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Abstract 

Main memory is expected to grow significantly in both speed 

and capacity for it is a major shared resource among cores in a 

multi-core system, which will lead to increasing power 

consumption. Therefore, it is critical to address the power 

issue without seriously decreasing performance in the memory 

subsystem. In this paper, we propose a periodically active rank 

scheduling (PARS) to optimize power efficiency for multi-

core DRAM in smart phones. Our scheduling features a three-

step design. First, we partition all threads in the system into 

groups. Second, modify page allocation policy to achieve 

threads in the same group occupies the same rank but different 

bank of DRAM. Finally, sequentially schedule threads in one 

group after another while only active running group’s ranks to 
retain other ranks low power status. As a result, our 

scheduling periodically activates one rank after another to 

optimize memory power efficiency. We implement PARS in 

Linux 2.6.35 kernel running randomly generated workloads 

containing single-threaded and multi-threaded benchmark. 

Experimental results show that PARS can improve both the 

memory power efficiency 26.8% and performance 4.2% 

average reducing negligible fairness. 
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1. INTRODUCTION 

In recent years, chip multiprocessors (CMPs) [1] have 
become increasingly important and common in the computer 
industry [2] [3]. Similarly, mostly smart phones have adopted 
multi-core system, dual-core is mainstream and quad-core is 
high-end, even eight-core will be the next generation. To cope 
with the substantial memory demand from these processors, 
density and speed of memory DRAM subsystem have been 
increased dramatically. However, such increasing in memory 
size and speed has led to a significant increase in total energy 
consumed by the memory. Recent studies show a growing 
concern for energy problems in memory subsystem and that the 
memory energy may even surpass energy consumption of the 
CPU, which is traditionally known to be a primary source for 
energy consumption in computer systems [4] [5]. 

Many memory management mechanisms have been 
considered for servers, desktops, and portable computers [6] [7] 
[8] [9] [10] [11]. Different memory technologies [12] [13] [14] 
and hierarchies [15] have been investigated as well. The recent 
exploration of alternative memory technologies is driven by the 
development of phase change memory (PCM). PCM offers 
random access capability and performance comparable to 
DRAM, and non-volatility of flash memories. Subsequently, 
those characteristics allow PCM to be efficiently included in 
memory hierarchy or even replace DRAM to a certain extern. 
These are mostly involved hardware, but we mainly focus on 
operating system. 

Also, some schedulers according memory occupied and 
simultaneously combining with memory migration have 
proposed to optimize memory power efficiency [16] [17]. 
These methods partition threads into groups according to their 
occupying memory rank which is the basic unit to control 
memory power status, one group threads occupying almost the 
same memory ranks. Based on group, priority schedule threads 
belonging to the same group sequentially, activating 
corresponding ranks and shutting down other ranks. Although 
these ways have advantages of power efficiency, they reduce 
performance seriously because of frequently migrating data 
from low power ranks. According to our experiment results, 
execution time of all threads increase more than 30% average. 

In order to tackle imbalance of power efficiency and 
performance, in this paper, we propose a periodically active 
rank scheduling. We coordinate page allocation policy with 
operating system scheduler, which our page allocation policy 
make threads’ occupied memory rank more aggregation and 
regularly.  

PARS feature a three-step design. First, according to the 
relationship among threads, we partition all threads in the 
system into groups. For example, threads belonging to the 
same process are sharing a group. The number of thread groups 
is equal to the number of the memory ranks. Thread group and 
memory rank are one-to-one correspondence. Second, 
according to the group number the thread belonging, allocate 
page in corresponding memory rank but in different banks. All 
occupied memory of threads in a group aggregates 
corresponding memory rank almost without escaping. Finally, 
priority schedule threads in the same group, after all threads in 
the same group have run sometime, choosing another. When a 
group is running, only its memory rank is active, after choosing 
another, switching active memory rank. So, memory rank 
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periodically active which can optimize power efficiency 
without reducing much performance from migrating.  

We evaluate PARS both in single-core and multi-core 
situations with a large set of single-thread and multi-thread 
workloads. Our base results demonstrate that we can improve 
26.8% power efficiency and 4.2% performance average. We 
also analyze other parameters, such as fairness, degree of 
aggregation, response time and so on. And we are pleased all 
these parameters are acceptable. 

