
����������	�

��

��������������

�����
����������������������	���

�
Karin ��� � !#"%$#& " ,'�(*)+(-,*.0/#132%4�561356.076869#:0;�< 1

{karin@research.att.com}

=�> ? �A@�BDCA$#EDCAF#G HI*JLK F#MNF#G H JO> P F K�> "%Q H Mark
Wegman,

IBM RTS UVSXWZY#[D\0]#^`_�a#\0a#Y#b%c0de a#^#[Da#bgfih�Y#jT[Dd#]#b%^kfil�monqp#r#s#tu3v#w#x :0y0z%76.|{g. w :0z%}0y0.0:
wegman}@watson.ibm.com

~ F#GA��F#G �� w#� y056761 � z%��}0�O��.076�0�D. w#v 1

{nwang@cs.umd.edu}

Abstract

Programmers increasingly program by component assembly. This
is despite the fact that the use of components tends to decrease the
performance of programs. The programmers who design the
components do not know anything about the environment the
components will be used in, and cannot, therefore, tailor the
components for each specific use. Theuser of acomponent is, for
modularity reasons, not supposed to know anything about the
implementation. So, no one and no system chooses the most
efficient implementation. Our work lays out a foundation for
reformulating the implementation of components, so that
modularity is preserved and yet the assembled system is
optimized. Our approach amounts to automatically choosing
among a number of candidate implementation alternatives for
each of the data structures and communication mechanisms that
the components use during their interactions. Some of our initial
work in this area has shown how to transform one example of
component interaction optimization into a graph problem, and has
proposed analysis of dynamics and fast graph reduction heuristics�����N��������� ��� ���|��� �����|�|� �|�|�i�����i����� ��� �| � �|�i¡|����¢|� ��£T¤
Our hope is that this work will inspire debate that ultimately will
lead to a new area of investigation, within the field of compiler-
performed optimization, with the potential to achieve orders of
magnitude improvements in the performance of component-���N� ���|� ��¥�¡|���� ����N£T��¤

¦�§g¨ ©�ªX«�¬ ­ ®X©�¯°«�¨
While computers have been getting exponentially faster as time
goes on, the applications we use do not appear to be on the same
improved performance curve. We believe a part of the problem is
from what we have labeled the “Encapsulation Performance
Problem.” TheEncapsulation PerformanceProblem (EPP) occurs
when programmers write programs by assembling components.
We do not want to discourage this style of programming. It is
important both to make programmers more productive but also to���0� �|�N�i�6���0� ��� � ���|��±²�N£T���| ³�N¡|¡|� � �6�N� �����0��¤
The Encapsulation Performance Problem is in some sense a
question of who is in charge and can be boiled down to three
observations:

1. A component writer cannot know the
characteristics of the application the component´ � � ��¢|�i�0� ��¥�� �0¤

2. The application writer for reasons of modularity
and good software engineering should not know¥|�����N� �������q� �|�i� £�¡|� ��£����|���N� �����T���#�X�6��£�¡0���|���|��¤

3. The most efficient choice of component
implementation is different under different
circumstances.

Most writers of complex software will recognize this problem.
Programmers have lost intellectual control of their programs, in a
serious sense. It was possible in the 1980’s to understand the
details of an entire application. Moreover, in contrast to programs
written predominantly before say 1990, most of the time spent in
executing an application is spent in parts of a program not written
by the application writer. We have observed that it is not
uncommon today for an expert programmer who understands a
framework in more detail than the original programmer to
improve program efficiency by decimal orders of magnitude, by
invoking different components, by invoking them in different
ways, or even by altering the implementation of a component. For
example, choosing among alternative dictionary, directory or
registry components, without knowing about the internals of the
components, may affect performance adversely. In some cases,
anticipated use may dictate a component with a hash-based
implementation, rather than a tree- or list-based implementation,
while in other cases the overhead of such an implementation may
not be warranted. Furthermore, developing a component without
knowing anything about the applications in which it will
eventually be used also can result in inefficiencies. For example,
developing a component for a distributed application without
knowing anything about the topology in which it will be deployed
can lead to severe performance degradation due to inappropriate
choices with respect to placement, caching, and replication. In
1968 Doug McIlroy, in his famous paper, ``Mass Produced
Software Components’ ’ succinctly presented his vision of������� ´ �N�N�i�6��£�¡0���|���|����µ ¶���·N� ����±X¸|¹|ºD»

The most important characteristic of a software components
industry is that it will offer families of routines for any given job.
No user of a particular member of a family should pay a penalty,
in unwanted generality, for the fact that he is employing a
standard model routine. In other words, the purchaser of a
component from a family will choose one tailored to his exact
needs. He will consult a catalogue offering routines in varying
degrees of precision, robustness, time-space performance, and
generality. He will be confident that each routine in the family is¼D½X¾À¿ ÁÀ¾#ÂÀÃÀÄÀÅ ¿ Æ ÇÉÈgÊDË�Å ¿ ÄÀÌÀÅ ËÉÄÀÍÀÎ#Ë ½ ½Ï¿ Ð�¿ Ë�ÍÀÆ Ñ

Ò Ò Ò Ò Ó�Ô�ÕÀÖ�×ÙØ�Ú Û Ü Ô�Ý
The software industry has come a long way to realize some of
McIlroy’s vision. However users are paying substantial
performance penalties for using the non-customized components.
The C++ Standard Template Library (STL), Java Collection
Class, Microsoft Foundation Class, and other packages provide
high quality off-the-shelf reusable components. A purchaser of
these packages must pick and choose components and tailor them

1Þ�ßÀà°áãâ�ßÀäæå�ç�è6é%ê å�ë�ìXí°î ïoðÙñ ò6ñÀÞ�ë�ì%ó�ßÀäõô²å�ó�å�ë�à3ö�èã÷Oå�ä6ì%å�à3ñ

to his or her needs in order to achieve any degree of efficiency.
Even the efficiency achieved is only because we have, over many±3�6�N��� � £T�N�0�N ���¥����æ£T�����i� ���N¥|�6��������� ��¡|���N�����N£T�N�|���Ù�X¡0�N�N�����q� �|�����q·
and forced users to deal with it. Languages like Smalltalk avoid
this. Moreover new applications like J2EE application servers are
notoriously difficult to tune because the programmer does not�|�|¥|����� ���N�|¥�� �|�i�6���0� ���|�|���|���6�����q� �|�i¥|� �������N���|�����0��� ���6��� �|��±O£T�����6¤

Traditional statement-level and procedure-level optimizations
are inadequate for the kinds of software systems that are built
from off-the-shelf components, because the differences in the
implementations are often much more fundamental than
traditional optimization deals with. Examples are changes in
algorithms, data structures and placement. These different
implementations must be specified by the component developer.
Even languages like SETL which explored very high level
optimizations only optimized “components” such as sets that were
supplied by and known intimately by the compiler. New means�N�N�i�|�����6�����N�N±O������¡|� � £�� ���i�6��£�¡0���|���|������� ��£�¢|� � �6��¤

Optimization at the higher levels of programming as required
by component assembly is a largely unexplored area in the field of
compilers. The value of different implementations must be
judged based on the frequency with which they do various
operations and the frequency with which they interact with other
objects. This paper is a first attempt at identifying and working
out many of the issues needed for the kind of optimization�N¡|¡|����¡|�N���N� �i�����X¡|���� ����N£�£�� �| ¢|±O�6��£�¡0���|���|������� ��£�¢|� ±X¤

To solve the EPP we propose the Autonomic Performance
Prescription(APP). Here the answer to the question of who is in
charge of the efficiency of the system is the system itself, hence
the word “autonomic” . In the APP we carefully orchestrate who
is in charge of various decisions so as to preserve important
software engineering values like information hiding and
encapsulation. The basic steps of the APP, which we will detail� �����N� ���i� ����� �����0�����q� �|�i¡0�N¡|���i�N�N�6»

1. � �|�i�6��£�¡0���|���|� ´ �N� � ���i� �|¡|¡|� � �6��£��|� � � ¡|� �� £�¡|� ��£����|���N� �����0�����q� �|��� �X�6��£�¡0���|���|� � ���� ���� �|��� ´ � � ��X£������0�N�|��� £ �����X� �|�����N�N� �| � �|�i�6�|� �����q�0� � �| � �0�|� �¥|� �������N���|��� £�¡|� ��£����|���N� �����0� ´ �|���T�X¡|���� ����N£ �����N�|�0¤
2. � ¡|���� ����N£ �0� � �| � �0�|� �i�6��£�¡0���|���|���������N�|�
	N���i�N�� �6��� ��¡0�N�N� ���N� � ±O�N�|���i�N�|¥�� �|�i� £�¡0�N�������q�0� � �| � �|�¥|� �������N� �| � £�¡|� ��£����|���N� �����0�����q� �|�i�6��£�¡0���|���|�������

gathered.
3. � ��� ¥|�6�N��� �������q� £�¡|� ��£����|���N� �����0�������X� �|�i¡|�N���������0��N�|������¥|��� ���N£�� �|��¥�¢|±O� �|�Ù� ±X� � ��£
4. � �|�Ù� ±X� � ��£ �0� �6��� �|�i� ¥|�6�N�����0��� ���6�������X� �|�i¡|�N���������0��N�|�����æ¥|��� ���N£�� �|� ´ �0�N�����0��� ���6��� �0���|� ¥�¢|�i£T�N¥|�i� �� �|�i���|� �|�N�6¤

Our main contribution is a framework in which a component
developer provides multiple implementations of a component and
a profile directed compiler/runtime system chooses the right
implementation for a particular need and allowing optimizations.
 � � �|� �T���|�X�����N£�� ´ ����� ´ �i¡|�N�6� ���|��� �|�i����� ��� ´ � �| £������0�N�|��� £T��»
We gather profile information. (Section 2) We use the profile
information to construct a graph, called the Object Affinity
Graph(OAG), and show that the optimal choice of
implementations for the profile run can be determined by solving
a graph cutting problem on the OAG. (Section 3) A set of new
heuristics that will systematically reduce the size of a graph while
preserving optimality of the min-cut. In all the experiments we
these done they have completely reduced the graph, but other

reductions are possible at the possible expense of optimality.
(Section 4)We show how to identify characteristics of objects
from the profile run that can be used to distinguish between
objects that should have different implementations in future runs.
(Section 5)We show how the framework can be used to solve a
number of related problems. (Section 6)Present some preliminary
empirical result and experience that suggest our framework is���6��� � ¢|� �6¤�	��À����� ���������

