordings are passed on to a deep learning network (green network graph). The model
is subsequently deployed onto a TrueNorth chip. b) Inference phase: iEEG signal is
recorded via intracranial electrodes (magenta circles) and recordings are passed on to
the TrueNorth chip. Prediction of a seizure is indicated to the patient on awearable device.
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extracted in an automated fashion, it was based on a limited and pre-
defined set of features, which may be one reason that prediction was
not possible for all patients. After the initial design phase, the algorithm
was no longer tunable,making the system inflexible to patients' changing
preferences regarding false alarm and missed seizure rates.

As preictal patterns are patient specific, no pre-determined set of
features will be able to capture all possible preictal signatures.
Therefore, standard feature engineering techniques are unsuitable for
the creation of a generalizable predictor (Freestone et al., 2017). Instead
of restricting the feature space a-priori, all data should be considered
potentially relevant for recognizing preictal patterns – a task to which
novel computational techniques are uniquely suited.

Deep learning, a machine learning technique, is a powerful compu-
tational tool that enables features to be automatically learnt from data
(LeCun et al., 2015). Typically, deep learning is used to train a class of al-
gorithms known as deep neural networks to perform specific tasks. The
availability of big data has cemented the usefulness of deep learning for
a diverse range of problems (LeCun et al., 2015). Applications range
from self-driving cars via robotics to novel diagnostic and treatment op-
tions in medical imaging, healthcare, and genomics (“FACT SHEET,”
2016; Gulshan et al., 2016; Litjens et al., 2017; Ratner, 2015; Stebbins,
2016). Recent open source seizure prediction competitions
(Brinkmann et al., 2016; “Melbourne University AES/MathWorks/NIH
Seizure Prediction | Kaggle,” 2016) have shown that machine learning
techniques are able to produce pre-eminent results, suggesting this
method may provide a path to clinical translation of seizure prediction
devices. However, the best performing algorithms in competitions
often require an unrealistic amount of computing resources for a
wearable device (“Melbourne University AES/MathWorks/NIH Seizure
Prediction | Kaggle,” 2016).

For seizure prediction to be implemented in a clinical device, it is
necessary for algorithms to run on small, low-power technology. A
number of recent advances in computing led to the development of
sophisticated deep learning algorithms using ultra-low power chips
(Furber, 2016). One example of such a chip is IBM's TrueNorth
Neurosynaptic System (Esser et al., 2016; Merolla et al., 2014).
TrueNorth is a specialized chip capable of implementing artificial neural
networks in hardware and hence it is neuromorphic in nature. It is one
of themost power-efficient chips to date, consuming b70mWpower at
full chip utilization. The chip's neuromorphic technology allows for the
deployment and testing of algorithms thatwere previously unrealizable
in a clinically viable seizure warning system.

Seizure prediction has been established as clinically feasible and
highly desirable for patients. In light of promising results (Brinkmann
et al., 2016; Cook et al., 2013; Howbert et al., 2014), the development
of a practical seizure warning device has been declared a grand chal-
lenge in epilepsy management (“Seizure Gauge Challenge,” 2017). In
this paper, we describe how deep learning and the TrueNorth processor
can be leveraged to advance the task of patient-specific seizure predic-
tion. Prediction results were benchmarked using data recorded during
the trial undertaken by Cook and colleagues (Cook et al., 2013). The pre-
sented results address several limitations of this earlier study, and pro-
vide proof-of-concept for a deep learning system for seizure prediction.

2. Materials and Methods

The overall study design is shown in Fig. 1. The iEEG signal is recorded
using intracranial electrodes (magenta circles). Annotated iEEG signals
are processed by a deep neural network that is trained to distinguish
between preictal and interictal signals. The resulting deep learning
model is subsequently deployed onto the neuromorphic TrueNorth chip.

