
Decomposition of complex
movements into primitives
for Parkinson’s disease
assessment
Recent advances in technology present an important opportunity in
medicine to augment episodic, expert-based observations of patients’
disease signs, obtained in the clinic, with continuous and sensitive
measures using wearable and ambient sensors. In Parkinson’s
disease (PD), such technology-based objective measures have shown
exciting potential for passively monitoring disease signs, their
fluctuation, and their progression. We are developing a system to
passively and continuously capture data from people with PD in their
daily lives, and provide a real-time estimate of their motor functions,
that is analogous to scores obtained during Part III of the human-
administered Movement Disorder Society’s Unified Parkinson’s
Disease assessment (MDS-UPDRS3). Our hypothesis is that complex
human movements can be decomposed into movement primitives
related to the performance of the MDS-UPDRS3 motor assessment.
Toward this hypothesis, we developed a system for integrating and
analyzing multiple streams of sensor data collected from volunteers
executing the tasks based on the MDS-UPDRS3. In this paper, we
show how we can leverage the data collected from MDS-UPDRS3
tasks to develop machine learning models that can identify movement
primitives in activities of daily living.
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Introduction
Estimating the progress of neurodegenerative diseases

depends largely on episodic observations during clinical

visits and estimating how these observables deviate from a

healthy state. Amedical systemwhere assessment,

therapeutic intervention, and restoration to a healthy state are

based on real time and a continuous flow of health-related

information [1] is now conceivable. Using wearable and

ambient sensors, one can acquire user-generated data and

derive technology-based objective measures (TOMs) to form

a closed-loop system of medical care [2], which attempts to

mimic the natural homeostatic behaviors of an organism to

increase wellness and well-being of an individual [3].

Parkinson’s disease (PD) is a neurodegenerative disease

that affects over a million persons living in the United States

and has rapidly growing social and economic impact [4]. PD,

as a neurological movement disorder, makes an excellent

disease model for applying TOMs, which have the potential

to provide more continuous, sensitive, and objective

measures than the current standard approaches based on

human examiners [5]. Selective degeneration of

dopaminergic neurons in the substantia nigra pars compacta

[6] results in the principal motor signs of the disease (we

prefer the term “sign,” which can be detected by outside

observer, to the term “symptom,” which is only experienced

by the individual affected by the disease): bradykinesia

(slowness of movement), rigidity (stiffness and resistance to

passive movement), and tremor, and gait and balance

difficulties [7]. There is no cure for the disease, and

treatment is based on managing symptoms, primarily, but

not exclusively, in the form of dopamine replacement.

TheMovement Disorder Society’s Unified Parkinson’s

Disease Rating Scale, specifically part III with a focus on

motor examination (MDS-UPDRS3), is a standardized

assessment of the motor signs of PD [8]. This is among the

most commonly used clinical research instruments [9, 10] to

quantify PD signs and disease progression [9]. However, the

MDS-UPDRS3 has limitations; It is an episodic assessmentDigital Object Identifier: 10.1147/JRD.2017.2768739
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that requires expert training to have high test-retest reliability

[11], and generally the subject must travel to a clinic. A goal

in the field is to develop continuous TOMs that are less

disruptive to normal activities of people with Parkinson’s

(PwP). Such continuous measures could potentially allow

subtle differentiation between phenotypes of the disease,

refine medication intake, and improve sensitivity and

specificity in monitoring disease progression [12].

Substantial work has already been done to develop TOMs

in PD. Electromyograms (EMGs), electrocardiograms

(ECG), electroencephalograms, wearable inertial sensors,

and audio sensors for phonetic analysis have been used to

provide continuous, objective measures of the motor and

non-motor aspects of PD [13, 14]. Prior research in this field

include home monitoring of PwP via wearable technology

[15], automatic detection of fluctuations between the OFF

state and the ON state using inertial sensors [16], and

quantification of bradykinesia by sensor fusion while

performing bradykinesia-related tasks of the MDS-

UPDRS3 assessment [17]. Patients report being in the OFF

state when disease symptoms are at their worst, with severe

bradykinesia, rigidity, and tremor, whereas when patients

are treated with dopamine and regain control of movements

towards the normal state, this is called the ON state.