Section 8 discusses some of the related work, and finally�À����� �������� �� ���6�����|�X�6���|��� �0� �����0��¤
In this one paper we cannot solve all the issues involved in

optimizing systems built using components. The last section of
this paper points to many new areas which when elucidated and
solved could profitably be combined with the ideas presented in� �|����¡0�N¡|����¤

2 Multiple Implementations of Library or
Component
This section will show by example how a component or library
writer can provide multiple implementations of their component.
According to the APP, they will be responsible not only for
providing multiple implementations but they will also be
responsible for providing code that determines the cost of using
those implementations. The cost comes in two flavors 1) the cost
incurred by an object (an instance of the component) when using
the implementation by itself and 2) the cost of the interactions of
two objects when the objects have different implementations. At
run time the system will be responsible for using the information
gathered during the profiling runs from the costs functions to���0�|�|� �i �|��¥�� £�¡|� ��£����|���N� �����0��¤

While in some cases the decision about the appropriate choice
of implementation of an object can be made by examining the
kind of use that is made of it, in other cases this decision would
have to be coordinated with the corresponding decisions made for
other objects that interact with this object. The later happens
when the costs for interactions are relatively high. For example,
the decision about the placement of an object in a network of
computers is affected by the decision about the placement of other
objects that interact with this object. The problem thus becomes a
combinatorial one, which in our experience even an experienced
programmer cannot make well without the kind of analysis we¥|��� ���0����� ��� �|����¡0�N¡|����¤

We have provided a snippet of code implementing part of a
general set class, in a language modeled on Java (see Figure 1).
In this class there are two implementations, Hashmap and
Treemap. Each implementation has thesame three methods with
the same arguments, though had we finished the code, the
methods would have had different bodies. For each method in
each class there is a corresponding cost. Again the signatures of� �|�i�6�|� �����N�N�i� �|�Ù���N£�� � ¢|�|��� �|��� �X¢0��¥|� �6���N�N�i¥|� �������N���|��¤

Cost methods are side effect free. In other words you can and
in fact need to run the cost methods for one implementation at the
same time you actually use a different implementation. Moreover
a cost method cannot use a value which is computed only in one
implementation. Hence we declared size outside the scope of the� ´ �æ� £�¡|� ��£����|���N� �����0��¤

The application programmer is supposed to be unaware of
which implementation the system chooses. But, methods may
take as arguments objects which have been given different
implementations. Thus we also provide a coercion function to
convert one to the other. When a method with a single argument,
which can have multiple implementations, returns a value that can
also have multiple values, we may also need to use a coercion as
we do for the clone method in Figure 2. There is a cost, of
course, to doing these coercions and that is computed by the
coercionCost method. While we might need a different coercion
for each pair of implementations., for simplicity we have here¡|������� ¥|��¥T���|� ±²���|�i�6�����N������� � �|� ��£���� �0��¥0¤
���������	�
�
�
����
������

��� ����� � �
�������
������������� � �
���
�
���
���
�����

���
����� �"!$#��
��%'&
(�����"!$#��
��%'&
(������)*� ���������,+-���
��!$#��
��%'&.���
/102�

�����������
���
����� �3�3� ���
4-�5��!	657�%��
(�����3�3� ���
4-�5��!98-6:%��
(������)*� ���������,+-���
�

�3� ���
4-�5��!<;=7�>
����
���� (�
���
� �
��%��

�
�

��� ����� � �
�������
�����<+1� ��� � �
�?!A@�� (�
4�����%��
�
���
���
�����

���
����� �"!$#��
��%'&
(�����"!$#��
��%'&
(������)*� ���������,+-���
��!$#��
��%B���
/102�

���������������
����� �'& (�����'&.�
��� (������)*� ���������,+-���
���
� ���
4-�5��!:CD7�>����
E�� (����
���� (�
��� � �
�

%��F� �
���
���5/������G�

���
���5/��"!9�
�
� (�A� � &H�
�
�����
%3�
I�I�J �������K����L����-�A��#�������� (�"�M��#����ON3���
�-�P� (

� � ����� � �
�������
�����
� �
���
���5/����������������3� ���
4-�5��!<;�657�>
����
���� (�
���

� �
�Q%G� �B�
R � ��|�N�TS

As in Figure 2, a client that uses the Map class will simply
create instances of the Map class. Without our analysis the client
will get the default implementation (Treemap in our case). The
implementer of the set class in this case chose Treemap because
it had the best worst-case performance and so was likely to run
acceptably during the profile run. Using our framework a runtime
system or a compiler will automatically ensure that the client,
after the profile run, gets the best of the set implementations¥|����� �|��¥�¢|±O� �|�i�|�6� � ��¥���������� �6��¤

The code in Figure 2 creates a number of set instances, a, b,
and c, and performs different kinds of operations on different
instances. Using the analysis presented in this paper, a runtime
system or a compiler will assign the right implementation for each
of these set instances. During a profile run of the client code

information is gathered. . During that run the default
implementation (i.e., Treemap) will be used. The runtime system
will invoke the cost methods for each implementation to compute
the cost of using an implementation for a set instance. This cost
includes the costs for invoking various operations that the client
code invokes. After the first loop in Figure 2, the size for both a�N�|¥�¢ ´ � � ��¢|�TS,U�U0¤����æ� �|�i�6�|� �����#�i� � �| �� � findGreaterThan � ��� �|�
second loop would be 30*log(100) if the implementation is a
Treemap. It would be 10*100, or 1000 for a Hashmap. Since
there are 200 iterations of the second loop the cost is really 200� � £��6��� �0�N��¤

In the rest of the paper we will show how to transform the
above decision problem to a graph cutting problem and also use
characterization information to efficiently choose the right
implementation.

VXW�­ ¯ZY°¬ ¯°¨\[<]K^*_
`X®X©ba9c cÀ¯°¨ ¯°©Ad<e+ªgf1h\i

We will model the decision problem of determining the optimal
implementation choices for the profiling runs using an Object
Affinity Graph (OAG). A OAG is a weighted undirected graph
with two kinds of nodes, called implementation nodes and
instance nodes. Implementation nodes represent the different
implementation of a class and the instance nodes represents
different instances of a class. For the above client code there are
two implementation nodes, one for each of the two different map
implementations, and 3 instance nodes, one for each of the
instances of map allocated as the program in figure 2 is run. In
this simple case, each of the map objects can be labeled with a
variable name, but this is for pedagogical reasons and labeling¥0���6� ��j ��£T�����Ù� ���0� � ´ �|���T��¢�k ���������N�N�Ù�N� �����6�N� ��¥�� ��� �|�i�|�6�N¡0¤

l m�nAo nAprq=sHt1uwv
To construct an OAG we first run the client program using

sample data and generate a profile. During this phase we will use
the default implementation (i.e., Treemap) for the set instances.
For each instance created (in the profile) we create a instance
node. We also insert an edge from each implementation node to
each instance node when the first method with multiple
implementations is invoked on the corresponding instance. In the
graph in figure 3, we left off the edges from c, because no
methods of c are executed. As discussed above the clone
operation deals with two objects (the newly created object and the
object it was created from). When an operation deals with two

x�y"z{yb|�}\|K~{���g����x�y"z'�����
���-�*z����-���"���"�����

yb� �-�-�g�'�����g��y"�������
}\� �-�-�g�'�����g��y"�������

�

���-�*z����-���"���"�����
yb�A���-�����g��y"�������
}\�A���-���������gy-���'� �'��y"�'�g��y"�������

�

~���yb�A~����*�g�������
R � ��|�N��

objects and a coercion may be forced we insert an edge between
the corresponding instance nodes. An edge between an
implementation node and an instance node indicates that the set
instance corresponding to the instance node can be given the
implementation defined by the implementation for the map class.
An edge between two instance nodes indicates that one instance���q� �|�i£T�N¡������������ �|� �����N����� ´ � � �T�N�0��� �|���X� �0� ���N�|���Ù���q� �|�i¶
�N¡�����������¤

Edge Cost

A,C
������� ó�é���å�� �������	�����

Hashmap,A ï�

� ÷���� �������	�������������������
� ë�ó�è�� ë����Àî ï�

� ÷���� �������	�������������	����� � ë���ó�é���å �
ðià3å�å�� ë����

maxc ! "
i # 1

100

30 $ log % i &
'

200 $ 30 $ log % 200&
ðià3å�å�� ë����Àî

maxc ! "
i # 1

100

30 $ log % i &
'

200 $ 30 $ log % 200&� ë�ó�è�� ë�����÷ � �°å�â�(6å�äæßÀìió�èæß�ç�ä �
ðià3å�å�� ë�����÷ � �°å�â�(6å�äæßÀìió�èæß�ç�ä �

R � ��|�N�*)
u,+-+-. s�. p-/10=s�2*3 s
prn545076Ap-. q=s�8�q79 p

An instance of a class can be assigned to any one of the
implementation defined in the class. We model this by creating an
edge from the corresponding instance node to every
implementation node. We “decorate” the edges with weights that
indicate “affinity” of an instance to an implementation. The value
of an edge weight can range from a zero value, indicating no
affinity, to an infinite value , indicating maximum affinity. Recall
that we also insert edges between any two instances whenever
there is an interaction between them (e.g., cloning interaction).
The weights on such edges correspond to the amount of
interaction between the corresponding instance nodes. A key�|�|�6� � ����������»�:õ� ´ ���æ�6��£�¡|�|� �i��¥| �� ´ ��� ��|����;

We used profiling for computing edges weights. Recall that a
component developer also defines cost functions for different
operations in different implementation and cost functions for

� ���N�0� �����N£T�N� �����0��¤ � �|�i�N�|�|� � £��Ù� ±X� � ��£ � ¥|�|�N� �| � �|�i¡|������� � � �| � ´ � � ���0� �
these cost functions to compute edge weights. During profiling
we gather information on the costs for each object. In particular
we compute the sum (or were we to sample, the expected sum) of
the costs for each object for each implementation. So, for a
particular object o, we would sum up the values from all the
invocations of o.insert and o.find etc. under one implementation
and, separately, the sum for all the other implementations. We
would also for each pair of objects sum all the costs generated by
the coercionCost methods and determine the additional cost of�0� � �| ¥|� �������N���|��� £�¡|� ��£����|���N� �����0�������X� �0�|� �i� ´ ����¢�k ��������¤