2.1. System Design Rationale

The objective of this study is the development, implementation, and
evaluation of a clinically relevant seizure prediction system. In order for a
system to be valuable to patients while beingmaintainable by clinicians,
we defined the following goals:

G1. The system needs to perform well and reliably across patients.
G2. The system needs to operate autonomously over long periods of

timewithout a requirement for regularmaintenance or reconfig-
uration by an expert.

G3. The system needs to allow for patients to set personal prefer-
ences with respect to sensitivity.

G4. The system must run in real-time on a low-power platform.

We addressed performance (G1) and long-term feasibility (G2)
using deep learning, a technique that, in contrast to a more traditional
feature engineering approach, does not rely on data analysis experts
for themonitoring and adaptation ofmodels. Unlike traditional comput-
ing systems that learn through instructions or explicit programming,
deep learning algorithms learn fromexamples to automatically discrim-
inate different classes of signals. In the context of a seizure prediction
system, this is what allows the algorithm to distinguish between
preictal and interictal data segments. By its nature, a system using an ar-
tificial neural network cannot only adjust to each individual patient's
brain signals, but also to short- and long-term changes in the recording.
It further allows for the integration of other patient-specific variables
that have been shown to co-vary with seizure likelihood, such as time
of day information. Moreover, a deep neural network can automatically
learn to discriminate between different classes of data, for example, in
this case, preictal and interictal.

Generally, a classification neural network such as the one used in our
study will classify the signal on a sample-by-sample basis, leading to
potentially very frequent but short alarms. In a real-time system, an ad-
ditional processing layer is therefore required to balance the sensitivity
of the system, number, and duration of alarms. In addition to forming
the basis of system optimization, this processing layer also allows for
instantaneous tuning of the system's sensitivity by the patient directly
(G3).

Adaptation to changes of the signal over time (G2), as for example
observed by Cook et al. (2013) were addressed in both processing
layers.

Running a neural network classifier in a real-time environment
requires specialized hardware (G4). TrueNorth is a highly power-
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efficient and specialized chip. The network needed to be adapted to run
on the TrueNorth chip.

2.2. Data

Data for the study were collected for a previous clinical trial of an
implanted seizure advisory system (Cook et al., 2013). The iEEG of the
enrolled patients were continuously recorded for up to two years
using an implanted 16-electrode iEEG system. Data were reviewed by
expert investigators and all seizures were annotated. Seizures were la-
belled as either clinical or clinically equivalent (see (Cook et al., 2013)
for a detailed description of the data). In this study, we used the data
of all ten patients that were included in the prospective trial conducted
by Cook and colleagues (Cook et al., 2013). The data comprised a total of
16.29 years of iEEG signal and 2817 seizures. Sections of the data will
shortly be made publicly available.

2.3. Learning Pre-seizure Patterns

Data segments were transformed into a time-frequency representa-
tion (spectrograms). Including information about the circadian patterns
of seizure occurrence can improve prediction performance (Karoly
et al., 2016, 2017); therefore, hour of day labels were also incorporated
into the spectrograms.

The system operated in two distinct phases, as depicted in Fig. 1.
During the training phase (Fig. 1a), previously labelled data were used
to train a deep neural network to distinguish between preictal (defined
as occurring within the 15 min before a seizure) and interictal (defined
as anything that is neither preictal nor ictal) data. Training was
performed on a dataset containing the same number of preictal and
interictal samples to ensure unbiased learning of features. During the
inference phase (Fig. 1b), the trained deep learning model was used to
classify incoming data into preictal and interictal classes in a
pseudoprospective and continuous manner using all data recorded
after the training period.

Initially, twomonths of iEEG data, containing at least one seizure for
each patient, was used for algorithm training and calibration. Following
the initial training, a newmodelwas trained after eachmonth of incom-
ingdata.We found that non-stationarities in the iEEG signal (Sillay et al.,
2013; Ung et al., 2017) were detrimental to the model's performance,
which led us to devise a protocol in which data older than a certain
number of months is excluded from the training set. The resulting
model was used to make predictions for the following month of data.
This procedure ensured that inference always occurred chronologically
after training (i.e., pseudoprospective). For more details on data selec-
tion, data processing, and the training protocol we invite the reader to
refer to Section 2 in the supplementary information.

