
Efficient Power Management Schemes for Dual-Processor Fault-Tolerant Systems

Yifeng Guo, Dakai Zhu
University of Texas at San Antonio
{yguo, dzhu}@cs.utsa.edu

Hakan Aydin
George Mason University
aydin@cs.gmu.edu

Abstract—To address the increasingly important energy ef-
ficiency problem, a Standby-Sparing scheme has been studied
previously to reduce the energy consumption in dual-processor
fault-tolerant systems. However, the dedicated (spare) processor
in the Standby-Sparing scheme needs to execute backup tasks
at full speed to preserve system reliability and thus cannot
effectively exploit its available slack time. In this paper, based
on our prior work of the Preference-Oriented Earliest Deadline
(POED) scheduling algorithm, we study an Energy-Efficient Fault-
Tolerant (EEFT) scheme for dual-processor real-time systems,
which can effectively exploit the slack time on both processors
for better energy savings. Specifically, the primary and backup
tasks are first mapped in a mixed manner to both processors.
Then, the POED algorithm is used to schedule the mixed tasks
on each processor, where primary tasks are executed as soon
as possible while backup tasks as late as possible to reduce the
overlapped execution of primary and backup copies of the same
task and thus reduce energy consumption. The online scheme that
considers the additional slack from the cancellation of backup
tasks and early completion of primary tasks is further explored.
The proposed EEFT schemes are evaluated through extensive
simulations. The results show that, compared to the state-of-the-
art Standby-Sparing scheme, significant (more than 40%) energy
savings can be obtained under the POED-based EEFT schemes.

I. INTRODUCTION

Reliability and fault tolerance techniques have been the
traditional research focus for computing systems [20], where
different types of faults may occur at runtime due to various
reasons (such as hardware defects, electromagnetic interfer-
ence and cosmic ray radiations). For example, permanent
faults may bring a system component (i.e., the processor)
to halt and can not be recovered without some form of
hardware redundancy while transient faults are often triggered
by temporary causes and will disappear after a short time
interval. With reduced technology size and increased level
of integration, it is said that modern computing devices are
more susceptible to such faults [16] and it is imperative
to incorporate fault tolerance techniques, especially for the
mission-critical embedded systems.

Note that, for embedded systems that have been widely
adopted in ICU patient monitoring systems, electrical control
systems in automobiles (such as ABS systems) or Unmanned
Aerial Vehicles (UAVs), they normally have various timing
constraints and real-time scheduling theories have also been
studied extensively in the past decades. Energy management
has been considered another important issue in embedded sys-
tems, where the system components can be put into idle/sleep

This work was supported in part by NSF awards CNS-0855247, CNS-
1016855, CNS-1016974, and NSF CAREER Awards CNS-0953005.

states when they are not in use through the Dynamic Power
Management (DPM) technique [22]. Moreover, Dynamic Volt-
age Scaling (DVS) can scale the supply voltage and processing
frequency of processors and other components simultaneously
to save energy [24]. Although both fault tolerance [4], [7],
[11], [12] and energy management [1], [17], [18], [24], [28]
have been studied extensively (but independently) for real-
time embedded systems, the research on the co-management
of reliability and energy is rather limitted.

Resent research also shows that the probability of having
transient fault increases drastically when systems are operated
at lower supply voltages [10], [29]. By incorporating such
negative effects of DVS on system reliability, the Reliability-
Aware Power Management (RAPM) framework has been
studied, which exploits time-redundancy for both reliability
preservation and energy savings [14], [21], [25], [27]. Here, the
main idea is to schedule a separate recovery job for every job
that has been selected to scale down to preserve the system’s
original reliability, which is assumed to be satisfactory. The
recovery job is executed at the maximum speed only when its
scaled primary job incurs transient faults. Although the RAPM
schemes can preserve the system reliability with respect to
transient faults, there is no consideration for permanent faults.
Moreover, due to the separate allocation of the recovery job
on the same processor with its primary job, large tasks with
utilization greater than 50% cannot be managed under RAPM,
which limits its applicability.