These two types of costs have very different meanings. In one
case it measures how much we want two objects to have the same
implementation. In theother case it measures how much we don’ t
want an object to have a particular implementations. We need to
use the same meaning and hence we will compute the affinity
between an object and another object as well as the affinity of an
object for an implementation. We want affinity to be negatively
correlated with the cost of using an implementation, but we want
it to be a positive number. Hence we find the maximal cost,
maxc, of implementation for an object (where that cost is the sum
of the costs produced in the profiling runs). The affinity of an
object for an implementation will be maxc minus the cost of that
implementation for that object. The affinity of an object for
another object will be the sum of the cost of the coercions done� ��¡|������� � � �| �N�|�0¤

In figure 3 we give an example of how the weights of the edges
would be computed for the program in figure 2. The size of the
maps a and b are both 100 after the first loop in figure 2. The
coercionCost for the statement "

~���yb�A~����*�g�������7<
is 150 times

the size of the map or 150*100, This mean a cost of 15,000 will
occur as the program is run if a and c are given different
implementations. There are 100 insertions and 200 find
operations on a. Thus the cost of a being a hashmap is 100*50 +
200*45. The edge (a,c) measures the cost of a and c being
different. The cost of a being the same implementation as any��� �|���X�0��� �|£T�N¡����	=�U�U�U?> ��U�U�U0¤

We label the edge from a to Hashmap as maxc-(5000+9000).
This is because we want the label on the edge from a to Hashmap
to reflect the cost of a not having an implementation of a
Hashmap. We arbitrarily increase the cost of using any
implementation by maxc and then label the edge from a to the
hashmap by Maxc minus the cost that would be incurred if it were� �|�Ù���N£��Ù�����X�0��� �|£T�N¡0¤
@Xe+ªgf1h\iBATf�ªX©�¯°©�¯°«�¨ ¯°¨\[

In this section first we describe how to partition the OAG so that
we obtain an optimal assignment of class implementation to class
instances. The cost of any assignment of implementations. to the
instances will be equivalent to the sum of the weights of edges
between nodes with different implementations., including the cost
of the edges between a node and the implementations. it was not
assigned. In graph theory this corresponds to the graph
partitioning problem. Stone realized that graph partitioning was
the algorithmic problem being solved when figuring out optimal
distribution of functions on a network[Stone 77]. In our notation
Stone recognized that when trying to give an object an
implementation on one machine rather than an implementation on� �|�Ù��� �|���X£T�N���|� �|� � ±X�������|¥��|¡ ´ � � �T�X ����N¡|��¡0�N�N� � � �����|� �| ¡|����¢|� ��£T¤

C

A B

Hashmap Treemap

In graph theory our implementation nodes are called terminal
nodes and our instance nodes arecalled non-terminal nodes. Two� ���N£�� �0�N���0��¥|�6���6�N�|�0����¢|�i� ��� �|�Ù���N£��i¡0�N�N� � � �����0¤

In general graph partitioning is an NP-hard problem
[Dahlhouse et.al] but we will give several transformation
heuristics that systematically reduces the graph to smaller and
smaller graphs. The time of complexity of the sequence of
transformation is almost linear in practice, and we present� � ¡|���N� £����|���N���N�6� �|� �������æ¢0�N� � � �|���������N� £T¤

Each of our heuristics preserves optimality and reduce the size
of the graph. If you only use these heuristics (perhaps repeatedly)
and are able to reduce the graph to a point where the graph has
only one possible partitioning, you have found the optimal
solution.

We start by introducing some notation. An OAG graph G =
{ N,E,T} is a graph with a set of non-terminal nodes N and a set
of terminal nodes T, such that N

�� �� T = �� �� . Recall that non-
terminal nodes are the notation in mathematics for what we've
been calling instance nodes, and terminals are the notation for
implementation nodes. Each edge has a weight, denoted w(e) for
an edge e∈E. Figure 1 illustrates such a graph. At the end of our
partitioning algorithm we will have assigned each non-terminal�0��¥|�i����� terminal �0��¥|�6¤ � ����N¡|��¡0�N�N� � � �����������i� ������� non-terminal
node that is assigned to a terminal node. The set of edges
between nodes assigned different terminal node is called the cut
set. The weight of a cut is the sum of the weights of the edges of
the cut set. Our problem is to find an assignment that minimizes� �|�i�6�|� �����q� �|�i���|��¤

One of the basic primitives used in our algorithms is the act of
contracting an edge. The contraction of (x,y)∈E corresponds to�N��¡|���N��� �| � �|�i�����N� � � x �N�|¥ y ¢|±²�X�|� ´ �����N� � � z � �N�|¥������X�6�N���������N� � �
v not in { x,y} replacing any edge (x,v) or (y,v) by the edge (z,v).
The rest of the graph remains unchanged. If the contraction results
in multiple edges from node z to another node w, they are
combined and their weights added. Contraction of edges is
commutative. Hence, given a subset of edges of a graph, the
result of contracting the edges is independent of the order in
which they are contracted. [Motwani and Raghavan 95]. Note that
whatever the minimum cost cut is, it can be obtained by
contraction of some subset of the edges in E. Those edges that are�0�����6���|� ���N��� ��¥������N£ � �|�i���|��¤

The main idea of the heuristics is that little by little we reduce
the size of the given graph. Suppose we know that a particular
edge (x,y) need not be present in a min-cut of the given graph.
We can then contract the edge, and the weight of a min-cut of the
resulting contracted graph is the same as that of the original,
larger graph. Furthermore, the contracted graph has one less
node, so it is simpler. The question is: how do we determine that
a particular edge need not be in a min-cut? In the remainder of
this section we present several lemmas for identifying conditions
from which we can infer that a particular edge need not be in a
min-cut of a given graph i.e. that there is at least one min-cut that¥0���6���0����� �|��� �|¥|�i� �0�N����¥| ��6¤

We next give five heuristics (presented as lemmas) that allows
us to reduce an OAG systematically to a smaller and smaller� ���*¤ � �|�i¡|���|���������õ� �|�6� �i� ��£�£T�����N�N�i �� ������� ��� ¡|¡|���|¥|� � �*¤

Lemma/Heuristic 1. Dominant Edge. Suppose graph G has a
non-terminal node n, with edge e being the heaviest among the
edges adjacent to n, with edges e1, e2, ... , er being the edges
connecting n to non-terminals, and with edges e'1, e'2, ... , e'k

being the edges connecting n to nodes which are terminals.
Further suppose that w(e) � Σ w(ei) + Max(w(e'1), w(e'2), ... ,
w(e'k)). Then there is a minimum cut not containing edge e. That
is, we can contract edge e to obtain the new graph G' that has a£�� �|� £��|£ ���|� ´ � � ��� �|�Ù���N£��i� �N� �|�Ù�����X£�� �|� £��|£ ���|����� v .

Lemma/Heuristic 2. Independent Net. If the communication
graph between objects can be broken into two or more� �|¥|��¡|���|¥|���|���|����� � � �|����� �|�i£�� �����|�����q� �|�i ����N¡|���6�N��¢|�Ù��¢|���N� �|��¥�¢|±�6��£�¢|� �|� �| � �|�i£�� ��� ���|�����q�6�N����� �|¥|��¡|���|¥|���|���|����¤

An Independent Net is a subgraph of the original graph such
that there is no edge between the non-terminal nodes in this� �|¢| ����N¡|�T�N�|¥��0��¥|�6�����|��� � ¥|�i� �|����� �|¢| ����N¡|�0¤

Lemma/Heuristic 3. Terminal Cut. Let a terminal cut Ti be
the set of all edges between a terminal ti and non-terminal nodes
N. Let Wi be thesum of the weight of all edges in the terminal cut
Ti. Let Wi’ s be sorted so that W1 � W2 � W3 � Then any edge
which has weight greater than W2 cannot be present in the£�� �|� £��|£ ���|� � �N�|¥��|���|���i�6�N��¢|�i�6���|� ���N��� ��¥0¤

Lemma/Heuristic 4 Zeroing. Assume that a non-terminal
node n has edges to each of the t terminals in T with weights w1 	
w2 	 ... 	 wt . Node n may also have edges to other nodes in the
graph. Reducing the weights of each of the t edges from n to the
terminals T by w1 does not change the assignment of nodes for£�� �|� £��|£ ���|��¤æ·N���N��¥|�|���6��� �|�i�6�|� �����q� �|�i£�� �|� £��|£ ���|��¢|± 	 t-1) w1.

Zeroing reduces the weight of each terminal cut, thus
permitting more edges to be contracted using the Terminal Cut�|���|�N��� � � �i¢0��� ��¥T����
 ��£�£T�)|¤

Lemma/Heuristic 5. Articulation Point. Let S be a subset of
the non-terminal nodes of N that would be disconnected from all
of the terminals if non-terminal node n were deleted. Then none
of the edges between the nodes in S, nor the edges between the
nodes in S and n can be in the minimum cut and they can all be
contracted.

u�o ��q745. p�
����
S While 	 � �|�i ����N¡|���6���|���N� �0��� non-terminal �0��¥|�6� �X¥0�
 If 	 � �|���N�i� � ��� �����X�|���|�N��� � � � ´ �|� �����6�N��¢|�Ù�N¡|¡|� � ��¥��X� �|���
3 �N¡|¡|� ±O� �|�i�|���|�N��� � � �i���æ�N��¥|�|���i� �|�i ����N¡|�0»
�

Else= ���0�|�|� �Ù�N����¥| �� ´ � � ��£T� � � £��|£ ´ ��� ��|���N�|¥��6���|� ���N����� ���

If a graph can be reduced to only terminal nodes by executing
only the statement on line 3, then the graph can be partitioned
optimally. The order of the heuristics affects the efficiency of the�N� ���N� � �|£ 	N� ���Ùµ Högstedt �����N��¤ º������X¥|�����N� ��� ��¤