A strong association between kinematic features extracted

from a subset of MDS-UPDRS3 tasks and scores using

inertial measurements units (IMU) sensors has previously

been reported by Parisi and colleagues [18]. Similarly,

Piro et al. [19] compare the MDS-UPDRS3 ratings using a

single classifier, namely the pronation-supination classifier,

on the basis of a 3D animated human avatar.

Our objective is to develop a continuous assessment of

motor function analogous to the one obtained from MDS-

UPDRS3. We aim to create a set of MDS-UPDRS3-task-

derived classifiers with which human activities in real life

will be decomposed and expressed as a function of these

simpler motor signatures that facilitate automation and

qualification. These motor signatures are referred to here as

“movement primitives.” For this proof-of-concept study,

we describe our methodology to collect, store, analyze, and

classify movement primitives and show that they can be

extracted during scripted activities of daily living (ADLs).

The methodology developed is part of a larger project to

improve data collection and patient assessment in clinical

trials, ultimately aimed at developing personalized, closed-

loop therapies in difficult-to-manage diseases such as PD.

Materials and methods

Motivation
We performed an observational research study on healthy

volunteers to develop a dataset of time series segments of

human activity that corresponds to elements of the

UPDRS3 motor examination and motor aspects of activities

of daily living. Healthy volunteers were recruited to

participate by executing the study experimental protocol,

while the methods and data collection pipelines were being

tested and refined. The healthy volunteers’ data served as

the control group to compare with respect to the test group,

i.e., data collected from PwP executing the same

experimental protocol. Herein, we present the methodology

applied to recognize human activity in the form of motor

primitives based on UPDRS3 tasks performed by the

control group of healthy volunteers.

Sensors
Three different device types were used in our experimental

set up: a) Biostamp Research Connect (BiostampRC) system

byMC10, Inc., b) Opal version one devices manufactured by

Ambulatory Parkinson’s DiseaseMonitoring (APDM)

wearable technology company, and c) Kinect v2 motion

capture device manufactured byMicrosoft. All data streams

were resampled, aligned, and stored in a relational database

(described further below) with the appropriate metadata for

each participant and session.

BiostampRC is a multi-sensor device designed to collect

biometric signals in a flexible silicon package that is

applied to the body surface with adhesives. Each sensor

device contains a low-power three-axis accelerometer, a

high-range six-axis gyroscope and accelerometer, and

an analog front end for surface EMGs and ECG

measurement. Data are stored in its local memory and then

can be transferred wirelessly to other devices. Advantages

of using BiostampRC sensors include easy placement in

various body locations and the ability to simultaneously

record EMG, ECG, and kinematic data. A sampling

frequency of 250 Hz is used for all data in our studies.

The Opal sensor device comprises a single-package

wearable IMU with a three-axis accelerometer, a three-axis

gyroscope, and a three-axis magnetometer. Advantages of

using APDM Opals include the ability to stream kinematic

data from multiple sensors at a high sampling rate (128 Hz)

and within the same wireless network using a wireless

access point that synchronizes all IMUs. The APDM

Mobility Lab software output timestamped tuples include

linear acceleration, angular velocity, and magnetic field

strength in comma separated values (CSV) format.

Quaternions are also reported, enabling reconstruction of

the absolute orientation in space of each sensor in Earth

coordinates. APDMMobility Lab software computes

98 features of gait, balance, and postural sway, and

these features are used, along with our own custom-defined

features, as input to our machine learning algorithms to

classify the performance of MDS-UPDRS3 tasks.

