
On The Design of a Route Parsing Engine for Connected Vehicles with
Applications to Congestion Management Systems

Sam Sinnott1, Rodrigo Ordóñez-Hurtado1, Giovanni Russo2 and Robert Shorten1,2

Abstract— In this paper we present a new type of congestion
management system to regulate congestion around a single link
obstruction. This obstruction will be investigated in two cases:
a) a regular obstruction and b) an irregular obstruction. The
principle innovations of our system are to utilize a route parsing
engine to both predict the likelihood of a vehicle being affected
by the obstruction and make decisions ahead of time and to use
this information to make a fair congestion management system.

I. INTRODUCTION

Vehicles are undergoing a transformation from inde-
pendent bodies operating on a road network, to con-
nected/informed devices, our view of vehicles on our roads
is changing. Through vehicle to vehicle (V2V) and vehicle to
infrastructure (V2I) communication, the connected car shows
a lot of promise for the design of smarter road networks.
It is predicted that by 2018, 17% of vehicles in the global
fleet will be connected to the internet [1], representing a
significant increase from the 10% that were connected as of
2015. This is confirmed by a survey by McKinsey [2] where
13% of respondents said that they are no longer prepared to
buy a new vehicle without internet access. This demonstrates
that drivers are open to the plethora of new services enabled
by connected cars.

While current vehicles can typically be categorised as
“passive autonomous” as drivers are being assisted by sys-
tems local to the vehicle, future vehicles are likely to be
bombarded with information from a multitude of connected
devices. In this context, it is very important that the vehicle
be able to filter or parse this information, so only the relevant
information to the journey is passed to the driver or on-
board decision support system. Thus, the development of
future vehicles will require them to become cognitive bodies
able to filter through a flood of newly shared information
and pass only relevant information to the driver. A key
innovation in the work presented in this paper is to take
a first step in this direction: namely to design an on-
board parsing engine that can be used to enhance recently
developed congestion management algorithms. Specifically,
this paper aims to develop a tool to further improve the
ability of contemporary congestion management systems,
to give all vehicles an opportunity to access a preferred
route, balances rerouted vehicles across adjacent routes, uses
feedback control to regulate the flow of vehicles along an

1Sam Sinnott, Rodrigo Ordóñez-Hurtado and Robert Shorten are
with the University College Dublin, School of Electrical, Elec-
tronic and Communications Engineering sam.sinnott@ucd.ie,
rodrigo.ordonez-hurtado@ucd.ie

2Giovanni Russo and Robert Shorten are with IBM Research, Ireland
grusso@ie.ibm.com, robshort@ie.ibm.com

obstructed route, and finally uses a parsing engine to filter
route closure information only to relevant cars.

A. Problem Statement
The goal of this paper is to design a congestion manage-

ment system with the aim of re-routing vehicles around a
single link obstruction. The system will have the following
characteristics: a) it will be capable of re-routing a population
of vehicles given opportunity to access preferred routes;
b) re-routed vehicles will be balanced across 𝑁 alternative
routes 𝑎1, ..., 𝑎𝑁 ; c) feedback control will be used to regulate
the flow of vehicles along obstructed route 𝑜; d) using a
route parsing engine, the system will filter out information
about route closures and pass it only to relevant vehicles.
Our interest in single link obstructions (e.g., lane closures
due to an accident, and reduced flow in response to planned
events such as school opening/closing times) is motivated
by the fact that they are potential critical scenarios for the
connected cars concerning channel quality, communication
range and sensor performance, among many others [3], [4].
Essentially, the system consists of four main components:

∙ a route prediction algorithm, that takes the past be-
haviour of the user as input and returns the most likely
route of the vehicle (i.e. an estimation of the route of
the vehicle, given historical data on past trips).

∙ the output of the route prediction algorithm, together
with environmental information (e.g. traffic congestion),
is used as input to the route parsing engine. It de-
termines whether an obstruction impacts the predicted
route, and filters information as it returns only informa-
tion that will affect the most likely route.

∙ the feedback (or network) controller is used to regulate
the number of vehicles passing through the obstructed
link 𝑜. Taking the measured number of vehicles along
the route as an input, it outputs the probability of a
vehicle being allocated the obstructed route.