In practice, these heuristics have completely reduced numerous
(realistically complex) graphs (see section 7). However, in cases
where these heuristics do not completely reduce the graph, any
traditional approach can be applied to the remaining derived
graph (or contract an edge randomly as in step 5). Some
traditional approaches, such as branch-and-bound, guarantee an
optimal result, but their complexity is exponential. This might be
acceptable if the remaining derived graph is small enough. Other
approaches, such as the randomized algorithm [Karger and Stein
93] have lower complexity, but offer only a small (but finite)
probability of optimality. In this algorithm an edge to be
contracted is chosen at random with a probability proportional to

its weight. Additional independent trials can be used to increase
the probability. In each case, after each contraction due to one of
these algorithms, we can apply any applicable heuristics until no
further reduction of the graph is possible. This could significantly���|�0�N�|���i� �|�i¡|���N�����N£T�N�|���Ù���q� �|�Ù�N� ���N� � �|£T¤
��� ­ ©�­ ªg`�®gi «�¯°®g`�� ^\f���`X¬L«�¨�h\f��g©�®gi «�¯°®g`��
When a program creates a fixed number of objects each time it

is run and those objects behave the same way from run to run, the
techniques described in the previous sections suffice to determine
an optimal choice amongst implementations. However, in the
much more common case, when a program creates a different set
of objects on each run, we need to determine for each of the new
objects what implementation it should use on this run based on
the information from the profiling run. Because the
implementation of an object for its lifetime is determined at create
time we can only use characteristics of the object and its creation
available at create time. We call the problem of determining the
implementation of an instance from these characteristics the
characterization ¡|����¢|� ��£T¤

At create time the runtime system knows 1) which statement is
doing the allocation, 2) the objects which are the value of the
"this" pointer for every call in the call chain leading to this
allocation, 3) the arguments to every call on the stack, and it can
also record various characteristics in any of the afore mentioned
objects when they in turn are created. Ideally the system will,
based on previous runs, determine that some combination of these
gives sufficient information that when an object is allocated the
right (or at least not disastrously wrong) implementation choice�6�N��¢|�i£T�N¥|�6¤

Consider, for example, the following variation of the program
given in figure 2 (figure 4). The program clones the variable D
twice, assigning each time to E. On the first occasion, only a
small number of find method calls are made to the variable.
Therefore the variable E should choose the same implementation
as the variable it clones from. On the second occasion, a large
number of findGreaterThan methods are called, therefore the
cloning should always choose the TreeMap implementation. We�6�N�����0�N���N��� ���N� ���i� �|�i���0��� ���Ù���q� £�¡|� ��£����|���N� �����T���#��¢�k �����������N�6�N� ��¥T�N�
line 1 the object it is cloned from. That is to say, we use both line
and the argument of the clone operation to do the characterization
of the object created in statement 1, and just the line at statement
2.

There are three possible problems we could face in getting to
the optimal partition based on the characterization. 1) There may
not be enough information available at allocation time to
determine the optimal implementation as defined by the
partitioning of the OAG, 2) it may be combinatorially difficult to
determine what information available yields an optimal choice of
implementations, and 3) it may be that from previous runs it
appears that certain information at create time is an important
determiner of the implementation, but that is purely a coincidence
and using that information is valueless. Point 3 is a classic¡|����¢|� ��£ �6�N� � ��¥��	��

����� � � � �	��� ��� �|��� ·X¥0��£T�N� �0¤

At create time there is a large amount of information available.
We will not describe an algorithm to use all of it, in part because
such an algorithm would have problems with over fitting. We will
now describe a simpler set of information that we believe is very
likely to be relevant. This is simpler but not simple enough to
completely avoid a potential nasty combinatorial problem which´ � ´ � � ���N¥|¥|�N�6�������N� ���X� ��� �|����� ����� �����0¤

x�y"z{yb|�}\|K~{���g����x�y"z'�����
���-�*z����-���"���"�����

yb� �-�-�g�'�����g��y"�������
}\� �-�-�g�'�����g��y"�������

�

���-�*z����-���"���"�����
yb�A���-�����g��y"�������
}\�A���-���������gy-���'� �'��y"�'�g��y"�������

�
x�y"z������ ���g����x�y"z��5���\�

���A��� � yb�
���5��� ��}\�

x�y"z������?���g����x�y"z��5���\�
����� ��� � �b��� �*�\���"!�!"� �
�$# �%�5��� �����5���\�A~����*�g���

����� �	&{� �b�'&(������y"�-�-��� �'&(!�!"�
�%�5���\�A���-�����g��y"�������

�
����� ��� � �b��� �*�\���"!�!"���
�$# �%�5��� �����5���\�A~����*�g�������

�������	&{� �b�'&�����y��)������ �'&(!�!"�
�%�5���\�A���-���������gy-���'� �'��y"�'�g��y"�������

�
R � ��|�N� �

Many of the objects allocated in the program are given a
characterization. Objects whose implementation choice we have
to make are characterized by their implementation. Some objects,
which do not have a choice of implementation, are also
characterized to make the job of characterizing other objects
easier. For example if an object allocates a number of strings
which should be in ASCII, it might be labeled ASCII as its���0�N���N��� ���N� �6�N� ����� � ��������� �0���| ���� �������0�����i� � �N� �| ¤ � �T��¢�k ����� ´ �|� �������
the first argument to thecreate function for a number of objects of
a given implementation might also get that characteristic. Some
objects which cannot be helpful in determining characteristics are�0���k���0�N���N��� ���N� ����¥0¤

For each set of objects allocated at a particular allocation site,
we will construct an allocation strategy. A simple strategy might
be that all objects allocated at that site, are given a particular
implementation. A different strategy might be that they get an
implementation based on their creator's characteristics. Two other
strategies may make sense. The object might be characterized to
have the same characteristics as one of the arguments to the���N�6�N� ���������|�|��� �����0¤

One last strategy is required by the prevalence of factories,
abstract factories, and even class objects in languages like Java.
Here all creation is done through an intermediate object. The
information needed to characterize theobjects being created exists
at the call to the abstract factory but not inside the factory. For
example, all objects created by a call to an abstract factory from a
particular allocation site perhaps should have the same
implementation. Thus, we consider all the strategies described in
the previous paragraph but using the information one level up in
the stack frame. In some cases in languages like Java it may be
necessary to go two levels up in the stack frame to accommodate������������¢�k ����������� ´ ��� �������N¢0� � ���N�������N�������N� �6��¤

On the assumption that we have enough information to
characterize an object and get good performance, we present a
simple greedy algorithm to do that characterization. To simplify
the presentation of the algorithm we will assume that it is
sufficient to use allocation site and the implementation of the
object that causes the creation to occur. We will call that object
the creating object to distinguish it from the created object.
Moreover, we will assume that when we use the implementation
of the creating object we are only using it so that the created
object has thesame implementation. The algorithm illustrates one
way to choose implementations when those implementations may¥|��¡|���|¥T���T��� �|���X���0��� ���6�����q� £�¡|� ��£����|���N� ������� �0�N���|����¥����æ¢|�i£T�N¥|�6¤

The goal of thealgorithm is to determine a set of characteristics
for objects that on theprofiling run would have resulted in objects
having the implementation determined by the partitioning in the
previous sections. If this goal is not achievable then we seek the
characterization which gives as good a set of implementations as
possible.

Our algorithm for this combinatorial optimization problem is
a simple greedy one, starting with a partitioning of the objects
based on their optimal implementation in the profile run, as
described in the previous sections. As we determine that certain
characteristics should determine an objects implementation we
will move those objects that have the same characteristics to the
same partition of the OAG. That may be less than the optimal
determined by the partitioning algorithm, but we may have no���0��� ���6¤

I. We measure the costs over and above the previous
partition of the strategy of assigning all objects allocated
at one site to the same fixed implementation and letting
the remaining objects stay where they were in the earlier
partition.

II. We measure the costs for all objects created at a given
statement being given the same implementation as their
creating object. We do this either by moving the creating
object to the partition of the created object or by moving
the created objects to the creating objects
partition(whichever is cheapest). Leaving all other��¢�k ��������� ��� �|��� �X¡|�N���������0��¡0�N�N� � � �����0¤

III. We find the allocation site and strategy with the minimal
cost computed above, move all objects created at that site
(or their creating objects) to the partition determined by
that strategy and use this as a new partition and repeat�|�|� � ���N� ���N� �����6�N� �����T� � � �6���0�N���Ù�i� � ���N� �� �±X¤

This algorithm seems to us to be overly simplistic. However,´ �i�0�N���i�N�|��� ���N�|¥ ´ �|���N�i� �|�i� �|�����N£T�N� ����� ´ �����N� �N� ���N¢|� �i���æ� � � � ���0���
always yielded an optimal solution. Themajor problem seems not
to be the algorithm, but rather the problem of finding the
information needed. Our experiments, so far, have ignored the
characterization of objects and it may well be that when we add
that information in, there will be sufficient information but the
algorithm will fail to find it. If and when that happens we will´ �����³�����6���0� � �N�|��� � �| ³�X¢|��� � ���i�N� ���N� � �|£T¤

�Xe	`X¨\`Xªgf1Y°¯��gf�©�¯°«�¨$� f�¨ ¬�] ©Ai\`Xª.a9h\h\Y°¯°®gf�©�¯°«�¨$�
Our framework can accommodate a number of other problems

using two extensions. 1)In the previous sections we discussed
choosing one property of an object, namely, its implementation.
This property is intrinsic to a class of the object. We can extend
our framework to include properties that are external to a class.
Thus objects of many classes can have the same property. Such
extrinsic properties, for example, can be the location (i.e.,
machine) where an object is created. 2) In the previous sections
we also discussed one kind of interaction, namely, cloning of an
object to create a new object. We can once again extend our
framework to include interactions such as communication among��¢�k �������������6�N� ��¥T����¥|� �������N���|��£T�N���|� �|�6��¤

In our model the cost of interaction of a pair objects which have
the same property is lower than the cost of interaction of a pair of
objects that have two different properties. The same solution� �����|�|� �|�|�6���6�N����� �|¥�� �|�Ù��¡|� � £T�N�����0��� ���Ù���#�X¡|����¡|���N� ±²���ã��¢�k ��������¤
��� � u�v1nAs
n5450=o . �50=p-. q=s*+rq74��,. 9 p-45. 	�

prn52
� 4Aq �?450 � �*. s��
Consider the location of an object in a distributed system to be

its property and communication between the objects as the
interaction of interest. The location property is extrinsic to its
class. Two objects located on the same machine have lower
communication cost. Every time one object invokes a method on
another they have an interaction. Each method invocation has a
cost if the objects have different properties and when the code for� �|�i�6��£�¡0���|���|������� ´ �N� � � ����� �|� � �����N������� � �|� ��£��0� ���N����� ������� �0�N��¤
��� ���1s
prn54���45. 9 n��?0��70��'n50=s�9