Specially, this paper makes the following major 
contributions: 

●We firstly coordinate page allocation policy with operating 
system scheduler to optimize memory power efficiency. 
Through our page allocation policy, aggregating threads’ 
occupying memory ranks according groups without migrating 
data when running. 

●We improve both power efficiency and performance for 
multi-core, which disturbs conventional thinking of improved 
power efficiency mostly based on performance reduced. 

●We propose degree of aggregation parameter to indicate 
the effect of page allocation policy to retain other memory 
ranks stay low power as long as possible. 

●We detailed analyze power efficiency, performance, 
fairness, thermal, average response time and degree of 
aggregation parameters of PARS.  

2. BACKGROUND AND RELATED WORK 

2.1 DRAM System 

We briefly describe DRAM memory systems and OS 

memory management mechanism.  

DRAM Organization: modern memory system is usually 

packaged as DIMMs, each of which usually contains 1 or 2 

ranks and 8 banks. A memory system can contain multiple 

channels, and each channel is associated with 1 or 2 DIMMs. 

A rank is the smallest physical unit for power management. 

Banks can be accessed parallel, hence, memory requests to 

different banks can be served concurrently [18]. Memory 

device can be in four states – active standby, precharge 

standby, active power-down and precharge power-down – 

listed in a decreasing order of power dissipation [16]. 

OS Memory Management: Nowadays, Linux kernel’s 
memory management system uses a buddy system to manage 

physical memory pages. In the buddy system, the continuous 

2
order

 pages (called a block) are organized in the free list with 

the corresponding order, which ranges from 0 to a specific 

upper limit. When a program accesses an unmapped virtual 

address, a page fault occurs and OS kernel takes over the 

following execution wherein the buddy system identifies the 

right order free list and allocates on block (2
order

 physical 

pages) for that program. Usually the first block of a free list is 

selected but the corresponding physical pages are 

undetermined [19]. 

2.2 Related work 

There are a number of related studies. 

Thread Scheduling. Scheduling algorithms PPT proposed 

in [16] aimed to active partial memory ranks according 
running threads to optimize memory power efficiency. This 

method can improve memory power efficiency, but seriously 

reduce performance because of migrating data from low 

power memory ranks. Our previous studies [20] [21] have 

proposed group scheduling to improve power efficiency and 

performance as well.  

Row Buffer Optimization. In [22], frequently accessed 

data of different rows are dynamically migrated into row 

buffer, which can improve the row buffer usage and 

performance; power consumption is also lowered by reducing 

the operations of percharge and active. 
Thread-based Memory Scheduling. Memory controllers 

are designed to distinguish the memory access behavior at 

thread-level [23] [24], so that scheduling modules can adjust 

their scheduling policy at the running time. TCM [23], which 

dynamically groups threads into two clusters (memory 

intensive and non-intensive), and assign different scheduling 

policy to different group, is the best scheduling policy, which 

aim to address fairness and throughput at the same time. 

Bank Level Partition. BPM [25], which partitions banks 

according threads to assign different group of banks to 

different threads to eliminate the interference between threads 

and improve the overall system performance.  

PARS. To the best of our knowledge, this is the first work 

that improve both power efficiency and performance through 

coordinating operating system scheduling with page allocation 

of optimizing both rank-level aggregation and bank-level 

parallel. 

3. PERIODICALLY ACTIVE RANK 

SCHEDULING (PARS) 

3.1 Overview of PARS 

Our PARS combines page allocation with the operating 

system scheduling to improve both power efficiency and 

system performance, which is designed into three following 

steps. 

3.2 Group Partition 

In section 2.1, we have introduced memory rank is the 

smallest physical unit for power management. We can 

aggregate current running threads’ memory into a memory 

rank, low power other ranks to reduce memory power. The 

threads of aggregated into the same memory rank are formed a 

group. Based on the number of ranks, we partition all threads 
into the same number groups. Generally, a DRAM has 4 or 8 

ranks, so we have 4 or 8 groups. 