∙ the load balancer is responsible for distributing the
vehicles predicted to travel via the obstructed route, but
not allocated the resource. It takes the probability of
assignment and environmental information as input and
determines an alternative route to be allocated.

The two types of single link obstruction (or events in what
follows) investigated in this paper are as follows:

∙ an irregular obstruction, which typically does not hap-
pen in the same place and can not be predicted. This
can be linked to a lane closure due to, e.g., road works.

∙ a regular obstruction, which can be predicted and
resources are regularly adjusted during this period. This

can be likened to the closure of a school or an event at
an entertainment venue.

The structure of this paper is as follows: Section II
outlines the tools used by the system, Section III outlines
the proposed system architecture, Section IV discusses the
experimental validation of the system, Section IV-C describes
the results found, and finally Section V concludes the paper
and states the future work.

II. PRELIMINARIES

This section will briefly describe tools used within our
design. Specifically we will make use of Markov chains and
the PageRank Algorithm in the design of our route parsing
engine. Please refer to [5] and [6] for further details.

A. Markov Chains

A Markov model (or Markov chain in what follows)
is a tuple ⟨𝑆,𝒜, 𝑇 ⟩, with 𝑆 being a finite set of states
(𝑠1, . . . , 𝑠𝑛), 𝒜 being a finite set of actions, and 𝑇 being
the transition function 𝑇 : 𝑆 × 𝒜 × 𝑆 → R. The transition
function 𝑇 (𝑠𝑖, 𝑎, 𝑠𝑗) models the probability that the system
goes from state 𝑠𝑗 to 𝑠𝑖 when action 𝑎 is executed, i.e.
𝑇 (𝑠𝑖, 𝑎, 𝑠𝑗) = 𝑝(𝑠𝑖|𝑠𝑗 , 𝑎). Given a Markov model and an
initial state distribution, say 𝜋, then the future state distribu-
tion arising from the sequence of actions can be predicted.
Specifically, let 𝑝𝑡(𝑠𝑖) be the probability of being in state 𝑠𝑖
at time 𝑡, then 𝑝𝑡+1(𝑠𝑖) =

∑︀
𝑠𝑗∈𝑆 𝑝𝑡(𝑠𝑗)𝑇 (𝑠𝑖, 𝑎

𝑡, 𝑠𝑗).
In the rest of the paper we will make use of Markov

models to build the route prediction algorithm presented in
Section III. See [7], [8], [9] for similar ideas in this field.

B. Ranking Algorithm

A ranking algorithm allows for objects in a system to be
ranked against each other. The type of ranking algorithm we
will use to develop our system is the so-called PageRank
algorithm [6]. Originally made popular by GoogleTM, this
algorithm is typically implemented on webpages/nodes and
ranks the relationship between other pages/nodes.

Intuitively, the PageRank algorithm 𝑃𝑅 (∙) computes
the importance of a given node ∙ in a graph 𝐺, where
the input to the algorithm is essentially the topology of
𝐺. Specifically, let 𝐴 be the adjacency matrix of 𝐺, the
ranking for the 𝑖-th node is then 𝑟𝑖 := 𝑃𝑅 (𝑑, 𝑟𝑗 , 𝐴) =(︁
(1− 𝑑) + 𝑑

∑︀
𝑗∈𝑁𝑖

𝑟𝑗

)︁
, where 𝑁𝑖 is the set of nodes linked

to (i.e. pointing to) node 𝑖, and 𝑑 is a design parameter (a
damping factor) which in the clasical PageRank algorithm
for web pages is typically set to 0.85. In our study, inspired
by [10], 𝑑 will be set to 0.93. Hereafter, we will use a version
of the PageRank algorithm (applied to the edges of a graph
rather than nodes) to rank possible routes that a vehicle could
take.

III. THE PROPOSED SYSTEM

The proposed system is presented in Fig. 1. We will de-
scribe the required modules and algorithms in the following
subsections. However, for the sake of brevity, we omit the
theoretical results beyond our algorithms.