Kinect v2, a successor of the Microsoft Kinect, is a

multipurpose device containing different types of sensors

and designed for use in the video gaming industry. Our

study requires a subset of the device’s functionalities for

video recording and motion tracking capabilities. In addition
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to the common 1,080 p resolution color camera (30 frames

per second [FPS]), the device provides an infrared-based

depth camera with 512� 424 resolution. Image processing

algorithms, based on machine learning, extract human

skeletal location data. Kinect v2 can track up to 6 different

skeletons simultaneously for persons located within a 70�

horizontal field of view (FOV) with a range of 0.8 m to

approximately 4 m from the sensor. Skeletal location data

consist of 3D spatial information collected from up to 25

human joints recorded at 30 FPS through custom-made

software, and this enables the storage of both color video and

data in the form of a CSV file. Note that we have deployed

Kinect in our laboratory studies because of the ease of use in

collecting skeletal location data to calibrate the wearable

sensor systems. However, limitations in range and FOV, as

well as privacy concerns of placing cameras in homes, may

limit the applicability to deployment in subjects’ living

environments in future studies.

ETL and SNOMED-based database
The Extract, Transform, and Load (ETL) process was

guided by each device’s siloed tool chain that needed to be

accommodated. We implemented software to extract data

from the various proprietary application programming

interfaces (APIs) and formats for each device type. The

Systematized Nomenclature of Medicine Clinical Terms

(SNOMED CT) [20] is a global clinical terminology that

supports clinical data capture and effective retrieval and

reuse of clinical information. This semantically driven and

interoperable ontology is aligned with standardized labels

to identify the demographic data, and we additionally use

the ontology terms to capture the associated

symptomatology, to identify anatomic location of

movements and sensor placement, and to describe the

MDS-UPRDS3 and prescribed ADL tasks. Our approach

may eventually be extended and interface with existing

ontologies systems such as the Semantic Sensor Network

Ontology (SSNO) for describing sensors and the

observations for diverse applications, including large-scale

scientific monitoring, industrial and home monitoring, and

the Internet of Things [21]. SSNO also facilitates the

development of specialized ontologies to complement data

capturing workflows and to apply ontologically driven

metadata for precise machine learning.

A record was kept for each data collection session with

the Cmed Encapsia eSource application [22]. This

application recorded labels for each task occurring during

the sessions with the corresponding timestamps that result

from human data entry events. These label data were

extracted from the Encapsia eSource application and passed

forward to our database with time alignment with the sensor

data. Each device type had a different time format, so all

devices must be reconciled to a common time format before

the data could be aligned. Ultimately the time series sensor

data with the label timestamps, subject demographic,

experimenter, and environmental data were loaded into a

MariaDB relational database.

Participants
We studied healthy participants prescreened and recruited

by Pfizer, Inc. (Andover, MA, USA) and the IBM T. J.

Watson IBM Research Center (Yorktown Heights, NY,

USA) research sites—following an open call for volunteers.

We enrolled n ¼ 60 participants, 33 female (average age

45:91� 11:00, years � std) and 27 male (average age

42:23� 10:30, years � std), from 24 to 70 years old

(average age 44:29� 10:77, years � std). All subjects were

healthy male and female subjects with no clinically relevant

abnormalities, physically able, and willing to participate

with the study procedures, as identified by subject self-

report and investigator assessment. All subjects signed

informed consent before participating in the study. The

study protocol was approved by the Schulman Independent

Institutional Review Board (Schulman IRB#201500837).

Each subject participated in a study consisting of two

sessions of approximately 60 minutes each, either recorded

during a single subject visit or divided into two visits.

Hence, a total of 120 sessions were collected from the

subject pool.

Protocol
Upon completing intake procedures, trained examiners

positioned six APDM Opals and eight MC10 BiostampRC

sensors, as shown in Figure 1(a). BiostampRC sensors

were positioned on the lateral shanks, left thigh, the ventral

aspect of the forearm over the right and left flexor

digitorum, the dorsal aspect of the forearm over the right

and left extensor digitorum, and on the chest over the heart.

The chest sensor recorded the ECG in addition to IMU data.

The arm sensors recorded EMG plus IMU data, and the

other devices provided only IMU data streams. Opal

sensors were positioned at the participants’ feet, wrists,

lumbar region of the lower back, and sternum. Sensors were

held in place by straps with Velcro fasteners. Data from

APDM Opal sensors were collected via a custom wireless

protocol, whereas the MC10 BiostampRC data transferred

to a mobile Android tablet and then to a proprietary cloud.