Recently, by considering both reliability preservation due
to transient faults and tolerating one permanent fault, Ejlali
et al. proposed a Standby-Sparing technique for applica-
tions running on a dual-processor system [9]. Specifically,
the primary tasks are executed on the main processor with
DVS based energy management, while the spare processor
is reserved for executing backup tasks, if needed. Upon the
successful completion of a primary task, the corresponding
backup task is cancelled and the excessive energy consumption
is avoided. However, should the primary task fail due to either
permanent or transient faults, the backup runs to completion
at the maximum speed. Thus, a single permanent fault on any
processor can be tolerated and the system’s original reliability
(in terms of resilience with respect to transient faults) is
also preserved [9]. Moreover, by statically allocating backup
tasks on the spare processor to minimize the overlap between
primary and backup copies of the same task, it can reduce
energy consumption as well. Considering the backup tasks will
most likely be cancelled without even being executed since
real-time tasks typically complete early, more energy savings

can be expected at runtime.
However, the above work considers only nonpreemptive

scheduling for aperiodic tasks. In [15], Haque et al. extended
the Standby-Sparing technique for preemptive periodic real-
time applications. Here, the earliest deadline first (EDF)
scheduling is applied on the primary processor while the
backup tasks are executed on the spare processor according to
the earliest deadline latestest (EDL) scheduling policy [8]. By
delaying the backup tasks as much as possible and obtaining
idle intervals as early as possible, the joint use of EDF and
EDL on the primary and spare processors, respectively, pro-
vides better opportunities to reduce the overlapped execution
of the primary and backup copies of the same task at run-
time and thus reduce the energy consumption. Note that, by
dedicating a spare processor for backup tasks that need to
be executed at the maximum processing speed, the Standby-
Sparing scheme cannot effectively exploit the available slack
time on the spare processor for better energy savings.

In this work, instead of dedicating a spare processor for
backup tasks, we treat both processors equally and schedule
a mixed set of primary and backup copies of different tasks
on each of them. Then, based on our prior work of the
Preference-Oriented Earliest Deadline (POED) scheduling
algorithm [13], we study the energy efficient fault tolerance
(EEFT) schemes. Specifically, on each processor, primary
tasks are executed as soon as possible while backup tasks
as late as possible under POED. That is, the slack time on
both processors can be efficiently utilized to minimize the
overlapped execution of the primary and backup copies of
the same task for better energy savings. Simulation results
show that, compared to the state-of-the-art Standby-Sparing
scheme [15], significant (up to 40%) energy savings can be
obtained under the POED-based EEFT schemes.

The remainder of this paper is organized as follows. Sec-
tion II presents system models and state our assumptions. In
Section III, the basic idea of the proposed scheme is illustrated
through a concrete example, followed by the brief review
of the preference-oriented earliest deadline (POED) schedul-
ing algorithm. The proposed energy-efficient fault-tolerance
(EEFT) schemes are discussed in Section IV. Section V
presents the evaluation results and Section VI concludes the
paper.

II. MODELS AND ASSUMPTIONS

A. Task Model

We consider a set of n periodic real-time tasks Ψ =
{T1, . . . , Tn} to be executed on a dual-processor system. Each
task Ti is represented as a tuple (ci, pi), where ci is its worst-
case execution time (WCET) under the maximum available
CPU frequency, and pi is its period. The utilization of a task
Ti is defined as ui =

ci
pi

. The system utilization of a given task
set is the summation of all task utilizations: U =

∑
Ti∈Ψ ui.

Tasks are assumed to have implicit deadlines. That is, the
jth task instance (or job) of Ti, denoted as Ti,j , arrives at time
(j−1) ·pi and needs to complete its execution by its deadline
at j · pi. Note that, a task has only one active task instance at

any time. When there is no ambiguity, we use Ti to represent
both the task and its current task instance.

During the operation of a computing system, both perma-
nent and transient faults may occur due to, for instance, the
effects of hardware defects or cosmic ray radiations, which
can result in system errors. Therefore, for reliability and fault
tolerance, each task Ti has a backup task Bi, which has exactly
the same timing parameters (i.e., ci and pi) as its primary task
Ti. For consistency, the jth task instance (or job) of Bi is
denoted as Bi,j .

To tolerate a permanent fault in such a dual-processor sys-
tem, the backup task Bi needs to be allocated to the processor
that is different from the one of its corresponding primary task
Ti. Moreover, to incorporate the negative effects of DVS on
the rate of transient faults when executing the task Ti at a
scaled frequency, the backup task Bi should be executed at
the maximum processing frequency to preserve the task Ti’s
original reliability with respect to transient faults. Here, the
original reliability is defined as the probability of finishing
Ti’s execution successfully when no energy management (i.e.,
DVS) is applied [26].