Fig. 1: System Architecture. 𝐶𝑜 (𝑘) is the desired capacity of
the obstructed link 𝑜; 𝑥𝑜 (𝑘) is the number of vehicles on the
obstructed link 𝑜 (i.e. the controlled variable of the obstructed
route); 𝑒𝑜 (𝑘) := 𝐶𝑜 (𝑘) − 𝑥𝑜 (𝑘); Γ𝑇 = 𝛾𝑜 (𝑘) ∪ Γ𝑎𝑙𝑡 (𝑘),
where 𝛾𝑜 (𝑘) is a variable affecting 𝑜, and Γ𝑎𝑙𝑡 is a set of
parameters calculated by the load balancer; and 𝑓 (𝛾𝑜 (𝑘) , 𝑘)
models the time evolution of the capacity along 𝑜.

Summarizing from Fig.1, the route predictor calculates the
most likely route for the user to take given the users previous
journeys. Based on this, the route parsing engine determines
if the predicted route is affected by the obstruction. Then, a
time-varying signal, say 𝛾𝑜 (𝑘), is calculated by the feedback
controller and it is passed to the load balancer. This module,
in turn, calculates a set of probabilities, i.e. one probability
for each alternative route, and broadcasts this set to the
vehicle. The vehicle, in turn, flips a coin to decide which
alternative route it will follow.

A. Route Prediction

The goal of the Route Prediction algorithm is to compute
the most likely route that the vehicle will take. This output is
then used by the Route Parsing Engine to detect obstructions
along the route. The route predictor gathers data about the
past trips of the user and creates a picture of where the user
typically goes along a journey. In this paper, a journey is de-
fined through a graph, 𝐺𝑇 , that connects origins and destina-
tions [11]. The nodes of the graph will be road intersections
and links will be roads linking different intersections. From
the functional viewpoint, the route predictor can be broken
down into three sub-modules: 1) Edge Ranking Routine, 2)
Edge Weighting Routine, and 3) Prediction Routine.

1) Edge Ranking Routine: The key idea of this routine
is to characterize the importance of a given route from a
topological viewpoint. This is done by ranking the edges
(and hence the directions) taken by a driver during a trip.
The Edge Ranking Routine described here then takes as input
the topology of 𝐺𝑇 and ranks its edges. Specifically, this is
done by applying the PageRank algorithm to the edges of
𝐺𝑇 , rather than to its nodes. Let 𝑟𝑖,𝑗 denote the ranking of
the edge (𝑖, 𝑗), i.e. the edge linking nodes 𝑖 and 𝑗, and let

𝐸𝑇 denote the edge-adjacency matrix of 𝐺𝑇 . Then we have

𝑟𝑖,𝑗 := 𝑃𝑅 (𝑑, 𝑟𝑚,𝑛, 𝐸𝑇) =

⎛⎝(1− 𝑑) + 𝑑
∑︁

(𝑚,𝑛)∈𝑁𝑒
𝑖

𝑟𝑚,𝑛

⎞⎠ ,

(1)
where 𝑁𝑒

𝑖 is the set of edges adjacent to (i.e. pointing to)
edge (𝑖, 𝑗).

2) Edge Weighting Routine: The key idea of this routine
is to characterize the edges of the graph 𝐺𝑇 based on the
habits of the user, i.e. based on past trips. The edge weighting
routine computes weights for each of the edges of 𝐺𝑇 using

𝑓𝑖,𝑗 :=
Number of trips from i to j

Total Number of trips departing from i
. (2)

Edges that have been taken more often have higher weights.
3) Route Prediction Routine: Edge rankings and weights

are provided as inputs to this routine, which performs the
route prediction. In order to illustrate this routine, let 𝑡𝑟 (𝑖, 𝑛)
be a tree of width 𝑛 generated from the 𝑖-th node of the
graph 𝐺𝑇 . We will denote by 𝑏𝑟 (𝑖) the 𝑖-th branch of such
a tree. The route prediction is then achieved by computing
the quantity

𝑅𝑗 :=
∑︁

(𝑚,𝑛)∈𝑏𝑟(𝑗)

𝑓𝑚,𝑛𝑟𝑚,𝑛. (3)

Note that each 𝑅𝑗 is associated to a given branch 𝑏𝑟 (𝑗)
(i.e. to a window of 𝑛 subsequent edges along the possible
routes). Then, the predicted route is the one having the
maximum 𝑅𝑗 . The window size chosen for this problem
is 𝑛 = 5. From simulations, this value offered a good
compromise between computational efficiency and prediction
accuracy. The macro steps for route prediction are shown in
Algorithm 1.