Training and inference for all ten patients were developed using a
high-performance computer. A full deployment onto the neuromorphic
TrueNorth chip was undertaken for one patient to provide proof-of-
concept of low-power system functionality.

2.4. Enabling Real-time Tunability

During system operation, the deep neural network classifies each in-
coming data segment as either preictal or interictal. To determine
whether any given sample should lead to an alarm for the patient, an ar-
tificial leaky integrate-and-fire neuron was implemented. This ensured
that alarmswere only enabled if several preictal predictionsweremade
in close temporal proximity. Parameters for this processing layer (firing
threshold and leak of the neuron and length of an alarm) were opti-
mized to yield the best performance as determined by an objective
that could be set automatically or by a user. It is this layer that can
give a patient or clinician control over which metric they want to
prioritize. Unless stated otherwise, parameters were optimized to
ensure optimal performance as defined below. Optimization occurred
in a pseudoprospective manner and parameters were updated after
each month of incoming data.

2.5. Performance Evaluation

To evaluate seizure prediction performance, we used themetrics in-
troduced in (Cook et al., 2013). Thesewere sensitivity (true positive sei-
zure prediction rate), time in warning (TiW, total duration of a red-light
indicator), and sensitivity improvement over chance (IoC). IoC is deter-
mined by comparing our system to a random predictor that spends an
equal amount of time in warning and computing the difference of the
achieved sensitivities. Thesemetrics provide a clinically relevant indica-
tion of performance (Mormann et al., 2007). In this work, we report
mean prediction scores, as well as monthly performance, starting after
a short initial data collection phase. Results were obtained for three
independent runs as per Section 2.2, for which we report the mean
performance aswell as the 95% confidence interval. Amore detailed de-
scription of all metrics and their computation can be found in Section 3
in the supplementary information.

3. Results

3.1. Full System Implementation

Mean values and 95% confidence intervals were determined for
three independent repetitions of training and inference. Inference re-
sults, starting in month 3, are shown in Fig. 2 for all patients and are
summarized in Table 1.

The performance of the proposed system in terms of sensitivity, im-
provement over chance (IoC), and time in warning (TiW) are
benchmarked against results reported by Cook and colleagues (Cook
et al., 2013). The outcome is displayed in Fig. 2. Note that results report-
ed by Cook et al. were derived from substantially fewer inference days
(mean of 16.3% per patient), as indicated by the shorter horizontal
blue lines in Fig. 2. On the other hand, we show our results on an aver-
age of 89.0% of the data per patients for the same cohort.

Performance was computed for three independent runs of the sys-
tem as outlined in Section 2.2. Fig. 2 shows the average performance
across time, as well as the monthly performance averaged across runs
and 95% confidence intervals (CI). These results demonstrate that the
system could be put into use for all patients after only two months of
initial data acquisition.

For all patients, seizure prediction was significantly better than
chance for most of the months that were evaluated. Significant IoC
suggests that seizure prediction will be useful for patients in a clinical
setting (Mormann and Andrzejak, 2016). The mean improvement
over chance was 42·3% (standard deviation 13·6%) across all months
and patients. Mean performances were significantly above chance for
all patients as computed using the method described in (Snyder et al.,
2008) (p b 0·0001 for eight of the patients, p b 0·002 for one patient,
and p b 0·01 for the remaining patient). The mean sensitivity was
68·6% (standard deviation 11·1%) and the system spent an average of
26·9% (standard deviation 14·4%) of the time in the warning state.