In addition, it is assumed that soft errors are detected with
sanity (or consistency) checks at the end of a task’s execu-
tion [19]. The overhead for fault detection is also assumed to
be incorporated into tasks’ WCETs.

B. Power Model

Each processor in the dual-processor system is assumed
to have DVS capability, which has been a common feature
in modern processors. We further assume that the proces-
sors can only be operated at L different discrete frequency
levels {f1, f2, . . . , fL}, where fL = fmax is the maximum
frequency. Moreover, the time overhead for frequency (and
supply voltage) changes is assumed to be incorporated into
the WCETs of tasks [28].

With increasing importance of leakage power and emphasis
on the need for considering all system components in power
management [1], [17], [18], we adopt a system-level power
model in previous RAPM research for each processor in dual-
processor systems [27], which can be expressed as:

P = Ps + Pind + Cef · f3 (1)

Here, Ps stands for static power, which can be removed
only by powering off the whole system. Due to the prohibitive
overhead of turning off and on the system in periodic real-time
execution settings, we assume that the system is in on state at
all times and that Ps is always consumed. Hence, we will focus
on the energy consumption related to active power, which is
given by the last two items in the above equation. Pind is the
frequency-independent active power. The frequency-dependent
active power depends on the system-dependent constants Cef

and m, as well as f , which can be managed through the
dynamic voltage scaling (DVS) technique [6]. When no task
is active, we assume that both active powers can be efficiently
removed by putting the processor (or system) in sleep states
with the dynamic power management (DPM) technique.

III. AN EXAMPLE AND POED SCHEDULING

In this section, we first introduce the basic ideas of our
energy efficient fault tolerance (EEFT) scheme for a dual-
processor system through a concrete example. Then, we briefly
review the essential principles and basic steps of the underly-
ing preference-oriented earliest deadline (POED) scheduling
algorithm, which serves as the cornerstone for our proposed
EEFT schemes.

A. A Motivational Example

We consider a dual-processor system with two periodic
real-time tasks where T1 = (1, 5) and T2 = (2, 10). As
we discussed in the last section, for reliability and fault
tolerance purpose, there are two backup tasks B1 and B2,
which correspond to the primary tasks T1 and T2, respectively.
Here, the primary and backup copies of the same task have to
be scheduled on different processors. Once a task’s primary
copy completes successfully, its backup copy can be cancelled.
Therefore, for energy efficiency, we should postpone the
execution of a task’s backup copy as much as possible and
minimize the overlapped execution with its primary task that
is running on another processor [23].

0 4 5 7 9 10

T1

BBB1,1 2,1 1,2

2.5

T1,1 2,1T 1,2T 2,1T
P1

P2

{T ,T }1 2

{B ,B }1 2

LCM

a. Schedules for Standby-Sparing scheme

1

0 4 5 9 10

T1 LCM

BB1,1 1,2

2,1B B2,1T1,2

T2,1T2,1

T1,1

P

1P

2

{T , B }1 2

{T , B }2

b. Schedules for POED-based scheme

Fig. 1. A dual-processor fault-tolerant system with two tasks: T1 = (1, 5)
and T2 = (2, 10).

Specifically, for dual-processor fault-tolerant systems, the
Standby-Sparing scheme has been recently studied [15]. Here,
as shown in Figure 1a, all primary tasks are executed on one
processor under EDF at a scaled frequency, while all backup
tasks are scheduled on the secondary (spare) processor under
EDL for energy savings. Recall that, to address the negative
effects of voltage scaling on system reliability, the executions
of tasks’ backup copies are not scaled and the slack time on
the secondary processor is wasted [15].

To efficiently utilize the slack time on both processors,
instead of dedicating one processor for backup tasks, we can
partition the primary copies of tasks among the processors
and allocate the corresponding backup copies on another
processor. That is, as shown in Figure 1b, each processor
will have a mixed set of primary and backup copies of
different tasks. Here, on each processor, we can exploit the
preference-oriented earliest deadline (POED) scheduling al-
gorithm, which can execute the scaled primary copy as soon

as possible (ASAP) while the non-scaled backup copy of tasks
as late as possible (ALAP).