B. Route Parsing Engine

The objective of the route parsing engine is to parse
information coming from the network environment as a
function of the route predicted by the prediction algorithm.
Specifically, this module determines if the vehicle in question
will be affected by an obstruction. If the predicted route is
seen to be via the obstructed route, then this information
is provided to the feedback controller and load balancing
module. This can be seen in Algorithm 2.

Algorithm 1 Route Prediction Algorithm

1: procedure ROUTE PREDICTION
2: Find current edge 𝑖 based on car location
3: Compute the tree 𝑡𝑟 (𝑖, 𝑛)
4: for each edge (𝑖, 𝑗) in 𝑡𝑟 (𝑖, 𝑛) do
5: Compute edge ranking 𝑟𝑖,𝑗 by means of (1) and

weights 𝑓𝑖,𝑗 by means of (2)
6: for each branch 𝑏𝑟 (𝑖) in 𝑡𝑟 (𝑖, 𝑛) do
7: Compute branch ranking 𝑅𝑖 by means of (3)

return route with the largest 𝑅𝑖

Algorithm 2 Route Parsing Engine Algorithm

1: procedure PARSING ENVIRONMENTAL INFORMATION
2: Get the route with largest 𝑅𝑖 from Prediction module
3: Get environmental information about obstructions
4: if obstruction along predicted route then
5: return relevant information

C. Feedback Controller

To regulate the number of cars along the obstructed link 𝑜,
a closed loop feedback control system has been implemented.
This method of regulation was chosen due to the nature of an
obstruction. Specifically, in the case where the flow rate of
the obstructed route was being controlled and becomes zero,
queues would form and the congestion management system
would not achieve its objective.

What differentiates this work from others such as [12] is
that, firstly, in this instance the number of vehicles on the
route are being controlled in a token/buffer like fashion rather
than the control of the flow of vehicles through a regulated
section of road. Secondly, the investigation in this paper
is using a parsing engine to specifically determine which
vehicle should be re-routed or be allocated the resource.

1) Allocation Through An Irregular Obstruction: Here we
assume the obstruction does not happen regularly in the same
place and, as a result, the allocation of resources will be done
in a way to maximise the quality of service for all users. The
controlled variable 𝑥𝑜 (𝑘) in this case is the measured rate
of vehicles on link 𝑜, the 𝐶𝑜 (𝑘) is the correspondent desired
value, and the type of controller used is an On-Off controller
with a dynamic described by

𝛾𝑜 (𝑘) =

{︃
0, if 𝑒𝑜 (𝑘) < 0,

1, otherwise,
(4)

where 𝑃𝑜 (𝑘) = 𝛾𝑜 (𝑘) is the probability of a vehicle being
allocated though the regulated link 𝑜, and only depends on
𝑒𝑜 (𝑘) = 𝐶𝑜 (𝑘) − 𝑥𝑜 (𝑘). Note that in this investigation,
the probability of assignment is presented as “certainties”
(i.e. 0 or 1) as a result of the use of an On-Off controller. In
applications which desire the probability of assignment to be
adjusted with respect to the amount of resources available,
other types of controller may be used (e.g., a PID controller,
which will allow for less bursty traffic to be passed through
the obstructed route); this, however, is beyond the scope of
this investigation.

2) Allocation Through A Regular Obstruction: In the case
of a regular obstruction, the period of time which we would
like to balance the average user allocation is larger and, as
a result, merits a more tailored design. Taking inspiration
from [13], where access to parking facilities was managed
in a way to optimise the benefit to a population, we now
apply similar ideas to govern the access to the obstructed
link. Note that, optimization in [13] is achieved when the
utility functions achieve consensus. Thus, by selecting the
utility functions that govern the access of each user, in an

appropriate manner, then a range of optimality criteria can
be realised.

