
A Scheduling of Periodically Active Rank of DRAM

to Optimize Power Efficiency

Xi Li1, 2, Gangyong Jia1, 2, Chao Wang1, 2, Xuehai Zhou1, 2, Zongwei Zhu1, 2
1
 Department of Computer Science and Technology, University of Science and Technology of China (USTC)

Hefei, 230027, China
2
 Suzhou Institute for Advanced Study, USTC, Suzhou, China

{gangyong, saintwc, zzw1988}@mail.ustc.edu.cn; {llxx, xhzhou}@ustc.edu.cn

Abstract

Main memory is expected to grow significantly in both speed

and capacity for it is a major shared resource among cores in a

multi-core system, which will lead to increasing power

consumption. Therefore, it is critical to address the power

issue without seriously decreasing performance in the memory

subsystem. In this paper, we propose a periodically active rank

scheduling (PARS) to optimize power efficiency for multi-

core DRAM in smart phones. Our scheduling features a three-

step design. First, we partition all threads in the system into

groups. Second, modify page allocation policy to achieve

threads in the same group occupies the same rank but different

bank of DRAM. Finally, sequentially schedule threads in one

group after another while only active running group’s ranks to
retain other ranks low power status. As a result, our

scheduling periodically activates one rank after another to

optimize memory power efficiency. We implement PARS in

Linux 2.6.35 kernel running randomly generated workloads

containing single-threaded and multi-threaded benchmark.

Experimental results show that PARS can improve both the

memory power efficiency 26.8% and performance 4.2%

average reducing negligible fairness.

Keywords

Power efficiency; main memory; scheduling; page allocation;

group

1. INTRODUCTION

In recent years, chip multiprocessors (CMPs) [1] have
become increasingly important and common in the computer
industry [2] [3]. Similarly, mostly smart phones have adopted
multi-core system, dual-core is mainstream and quad-core is
high-end, even eight-core will be the next generation. To cope
with the substantial memory demand from these processors,
density and speed of memory DRAM subsystem have been
increased dramatically. However, such increasing in memory
size and speed has led to a significant increase in total energy
consumed by the memory. Recent studies show a growing
concern for energy problems in memory subsystem and that the
memory energy may even surpass energy consumption of the
CPU, which is traditionally known to be a primary source for
energy consumption in computer systems [4] [5].

Many memory management mechanisms have been
considered for servers, desktops, and portable computers [6] [7]
[8] [9] [10] [11]. Different memory technologies [12] [13] [14]
and hierarchies [15] have been investigated as well. The recent
exploration of alternative memory technologies is driven by the
development of phase change memory (PCM). PCM offers
random access capability and performance comparable to
DRAM, and non-volatility of flash memories. Subsequently,
those characteristics allow PCM to be efficiently included in
memory hierarchy or even replace DRAM to a certain extern.
These are mostly involved hardware, but we mainly focus on
operating system.

Also, some schedulers according memory occupied and
simultaneously combining with memory migration have
proposed to optimize memory power efficiency [16] [17].
These methods partition threads into groups according to their
occupying memory rank which is the basic unit to control
memory power status, one group threads occupying almost the
same memory ranks. Based on group, priority schedule threads
belonging to the same group sequentially, activating
corresponding ranks and shutting down other ranks. Although
these ways have advantages of power efficiency, they reduce
performance seriously because of frequently migrating data
from low power ranks. According to our experiment results,
execution time of all threads increase more than 30% average.

In order to tackle imbalance of power efficiency and
performance, in this paper, we propose a periodically active
rank scheduling. We coordinate page allocation policy with
operating system scheduler, which our page allocation policy
make threads’ occupied memory rank more aggregation and
regularly.

PARS feature a three-step design. First, according to the
relationship among threads, we partition all threads in the
system into groups. For example, threads belonging to the
same process are sharing a group. The number of thread groups
is equal to the number of the memory ranks. Thread group and
memory rank are one-to-one correspondence. Second,
according to the group number the thread belonging, allocate
page in corresponding memory rank but in different banks. All
occupied memory of threads in a group aggregates
corresponding memory rank almost without escaping. Finally,
priority schedule threads in the same group, after all threads in
the same group have run sometime, choosing another. When a
group is running, only its memory rank is active, after choosing
another, switching active memory rank. So, memory rank

mailto:llxx,%20xhzhou%7D@ustc.edu.cn

periodically active which can optimize power efficiency
without reducing much performance from migrating.

We evaluate PARS both in single-core and multi-core
situations with a large set of single-thread and multi-thread
workloads. Our base results demonstrate that we can improve
26.8% power efficiency and 4.2% performance average. We
also analyze other parameters, such as fairness, degree of
aggregation, response time and so on. And we are pleased all
these parameters are acceptable.

Specially, this paper makes the following major
contributions:

●We firstly coordinate page allocation policy with operating
system scheduler to optimize memory power efficiency.
Through our page allocation policy, aggregating threads’
occupying memory ranks according groups without migrating
data when running.

●We improve both power efficiency and performance for
multi-core, which disturbs conventional thinking of improved
power efficiency mostly based on performance reduced.