From a patient's perspective, it is of interest to investigate the dura-
tions of alarms and the prediction horizon (the expected wait time be-
tween alarm onset and seizure onset). Fig. 3 summarizes the statistics
of the seizure forecasting alarms. Fig. 3a and b show the distributions
of alarm time durations for true alarms and false alarms, respectively.
For all patients, 75% of alarms lasted between 9 min and 5·9 h. False
alarm periods were generally shorter than true positive alarm periods.
Fig. 3c shows the distribution of seizure prediction horizons for each pa-
tient. It can be seen that the median prediction horizon was generally
less than 1 h (with the exceptions of patients 9 and 15). The majority
of prediction horizons (75%) were between 4·7 min and 4·8 h for all
patients. The entire range of alarms lay between 1 min and 11·9 h.
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Table 1
Summary of long-term performance of seizure warning system for all patients: number of total seizures, seizure rates, and performance values (mean and standard deviation) over all
months, as well as significance values for three individual runs. (IoC: improvement over chance, TiW: time in warning.)

Patient number Total number of seizures Seizure rate per month Mean (std) IoC in % Mean (std) Sensitivity in % Mean (std) TiW in % p-value (IoC) all runs

1 151 5·9 45·0 (21·1) 65·4 (19·3) 20·5 (11·5) b0·00001
2 32 1·3 64·1 (43·2) 73·6 (23·4) 10·8 (16·8) b0·00001
3 368 19·8 18·3 (14·8) 71·1 (23·3) 52·8 (23·7) b0·00001
8 466 25·0 45·2 (8·9) 76·7 (13·1) 31·5 (12·1) b0·00001
9 204 15·5 40·5 (14·3) 83·1 (19·8) 42·6 (15·2) b0·00001
10 545 43·7 35·6 (10·9) 67·7 (13·7) 32·0 (11·4) b0·00001
11 464 19·3 60·2 (8·8) 77·9 (11·1) 18·4 (7·9) b0·00001
13 498 20·0 50·3 (11·4) 70·3 (12·2) 20·8 (9·9) b0·00001
14 12 0·6 39·7 (46·7) 41·7 (46·3) 2·2 (3·5) b0·01
15 77 5·0 23·9 (18·8) 58·8 (21·7) 36·9 (12·4) b0·002
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The distributions in Fig. 3 are computed using the raw system out-
put. Results could potentially be improved by deploying patient-
specific requirements, such as disabling the alarm for some period
after the onset of a seizure or during sleep.

3.2. Case Study on Individual Tunability: Balancing Sensitivity and Time in
Warning

Ultimately, whether a seizure prediction system is clinically useful
may depend on a patient's individual preferences regarding sensitivity
and duration and number of alarms. Our model allows for tuning of
the system to account for clinicians' or patients' priorities by adjusting
the relative weight between sensitivity and time in warning. Fig. 4 dis-
plays an example implementation of the tunable system for patient 9.
Priority was given either to the largest possible improvement over
chance (Fig. 4a), high sensitivity by weighing the relative importance
of sensitivity to time inwarning 3:1 (Fig. 4b), or low time spent inwarn-
ing state by weighing the relative importance of sensitivity to time in
warning 1:3 (Fig. 4c). In a real-world use-case scenario, a patient or
clinician could easily set which metric they want to prioritize and to
what extent by changing a single model parameter accessible through
an interface, as indicated in the top row of Fig. 4.

Results summarized in Table 2 demonstrate the successful imple-
mentation of the prioritization functionality, with the prioritized metric
being either at the highest in the case of improvement over chance
(40·5%) and sensitivity (91·8%) or lowest in the case of time inwarning
(19·3%).

3.3. Deployment of the System Onto the Ultra-low Power TrueNorth Chip

After completing the pseudoprospective study, we demonstrated
that the developed system can be deployed onto the ultra-low power
neuromorphic TrueNorth chip by repeating the pseudoprospective
study using the chip and exemplarily choosing patient 13. The results
are shown in Fig. 5 and Table 3. The mean improvement over chance
was 41·3%, which is 9% less than the mean results obtained on the
high-performance computer (50·3%). Average sensitivity across all
months was 71·7% with 31·7% time in warning.