Participants were instructed to execute the series of 13

movement tasks, contained in the MDS-UPDRS3. In brief,

an examiner tested for: a) rigidity by passively moving

body parts across major joints with the participant in a

relaxed position; and b) bradykinesia by asking the

participant to tap their index finger to their thumb, flex and

extend their hands, and pronate-supinate their hands, and

tap their toes and stomp their feet on the ground using

maximum speed and excursion for 10 repetitions. Both the

dominant then non-dominant sides were examined. Gait,

balance and postural stability were measured by repetitive
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standing and sitting, and gait evaluation with turning, and

stability of stance under the duress of a sudden and forceful

pull on the shoulders. Participants also completed tasks

normally used to evaluate the presence and severity of rest

tremor, kinetic tremor (asking the participant to

alternatively touch their own nose and then the finger of

the examiner), and postural tremor (asking the participant

to hold arms outstretched). The examination protocol was

complemented by five additional movement-related

subtasks (see bold font in Table 1). In addition, the

protocol included 14 scripted ADLs, which were

timestamped for later retrieval and analysis. All

participants performed the same series of scripted ADLs

while the aforementioned system of sensors recorded

their movements. Examples of ADL routines included:

a) untying and tying shoelaces, b) opening and closing

a door, or c) putting on a lab coat and buttoning,

unbuttoning, and removing the coat.

Figure 1

Sensor placement and example of acquired signals. (a) Participants were equipped with six APDM Opals (shown by black ovals) and eight MC10

BiostampRC (shown by red rectangles). Microsoft Kinect v2, a motion-tracking device, reports the position of 24 skeletal locations (shown by green

dots). (b) Example of time alignment needed for fusion heterogeneous sensor tracks. An arising-from-chair protocol is performed to produce motion-

tracking data from the Microsoft Kinect v2 device signal at the sternum (red trace) overlaid with acceleration signal from an Opal device (black trace).

The hardware infrastructures are not synchronized, so a shift of Dt ¼ 1:287 s is required as shown (dash red trace) to time align the signals. Scale bars

are as follows: vertical (2.5 m/s2) and horizontal (2 s).

Table 1 Motor examination tasks. Healthy volunteers execute a complete set of the MDS-UPRDS3, complemented

by five additional movement-related subtasks (bold font): a) sit to stand with arms crossed; b) five repetitions (referred

to as 5x) of sit to stand with arms crossed; c) 30 s postural sway during quiet stance with eyes open; d) similar but with

eyes closed; e) rotation, 360� turn test. Each side (dominant and non-dominant hand and leg) is examined separately.
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Wearability of sensors
An important component in using remote monitoring is the

user acceptability of the wearable sensors for short or long

periods of monitoring time [23]. To assess comfort and

acceptability in our study, we conducted a questionnaire

survey at the end of the second experimental session for all

subjects ðn ¼ 60Þ. Six of the questionnaire’s items are

presented inTable 2. In item 1, subjects rated comfort for

wearing the sensors, with zero indicating that they were

uncomfortable but tolerable enough to participate in the

study, and five indicating that the sensors were so comfortable

so as to be unnoticeable during the study.We assessed their

willingness to wear the sensors continuously at home for

multiple days (item 2) and whether there were particular

sensor locations that were uncomfortable (item 3). Overall,

BiostampRC sensors were rated as more comfortable to wear,

and have had fewer location discomfort reports as compared

to the APDM sensors. Our analysis is limited to fairly short-

term use in a clinical study within a research site. Further

studies will be needed to understand wearability issues for

continuous wear in the home or public settings for which

other issues such as self-consciousness can arise.

Data curation
We aligned each data set according to the following

procedure. The delay between the APDM and BiostampRC

IMU data streams and the motion-sensing skeleton data was

characterized bymaximizing the cross correlation of the three

signals. The time alignment process is shown in Figure 1(b)

depicting the “arising from chair”MDS-UPDRS3 task used

as a reference point to synchronize all data stream. Each

MDS-UPDRS3 task was manually timestamped in real

experimental time by a manual key press, a process that

potentially introduces errors and sub-optimal separation

between the meaningful signal from noise.We developed a

semi-supervised procedure that detected the most relevant

start–end time points for eachMDS-UPDRS3 task. This

automated procedure was required because there were often

delays between the cuing by examiner and the actual

performance of the tasks by the subject. In other cases,

extraneous actions occurred before or after the desired task.