This is achieved by first using the same feedback controller
structure shown in Fig. 1, but here 𝛾𝑜 (𝑘) is not a probability
of allocation being distributed to each vehicle, but a gain
which will scale the users probability of allocation to this
obstructed route. Now the controller updates 𝛾𝑜 (𝑘) as a
function of 𝑒𝑜 (𝑘) by

𝛾𝑜 (𝑘) = 𝛾𝑜 (𝑘 − 1)− 𝛼 * 𝑒𝑜 (𝑘) , (5)

where 𝑒𝑜 (𝑘) = 𝐶𝑜 (𝑘)−𝑥𝑜 (𝑘) denotes the capacity available
along the route, 𝛼 is a scaling constant, and 𝛾𝑜 is bound
by 0 ≤ 𝛾𝑜 (𝑘) ≤ 1. For each user, the historic probability
of being allocated the resource will be determined by the
number of times a user has been granted and refused their
preference. This can be described by

𝐻 (𝑘) =
𝑌𝑖 (𝑘)

𝑓𝑐′𝑖
(︀
𝑌𝑖 (𝑘)

)︀ , (6)

where 𝑌𝑖 denotes the average allocation of resources for user
𝑖, and 𝑓𝑐

′
𝑖

(︀
𝑌𝑖 (𝑘)

)︀
is a concave cost function for user 𝑖 which

will be minimised to reduce the number of times the user
is re-routed. In this implementation, the cost function was
chosen to be 𝑓𝑐 (𝑧) = 𝑧4/4 and the scaling factor 𝛼 = 0.01.

Here, the probability of allocation along the obstructed
link 𝑜, 𝑃𝑜 (𝑘), is found by

𝑃𝑜 (𝑘) = 𝛾𝑜 (𝑘) *𝐻 (𝑘) . (7)

Remark: Eq. (7) allows for the privacy of a user to
be preserved as each vehicle utility function 𝐻 (𝑘) can be
held locally and 𝛾𝑜 (𝑘) can be broadcasted to network for
decisions on probability of assignment. When 𝑃𝑜 is found,
this value is then pitched against a coin toss to stochastically
decide if the resource will be allocated to the user. If after the
coin toss, the obstructed route is not chosen, the information
from the load balancer will be used to re-route the vehicle.
The stochastic nature of the coin toss avoids predictability
and allows for fairness to be created as no one user will have
a higher priority to the resources than others.

D. Load Balancer

The load balancer is responsible for calculating the prob-
abilities of alternative routes to the obstructed route, which
will be sent to the car but only going to be used in the event
that the obstructed route is relevant and cannot be allocated.
For this, and an observation of the environment is carried
out.

This observation is namely to identify if there is capacity
on the obstructed route 𝑜 to accept this vehicle, and, if
required, to calculate Γ𝑎𝑙𝑡 (𝑘) = {𝛾𝑎𝑖

(𝑘)}𝑖=1,...,𝑁 , i.e. the
set of probabilities to take 𝑁 alternative routes between their
origin and likely destination. In the case that 𝑥𝑖 (𝑘) (i.e. the
number of vehicles along route 𝑖) is different than zero for
all 𝑖, then the load balancing of re-routed cars is given by

𝛾𝑎𝑖 =
1/ℎ𝑖∑︀𝑁

𝑗=0 (1/ℎ𝑗)
,with ℎ𝑖 =

𝑥𝑖 (𝑘)∑︀𝑁
𝑗=0 (𝑥𝑗 (𝑘))

, (8)

where ℎ𝑖 can be seen as the proportion of the total load which
is passing through route 𝑖, otherwise (i.e. when ∃𝑥𝑖 (𝑘) =
0∀𝑖) the probability of assignment is determined by

𝛾𝑎𝑖
=

⎧⎨⎩
1⃒⃒⃒⃒{︁

𝑥𝑖 (𝑘) |𝑥𝑖 (𝑘) = 0
}︁

𝑖=1,...,𝑁

⃒⃒⃒⃒ , ∀𝑖 s.t 𝑥𝑖 (𝑘) = 0,

0, otherwise,
(9)

where |∙| is the cardinality of the set ∙, this is that when
the flow through any exit 𝑖 is zero, the probability of
assignment for that exit is equal to the the inverse of the total
number of resources where 𝑥𝑖 (𝑘) = 0. Finally, Γ𝑇 (𝑘) =
{𝛾𝑜, 𝛾𝑎1 , ..., 𝛾𝑎𝑁

} is sent to the vehicle approaching the
link. Based on 𝛾𝑜, the vehicle calculates the probability of
accessing the obstructed link. The vehicle then flips a coin
to determine which link it will take.