With such separate considerations of primary and backup
copies of tasks in POED, this scheme can efficiently exploit the
slack time on both processors while significantly reducing the
overlapped execution of a task’s primary and backup copies,
which in turn achieves better energy savings. For this particular
example, if we use the same power parameters as in [15], the
POED-based EEFT scheme can save 20% more energy to that
of the Standby-Sparing scheme.

B. Preference-Oriented Earliest Deadline (POED) Scheduling

As we can see from the above example, in order to improve
the energy efficiency on dual-processor fault-tolerant systems,
the mixed primary and backup tasks on each processor need
to be scheduled according to different preferences in addition
to meeting all tasks’ deadlines. The concept of preference-
oriented execution was first proposed in [13] for independent
periodic tasks executing on a single processor system. The
motivation for designing this scheduling algorithm comes
from the recent application requirement of real-time systems,
such as fault-tolerant real-time systems with low power con-
sumption requirements, and the scheduling of mixed-criticality
tasks [3] to provide better service to low-criticality tasks.

There are two basic principles in preference-oriented
scheduling. First, if it is possible to do so without causing
any deadline miss, the tasks with ASAP preference should be
executed before the ones with ALAP preference even if the
ASAP task has a later deadline. Second, the execution of tasks
with ALAP preference should be delayed as much as possible
given that it does not cause deadline miss for both current and
future tasks [13].

Following these two principles, the preference-oriented ear-
liest deadline (POED) scheduling algorithm tries to execute
tasks with ASAP preference in increasing order of their
deadlines while ensuring that there is no deadline miss for
tasks with ALAP tasks. When there is no active task with
ASAP preference, POED will try to let the processor idle
before executing tasks with ALAP preference also in the
increasing order of their deadlines [13]. We have shown that
the POED scheduling algorithm can guarantee that there is
no deadline miss while achieving better preference values for
all tasks. For the detailed steps and analysis of the POED
scheduling algorithm, we refer interested readers to [13].

IV. POED-BASED ENERGY EFFICIENT FAULT TOLERANCE
(EEFT) SCHEMES FOR DUAL-PROCESSOR SYSTEMS

In this section, based on the POED scheduling algorithm, we
discuss the basic steps of the energy-efficient fault-tolerance
(EEFT) schemes for dual-processor systems. To effectively ex-
ploit the available slack time on both processors, the essential
idea of POED-based EEFT schemes is to treat two processors
equally. That is, each processor will be allocated a mixed set
of primary and backup copies of different tasks, which are
scheduled according to the POED scheuding algorithm with

primary tasks having the ASAP preference while backup tasks
having the ALAP preference.

Algorithm 1 Basic Steps for the POED-Based EEFT Schemes
1: Input: task set Ψ = {T1, . . . , Tn} with U ≤ 1;
2: Step 1: Partition tasks in Ψ to two processors according

to a given (e.g., WFD) heuristic;
3: Step 2: For each (primary) task Ti, allocates its backup

task Bi to another processor;
4: Step 3: On each processor, calculate the scaled frequency

for its primary tasks using the available static slack;
5: Step 4: Run the mixed set of primary and backup tasks

on each processor under POED; when a task completes
successfully, cancel its corresponding copy on another
processor properly;

The major steps of the POED-based EEFT schemes are
summarized in Algorithm 1. The set Ψ of real-time tasks,
which consists of only primary tasks under consideration,
is first partitioned onto the two processors in the system
following any given heuristic (line 2). Note that, the partition
with balanced workload on processors is preferred regarding
to power management. Since the Worst-Fit Decreasing (WFD)
heuristic based on tasks’ utilizations has been shown to have
better performance on generating balanced partitions (Theo-
rem 3 in [2]), we adopt the WFD heuristic in this work.

Then, for each task Ti in Ψ, its backup task Bi is allocated
to another processor, which is different from Ti’s processor
(line 3). As we can see that, after this step, each processor
will have a mixed set of primary and backup tasks. When the
system is not fully loaded with the system utilization of the
task set Ψ being U < 1, the remaining processor capacity
(i.e., static slack) on both processors can be exploited to scale
down the processing frequency of the primary tasks on each
processor respectively (line 4).