4. Discussion

People with uncontrolled epilepsy often live with uncertainty about
when a seizure is going to occur. It is this uncertainty that can lead to
difficulties with daily life activities, such as driving, working, or even
Fig. 2. Pseudoprospective long-term prediction results: Traces from top to bottom of each plot i
in warning. Horizontal lines depict performance averaged across months. Dark blue lines repre
colleagues (Cook et al., 2013), given here for comparison; note that direct comparisons of the v
indicated by the lengths of the dark blue line segments representing the portions of the data t
averaged over three runs. Vertical bars denote 95% confidence intervals. Month scales are diffe
socialising (“2016 Community Survey,” 2016), andmay expose an indi-
vidual to unnecessary danger. By presenting information about when a
seizure is likely to happen, we hope to restore a degree of perceived
control.

In this article, we have proposed a deep learning approach to seizure
prediction that addresses many of the challenges identified from previ-
ous studies (Cook et al., 2013; Freestone et al., 2017; “Melbourne Uni-
versity AES/MathWorks/NIH Seizure Prediction | Kaggle,” 2016; Ung
et al., 2017). Our results provide a proof-of-concept of a robust, real-
time, low-power seizure prediction system that can be configured by
patients according to their needs and preferences. Prediction algorithms
could be deployed for all patients after only two months of collecting
iEEG data that contained at least one seizure per month, resulting in a
system that can be beneficial to patients inminimal time. Our automatic
retraining protocol makes accurate seizure prediction possible across
patients despite long-term changes in brain signals. The developed pre-
diction system can be run on an ultra-low power chip and can be inte-
grated into a mobile system.

To evaluate our approach, we have benchmarked the proposed sys-
tem against three studies, summarized in Table 4.

Both algorithms (Cook et al., 2013; Karoly et al., 2017), extract pre-
defined features from the iEEG signal and use conventional machine
learning techniques. In addition, Karoly et al. combine the classifier's
output with insights obtained from circadian rhythms of seizures.
(Karoly et al., 2017) also reported results on a classifier using patient-
specific circadian information only which we included as well to dem-
onstrate that our results cannot be attributed to the time of day feature
only.

When measured based on improvement over chance, our proposed
algorithm performs better than (Cook et al., 2013) for 6 out of 10 pa-
tients and better than (Karoly et al., 2017) for 6 out of 8 reported pa-
tients. It is important to note that results reported in (Cook et al.,
2013) and (Karoly et al., 2017) were derived from substantially fewer
inference days. While Cook et al. reported testing performance on
16.3% of the data (Cook et al., 2013), we show our results on 89.0% of
the data for the same cohort. Using small amounts of data for testing
makes it impossible to assess long-term performance and address the
impact of changing brain signals. Moreover, while Karoly et al. have re-
ported results for 62.2% of the data (Karoly et al., 2017), we use 94.4% of
the data for the same subset of patients. The difference stems from
Karoly et al. discarding 100 days to allow the signal to stabilize and
using the following 100 days of data to train the algorithm (Karoly
et al., 2017). This will lead to a longer waiting period for patients be-
tween implantation and operation of the device as a seizure predictor.
ndicate the number of seizures per month, improvement over chance, sensitivity, and time
sent performances and evaluation periods from the previous study published by Cook and
alues are not possible due to the difference in number of seizures in the test set, which are
hat were used in (Cook et al., 2013) for each patient. Circles represent mean performance
rent for each patient.



Fig. 4. Pseudoprospective long-term seizure prediction study for patient 9 - month-wise system
was achieved through tuning the ratio of weights assigned to sensitivity and time in warnin
b) ‘More sensitive’ prioritizes sensitivity over time in warning. c) ‘Less time in warning’ prior
Plot details are described in Fig. 2.