IV. EXPERIMENTAL VALIDATION

A. Simulation Software

The software tool used to simulate and validate this design
is SUMO [14]. Developed at the Institute of Transportation
Systems at the German Aerospace Centre (DLR), SUMO is
an open source microscopic simulation platform that allows
for the simulation of vehicles on large networks. Modelling
not only vehicular dynamics and vehicle following models,
SUMO also allows for a realistic reconstruction of a problem
and implementation of a vehicle to infrastructure solution.

SUMO simulations are comprised of three layers:
1) Network Layer - The simulated road infrastructure,
2) Vehicle Layer - The cars interacting in the simulation,
3) Route Layer - The routes traced by the simulated cars.
The chosen network (depicted in Fig. 2), which this

congestion management system has been implemented on, is
the area of Crumlin in Dublin 12, Ireland. This network was
imported from www.OpenStreetMap.org, an open source,
community-driven mapping service. In Fig. 2, we can see
the point of obstruction highlighted by a caution sign, and
the detection range depicted by a blue circle. The detection
range around the incident is where vehicles will be assessed
for their likelihood of passing via the obstruction. In this
investigation, the radius of this area was been set about
575m, chosen like this to ensure that the delay between
vehicles being allocated resources and vehicles clearing the
obstruction was short, and to allow for more alternative
routes to be taken.

Fig. 2: Simulation Network: Crumlin, Dublin 12, Ireland.

The journeys for this simulation were chosen to be be-
tween 17 origins and 17 destinations on either side of the
network. The routes used were generated by using SUMO’s
duarouter function, which finds the shortest path between
the specified origin and destination.

B. Implemented Algorithm

To implement the route parsing algorithm, TraCI (a
Python-based interface to access running simulations in
SUMO) was used to communicate between the infrastructure
and simulated cars. The first step of the route parsing
algorithm outlined in Section III was to generate the Markov
transition matrix for each origin by observing the edges that
a vehicle leaving this origin took for each of the journeys to
each of the destinations. These observations of edges vehicles
passed on were counted, and the most frequently used edges
recorded. The row state vector was then defined by randomly
generating the number of times a vehicle travelled between
each origin and destination.

The obstruction was created by selecting an edge used by
a large number of journeys and determining an appropriate
detection radius for which oncoming vehicles would be
assessed. In this simulation, the reference 𝐶𝑜 (𝑘) was set to
three vehicles at any one time (i.e. the maximum number of
simultaneous cars allowed within the link is equal to 3) and
the obstruction itself was modelled by a significant reduction
in speed along the edge, where the change in speed limit was
from 50 km/h to 18 km/h. This is a typical speed change for
roads in the surroundings of a traffic incident.

At the point where an incoming vehicle reaches the
affected zone, the route prediction (Algorithm 1) and route
parsing engine (Algorithm 2) start to determine if the vehicle
is likely to be affected by the incident. At this point the
probability of the vehicle becoming in contact with the
incident will be known, and the feedback controller of
Section III-C will attempt to regulate the capacity of the
obstructed segment. Vehicles are then re-routed through the
load balancer algorithm of Section III-D. Specifically, the
algorithm will assess the current load on the affected link
and adjacent links, and will determine the route to be taken
by the car.

Re-routing vehicles which have not been allocated the
affected link will depend on the origin and the destination
of the travelling vehicle. The objective of the load balancing
algorithm is to balance the number of vehicles on each of
the adjacent alternative routes and to re-routed vehicles in
a way that reduces further congestion. This is achieved by
assessing the load on links of the alternative routes around
the incident and allocating alternative resources according to
current loads.

C. Numerical Results

Here we discuss the results obtained for both the irregular
and regular obstructions.

1) Irregular Obstruction: The irregular obstruction was
simulated for a period of 4 hours, where vehicles within
the affected radius were assessed to check if they would be

travelling via the obstruction. In the cases where the vehicle
was likely to come in contact with the obstruction, the vehicle
was routed according to the environments current loads.