The Enterprise JavaBeans (EJB) specification defines an API
for creating and developing enterprise applications. There are two
kinds of beans, called the session bean and entity bean. The EJB

Specification Version 2.0 requires that a bean developer explicitly
identify beans that are local and beans that a remote (from the
perspective of another bean). A bean developer essentially
hardcodes the affinity relation. Typically a bean developer does
not know the environment in which a bean will be deployed.
Using OAG model we can provide a better and a more flexible
approach for distributing beans across multiple machine. For this
problem, terminal nodes correspond to locations of JVMs and
non-terminal nodes corresponds to different beans. A bean
deployer (rather than the bean developer) can enforce that certain
beans should be deployed on certain JVMs. Using our analysis
framework we can then deploy unconstrained beans on the most�N¡|¡|����¡|�N���N� � ��� ¶
¤��0¥| �� ´ ��� ��|����¢|��� ´ �������0����� � ���N£�� �0�N� �0��¥|�6� 	 ��¤ �6¤ �
between beans) correspond to migration/communication cost. If
two beans that interact are on the same machine then the
migration/communication cost is zero, otherwise we compute this
cost using system parameters, such as latency, bandwidth,£T�N��� �0�N� � �| ³�N�|¥��|�|£T�N��� �0�N� � �| �6�|� � � ��� �6¤
��� ���	��
 ��q76�
��TnAs
p � 4Aq76An59�9�. s��

The eXtensible Markup Language (XML) is a universal
format for representing structured documents and data. XML was
designed to describedata, and to focus on what data is. XML uses
DTD (Document Type Definition) or XML Schema to describe
structured document and data. XSLT (XML Style Language
Transformation) can be used to transform XML that conform one
DTD to another XML that conform to another DTD. We can use
OAG model to automatically choose which DTD is the right
representation for an XML document. Terminal nodes
correspond to different DTDs and XML documents correspond to
non-terminal nodes. An edge exists between to non-terminal
nodes whenever there is a need to transform the format (i.e.,
DTD) of the XML document. The cost would be zero if both non-
terminal node use the same DTD otherwise we need to apply� �
 � ���æ� ���N�0� �����N£ � �|�i¥0�����|£����|�������N£T�N��¤
���
 t1p�

n54�u ���
o . 650=p-. q=s�9

Register allocation for multiple register files is another
application where terminal nodes correspond to multiple register
files and non-terminal nodes correspond to program variables.
Transformation cost consists of cost of moving values between
different register files. Character format transformation (such as������£ � � � ·N·X��� EBCDIC� ��� �6¤ �X�����N�0��� �|���i�N¡|¡|� � �6�N� �����T��� � ���*¤

����� h\`XªX¯���`X¨ ©Af�©�¯°«�¨�f�¨ ¬ � ��h ¯°ªX¯°®gf1Y	�9`��g­\Y°©��
We were drawn to this problem by our colleagues who worked on
an IBM product the VisualAge Generator (VAG). This is a 4GL
language used to coordinate processes running on multiple
machines. The dominant performance issue is related to
distribution, as are many of the problems that arise in
middleware/enterprise applications. The problem for VAG was
relatively simple, all the “objects” are quite coarse grained and are
known at compile time, so the issues of characterization don’ t
apply. Our first set of algorithms were based on Ford-Folkerson
derivative algorithms and were quartic in the size of the graph.
We were quite successful in this context. We found that we could
cut the graphs that for sample applications that came with VAG
and our cuts had roughly half the weight of suggested one in the
sample. Our elapsed time was 0.206ms per message with the
whereas with the implementation suggested by the creators of the

sample the cost per message was 0.205. Presumably the
difference (assuming that it is not a measurement error) is
because some of the costs that is related to things other than
distribution. In other words, our partition resulted in a program
almost twice as efficient. We have encountered examples in
other IBM enterprise applications where a wrong partition can�N�6� �|� � ��¥�� �T�X���N�������i��� � U � ¡|���N�����N£T�N�|���i¥|�� ����N¥0�N� �����

Our assumption when we wanted to scale up to real object
oriented programs was that the partitioning algorithm was going
to be the bottleneck. We ran several Java programs, using
Jinsight to trace the program and report which objects were
created and what messages were sent between them. The
heuristics for reducing the graph, which we have described here
seem to largely solve the partitioning problem. Though we have
not been able to find and instrument enough good benchmarks for
us to conclude we have a representative sample (we’ve done less
than a dozen examples). We have also only experimented with
alternate implementations which are related to which machines an��¢�k �������N�6� � ¥|�6�����0¤
 � ´ ���N�Ù�N¢|� �i������¡|� � £T�N� � ±O¡0�N�N� � � ������� �|�Ù���N£�¡|� �6�
from the VAG systems, while our previous more expensive
algorithm was not. We have been able to take some graphs
resulting from SPECJBB which was the best benchmark we could
find and perform an optimal reduction of a graph that had 17,000�0��¥|�6���N�|¥T�������g �U�U � U�U�U�£��6�����N ��6��¢|��� ´ �����T��¢�k ��������� ��� �|�i¡|���� ����N£T¤
SpECJBB simulates a retail chain with a company, several
warehouses and several stores. We tried various combinations of
requiring that orders stay on stores, other things staying on the
computers that hold a warehouses information etc. We also tried
to partition several other programs. For all the graphs that we
generated our graph partitioning algorithm always generated
optimal solution. The general pattern seems to be that dominant
edge heuristic collapses between 50% to 90% of the nodes. Then
zeroing heuristic reduces the weight of edges adjacent to the
terminals followed by the terminal cut heuristic that that combine
of some very heavy nodes. Once those nodes are combined, there
are more dominant edges and the process repeats. Sometimes the ����N¡|�������N��¥|�|����¥������X�N�����N� � ����� ±O��� ´ �0��¥|�6� � ���N±�),U � �N�|¥T����£��Ù���q� �|�
more sophisticated and costly heuristics can be invoked to�6��£�¡|�|� �Ù��¡|� � £T�N������� �|� �����0��¤

However, since we were only trying to model distribution in
our experiments, it may be that other implementation choices will
result in quite different graphs. The major cause for worry is that
there may in other cases be many more edges to the terminals. We
have also found some algorithms in the literature, see [Schloegel
2000] which are used for partitioning meshes in
scientific/engineering problems, that are usually have weight no
more than 30% greater than the optimal partition. These
algorithms have been applied in a wider domain than ours have¢|�����T�N�|¥T� ����£ ���æ¥0���N�T�N¥|���|�0�N� ��k���¢0¤

Our conclusion is that while we were originally quite worried
about the combinatorics of graph cutting this is unlikely to be a£T�rk����X���|�N¥|¢|����� � �����N���|� ����� �| � �|�i����� �����T���q� �|����¡0�N¡|����¤

Similarly we were initially concerned that the cost of an
optimal characterization algorithm might be prohibitively
expensive. Hand analysis of the greedy algorithm on the
examples we’ve made show that when the characterization
suffices the algorithm finds the optimal characteristics to use
easily. That is to say once we have been given characteristics to
look for, the algorithm seems capable of finding the optimal
combination -- if that combination exists. But, using only the
characteristics of allocation site and the implementation of the

creating object may not be enough. There are at least two issues
we encountered. 1) Java has class objects and SpecJBB uses
factories. This means that all objects of one class are created at
the same allocation point even if they seem to have different new
statements. All the new statements call the class object which
does the allocation. We needed to replicate the class objects and
we also replicated factories (which were side effect free) then ran
our algorithms. In all but one case we could see that the
characterization had in fact resulted in an optimally partitioned
program. However 2) we saw a problem, which has not been
adequately studied yet in one of the SpecJBB sample runs where
we had multiple warehouses connected to multiple stores. Part of
the problem may be that we did not use all the characteristics
discussed above in our experiment and part of the problem may
arise because in that case because of some technical difficulties
we lost some of the creation information. But we are concerned
that since each warehouse uses the same code the allocation site
will not let one distinguish between which warehouse an object
should reside on. Since we’d lost the information the location of
the object causing the allocation was lost and so neither
characterization was available to distinguish. We do believe in
looking at this example that we will certainly want to be able to
use additional characterizations such as the location of the�N�N ��|£����|�������æ� �|�i�|� ´ � ���N� ��£����|��¤
� �9`gYZf�©A`X¬���«�ª��
We have described a method for extensible, high-level

optimization, using partitioning and characterization. We discuss�N�����N� ��¥ ´ �����³�����6�N���T���q� �|�6� �Ù�N�N�6����¤
� . �
To n��=nAo�q��
p-. �*. �50=p-. q=s��
Languages like SETL [Sch75a, Sch75b] and VERS [Ear76]

also propose alternative implementations for basic data types such
as sets. SETL uses type-based static analysis to select the best
implementation for a given instance of the set representation. Our
solution was to model the problem as a graph problem and use
dynamic profile information to compute edge weights and to
characterize properties that are distinguishable from one run to
another run. Both SETL and VERS rely purely on static
information which probably will give them worse performance.
Incidentally there is no actual implementation in SETL which
allows a client to automatically select a particular implementation	N�N� � �0���| ��T�X£���� �0��¥0������ �±O����¥|�6� ���N� ¢|��¥�� �Tµ � �N� �0� � ��º ��¤
�	��prnAs�9�. 	
o nTt �
p-. �*. �50=p-. q=s��
Hisgen [Hisgen 85] proposes languages mechanism using

conditional statements that are evaluated at run-time.
Implementation choices are made based on the value of the
conditions. Vandevoorde and Guttag extend this work by using a
specification language (rather than transformation rules via�6���|¥|� � �����0�N��� ���N� ��£����|��� � µ � �N�|¥|��� �|���N¥|��� � ºD¤
�,. 9 p-45. 	�

p-. q=s*0=s�2
��074Ap-. p-. q=s�. s��
�
We know of no work that looks at the automatic minimization

of the transfer costs between data representations using dynamic
information, except in the context of distributed parallel
programs. That related work falls, loosely, into two general areas:
work on partitioning applications in the domain of parallel
computation usually for scientific/engineering applications, and
work on partitioning applications in the domain of distributed
systems.