Fig. 3. Alarm duration and prediction horizon for all patients: Dots show all individual data
points, solid lines indicate medians, box tops indicate 75th percentiles, box bottoms indicate
25th percentiles, whiskers indicate the span of the data after removal of outliers. a) Alarm
durations of true alarms in hours. b) Alarm durations of false alarms in hours. c) Prediction
horizons in hours. A prediction horizon is the time between alarm and seizure onset.
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While Cook et al. showed that seizure prediction is possible using fea-
ture engineering techniques (Cook et al., 2013), the primary criticisms of
their world-first, long-term study was varying prediction performance
across patients and a lack of tunability to accommodate patient prefer-
ences (Elger and Mormann, 2013). This holds equally true for the algo-
rithm described in (Karoly et al., 2017). Our proposed system includes
algorithmic components to overcome all these limitations.

On the other hand, the system presented in (Cook et al., 2013) had
the ability to forecast not only imminent seizures, but also times of
low seizure likelihood for some patients. To implement this feature, a
classifier trained to predict seizures was repurposed. However, this
was only successful for four out of ten patients. This suggests that
predicting times of low seizure risk requires a more sophisticated
approach than simply applying the model that was used to detect
high-risk periods. In our work, deep neural networks were trained spe-
cifically to detect times of high seizure likelihood. We expect that de-
tecting times of low seizure likelihood will require additional models
tuned to different signal features (i.e., the absence of preictal signal fea-
tures does not necessarily equate to low risk). Therefore, an important
extension to the current system is to include additional networks
trained specifically to detect periods of safety.

In addition, a recent competition on Kaggle used a subset of the data
used by us, achieving an area under the receiver operating characteristic
(ROC) curve of up to 0.75 (“Melbourne University AES/MathWorks/NIH
Seizure Prediction | Kaggle,” 2016). However, there were limitations to
these analyses. First, the results were based on a limited subset of record-
ings. Second, clinically relevant metrics such as sensitivity, improvement
over chance, and time in warning were not reported in the contest.
Third, winning algorithms relied on highly complex features that could
not be deployed in currently available implantable or wearable devices.
In contrast, the method presented here has requirements for power,
size, and computation that can be realized within a wearable device.

Our results demonstrate that there is a preictal signature in iEEG
data. Even though this is impossible for the human eye to detect, a
deep neural network can create a model that correctly identifies this
signature. We found this signature to be patient-specific and non-
stationary. Following conventional non-deep learning techniques, a
changing signal would require regular expert intervention to update
the model. In contrast, the deep-learning pipeline we presented is de-
signed to create models in an automatic fashion that can be updated
without medical expert supervision.

Deep learning algorithms rely on large amounts of data to automat-
ically learn or extract important features. The closer any dataset
output for the entire duration of the study and different priority settings: Customization
g using a tuning factor. a) ‘Balanced performance’ prioritizes improvement over chance.
itizes time in warning. Note improved sensitivity in b and reduced time in warning in c.

Image of Fig. 4
Image of Fig. 3


Table 3
Performance benchmarking using TrueNorth for patient 13.

High-performance computer TrueNorth

Mean IoC in % 50·3 41·3
Mean sensitivity in % 70·3 71·7
Mean TiW in % 20·8 31·7

Table 2
Pseudoprospective long-time seizure prediction study for patient 9: mean performance
over all months using different relative weights of sensitivity to time in warning.