Finally, the mixed primary and backup tasks on each
processor are scheduled under the POED algorithm, where
primary tasks have ASAP preference and backup tasks have
ALAP preferene (line 5). Note that, with the scaled processing
frequency of primary tasks, the inflated system utilization of
tasks on each processor is no more than 1. From [13], we know
that all (primary and backup) tasks on both processors can
meet their deadlines under the POED scheduling algorithm.

Note that, not all (especially backup) tasks need to run to
completion. When a task (either primary or backup) passes
its sanity check and completes successfully at runtime, it
should notify another processor to cancel the execution of its
corresponding (backup or primary) task for energy efficiency.

A. Online Extension of POED-Based EEFT

The cancellation of the execution of backup tasks can gener-
ate significant amount of dynamic slack at runtime. Moreover,
real-time tasks typically take much less time than their WCETs
and complete early, which can contribute dynamic slack as
well. Such dynamic slack can be exploited to further scale

down the processing frequency of primary tasks and/or delay
the execution of future backup tasks for better energy savings.
As shown in Section V, the online version of the POED-
based dynamic power management can drastically reduce the
unnecessary overlapped execution of the two copies of the
same task and thus lead to significantly more energy savings,
when compared to that of the Standby-Sparing scheme [15].

V. SIMULATIONS AND EVALUATIONS

In this section, we evaluate the performance of the proposed
POED-based EEFT schemes through extensive simulations.
For such purpose, we developed a discrete event simulator
using C++. We have implemented both the static (offline) and
dynamic (online) versions of the POED-based EEFT schemes,
which are denoted as POED-SPM and POED-DPM, respec-
tively. For comparison, we also implemented the Standby-
Sparing scheme with offline calculated scaled frequency for
primary tasks (denoted as SS-SPM) and its online version
of the ASSPT scheme that exploits online slack to further
reduce the processing frequency of primary tasks (denoted as
SS-DPM) [15]. Moreover, the basic Standby-Sparing (Basic-
SS) scheme that does not scale down any task is used as
the baseline during the evaluation. Here, all schemes cancel
the execution of backup tasks once the corresponding primary
tasks complete successfully.

The task sets under consideration have either 10 or 20
tasks, where the utilization of each task is generated using the
UUniFast scheme proposed in [5]. The period of each task is
uniformly distributed in the range of [10, 100] and the WCETs
of tasks are set accordingly. Since most modern processors
have a few frequency levels, in the evaluations, we assume
that there are four normalized frequency levels (which are
{0.4, 0.6, 0.8, 1.0}). Moreover, the same as in [15], we assume
that Cef = 1 and m = 3.

Note that, all schemes under consideration can tolerate a
permanent fault. Moreover, by enforcing the backup tasks
to be executed at the maximum processing frequency, the
original system reliability with respect to transient faults can
be preserved as well under all schemes. Therefore, we focus on
evaluating the energy efficiency of the schemes. We vary the
system load (i.e., utilization U) and dynamic load (i.e., the
average-to-worst case execution time ratio of tasks) during
the simulations. The actual execution time of each task is
generated based on the average-to-worst case execution time
ratio. Each data point in the figures corresponds to the average
result of 100 task sets. All experiments were conducted on a
Linux box with an Intel Xeon E5507 (2.27GHz) processor
and 32 GB of memory.

Figure 2 first shows the normalized energy consumption
under different schemes with varying system loads, where
the one under Basic-SS is used as the baseline. Since similar
results are obtained for task sets with 10 and 20 tasks, we
will only show results for the case of 20 tasks in this paper.
Here, all tasks take their WCETs (that is, the average-to-
worst case execution time ratio is 1) at runtime. In general,
the normalized energy consumption increases with the system

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n

system utilization (U)

SS-SPM
POED-SPM

Fig. 2. Normalized energy consumption vs. static load; 20 tasks per set

utilization, since the scaled frequency for primary tasks gets
higher. However, the POED-SPM scheme acheives better
energy savings as it can better exploit the slack on both
processors and delay the execution of backup tasks. When
system utilization U = 0.9, the static scaled frequency for
primary tasks will be 1.0 under all schemes due to discrete
frequency limitation. Therefore, the additional energy savings
are limited under POED-SPM.