Researchers in parallel and distributed computing have
addressed a related problem which consists of how to optimally

partition code/data so as to minimize communication costs.
Although these problems can be modeled as graph partitioning
problem they are fundamentally different in that these graphs do
not have terminal nodes. Graph cutting without terminals reduces
to the “k-Cut” problem — partitioning the graph into a given
number, k, of components such that no component is empty and
the communication between them is minimized. The k-Cut
problem is in fact solvable in polynomial time for each fixed k >
2, and hence is a significantly easier problem than the k-terminal
cut problem. Partitioning distributed object applications, on the
other hand, with the requirement that certain objects be placed on
particular machines of a heterogeneous collection of different
machines, represented in the graph by terminal nodes, which must
not be combined, reduces to the problem of multi-terminal graph
cutting, or the “k-terminal cut” problem, which is MAX SNP-hard
[Dahlhaus et al. 94]. Stone[Stone 77] was the first to observe in
the context of distribution that minimal transformation cost is��¢|���N� �|��¥ ´ �|��� ´ �i�0�N��� �X£�� ��� ���|�����q� �|�i ����N¡|�0¤

In the distributed systems domain, the problem of application
partitioning has been widely studied for non-object oriented
programs. The number of objects in a distributed object
application is orders of magnitude larger than the number of
modules to be distributed in a classical distributed application,
and the methods typically employed for traditional systems do not� �6�N� � ´ ��� �����æ¡|����¢|� ��£T�����q� �|����� � ���6¤

Both systems use algorithms based on Kernighan-Lin
algorithms [Kernighan and Lin 70]. The best current variation of
Kernighan-Lin for the number of objects we create is [Schloegel
2000] which builds a hierarchy of graphs with nodes in a higher
graph corresponding to a pair of nodes in the lower graph.
Usually this is done by choosing edges to collapse based
probabilistically on their weight. At each level of the hierarchy
you try to exchange nodes to improve the cut. In our experiments
Schloegel was rarely more than 30% off optimal. Our algorithms
are of comparable complexity and achieve optimality. The
capacity constraints and some of the added flexibility of those
other algorithms may become important in our context and while
algorithms like Schloegel are not as good as ours for what we
were measuring, they seem to have acceptable performance and
somewhat more flexibility. One of our contributions is to find
that on our samples, Schloegel was not too far from optimal,
which can’ t be said, unless you can prove you’ve achieved
optimality.

Characterization

Characterization of objects based on what is known at allocate
time to determine what behavior they match from a previous run
is close to virgin territory in the academic literature The closest
match we know of is in the context of garbage collection where
certain allocation sites have been found to produce data that
should be more frequently collected than others. These allocation
sites cause objects that are characterized as prolific. Using
different strategies for collecting prolific objects makes sense
much like using different strategies for different generations of��¢�k ��������¤�µ �À�|�|�� �U�U� 0ºD¤

�
� «�¨ ®gY°­$�g¯°«�¨�f�¨ ¬ � ­ ©�­ ªg`���«�ª��
Optimizing compilers have focused on optimizing the

abstraction layer between machine language and the programming
language. This paper in contrast tries to allow the specification of
optimizations at all levels of abstraction that the program is

written in. We have argued that this requires extensible
optimizations based on alternate implementations. Traditional
optimization from the seminal work of [Allen and Cock 72] to
[Learner 2002], which really does a nice job of elucidating and
generalizing this model work by having for each program
statement a sequence of implementations and uses static analysis
to choose the most specific implementation that is legal. In
contrast, we don’ t have a fixed sequence, some implementations�N�N�i£T���N�i������� ��� ���|��� �T����£��i�6���|� � � ����� �0�N�T��� �|������¤

To solve this problem we describe a contract between the
component writer and the system. The component writer offers
alternate implementations and information about their costs. The
system chooses which implementation to use based on profiles of
past behavior. We model the profiles as a graph and then show
how to solve a combinatorial problem to determine the optimal
implementations for the past run. Then we show how to
generalize to future runs based on characteristics of objects that� �0���|� ¥��0� �i¥|� �������N���|��� £�¡|� ��£����|���N� �����0��¤

Autonomic solutions are important when the complexity of a
system has exceeded human capacity to deal with it as a whole.
Here wepreserve the encapsulation that is so important to humans
and yet allow the system to tune itself across component barriers.
We have shown that the methodology suggested works as a first�N� � ��£�¡|����������� ���i� �|����¡|����¢|� ��£T¤

The same contract that allows the system to look at the profiles
may well be able to modify an object while the program is
running. We give coercion methods that could change the
implementation of an object. We could sample the costs and
change the implementation. The advantages of the system doing
this are many fold. It is difficult to write instrumentation code
that takes samples. If one object should change implementation
that suggests the program has entered a new phase and all objects
should require less evidence that they should change
implementations. The perceptive reader will observe that there is
a close relationship between dynamically changing
implementations and automatic software caching as well as object
migration.

Static analysis can play a significant part here as well. In our
experiment section we described about the importance of
replicating class objects. Generalizing any object which becomes
immutable after some point can be replicated. Once replicated
multiple implementations could be used, with the appropriate one�0� ��¥������X� �6��� ���6�|� ��¤

We indicated that work needs to be done to improve the
characterization. Moreover there arecases where thegraph model
is inaccurate, such as when coercion costs vary depending on
which implementations are being coerced from and to. Wehave a
more accurate model but have not yet tried to determine the�|���|�N��� � � �6��������¡|� � £�� ���i� ��¤

Finally more experienceneeds to be gained with a wider variety
of implementations. More work also needs to be done on how to� ¡|����� ��±O� �|�i� £�¡|� ��£����|���N� �����0��¤

While we’ve indicated that lots of work remains, we hope
we’ve convinced the reader that large improvements are possible
and that the future work in this direction has a chance of setting a
part of the agenda for much of the future of optimization that¡|���� ����N£�£����������N��� � ��� �|� ´ ���N� ¥T���q�6��£�¡0���|���|����¤

References

[Allen and Cocke 72] F.E. Allen and J. Cocke “A Catalogue of
Optimizing Transformations” , in R. Rusin, ed., Design and� ¡|� � £�� �6�N� �����T��� � ��£�¡|� � ����� � �q�N���|� � ��� :õ�N� � � S ���� 0¤

[Aho et al. 72] A.V. Aho, J.E. Hopcroft, and J.D. Ullman,
“The Design and Analysis of Computer Algorithms”, Addison-
 �6� � ��± � S ���?=0¤

[Bellisard et al. 96] L. Bellisard, S.B. Atallah, F. Boyer and M.
Riveill “Distributed Application Configuration” , Proc. 16th
International Conferenceon Distributed Computing Systems, MayS ���0¸ � ¡|¡0¤ =������ =0¹ =0¤

[Calinescu et al. 98] G. Calinescu, H. Karloff, and Y. Rabani
"An Improved Approximation Algorithm for Multiway Cut” ,�q�����6¤?),U|� �
� � ��� � S ���0¹ � ¡|¡0¤ � ¹ � =� 0¤

[Chern et al. 89] M. Chern, G.H. Chen and P Liu “An LC
Branch-and-Bound Algorithm for the Module Assignment�q����¢|� ��£ � � ·N�|�����N£T�N� �������q�������6��� � �|
 ��� � ������), � S �0¹ � � ¡|¡0¤|¸�S � ��S|¤

[Cheruki 96] C.S. Cheruki, Andrew Goldberg, D.R. Karger,
M.S. Levin, and C. Stein, Experimental Study of Minimum Cut� � ���N� � �|£T� � ¶�· � � �6� �6�N�N�����N��¡0���N��¤

[Chopra and Rao 91] S. Chopra and M.R. Rao "On the¶��|� � � ´ �N± � �|� �#��� ±3�|��¥|������� ��� ��� ´ ����� �� �S � S ����S � ¡|¡0¤ =�S �N¹ �0¤
[Dahlhaus et al. 94] E. Dahlhaus, D.S. Johnson, C.H.

Papadimitriou, P.D. Seymour, and M. Yannakakis “The
Complexity of Multiterminal Cuts” , SIAM Journal on Computing
23, 1994, pp. 864-894. Preliminary version appeared in STOC
‘92.

[Darbha and Agrawal 95] S. Darbha and D.P. Agrawal “A Fast
and Scalable Scheduling Algorithm for Distributed Memory
Systems”, Proc. 7th IEEE Symposium on Parallel and Distributed�q�������6��� � �| � � ������¢|����S ���?= � ¡|¡0¤|¸,U��N¸?)|¤

[Demeure and Nutt 94] I.M. Demeure and G.J. Nutt
“Prototyping and Simulating Parallel, Distributed Computations” ,
Journal of Parallel and Distributed Computing 23(1), OctoberS ��� � � ¡|¡0¤�S � �0¤

[DePauw and Sevitsky 99] W. De Pauw and G. Sevitsky
“Visualizing Reference Patterns for Solving Memory Leaks in
Java” , Proc. 13th European Conference on Object-oriented
programming, Lisbon, Portugal, June 1999, LNCS Vol. 1628,�À¡|�N� �| ���� � ¡|¡0¤�S�S|¸ �rS?) � ¤
[Ear76] J. Earley. High level iterators and a method for
automatically designing data structure representation. J. of
Computer Languages, 1976.[Fox et al. 94] G.C. Fox, R.D.
Williams and P.C. Messina “Parallel Computing Works!” ,¶
���N �N���V�N�|��£T�N���q�|¢|� ��� �|����� � ·N�|�6¤ � S ��� � ¤

[Gilbert et al. 95] J.R. Gilbert, G.L. Miller and S.H. Teng
“Geometric Mesh Partitioning: Implementation and
� � ¡|���N� £����|��� � � S ���?=0¤

[Hisgen 85] A. Hisgen “Optimization of User-Defined Abstract
Data Types: A Program Transformation Approach” Ph.D. Thesis� ¶	��S �0¹ =T� ���6»

http://reports-
archive.adm.cs.cmu.edu/anon/1985/abstracts/85-166.html

[Hunt and Scott 99] G.C. Hunt and M.L. Scott “The Coign
Automatic Distributed Partitioning System”, Proc. 3rd OSDI
Symposium on Operating System Design and Implementation,R ��¢|�N�0�N�N± S ����� � ¡|¡0¤�S|¹ ��� �U�U0¤