System mode Mean (std)
IoC in %

Mean (std)
sensitivity in %

Mean (std)
TiW in %

p-Value (IoC)
all runs

Balanced performance 40·5 (14·3) 83·1 (19·8) 42·6 (15·2) b0·00001
S:TiW = 1:1
More sensitive 36·5 (11·5) 91·8 (15·2) 55·2 (12·6) b0·00001
S:TiW = 3:1
Less TiW 31·2 (13·3) 50·6 (17·0) 19·3 (9·5) b0·00001
S:TiW = 1:3
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represents all possible variations of the signal to be identified, the better
the model will perform under real-life conditions. This means that gen-
erally more data leads to better performance. In a typical deep-learning
application, such as image recognition, data sets frequently contain at
least thousands of unique training examples (LeCun et al., 2015). De-
spite having access to a uniquely large amount of iEEG data, the total
number of training samples used in our study was still orders of magni-
tudes smaller. This makes deep learning-based iEEG classification a
challenging task, especially for patients with small numbers of seizures.
For example, Patient 14 (Fig. 2i) had a seizure rate of 0.58 seizures per
month (see Table 1), which means that the initial model was trained
on only four seizures. It is not surprising that the performance of our
deep-learning model fell short of the performances of manually tuned
algorithms for this patient. Although higher than for Patient 14, seizure
rates for Patients 1, 2, and 15 were also far below the average of this
study, which may explain why the performance of our deep learning
model matched but did not exceed that of manually designed algo-
rithms for these three patients. In the other six patients, the presented
deep learning approach gave prediction performance increases com-
pared to the results reported in (Cook et al., 2013). Patient 9 is an exam-
ple of how deep learning technology allowed reliable and tunable
seizure prediction where manually chosen algorithms previously failed
for the algorithm presented in (Cook et al., 2013).

After validating the developed system on a high-performance com-
puter, we deployed the prediction system onto the ultra-low power
TrueNorth platform. To make data and network compatible with this
chip, they needed to be converted to lower precision and spiking repre-
sentations. This resulted in an updated network topology and caused a
9% drop in IoC performance (Fig. 5). To preserve the pseudoprospective
study nature of our work, no further optimization of the TrueNorth
Fig. 5. Pseudoprospective long-term seizure prediction study for patient 13 on the
TrueNorth chip: Traces from top to bottom represent the number of seizures per month,
improvement over chance, sensitivity, and time in warning. Results on TrueNorth are
represented in yellow alongside results obtained using a high-performance (HP)
computer, as previously shown in Fig. 2 for the same patient for comparison, displayed
here in gray.
models was undertaken. A neural network architecture can be devised
that is specifically optimized for implementation on the TrueNorth pro-
cessor for potential use in a future clinical study. Suitably trained and
optimized networks implemented in TrueNorth have been shown to
deliver at or near state-of-the-art accuracy at very low power and
high throughput for a variety of problems (Esser et al., 2016).

Our results show that the proposed framework can produce useful
seizure prediction after as little as two months of system deployment.
Results demonstrate that implementation of our algorithms on the
low-power TrueNorth chip is feasible, thereby enabling a device that
consumes minimal power and ensuring long battery life (Esser et al.,
2016; Merolla et al., 2014). Convolutional neural networks deployed
onto TrueNorth utilized approximately 50% of the chip's processing ca-
pability at a power consumption of b40mW,which is comparable to the
power consumption of a hearing aid. Any further specifications of a real
device would rely on the exact purpose, such as advising patients when
they are about to have a seizure or closed-loop treatment, intervention,
or prevention of seizures. Moreover, developing a real device will allow
for optimization of TrueNorth-specific neural networks.

Designing a seizure prediction device comes with the inherent risk
of making incorrect assumptions about the performance that is best
for a patient. Each user will have different needs and preferences for de-
vice performance (Freestone et al., 2017). For example, a patient may
prefer different settings during night and day. Our algorithm allows
for instantaneous and easy adjustment. A patient or their clinician will
be able to prioritize high sensitivity or low time in warning to suit
their needs and circumstances. We believe that giving a patient direct
control over the sensitivity and time inwarningwill improve the useful-
ness of a seizure advisory system. The characteristics of alarm times and
prediction horizons are also of great relevance to real-life system prac-
ticality, as shown in Fig. 3. A prediction horizon of, on average, one
hour across all patients (see Fig. 3c) is long enough to allow for a patient
to adjust their behavior and short enough to not be too disruptive over a
long period of time. Note, however, that for some patients, true positive
alarms lasted as long as 6 h (see Fig. 3a). One possible reason for these
prolonged alarmdurations is that the brainmay be entering a highly ex-
citable state (Kimiskidis et al., 2015), leading to repeated preictal pre-
dictions even long before a seizure is ultimately triggered. Note also
that distributions in Fig. 3 are computed using the raw system output.
Results could potentially be improved by additional processing, such
as disabling the alarm for someperiod after the onset of a seizure or dur-
ing sleep, by including patient-specific requirements, or by incorporat-
ing environment-aware sensors that may track possible patient-
specific seizure triggers.