By removing irrelevant data in the storedMDS-UPDRS3

segmented tasks, we reduce the occurrence of confounding

noise, which can substantially degrade classification accuracy

bymachine learning techniques.

Machine learning algorithm and classification
Sensor data collected during the 13MDS-UPDRS3 and six

complementary tasks were labeled as shown in the content of

Table 1. Of the pool of 19 labeled tasks, 11 have been used to

train the classifiers of the current study so far. For example,

for one classifier, we used the “Posture eyes open” and

“Posture eyes closed” tasks (in which the subject stood still

for both) as training data for sedentary behavior. For flexion-

extension and grasping behavior, the training data was the

“flexion-extension” and “finger tapping” tasks (specifically,

dominant and non-dominant hand performed for 10 s and

non-dominant hand performed for 90 s). For pronation-

supination behavior, the training data were the “pronation-

supination” task (dominant and non-dominant hand for 10 s

and non-dominant hand for 90 s). To develop the classifiers,

the MDS-UPDRS3-task data were segregated in training

sets (70% of data) and test sets (remaining 30% of data).

Once the classifiers were trained to detect primitives in the

Table 2 Frequency of responses to the survey performed after the end of the second session. The first number is the

number of respondents, and the second is the percent of the total ¼ 60.
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MDS-UPDRS3-task data, the same classifiers were run to

extract primitives in the scripted ADL time-series data.

The raw signals from x-, y-, and z-axis accelerometer

and gyroscope data streams were pre-processed to correct

for sampling rate variation and sensor noise by using

cubic-spline interpolation followed by Butterworth

bandpass filtering. Time-series data were split into equal

length segments using a sliding window. Each window was

then processed using the fast Fourier transform to extract

the amplitudes of the frequencies across the sampling

spectrum. These features were fed into a neural network

architecture composed of a one-dimensional convolutional

layer with rectified linear unit (ReLU) nonlinearity,

followed by a long short-term memory (LSTM) layer, and

finally one dense layer with ReLU nonlinearities. The

convolutional layer was down-sampled by max pooling,

and standard dropout regularization was applied between

the layers; see Figure 2 for a schematic representation.

Following training using the Kingma and Ba version of

stochastic gradient descent [24], we found that the

frequency-based features that performed best when the

convolutions were calculated across the ordered frequency

domain as opposed to the time domain. Specifically, for

each time window, frequency amplitudes were extracted

using a fast Fourier transform. The convolutional filter is

then applied across the extracted amplitudes that are sorted

in ascending order by corresponding frequency.

Results
We have developed a flexible relational database structure

that allows data to be extracted, visualized, and analyzed

based on arbitrary combinations of labels for tasks, body

location, sensor type, subject demographics, etc. Because

data are stored as time-aligned and trimmed sequences, these

analyses can be performed with greater ease than working

with the raw data streams. Figure 3 illustrates the

capabilities that are enabled by this infrastructure. Panel

A shows an example of a time series extracted from the

database of acceleration signals measured during the

pronation-supination task in our protocol. Each subject

performed 10 repetitions of pronation-supination movement

using both the dominant and non-dominant hand while

wearing the sensor set previously described. Panel B shows

an example summary of angular velocity (i.e., rotation

speed) data acquired by the gyroscopes fromOpal sensors

positioned on the wrists. Data were extracted for right-

handed volunteers and the maximum angular velocity was

computed during the pronation-supination task. Data are

shown as separate distributions for the dominant (green) and

non-dominant hands (blue). The two hands showed similar

distributions (KruskalWallis test, p ¼ 0:0797 > 0:05), and

for each session, dominant vs. non-dominant hands showed

no difference (n ¼ 71, Wilcoxon signed rank test,

p ¼ 0:0989 > 0:05). With our database approach, similar

analyses could be easily performed based on other criteria,

e.g., as a function of age, first vs. second session, left-handed

vs. right-handed subjects, etc.