[IBM 1996] IBM Corporation “ Introducing VisualAge� ���|�����N����� � ����� ������ 0¤ � � ·�
�¶ � �N¥|��� � �|¤ � :�) � U� � ?=�� U�U � S ���0¸|¤
[Junger et al. 00] M. Junger, G. Rinaldi and S. Thienel

"Practical Performance of Efficient Minimum Cut Algorithms",� � ���N� � �|£�� �6�g 0¸ � �U�U�U � ¡|¡0¤�S �� ��rS �?=0¤

[Karger and Stein 93] D.R. Karger and C. Stein, An O(n2)
Algorithm for Minimum Cuts. In Proc. 25th Annual ACM�À±3£�¡0�|� � �|£-��� � �|�6���N±²��� � ��£�¡|�|� � �| � ¡0�N ��6� �?=���� �0¸ = � S ���)|¤

[Kernighan and Lin 70] B.W. Kernighan and S. Lin “An
Efficient Heuristic Procedure for Partitioning Graphs” , The Bell�À±X� � ��£ � �����|�|� �6�N� � ���|�N�0�N� � R ��¢|�N�0�N�N± S ����U � ¡|¡0¤, ���S �-),U��0¤

[Kimelman] Kimelman, T. Roth, H. Lindsey and S. Thomas
“A Tool for Partitioning Distributed Object Applications Based
On Communication Dynamics and Visual Feedback” , COOTS '97
Conference on Object-Oriented Technologies and Systems -� ¥|� �N�|����¥ � ��¡|� �6�
 ����� � �0��¡ � � �|�|� � S �����0¤

[Kumar et al. 94] V. Kumar, A. Grama, A. Gupta and G.
Karypis “ Introduction to Parallel Computing: Design and
Analysis of Algorithms”, Benjamin/Cummings Publishing� ��£�¡0�N�|± � � ��¥ ´ �|��¥ � � � ± � � �BS ��� � ¤

[Lerner 2002] Lerner S, Grove D. Chambers C, “Composing� �N���N����� ´ � �0�N� ±X� �6���N�|¥ � ���N�0� �����N£T�N� ����� � � � �
 � � �N�: �U�U�
[Lo 88] V. Lo “Heuristic Algorithms for Task Assignment in

Distributed Systems”, IEEE Transactions on Computers 37(11),
� ������£�¢|����S �0¹|¹ � ¡|¡0¤�S?)|¹ � �rS?) ���0¤

[Motwani and Raghavan 95] R. Motwani and P. Raghavan� � �N�|¥0��£�� ����¥�� � ���N� � �|£T� � � � �N£�¢|�N� ¥| �� �V�|� ������� � � ± �q�N�6��� � S ���?=0¤
[Padberg and Rinaldi 90] M. Padberg and G. Rinaldi “An

Efficient Algorithm for the Minimum Capacity Cut Problem”,¶
�N� �0¤ �q���� ¤ � � � S ����U � ¡|¡0¤�S ���-)|¸|¤
[Purao 98] S. Purao, H. Jain and D. Nazareth “Effective

Distribution of Object-Oriented Applications” , Communications���q� �|��� � ¶ � S�	N¹ � � � �| ��0� �*S ���0¹ � ¡|¡0¤�S,U�U��rS,U0¹|¤
[Ramanujan et al. 96] R.S. Ramanujan, J.C. Bonney, K.J.

Thurber, R. Jha and H.J. Siegel “A Framework for Automated
Software Partitioning and Mapping for Distributed Processors” ,
Proc. 2nd International Symposium on Parallel Architectures,� � ���N� � �|£T� � �N�|¥ � ��� ´ ����� � � � �|�|�TS ���0¸ � ¡|¡0¤�S?)|¹ �rS � =0¤

[Schloegel 2000] K. Schloegel, G. Karypis and V. Kumar
“Graph Partitioning for High Performance Scientific
Simulations” , to appear in J. Dongarra, I. Foster, G. Fox, K.
Kennedy and A. White, eds., CRPC Parallel Computing

Handbook, Morgan Kaufmann 2000, http://www-
users.cs.umn.edu/~karypis/publications/Papers/P
DF/gpchapter.pdf ¤

[Sch75a] Schwartz J, “Automatic Data Structure Choice in a
Language of Very High Level” CACM December 1975, pp 722-
728.

[Sch75b] Schwartz J, “Optimization of Very High Level
 �N�| ��0�N ��6� � �#�N�N����· � ·N· � � ¤ � � � ��£�¡0¤
 �N�| � S ���?=�¡|¡0¤�S|¸�S � �S|¹|¤
[Shuf 2002] Shuf Y., Gupta M., Bordaweker R., Singh J.P.,

“Exploiting Prolific Types for Memory Management and� ¡|� � £�� �6�N� ����� � � � �
 �U�U� 0¤
[SPEC 2000] SPECjbb2000, A Java Business Benchmark,

http://www.spec.org/osg/jbb2000/docs/whitepape
r.html ¤

[Stone 77] H.S. Stone “Multiprocessor Scheduling with the
Aid of Network Flow Algorithms”, IEEE Transactions on������� ´ �N�N� �0�| �� �|�����N� �| � � �-)�	rS � � � �N�|�0�N�N± S ����� � ¡|¡0¤|¹ =�� �)|¤

[Stoyenko 96] A.D. Stoyenko, J. Bosch, M. Askit, and T.J.
Marlowe, “Load Balanced Mapping of Distributed Objects to
Minimize Network Communication” , Journal of Parallel and� ��� � �N� ¢|�|� ��¥ � ��£�¡|�|� � �|) � � S�S ���rS?)|¸ � S ���0¸|¤

[Tom and Murthy 97] A. Tom and C.S.R. Murthy “An
Improved Algorithm for Module Allocation in Distributed

Computing Systems”, Journal of Parallel and Distributed� ��£�¡|�|� � �| � � S ����� � ¡|¡0¤|¹, �� ��U0¤
[Vandevoorde 94] Vandevoorde M, Guttag J , "Using

Specialized Procedures and Specification-Based Analysis to
Reduce the Runtime Costs of Modularity", SIGSOFT 94 Dec
1994 pp 121-127.[Welch et al. 95] L.R. Welch, B. Ravindran, J.
Henriques and D.K. Hammer “Metrics and Techniques for
Automatic Partitioning and Assignment of Object Based
Concurrent Programs”, Proc. 7th IEEE Symposium on Parallel�N�|¥ � ��� � �N� ¢|�|� ��¥��q�������6��� � �| � � ������¢|����S ���?= � ¡|¡0¤ � � U�� � � �0¤

[Zhou 93] H.B. Zhou “Two-stage M-way Graph Partitioning” ,�#�N���N� � ��� � ��£�¡|�|� � �| S � � S ���) � ¡|¡0¤�S?) =����rS?) �)|¤
a9h\h\`X¨ ¬ ¯ � a���AÙªX«�«1c �³«1c�� ` � ��f��

Lemma 1. Dominant Edge. Suppose graph G has a non-terminal
node n, with edge e being the heaviest among the edges adjacent
to n, with edges e1, e2, ... , er being the edges connecting n to non-
terminals, and with edges e'1, e'2, ... , e'k being the edges
connecting n to nodes which are terminals. Further suppose that
w(e) � Σ w(ei) + Max(w(e'1), w(e'2), ... , w(e'k)). Then there is a
minimum cut not containing edge e. That is, wecan contract edge
e to obtain the new graph G' that has a minimum cut with the���N£��i� �N� �|�Ù�����X£�� �|� £��|£ ���|����� v .
Proof: Consider an optimal assignment of nodes (corresponding
to a minimum cost cut). Assign all the nodes other than n to their
partition in that optimal assignment and contract them with the
terminal in that partition. At this point, we have the node n
connected only to terminals. It can only be contracted with one,
and hence the optimal partition would have it contracted with the
terminal ´ � � � ´ �|� ����� ��� �0�N�N�6��� �|�i�|�6�N��� �6� ����¥| ��6¤

Each member of the set of the edges to the terminal E'' = { e''1,
e''2, ... , e''m} , is created by combining none or one of the edges
e'1, e'2, ... , e'k from n to terminals (and e if other end of e is a
terminal node) with a subset consisting of zero or more of the
edges e1, e2, ... , er from n to other nodes (and e if other end of e is
not a machine node). Optimal assignment of n is obtained by�6���|� ���N��� � �| � �|�i���N�N ��6� ����¥| ��i� ��� �|�Ù� ��� E''.

The weight of the edge in the set E'' containing e as a part of it���� ��N�6�N� ���X� �0�N�T���X���|�0�N����� w(e��¤ � �|�i�|¡|¡|���X¢0���|�|¥T����� �|� ´ ��� ��|�����
any edge in E'' not containing e is less than or equal to Σ w(ei) +
Max(w(e'1), w(e'2), ... , w(e'k)). (This upper bound is obtained
when the largest of the edges e'1, e'2, ... , e'k is combined with all
of the edges e1, e2, ... , er.) Therefore, if the conditions of the
lemma are satisfied, then the largest edge in the set E'' would be
the one containing e . And this would be the edge that is
contracted. Hence e is contracted in the optimal assignment of�0��¥|�6�����æ£T�N���|� �|�6��¤ QED

Lemma 2. Independent Net. If the communication graph
between objects can be broken into two or more independent nets,
then the min cut of the graph can be obtained by combining the£�� ��� ���|�����q�6�N����� �|¥|��¡|���|¥|���|���|����¤

Proof. A net is a set of connected nodes. We say two nets
Net1 and Net2 are independent if there is no edge between non-
terminal nodes in Net1 and non-terminal nodes in Net2. Let Net1,
Net2, ... Netn be the independent nets in the graph. The weight of
any cut of the graph is the sum of the weights of the cuts in the
nets, since there are no edges between the nets. Hence
minimizing the weight of the cuts in each of the nets will£�� �|� £�� ���i� �|� ´ ��� ��|�����q� �|�Ù���������N� �����|��¤ QED

Lemma 3. Terminal Cut. Let a terminal cut Ti be the set of
all edges between a terminal ti and non-terminal nodes N. Let Wi

be the sum of the weight of all edges in the terminal cut Ti. Let
Wi’ s be sorted so that W1 � W2 � W3 � Then any edge which
has weight greater than W2 cannot be present in the minimum cut,�N�|¥��|���|���i�6�N��¢|�i�6���|� ���N��� ��¥0¤

Proof: We will prove this lemma by contradiction. Assume
that an edge e with the weight w(e) > W2 is present in the optimal
cut between terminal node ti and terminal node tj. Let Wj 	 Wi.
We know that Wj 	 W2 since W2 is the second largest of the set
{ W1 � ¤ ¤ ¤ � t} .