The energy savings under the schemes for various dynamic
loads are also evaluated and the results are shown in Figure 3.
Here, we can see that, when the dynamic load is low (i.e.,
in the range of 30% to 50%), the energy savings under all
schemes are close to each other. The reasons are: a) most
primary tasks are executed at the lowest frequency; and b)
most backup tasks will be cancelled.

However, for the case of high system load U = 80%,
the normalized energy consumption under SS-DPM increases
quickly with the increased dynamic load. This comes from the
the fact that the greedy slack utilization strategy applied in SS-
DPM delays the finish time for primary tasks in the primary
processor, which directly causes more overlapped execution
of backup tasks on the spare processor. In comparison, the
normalized energy consumption under our proposed POED-
DPM scheme is relatively stable since it can maximally delay
the execution of backup tasks on both processors and thus
reduced the overlappped execution of primary and backup
of the same task. Therefore, if online slack is utilized to
further scale down the processing frequency of primary tasks,
significantly more energy (up to 40%) can be saved under
POED-DPM when compared to that of the SS-DPM.

VI. CONCLUSIONS AND FUTURE WORKS

For real-time tasks running on a dual-processor system,
we study the energy-efficient fault-tolerance (EEFT) schemes
based on our prior work of the preference-oriented earliest
deadline (POED) scheduling algorithm. Different from the ex-
isting Standby-Sparing scheme, which dedicates one processor
for backup tasks, the objective is to effectively exploit the slack
time on both processors for better energy savings. We illustrate

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n

dynamic load

POED-DPM, U = 0.8
SS-DPM, U = 0.8

POED-DPM, U = 0.4
SS-DPM, U = 0.4

Fig. 3. Normalized energy consumption vs. dynamic load; 20 tasks per set

the basic ideas through a concrete example and discuss the
major steps of the POED-based EEFT schemes. By executing
the primary tasks as soon as possible and backup tasks as late
as possible under the POED scheduling algrithm, the schemes
can siginficantly reduce the overlapped execution of primary
and backup copies of the same task and thus lead to more
energy savings. Our simulation results show that, compared
to that of the state-of-the-art Standby-Sparing scheme, the
POED-based EEFT schemes can obtain significantly more (up
to 40%) energy savings.

For our future work, we will evaluate the effects of addi-
tional DVS transition under the POED-based EEFT schemes
and extend such schemes to systems with more than two
processors.

REFERENCES

[1] H. Aydin, V. Devadas, and D. Zhu. System-level energy management for
periodic real-time tasks. In Proc. of The 27th IEEE Real-Time Systems
Symposium (RTSS), pages 313–322, 2006.

[2] H. Aydin and Q. Yang. Energy-aware partitioning for multiprocessor
real-time systems. In Parallel and Distributed Processing Symposium,
2003. Proceedings. International, page 9 pp., april 2003.

[3] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
N. Megow, and L. Stougie. Scheduling real-time mixed-criticality jobs.
IEEE Trans. on Computers, 2011.

[4] A. A. Bertossi, L. V. Mancini, and F. Rossini. Fault-tolerant rate-
monotonic first-fit scheduling in hard-real-time systems. Parallel and
Distributed Systems, IEEE Transactions on, 10(9):934 –945, sep 1999.

[5] E. Bini and G.C. Buttazzo. Biasing effects in schedulability measures.
In Proc. of the Euromicro Conf. on Real-Time Systems, 2004.

[6] T. D. Burd and R. W. Brodersen. Energy efficient cmos microprocessor
design. In Proc. of HICSS Conference, 1995.

[7] J.-J. Chen, C.-Y. Yang, T.-W. Kuo, and S.-Y. Tseng. Real-time task
replication for fault tolerance in identical multiprocessor systems. In
Proceedings of the 13th IEEE Real Time and Embedded Technology
and Applications Symposium, pages 249–258, Washington, DC, USA,
2007. IEEE Computer Society.

[8] H. Chetto and M. Chetto. Some results of the earliest deadline
scheduling algorithm. IEEE Trans. Softw. Eng., 15:1261–1269, 1989.

[9] A. Ejlali, B. M. Al-Hashimi, and P. Eles. A standby-sparing technique
with low energy-overhead for fault-tolerant hard real-time systems. In
Proc. of the IEEE/ACM Int’l Conf. on Hardware/Software Codesign and
System Synthesis, pages 193–202, New York, NY, USA, 2009.