With multi-core processor for mobile phones being more 

and more popular, more and more emerging applications are 

believed to be highly parallel [21]. One application creates 

more and more threads to parallel finish job. All threads 

belonging to an application are sharing memory, which we can 

take advantage to reduce frequency replacing TLB and cache 

when switching threads. We partition all threads of an 

application into the same group. And all threads of an 

application are listed sequentially. Specially, all kernel threads 

are partitioned into a unique group. Mostly, there are more 

applications than ranks, so applications are partitioned into 

different groups. In this paper, we partition applications 

according to load balance. All threads in the same group are 



listed according applications. The details of group partition are 

shown in Algorithm 1. Each time creating a new thread we all 

apply this algorithm. 

Algorithm 1: group partition 

After creating a new thread T, T ϵ A, A is an 

application, G is the group of all kernel threads 

begin 
1: whether the application A is already existing in system 

2: if T is kernel thread then 

3:     insert T into the back of group G; 

4:     return; 

5: else if A is already existing then 

6:     find group G1, A ϵ G1; 

7:     insert T into the back of A;  

8:     return; 

9: else A is a new one then 

10:   find the group of lightest load, G2; 

11:   insert A into the back of group G2; 

12:   insert T into the back of A; 
13:   A is partitioned into group G2; 

14:   return; 

End 

In our system, all threads of the same application are listed 

sequentially, all applications in the same group are listed 

sequentially. Figure 1 demonstrates the list of one group. 

Application 1 Thread Thread Thread……

Application 2 Thread Thread Thread……

Application n Thread Thread Thread……

……

 
Figure 1 example of one group list 

3.3 Page Allocation 

Usually, buddy system allocates the first block of a free list 

to the request thread, so a thread’s occupying memory spans 

all ranks of the memory. And each rank contains multiple 

physically independent banks which can serve memory 

requests concurrently and independently, generally, one rank 

contains 4 or 8 banks. In order to aggregate each thread’s 

memory into single rank and improve request parallelism, we 

adjust buddy system to manage physical memory pages 
adding memory rank and bank information.  

Figure 2 demonstrates the organization of physical memory 

pages management of buddy system. The process has briefly 

analyzed in section 2.1. Figure 3 shows the organization of our 

physical pages management which adds the rank and bank 

information. Specially, for the DRAM architecture, there may 

be no 512 or smaller consequent blocks in our organization. 

But this is not a big deal for most requests are single page. 

Each rank/bank organizes its own physical pages. 

When a thread accesses an unmapped virtual address, a 

page fault occurs and OS kernel takes over the following 

execution which algorithm 2 demonstrates. And each rank has 

B banks. 
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Figure 2 physical pages management of buddy system 
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Figure 3 physical pages management of our system 

Algorithm 2: page allocation 

Thread T accesses an unmapped virtual address, OS 

kernel allocates pages 

begin 
1: find the group G which T ϵ G; 

2: according to the id of G, find corresponding rank, R; 

3: calculate Bi = Tid % B, Tid is the thread id of T; 

4: identify the right order free list of Bi in R; 

5: allocate on block for T; 

6: return; 

End 
The difference between our page allocation with buddy 

system is we add the process of finding group, corresponding 

memory rank and bank. The cost of the added operation is 

negligible after optimizing. 

With our page allocation policy, one group threads’ 

occupying memory almost aggregates one rank, threads in the 

same group occupies different banks, which both improve 

aggregation and parallelism.  

3.4 Scheduling and Rank Management Policy 

3.4.1 design the PARS 

All threads in the system are partitioned into groups, each 

group occupies only one rank. When a group threads running, 
only corresponding rank needs to be active, others can be low 

power. So we coordinate group scheduling [21] with memory 

rank status management to optimize memory power efficiency.  

Figure 4 demonstrates the periodically scheduling threads 

according group and active memory rank. All threads of an 

application are listed sequentially, and applications of the 

same group are listed sequentially. Our PARS has following 



periodically phases to choose the next running thread and 

manage memory rank status: 

1) If there are some threads in the same application to 

current running thread, choose one as the next running 

thread, keep memory rank status; 

2) Else if there are some applications in the same group to 

the current running thread, choose one application as the 

next running application and choose one thread among the 

application as the next running thread, keep memory rank 
status; 

3) Else pick up another group as the running group, select an 

application among the group, and choose a thread among 

the application as the next running thread, activate the 

rank of next running group and set the rank of current 

running group low power. 