The real-time seizure prediction system presented could be applied
to a closed-loop therapeutic device for titrating therapies such as
neuromodulation or acute drug delivery. This has the benefit of reduc-
ing the quantity of drugs or therapeutic stimulation delivered to the pa-
tient, thus reducing the treatment burden and side effects (Sun and
Morrell, 2014). For this application, alarm durations are less important.
However, knowing the prediction horizon may still be crucial for opti-
mal administration of drugs and, even though we observed a spread
in prediction horizon lengths, this information may be useful to better
guide dosage of anti-epileptic drugs.

Further relevant information sources can be readily incorporated
into deep neural networks. For example, signals such as electrocardio-
gram (Fujiwara et al., 2016), weather patterns (Rakers et al., 2017), bio-
markers (Nadler, 2003), or interictal spike rate (Li et al., 2013) may all

Image of Fig. 5


Table 4
Comparison to other studies: the improvement over chance and percentage of days used in the inference phase for each patient. We compare the performance of our systemwith results
reported in (Cook et al., 2013) and (Karoly et al., 2017).

Patient
number

This study,
mean IoC in %

This study,
% tested

Cook et al.,
mean IoC in %

Cook et al.,
% tested

Karoly et al.,
mean IoC in %

Karoly et al.,
% tested

Circadian only, mean IoC in %
(Karoly et al., 2017)

Circadian only, % tested
(Karoly et al., 2017)

1 45·0 96·1 60 6·1 34 74·0 7 74·0
2 64·1 87·6 69 10·4 – – – –
3 18·3 94·6 16 34·8 26 64·2 7 64·2
8 45·2 94·6 34 20·1 48 64·2 30 64·2
9 40·5 92·4 6 29·8 34 49·4 17 49·4
10 35·6 92·0 34 31·3 35 46·5 19 46·5
11 60·2 95·8 24 4·1 43 72·3 28 72·3
13 50·3 96·0 22 11·1 48 73·2 33 73·2
14 39·7 47·2 97 12·2 – – – –
15 23·9 93·6 30 3·3 19 57·1 30 57·1

110 I. Kiral-Kornek et al. / EBioMedicine 27 (2018) 103–111
be relevant to predicting seizure onset. In ourwork,we included tempo-
ral information in form of time of day to account for the patient-specific
seizure distribution reported in (Karoly et al., 2016, 2017). Extending
the current predictive system to incorporate these additional inputs
and data types is the focus of ongoing work.

We have demonstrated the feasibility of implementing a real-time
and ultra-low power solution on the TrueNorth chip. TrueNorth, due to
its unique capabilities – namely its neuromorphic architecture, small
size, and low power consumption – could provide the mobile processing
power for a wearable seizure prediction or intervention system.We have
proposed adeep learning approach to seizure prediction,which addresses
many of the challenges identified from previous analyses using the same
data (Freestone et al., 2017; Karoly et al., 2017). This study is one of the
largest pseudoprospective seizure prediction studies undertaken to date.
Therefore, this study may serve as a benchmark for new work exploring
deep learning enabled seizure prediction. We expect advances in data
processing, network design, and specialized hardware to shape the future
of epilepsy research. We hope this study will motivate and guide further
development of seizure prediction and intervention systems.
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