●We propose degree of aggregation parameter to indicate
the effect of page allocation policy to retain other memory
ranks stay low power as long as possible.

●We detailed analyze power efficiency, performance,
fairness, thermal, average response time and degree of
aggregation parameters of PARS.

2. BACKGROUND AND RELATED WORK

2.1 DRAM System

We briefly describe DRAM memory systems and OS

memory management mechanism.

DRAM Organization: modern memory system is usually

packaged as DIMMs, each of which usually contains 1 or 2

ranks and 8 banks. A memory system can contain multiple

channels, and each channel is associated with 1 or 2 DIMMs.

A rank is the smallest physical unit for power management.

Banks can be accessed parallel, hence, memory requests to

different banks can be served concurrently [18]. Memory

device can be in four states – active standby, precharge

standby, active power-down and precharge power-down –

listed in a decreasing order of power dissipation [16].

OS Memory Management: Nowadays, Linux kernel’s
memory management system uses a buddy system to manage

physical memory pages. In the buddy system, the continuous

2
order

 pages (called a block) are organized in the free list with

the corresponding order, which ranges from 0 to a specific

upper limit. When a program accesses an unmapped virtual

address, a page fault occurs and OS kernel takes over the

following execution wherein the buddy system identifies the

right order free list and allocates on block (2
order

 physical

pages) for that program. Usually the first block of a free list is

selected but the corresponding physical pages are

undetermined [19].

2.2 Related work

There are a number of related studies.

Thread Scheduling. Scheduling algorithms PPT proposed

in [16] aimed to active partial memory ranks according
running threads to optimize memory power efficiency. This

method can improve memory power efficiency, but seriously

reduce performance because of migrating data from low

power memory ranks. Our previous studies [20] [21] have

proposed group scheduling to improve power efficiency and

performance as well.

Row Buffer Optimization. In [22], frequently accessed

data of different rows are dynamically migrated into row

buffer, which can improve the row buffer usage and

performance; power consumption is also lowered by reducing

the operations of percharge and active.
Thread-based Memory Scheduling. Memory controllers

are designed to distinguish the memory access behavior at

thread-level [23] [24], so that scheduling modules can adjust

their scheduling policy at the running time. TCM [23], which

dynamically groups threads into two clusters (memory

intensive and non-intensive), and assign different scheduling

policy to different group, is the best scheduling policy, which

aim to address fairness and throughput at the same time.

Bank Level Partition. BPM [25], which partitions banks

according threads to assign different group of banks to

different threads to eliminate the interference between threads

and improve the overall system performance.

PARS. To the best of our knowledge, this is the first work

that improve both power efficiency and performance through

coordinating operating system scheduling with page allocation

of optimizing both rank-level aggregation and bank-level

parallel.

3. PERIODICALLY ACTIVE RANK

SCHEDULING (PARS)

3.1 Overview of PARS

Our PARS combines page allocation with the operating

system scheduling to improve both power efficiency and

system performance, which is designed into three following

steps.

3.2 Group Partition

In section 2.1, we have introduced memory rank is the

smallest physical unit for power management. We can

aggregate current running threads’ memory into a memory

rank, low power other ranks to reduce memory power. The

threads of aggregated into the same memory rank are formed a

group. Based on the number of ranks, we partition all threads
into the same number groups. Generally, a DRAM has 4 or 8

ranks, so we have 4 or 8 groups.

With multi-core processor for mobile phones being more

and more popular, more and more emerging applications are

believed to be highly parallel [21]. One application creates

more and more threads to parallel finish job. All threads

belonging to an application are sharing memory, which we can

take advantage to reduce frequency replacing TLB and cache

when switching threads. We partition all threads of an

application into the same group. And all threads of an

application are listed sequentially. Specially, all kernel threads

are partitioned into a unique group. Mostly, there are more

applications than ranks, so applications are partitioned into

different groups. In this paper, we partition applications

according to load balance. All threads in the same group are

listed according applications. The details of group partition are

shown in Algorithm 1. Each time creating a new thread we all

apply this algorithm.

Algorithm 1: group partition

After creating a new thread T, T ϵ A, A is an

application, G is the group of all kernel threads

begin
1: whether the application A is already existing in system

2: if T is kernel thread then

3: insert T into the back of group G;

4: return;

5: else if A is already existing then

6: find group G1, A ϵ G1;

7: insert T into the back of A;

8: return;

9: else A is a new one then

10: find the group of lightest load, G2;

11: insert A into the back of group G2;

12: insert T into the back of A;
13: A is partitioned into group G2;

14: return;

End

In our system, all threads of the same application are listed

sequentially, all applications in the same group are listed

sequentially. Figure 1 demonstrates the list of one group.

Application 1 Thread Thread Thread……

Application 2 Thread Thread Thread……

Application n Thread Thread Thread……

……

Figure 1 example of one group list

3.3 Page Allocation

Usually, buddy system allocates the first block of a free list

to the request thread, so a thread’s occupying memory spans

all ranks of the memory. And each rank contains multiple

physically independent banks which can serve memory

requests concurrently and independently, generally, one rank

contains 4 or 8 banks. In order to aggregate each thread’s

memory into single rank and improve request parallelism, we

adjust buddy system to manage physical memory pages
adding memory rank and bank information.