In the figure 4, rank with slash represents being active, and 

active rank is periodically switching according to running 

group is periodically switching. 

application 1 Thread Thread……

……

application m Thread Thread……

Group 1 Group ……

……

Thread Thread……

Thread Thread……

Group n

……Rank 1 Rank n ……Rank 1 Rank n……memory

 
Figure 4 process of threads scheduling and corresponding 

active rank 

3.4.2 implement the PARS 

In the Linux kernel, struct task_struct is used to represent 

each thread. Each thread in the kernel has a unique task_struct. 

Domain tgid in the task_struct is used to mark which 

application the thread is belonging to. All threads with the 

same tgid are in the same application according recently 

thread-process model. Domain thread_group in the task_struct 

links the threads with the same tgid. We also link different 

applications according one application threads after another in 

the same group through domain thread_group. Traveling the 

thread_group list can find all threads in the same group. 

Figure 5(a) shows the default CFS scheduling queue organized 

into an rb-tree. Where each thread is marked with two 

numbers, the first one indicates the thread group it belongs to, 
and the second one shows the thread id in the thread group. 

For example, thread12 represents a thread in group 1 with 

thread id is 2. Figure 5(b) demonstrates that through 

thread_group list, all threads in the same thread group are 

listed by the circular list on one core. All threads belonging 

thread group 1 are listed by the white circular list and all 

thread belonging thread group 2 are listed by the slash circular 

list. Figure 5(c) demonstrates that all threads in the same 

thread group are listed among two cores. By default, each core 

will have a unique scheduling queue. 

4 EVALUATION 

4.1 Simulation Environment 

We evaluate the proposed PARS with trace-driven 

simulation. The virtual memory address trace is obtained by 

Cachegrind, which is the cache simulation component of 

Valgrind [26] profiling tool. We use the cycle-accurate 

DRAM simulator, DRAMsim [27], to model the DRAM 

system. We annotate the memory traces with correct physical 

addresses and timestamps according to the page faults and 

thread scheduling policies. We also model page faults and 

their associated memory accesses, and reflect the delay caused 

by memory contention, thread scheduling, and page faults by 

adjusting the timestamps in traces. To evaluate DRAM 
temperature, we adopt HotSpot 3.0 [28], which calculates 

temperature by modeling physical properties. Table 1 shows 

the processor and memory configurations. From single-

threaded application of SPEC2000 benchmark and multi-

threaded application of sysbench benchmark, we both select 

some benchmarks. 

thread11

thread12 thread22

thread21 thread24 thread13 thread23

 
(a) Default CFS scheduling queue 
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(b) All threads in the same thread group are listed together on 

one core 
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thread12 thread22

thread21 thread24 thread13 thread23
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(c) All threads in the same thread group are listed together 

among cores 

Figure 5 threads are listed according thread group 

4.2 Experimental Results 

4.2.1 degree of aggregation 

In order to reflect the effect of page allocation in 

aggregating memory, we propose a parameter called degree of 

aggregation. Degree of aggregation is the average request on 

the same memory. We define the following formula: 

Degree of aggregation = total request / switch times 

Total request represents the total numbers of request 

memory, switch times represents times of switching between 



accessing two different ranks. For example, we sequentially 

list a rank numbers of accessing memory, 1, 1, 2, 3, 5, 3, 3, 4. 

Total request is 8, switch times is 5. The 5 times contains the 

second 1 to 2; 2 to 3; 3 to 5; 5to 3; third 3 to 4. Degree of 

aggregation is 8/5. The bigger degree of aggregation, the 

better effect of page allocation in aggregating memory.  

Table 1 processor and memory configurations 

Parameters Value 

Processor 4-core, 2GHz 

Memory 2 channels, 2 DIMMs/channel, 2 

ranks/DIMM 

Memory rank 8 banks/rank 

Table 2 shows the comparing default method, PPT with our 

PARS in degree of aggregation. PPT is the method proposed 

in [16]. From the table, we can see PARS is much better than 

other two methods. From the memory request list, we can 

obviously find PARS prolong more time accessing on one 

rank, and reduce much more switch times than other two 

methods. 