We also demonstrated an example of another key aspect

of our approach. Here, we showed that a scripted ADL task

that entails a complex series of motor activities could be

decomposed to movement primitives derived from the

MDS-UPDRS3 tasks. As illustrated by the sequence in

Figure 2

Architecture of the neural network (NN). The upper part of the figure concerns feature generation: A band filter is applied to the time-series data to

remove the gravity component from the accelerometers and other low-frequency artifacts caused by events like walking. The time domain is then

transformed to the frequency domain using a fast Fourier transform that is then fed into the convolutional layer. The lower part of the figure concerns

the main NN architecture. The NN is composed of four layers, a 1-D convolutional layer, an LSTM layer, a dense layer, and a softmax layer where

the class probabilities are generated.
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Figure 4, the scripted ADL task required the participant to

start from a static standing position, walk toward a door,

reach out for a lab coat on a hook, put the lab coat on,

button all the buttons, unbutton all, and then take the lab

coat off. We trained a classifier to produce a running

estimate of the probability during defined windows of the

occurrence of two primitives: flexion-extension and

pronation-supination. The classifier assumed that the

subject is sedentary when not performing either of the other

two tasks, so that the probability is equal to one minus the

other two probabilities in any given window.

Figure 4 shows an example of the output from this

classifier for one subject performing anADL task. The

algorithm predicts a high probability of being sedentary for

the first 18 seconds while the subject was mostly standing in

place. Then sedentary probability decreases and flexion-

extension probability increases as the subject was reaching

out for the lab coat from 18 seconds to�27 seconds. Next, the

probability of pronation-supination increases as the subject

was buttoning up the lab coat from 27 seconds to 29 seconds.

From this point onwards, the flexion-extension and pronation-

supination classes showedmutually complementary pattern

of high probabilities as the subject was repeatedly grasping

and twisting the button during both the buttoning and

unbuttoning phases of the scripted ADL. A human-annotated

description of the activities is shown at the lower panel of

Figure 4, with coloring corresponding to the primitives

showing highest probabilities. This example supports our

initial hypothesis that complex ADLmovement can be

decomposed intomovement primitives based onMDS-

UPDRS3 tasks. However, further testing over the entire set of

ADLs will be required to consolidate this preliminary result.

Discussion
We describe a methodology for capturing, fusing, storing, and

analyzing sensor data from healthy volunteers performing

MDS-UPDRS3 tasks. Using machine learning on labeled

data, we can construct classifiers to detect the occurrence of

movement primitives in testing data sets.We show an

example case in which the primitives are extracted from the

right-hand IMU sensor data stream from a healthy volunteer

performing a scripted ADL. Hence, we have demonstrated a

proof of concept for an approach of automatically extracting

primitives from complex motor patterns.

Substantial evidence exists demonstrating the ability of

kinematic measurements made using body-worn sensors

during the performance of MDS-UPDRS3 tasks to predict

physician-assigned scores [15, 19, 25–28]. Typically,

Figure 3

Sample data and analytics for the pronation and supination task. (a) The upper panel illustrates the pronation-supination of the hand. The lower panel

shows representative acceleration signals in three axes for the pronation-supination task. For the scale bars, the vertical line corresponds to 10 m/s2,

and the horizontal line to 1 s. (b) Distribution of the maximum angular velocity as measured by the x-axis gyroscope and computed for 71 sessions

with right-handed participants performing the pronation-supination task. Green bars correspond to the dominant (right) and blue bars to the non-

dominant hand (left). The inset boxplots depict the median maximum angular velocity for each case. Upper left panel depicting the pronation-

supination task was adapted from https://clinicalgate.com/ with permission from the author.
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features derived from the data are used to compute a

predictor of the UPDRS as scored by a human. For

example, Stamatakis and colleagues used a regression

model to automatically predict UPDRS test scores derived

from the finger-tapping task [25]. Similarly, Piro et al. [19]

used support vector machines to automatically classify

UPDRS, using the pronation-supination task. Along the

same lines, Giuberti and colleagues investigated how

kinematic data collected from a single MDS-UPDRS3 task,

sit to stand, can be representative of the MDS-UPDRS3

score assigned by a neurologist [28].