[10] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim,
and K. Flautner. Razor: circuit-level correction of timing errors for
low-power operation. Micro, IEEE, 24(6):10 –20, nov.-dec. 2004.

[11] S. Ghosh, R. Melhem, and D. Mossé. Fault-tolerance through scheduling
of aperiodic tasks in hard real-time multiprocessor systems. Parallel and
Distributed Systems, IEEE Transactions on, 8(3):272 –284, March 1997.

[12] S. Gopalakrishnan and M. Caccamo. Task partitioning with replication
upon heterogeneous multiprocessor systems. In Real-Time and Embed-
ded Technology and Applications Symposium, 2006. Proceedings of the
12th IEEE, pages 199 – 207, april 2006.

[13] Y. Guo, H. Su, D. Zhu, and H. Aydin. Preference-oriented schedul-
ing framework and its application in fault-tolerant real-time systems
(extended version). Technical report, CS-TR-2012-009, Dept. of Com-
puter Science, Univ. of Texas at San Antonio, 2012. available at
http://www.cs.utsa.edu/˜dzhu/poed-tr.pdf.

[14] Y. Guo, D. Zhu, and H. Aydin. Reliability-aware power management
for parallel real-time applications with precedence constraints. In Green
Computing Conference and Workshops (IGCC), 2011 International,
pages 1 –8, july 2011.

[15] M. Haque, H. Aydin, and D. Zhu. Energy-aware standby-sparing
technique for periodic real-time applications. In Proc. of the IEEE
International Conference on Computer Design (ICCD), 2011.

[16] P. Hazucha and C. Svensson. Impact of cmos technology scaling on the
atmospheric neutron soft error rate. IEEE Trans. on Nuclear Science,
47(6):2586–2594, 2000.

[17] S. Irani, S. Shukla, and R. Gupta. Algorithms for power savings. In
Proc. of The 14th Symposium on Discrete Algorithms, 2003.

[18] R. Jejurikar and R. Gupta. Dynamic voltage scaling for system wide
energy minimization in real-time embedded systems. In Proc. of the Int’l
Symposium on Low Power Electronics and Design (ISLPED), pages 78–
81, 2004.

[19] D. K. Pradhan. Fault Tolerance Computing: Theory and Techniques.
Prentice Hall, 1986.

[20] D. K. Pradhan, editor. Fault-tolerant computer system design. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[21] X. Qi, D. Zhu, and H. Aydin. Global scheduling based reliability-aware
power management for multiprocessor real-time systems. Real-Time
Systems: The International Journal of Time-Critical Computing Systems,
47(2):109–142, 2011.

[22] M. T. Schmitz, B. M. Al-Hashimi, and P. Eles. System-Level Design
Techniques for Energy-Efficient Embedded Systems. Kluwer Academic
Publishers, Norwell, MA, USA, 2004.

[23] O. S. Unsal, I. Koren, and C. M. Krishna. Towards energy-aware
software-based fault tolerance in real-time systems. In Proc. of the Int’l
Symp. on Low Power Electronics and Design, pages 124–129, 2002.

[24] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for
reduced cpu energy. In Proceedings of the 1st USENIX conference on
Operating Systems Design and Implementation, OSDI ’94, Berkeley,
CA, USA, 1994. USENIX Association.

[25] B. Zhao, D. Zhu, and H. Aydin. Enhanced reliability-aware power
management through shared recovery technique. In Proc. of the
IEEE/ACM Int’l Conference on Computer Aided Design (ICCAD), 2009.

[26] D. Zhu. Reliability-aware dynamic energy management in dependable
embedded real-time systems. In Proc. of the IEEE Real-Time and
Embedded Technology and Applications Symposium, pages 397 – 407,
2006.

[27] D. Zhu and H. Aydin. Reliability-aware energy management for periodic
real-time tasks. IEEE Trans. on Computers, 58(10):1382–1397, 2009.

[28] D. Zhu, R. Melhem, and B. R. Childers. Scheduling with dynamic
voltage/speed adjustment using slack reclamation in multi-processor
real-time systems. IEEE Trans. on Parallel and Distributed Systems,
14(7):686–700, 2003.

[29] D. Zhu, R. Melhem, and D. Mossé. The effects of energy management
on reliability in real-time embedded systems. In Proc. of the Int’l Conf.
on Computer Aidded Design, pages 35–40, 2004.