Table 2 compare the degree of aggregation 

 Default method PPT PARS 

Degree of aggregation 10.6 27.1 35.4 

Because our PASR only adjust non-real time threads’ 

scheduling, preserving real-time threads can seize other 

threads. The degree of aggregation will much bigger if 

ignoring the disturb of the real-time threads for our PASR. 

How to remove the disturb of the real-time threads is our 

future work.  

4.2.2 power reducing of the PARS 

PARS periodically activates one of the ranks according 

running group, but each time only one memory rank is active 

except apply a big continuous block which outspace one rank 
can supply. Also, our PARS prolongs much more time 

accessing one the same rank which reduces frequency of 

switching between ranks. Some kernel threads are real-time 

threads and always disturb the running according group, which 

leading to the frequence switch between ranks of kernel 

threads and others. This switching reduce performance, and 

even increase power. In order to improve performance, we set 

the rank of kernel threads active all the time, and periodically 

activate other ranks according running group. 

Figure 6 demonstrates the power consumption of PPT and 

our PARS comparing with default method. Our PARS can 

reduce more than 26% power comparing to default method, 

and also much better than PPT. 

4.2.3 performance of PARS 

In order to improve parallel, reduce the interference among 
threads because one bank may receive memory requests from 

different cores, which probably have different memory access 

characteristics, and lower the cost of switching between 

threads, our PARS optimizes in the following parts: 

1) partition threads of an application into the same group and 

priority schedule threads belonging to the same 

application. The cost of switching between the same 

application threads is much smaller for sharing the 

memory address space; 

2) allocate pages of different banks for threads in the same 

group. Memory request from different cores almost access 

different banks, so seldom interfer among threads from 

different cores and improve parallel. 

 
Figure 6 power consumption comparing 

Besides improving power efficiency, our PARS improves 

performance. Figure 7 illustrates performance comparing 

among three methods. Although improving power efficiency, 

PPT decreases performance comparing to the default. Our 

PARS optimizes both in power efficiency and performance.  

 
Figure 7 performance comparing 

Table 3 demonstrates average overhead of cache and TLB 

comparing between PPT and PARS. Obviously, our group 

partition according applications is effective, which reduces 

cache misses and TLB misses. 

Table 3 overhead comparing 

 PPT PARS 

L2 cache miss rate 0.094% 0.013% 

DTLB misses 26992646 26948934 

ITLB misses 17895 12312 

ITBL flushes 66 43 

Table 4 illustrates average row buffer miss rate comparing 

among different methods. Apparently, our page allocation 
according bank is also very effective, which intensely reduces 

row buffer miss rate.  

Table 4 row buffer miss rate comparing 

 Default method PPT PARS 

Row buffer 

miss rate 

58.2% 60.7% 31.3% 

4.2.4 fairness of PARS 

We use the definition of fairness proposed in [20]. Figure 8 

demonstrates the normalized average fairness among threads. 

The smaller of the value is, the better fairness is.  From the 
figure, we can easily find our PARS are more fairness than 

PPT, and similar to the default. 



 
Figure 8 fairness comparing 

4.2.5 thermal of PARS 

Table 5 illustrates the normalized average peak temperature. 

In the table, we can find PARS and PPT are better in peak 

temperature. Both PARS and PPT periodically activate one 

rank and turn down other ranks. After a rank turning down, its 

temperature will decrease. Periodically decrease temperature, 

not always keeping active can reduce peak temperature. Our 

PARS is better than PPT because of eliminating migration 
data from low power ranks. 

Table 5 Normalized average peak temperature 

 Default method PPT MAS 

Peak temperature 85.9 76.1 75.8 

5 CONCLUSION 

In this paper, we propose a periodically active rank 

scheduling (PARS) to optimize power efficiency for multi-

core DRAM in smart phones. Our scheduling features a three-

step design: group partition, page allocation, and periodically 

active rank scheduling. According to application, we partition 

threads from a same application into the same group and list 

them sequentially. According to rank and bank, we manage 

physical memory page and allocate page based on group and 

threads’ id, urgently aggregating memory of the same group 
and eliminating the interference among threads from different 

cores. According to group, we priority schedule threads in the 

same group, which prolongs access one same rank and 

keeping other ranks low power. Experimental results show our 

PARS can both optimize power efficiency and performance 

with negligible fairness losing, other parameters such as 

degree of aggregation and thermal are also well. 
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