Our approach differs in several respects from previous

work. While many early studies showed derived features

correlate with MDS-UPDRS3, in most cases, the feature

space is based on heuristics or is predefined based on prior

knowledge [29]. In some of the approaches, the machine

learning chooses the most predictive set of features from the

predefined space (e.g., [30]). In contrast, we are attempting

to use a data-driven approach in which machine learning

chooses the features from the primary sensor data without

user input or prior knowledge. A potential downside to this

approach is that the training set may need to be large, a

requirement that could be challenging with the size of

datasets often collected with human studies. Our strategy is

to initially collect a large number of sensor streams with a

goal of winnowing down to the most informative, under the

assumptions that only a few sensors can be reliably

deployed in the real-world setting of continuous tracking in

subjects’ homes. We plan to use machine learning as a tool

for dimensionality reduction to assist in minimizing the

number of sensors deployed to assess PD.

Our approach to decompose ADLs into movement

primitives extracted fromMDS-UPDRS3 tasks has not been

reported before to our knowledge.We hypothesize that this

approach may provide important insights that might be

missed by using more global and composite features (e.g.,

energy within specific spectral frequency bands without

considering the specific context). Analyses based on

movement primitives will inherently consider a context

based on body location and movement sequence. Moreover,

assessed primitives may map more directly to brain areas

than other global and composite features. For example, hand

movements map to underlying brain circuitry [31, 32], and

hand configurations may be organized into a limited number

Figure 4

Human activity recognition based on MDS-UPDRS3-derived primitives. The subject performs a scripted ADL of standing, walking to pick up a coat

off a hook, putting on the garment, and buttoning and then unbuttoning (see small sample photos in upper panel). The outputs of classifiers trained on

the primitive activities are shown in the central panel (red: flexion-extension, annotated as flex-ext; blue: pronation-supination, annotated as pron-

supin; and green: sedentary). The lower panel shows a timeline of the participant’s movement activity, labeled by human annotation, with colors indi-

cating the primitives with high probabilities, as determined by the classifiers, during the periods shown.
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of components [29] in a low-dimensional manner, with four

to five dimensions being sufficient to explain 80%–90% of

the variability in natural movement data [33]. Along these

lines, a primitive-based approach may provide a more direct

mapping to the affected regions of the brain and potentially

could more precisely define the phenotype of the given

patient. Indeed, MDS-UPDRS3-based assessment revealed

that PwP cluster into several phenotypes [34, 35] that may

reflect underlying difference in the disease pathophysiology.

While we demonstrated the initial framework, much work

remains to be done toward the goal of assessing PwP in a

manner than recapitulates that of a human examiner. To that

end, we need to train classifiers to both detectmovement

primitives and scoremovement primitives on theMDS-

UPDRS scale. We are now collecting sensor data from PwP

who are performingMDS-UPDRS3 tasks with scores

derived from human raters. Ideally, we will have different

subjects providing example data over the range of possible

scores, typically from normal motion (score¼ 0) to highly

degraded performance (score¼ 4). From these data, we can

construct a training set for which a classifier could learn to

rate the primitives. If successful in both detecting and

scoring primitives in the controlled setting of a MDS-

UPDRS3 test, then the same classifiers could be applied to

PwP performing normal activities during everyday life.

Conclusion
We implemented a methodology to capture, store, curate, and

retrieve for analysis data from body-worn sensors generated

during the performance ofMDS-UPDRS3 tasks and then

construct machine learning classifiers of movement

primitives.We demonstrate a proof of concept that complex

movements such as ADLs can be automatically decomposed

intomovement primitives in healthy volunteers. Further work

will be required to show that automatic classification will be

as successful in context of the tremor, bradykinesia, rigidity

and gait/balance disturbances that can occur in PD.Moreover,

we will be constructing additional classifiers to rate degree

that performance of primitives is degraded in PD so that a

score can be automatically assigned that is analogous to a

human rater.While the current studies are limited to data from

healthy volunteers, the results show progress toward a goal of

automated and continuous activity quantification and

monitoring in PD.
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