The results of the irregular single link obstruction can be
seen in Fig. 3. The top panel of the same figure shows the
flow of vehicles through the incident route and three of the
alternative routes without load balancing or route prediction.
It can be seen that the incident route carries a large amount
of traffic along it as it is the main link for a large number
of vehicles in the simulation.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

50

100

150

200

250
Baseline Test Results

Time (Hours)

F
lo

w
 o

f V
eh

ic
le

s
(V

eh
/h

)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

50

100

150

200
Route Prediction Results

Time (Hours)

F
lo

w
 o

f V
eh

ic
le

s
(V

eh
/h

)

Obstructed Route Alt A Alt B Alt C Desired Flow (Obstructed Route)

Fig. 3: Results for the irregular obstruction.

Fig. 3-bottom, instead shows the results of the system us-
ing the route prediction and load balancing algorithm. It can
been seen that the traffic flow through the obstructed route
has been significantly reduced according to the specifications
and is seen to be regulated at an average of 30 vehicles
per hour. This shows that the number of vehicles which has
passed the obstruction has successfully been regulated over
time. It can also be seen that the three alternative routes have
become closely matched as a result of the load balancing.
Alternative route B, which was previously at an average of
54 vehicles per hour, rose to an average of 147 vehicles per
hour. This shows that a large amount of the traffic required to
be distributed along the alternative routes has been achieved,
and routes with lower congestion have taken more of the load
from the obstructed route.

2) Regular Obstruction: The investigation of the regular
obstruction was carried out over the same daily period of
4 hours as the control in the irregular obstruction, and was
modelled with a similar regular load. It was assumed that
the area around the obstruction is a residential area which
contains a school and the vehicles competing for access
would typically be using the area every day. The focus
here is to repeat the simulation over the course of a year
and incorporate fairness into the allocation of resources, by
allowing each user have equal opportunity (on average) to
access the resources over the course of the investigated time.
Due to the large timeframe used, a macroscopic approach
was taken and the simulation was carried out in MATLAB R○.
Each daily investigation was broken up into 15 minute incre-

ments and a running average of the flow of vehicles through
the obstruction per hour was calculated. This approach was
chosen to account for bursty arrival of traffic within the
observed interval. Using a running average allows for this
type of traffic to be filtered out over time, which in turn
allows for an assumption that the equilibrium probabilities
over the interval of time of interest do not vary too much
from a given interval to the next.

When a user is competing to use the affected link, their
history is queried, and the average number of times the user
has been allocated the resource along with the flow of vehi-
cles on the route during this period is then used to determine
the probability of allocation. Once this probability is known,
a coin toss is carried out as described in [12], which competes
with the historic likelihood of being allocated the resource
to add a stochastic element to the allocation of the resource.

0 50 100 150 200 250 300 350
0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration (Days)

S
uc

ce
ss

 R
at

e:

Average Success Rate of Users Over The Course Of A Year:

Fig. 4: Regular Obstruction: Utility fairness results.

It can be seen from Fig. 4 that the equilibrium probability
for all users using cost function 𝑓𝑐 (𝑧) = 𝑧4/4, found in
Section III-C.2, is 57% over the course of one year. This
shows that over time, all users using this cost function have
been allocated this resource approximately an equal number
of times, allowing for a suggestion of fairness in the solution.
While this is not proved in this paper, it has been discussed
in [15] and is suggested in the results presented.

V. CONCLUSIONS AND FUTURE WORK

This paper has successfully investigated the design of a
congestion management system with the following charac-
teristics: a) the system is capable of rerouting a population of
vehicles giving fair access to the preferred route; b) re-routed
vehicles are balanced across adjacent alternative routes; c)
the system uses feedback control theory to regulate the flow
of vehicles along the obstructed link; and d) using a route
parsing engine, the system filters out information about route
closures and pass it only to relevant vehicles. The results
presented in Section IV-C confirm that our approach has
been an effective solution to the problem of a single link
obstruction.

The investigation was carried out on two different types of
obstruction, a regular and irregular obstruction. The former
case showed that vehicular flow along the obstructed link
could be regulated, and the rest of the load balanced across
alternative routes. In the second investigation, the case of the
regular obstruction showed that when an obstruction can be
predicted, vehicles can be allocated access to this resource in

a fair way over a longer period of time. It should be noted
here that the inclusion of a route parsing engine allowed
for the re-routing of vehicles to be done in a time effective
manner, which allowed for more alternative routes to be
utilised.