Now consider what happens if all nodes that are in the same
optimal partition with terminal tj are moved to terminal ti The
weight of the cut is reduced by at least w(e) - Wj. We know that
w(e) - Wj � w(e) - W2. Since this is a positive number it
contradicts our assumption that the earlier cut was a min-cut.
� �|���N�������N�i� �|�i��¥| �� e �6�N�|�0����¢|�Ù�X¡0�N�N�����#�X£�� �|� £��|£ ���|��¤ QED

Lemma 4 Zeroing. Assume that a non-terminal node n has
edges to each of the t terminals in T with weights w1 	 w2 	 ... 	
wt . n may also have edges to other nodes in the graph. Reducing
the weights of each of the t edges from n to the terminals T by w1

does not change the assignment of nodes for minimum cut. It�N��¥|�|���6��� �|�i�6�|� �����q� �|�i£�� �|� £��|£ ���|��¢|± 	 t-1) w1.
Proof: Zeroing reduces the weight of each terminal cut, thus

permitting more edges to be contracted using the Terminal Cut�|���|�N��� � � �i¢0��� ��¥T����
 ��£�£T�)|¤
Consider the graph after all nodes but n have been assigned to

terminals. Now consider what happens if each of the t edges
connecting n to the various terminals T is reduced in weight by
w1. The effect on the weight of a particular assignment of n to a
terminal is to reduce the weight of the cut by w1(t-1), since the
edges cut are the same, and t-1 cut edges have their weights�N��¥|�|����¥�¢|± w1

�6�N���0¤æ·N���N��¥|�|���6��� �|� ´ ��� ��|�����q���|��¢|± 	 t-1) w1.
The edge that was the heaviest of the last t edges before

reducing the weights stays the heaviest after the reduction. The
assignment associated with the optimal cut has therefore not
changed, since contracting the heaviest edge always preserves
optimality. � � �

Lemma 5. Articulation Point. Let S be a subset of the non-
terminal nodes of N that would be disconnected from all of the
terminals if non-terminal node n were deleted. Then none of the
edges between the nodes in S, nor the edges between the nodes in
S �N�|¥ n �6�N��¢|�i� ��� �|�i£�� �|� £��|£ ���|���N�|¥�� �|��±O�6�N�T�N� ��¢|�i�6���|� ���N��� ��¥0¤

Proof: If all of the nodes in S are assigned to the same
terminal as n, there would be no contribution to the cut from the
edges in S. If any node s in the set S is assigned to a different
terminal, then at least one edge in the path connecting s to n has
to be cut, and will therefore make a positive contribution to the
cut. Hence, the minimum cut would involve the nodes in S
assigned to the same terminal as n, and hence all the edges in the� �|¢| ����N¡|��¥|����� �|��¥�¢|± S �N�|¥��0��¥|� n �6�N��¢|�i�6���|� ���N��� ��¥0¤ QED

a9h\h\`X¨ ¬ ¯ � W ��� «�ªg` «�¨ ��� h\`XªX¯���`X¨ ©Af1Y	�9`��g­\Y°©��
In this section we describe two sets of preliminary experiments

we did to test the applicability of our framework. In the first
experiment we ran our tool on small applications developed using
VisualAge Generator. In the second experiment we used
SPECjbb.

� � ��� . 9
�0=o u ��nTv1nAs
n5450=prq74��	� �
n545. �TnAs
p-9
IBM VisualAge® Generator is a powerful high-end, rapid
application development environment for building and deploying��� ¢|�0� � �|�6�����N¡|¡|� � �6�N� �����0��¤ � ����������¡|����� ´ � � ��� � � � � �Ù���X�0� � �N� �X� � ¡|���N� ��� �
can implement end-to-end Java e-business systems. We used test
suite from the material IBM uses to teach customers how to build
applications from templates provided with this fourth generation
language. These test suite is a representative in structure (if not
scale) of applications typically developed by customers in the
field. A 3-tier version of the VisualAge Generator Templates
application was generated, compiled, and run on a small test bed.
topology consisting of 16 Mb/s token-ring network with three
modest Windows NT 4.0 workstations, serving as a client
machine, a middle-tier logic server and a database server. The
database was DB2 2.1.2. Transaction completion times were£��6��� �|�N��¥�� ��£�� � � ��� ���6���|¥0���0� � �| � �|� � ��� ��� � £�� 	 �X���|�|��� �����0¤ 2
A representative scenario consisting of a sequence of short� ���N�0���N��� �����0� ´ �����N�|�0¤ R ���X� �|�i¡|�|�N¡0�|� �Ù���q� �|����� � �|¥|± � � �|�N���i¥|� �������N���|�
partitions were configured, run, and measured in order to compare
their actual performance: A “naive” partitioning, in which all
logic components were placed on the middle tier, GUI
components on the client and database components on the server;
a manual partitioning in which some components were moved
from the middle tier to the client or server based on programmers
intuition and automatic partitioning in which our tool decided
where each component went on the basis of the measured�6��£�£��|�|� �6�N� ������¡|������� � �6¤
� �|�i�N�6� �|� �����N�N�Ù� �0� ´ ��� ��� �|�i����� ��� ´ � �| ���N¢|� �6¤

Partitioning
� �|� � �|� �
(messages
Between
machines)

� �|� � � £�� 	 £T� � � �|� � � £��	� � �|�
Cost
(ms/message)

Naive 53 10.23 0.193

Manual 42 8.62 0.205

Automatic 23 4.75 0.206

We can see from the table that the automatic partitioning
significantly improves the performance of the program and that
the cut cost (the number of messages sent between machines) is
almost exactly proportional to the running time of the program. If
the computational cost were a significant factor, then we would
have seen significant effects of moving the components from
faster server machines to slower client machines as we went from
Naive to Manual to Automatic partitioning. Instead we see from
the data in this case that performance is primarily determined by
communication costs and we believe that for a significant class of
programs, communication costs is the dominant factor in system
performance.� ����l ����8�
 	�	
�	� �
n545. �TnAs
p-9

In a second experiment we ran SPECjbb2000 [SPEC 2000], a
Java benchmark derived from TPC-C, an industry standard
transaction processing benchmark that models a supply chain with
warehouses, districts, etc. We have also ran experiments against
its predecessor, pBOB. The two Java benchmarks have been run´ � � ���|�|£�¢|���������#��¢�k �����������N�| �� �| ������£: � U�U�U�����S�S � U�U�U0¤

2

At the time we were running these experiments we were
attempting to decrease communication costs between machines.
So, our constrained entities correspond to objects that must reside
on certain machines. Our unconstrained entities are objects that
could exist on any machine, but we did not presuppose mobile
objects that could move themselves as the program entered a new
phase (see section 7). Typically, our improved dominant edge
heuristic alone will reduce the graph to between one half and one
third of its original size. In some cases, it reduces the graph to as
little as one tenth of its original size. At that point, the zeroing
heuristic will reduce the weights of edges adjacent to terminals,
and then the most complex nodes can be contracted with the
terminal cut heuristic. Dominant edge will then find opportunities
for additional reduction. Ultimately, in most cases, the heuristics
all working in concert are able to reduce the graph totally. In
those few very complex cases that remain, the graph has been so
reduced that it is amenable to either branch and bound
backtracking or simple approximation algorithms that often¡|����¥|�|���i� �|�Ù��¡|� � £T�N�����|��¤

We ran the Java programs on a single machine in a single
JVM. We monitored the communication between the objects
using an instrumented JVM in Jinsight [Wim et al] that produces
traces of Java runs consisting of a list of objects allocated by the
JVM and a list of calls from one object to another. Since this
instrumented JVM is two orders of magnitude slower than regular
JVM, and produces large trace files, we traced the transactions of
SPECjbb2000 for only a short time. This includes hundreds of
transactions and results in hundreds of thousands of messages¢|��� ´ ������� �0���0���N�|¥0�����#��¢�k ��������¤

From this trace we inferred the effect of running this program
on multiple machines. We had to make several assumptions to
make this inference. Since each machine will have its own JVM
and class files, we assumed that all class method calls to be local.
Thus if an object A calls any class method which creates or calls
object B, we counted this as a message from object A to object B.
We constructed a graph with the objects instances as the nodes,
and message count between them as the weight of the edges¢|��� ´ ������� �|��£T¤

In one SPECjbb2000 experiment, we chose the four
transaction managers, which are surrogates for users initiating
transactions, as terminals, and one warehouse, which are objects
that keep track of the items that would be stored in a physical
warehouse. Our partitioning places roughly uniformly distributes
most objects on each of the transaction managers, and the
warehouse.

The following table compares our work with the algorithm
described in [Schloegel 2000] (though it is our own
implementation of that algorithm) to our own in a variety of these
runs. We give our results -- the optimal ones and results we
would get without using the Dalhouse heuristic (which in these
graphs only collapses one edge) because we are concerned that� �|���N�i£T�N±O¢|�Ù����£��Ù� �6�N� � �| ¡|����¢|� ��£T� ´ � � ��� �0�N���|���|�N��� � � �6¤
data Spec1 Spec2 Spec3 Spec4
� �|£�¢|���i���q���|� � � � �6� 1,972 3,317 6,197 11,478
� �|£�¢|���i���q��¥| ��6� 2,844 4,896 9,444 17,878
� �|£�¢|���i���
messages

29,323 53,954 109,503 210,889

 ��� ��|�����#��¡|� � £T�N�
cut

1,418 2,611 5,288 10,901

 ��� ��|� ´ ���
Dalhouse

1,418 2,642 5,437 10,914

Weight
Schloegel’s�N� ���N� � �|£ ������

2,061 3,710 5,754 13,070