Future work is to develop the system further to update
users transition matrices in real time and to study, via e.g.
nonlinear contraction theory [16], stability properties of the
resulting closed loop dynamics. Additional future work con-
cerns investigating about how this system could be modelled
using real vehicles. Work has previously been carried out in
papers such as [12] to develop a hardware in loop platform
for SUMO, allowing for a real vehicle to become embedded
in a SUMO simulation. This platform would allow for the
validation of the route prediction algorithm by creating a
model of a users driving behaviour, and assessing if the
algorithm can predict where a user would typically go. This
test of user behaviour would allow for great insight into the
93% predictability proposed by [10]. A video demonstrating
the work in [12] can be found at [17].

REFERENCES

[1] Volkswagen ViaVision, “Shaping the future of mobility,” 2015.
[2] McKinsey, “Whats driving the connected car,” tech. rep.,

http://goo.gl/8I4Lzx, 2014.
[3] R. Meireles, M. Boban, P. Steenkiste, O. Tonguz, and J. Barros, “Ex-

perimental study on the impact of vehicular obstructions in VANETs,”
in 2010 IEEE VNC Conference, IEEE, 2010.

[4] G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors,”
Communications of the ACM, vol. 43, no. 5, pp. 51–58, 2000.

[5] D. G. Luenberger, Introduction to Dynamic Systems. Wiley, 1979.
[6] C. Moler, Experiments with MATLAB, ch. 8 - Google PageRank.

Mathworks, 2011.
[7] M. Faizrahnemoon, A. Schlote, L. Maggi, E. Crisostomi, and

R. Shorten, “A big-data model for multi-modal public transportation
with application to macroscopic control and optimisation,” Interna-
tional Journal of Control, vol. 88, no. 11, pp. 2354–2368, 2015.

[8] D. F. Gleich, “PageRank beyond the web,” SIAM Review, vol. 57,
2015.

[9] A. Schlote, E. Crisostomi, S. Kirkland, and R. Shorten, “Traffic
modelling framework for electric vehicles,” International Journal of
Control, vol. 85, no. 7, pp. 880–897, 2012.

[10] C. Song, Z. Qu, N. Blumm, and A.-L. Barabási, “Limits of predictabil-
ity in human mobility,” Science, vol. 327, no. 5968, pp. 1018–1021,
2010.

[11] C. Godsil and G. F. Royle, Algebraic graph theory, vol. 207. Springer
Science & Business Media, 2013.

[12] W. Griggs, R. Ordóñez-Hurtado, E. Crisostomi, F. Häusler, K. Massow,
and R. Shorten, “A large-scale SUMO-based emulation platform,”
IEEE Transactions on ITS, vol. 16, pp. 3050–3059, Dec 2015.

[13] A. Schlote, C. King, E. Crisostomi, and R. Shorten, “Delay-tolerant
stochastic algorithms for parking space assignment,” IEEE Transac-
tions on ITS, vol. 15, pp. 1922–1935, Oct 2014.

[14] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent
development and applications of SUMO-simulation of urban mobility,”
International Journal On Advances in Systems and Measurements,
vol. 5, no. 3&4, 2012.

[15] W. Griggs, J. Y. Yu, F. Wirth, F. Husler, and R. Shorten, “On the
Design of Campus Parking Systems With QoS Guarantees,” IEEE
Transactions on ITS, vol. 17, pp. 1428–1437, May 2016.

[16] G. Russo, M. di Bernardo, and E. D. Sontag, “Stability of networked
systems: A multi-scale approach using contraction,” in 49th IEEE CDC
Conference, pp. 6559–6564, Dec 2010.

[17] S. Sinnott, UCD Smart Transport H.I.L. http://goo.gl/meZU7o.

	Introduction
	Problem Statement

	Preliminaries
	Markov Chains
	Ranking Algorithm

	The Proposed System
	Route Prediction
	Edge Ranking Routine
	Edge Weighting Routine
	Route Prediction Routine

	Route Parsing Engine
	Feedback Controller
	Allocation Through An Irregular Obstruction
	Allocation Through A Regular Obstruction

	Load Balancer

	Experimental Validation
	Simulation Software
	Implemented Algorithm
	Numerical Results
	Irregular Obstruction
	Regular Obstruction

	Conclusions and Future Work
	References