Figure 2 demonstrates the organization of physical memory

pages management of buddy system. The process has briefly

analyzed in section 2.1. Figure 3 shows the organization of our

physical pages management which adds the rank and bank

information. Specially, for the DRAM architecture, there may

be no 512 or smaller consequent blocks in our organization.

But this is not a big deal for most requests are single page.

Each rank/bank organizes its own physical pages.

When a thread accesses an unmapped virtual address, a

page fault occurs and OS kernel takes over the following

execution which algorithm 2 demonstrates. And each rank has

B banks.

…
…

0

9

1

8

1 page 1 page …… 1 page

2 pages 2 pages …… 2 pages

256 pages 256 pages …… 256 pages

512 pages 512 pages …… 512 pages

…
…

…
…

…
…

…
…

Figure 2 physical pages management of buddy system

…
…

rank 0

rank n

…
…

0

9

1 page 1 page …… 1 page

512 pages 512 pages …… 512 pages

…
…

…
…

…
…

…
…

…
…

0

9

1 page 1 page …… 1 page

512 pages 512 pages …… 512 pages

…
…

…
…

…
…

…
…

…
…

0

9

1 page 1 page …… 1 page

512 pages 512 pages …… 512 pages

…
…

…
…

…
…

…
…

…
…

…
…

bank 0

bank m

bank 1

…
…

bank 0

bank m

bank 1

…
…

…
…

Figure 3 physical pages management of our system

Algorithm 2: page allocation

Thread T accesses an unmapped virtual address, OS

kernel allocates pages

begin
1: find the group G which T ϵ G;

2: according to the id of G, find corresponding rank, R;

3: calculate Bi = Tid % B, Tid is the thread id of T;

4: identify the right order free list of Bi in R;

5: allocate on block for T;

6: return;

End
The difference between our page allocation with buddy

system is we add the process of finding group, corresponding

memory rank and bank. The cost of the added operation is

negligible after optimizing.

With our page allocation policy, one group threads’

occupying memory almost aggregates one rank, threads in the

same group occupies different banks, which both improve

aggregation and parallelism.

3.4 Scheduling and Rank Management Policy

3.4.1 design the PARS

All threads in the system are partitioned into groups, each

group occupies only one rank. When a group threads running,
only corresponding rank needs to be active, others can be low

power. So we coordinate group scheduling [21] with memory

rank status management to optimize memory power efficiency.

Figure 4 demonstrates the periodically scheduling threads

according group and active memory rank. All threads of an

application are listed sequentially, and applications of the

same group are listed sequentially. Our PARS has following

periodically phases to choose the next running thread and

manage memory rank status:

1) If there are some threads in the same application to

current running thread, choose one as the next running

thread, keep memory rank status;

2) Else if there are some applications in the same group to

the current running thread, choose one application as the

next running application and choose one thread among the

application as the next running thread, keep memory rank
status;

3) Else pick up another group as the running group, select an

application among the group, and choose a thread among

the application as the next running thread, activate the

rank of next running group and set the rank of current

running group low power.

In the figure 4, rank with slash represents being active, and

active rank is periodically switching according to running

group is periodically switching.

application 1 Thread Thread……

……

application m Thread Thread……

Group 1 Group ……

……

Thread Thread……

Thread Thread……

Group n

……Rank 1 Rank n ……Rank 1 Rank n……memory

Figure 4 process of threads scheduling and corresponding

active rank

3.4.2 implement the PARS

In the Linux kernel, struct task_struct is used to represent

each thread. Each thread in the kernel has a unique task_struct.

Domain tgid in the task_struct is used to mark which

application the thread is belonging to. All threads with the

same tgid are in the same application according recently

thread-process model. Domain thread_group in the task_struct

links the threads with the same tgid. We also link different

applications according one application threads after another in

the same group through domain thread_group. Traveling the

thread_group list can find all threads in the same group.

Figure 5(a) shows the default CFS scheduling queue organized

into an rb-tree. Where each thread is marked with two

numbers, the first one indicates the thread group it belongs to,
and the second one shows the thread id in the thread group.

For example, thread12 represents a thread in group 1 with

thread id is 2. Figure 5(b) demonstrates that through

thread_group list, all threads in the same thread group are

listed by the circular list on one core. All threads belonging

thread group 1 are listed by the white circular list and all

thread belonging thread group 2 are listed by the slash circular

list. Figure 5(c) demonstrates that all threads in the same

thread group are listed among two cores. By default, each core

will have a unique scheduling queue.

4 EVALUATION

4.1 Simulation Environment

We evaluate the proposed PARS with trace-driven

simulation. The virtual memory address trace is obtained by

Cachegrind, which is the cache simulation component of

Valgrind [26] profiling tool. We use the cycle-accurate

DRAM simulator, DRAMsim [27], to model the DRAM

system. We annotate the memory traces with correct physical

addresses and timestamps according to the page faults and

thread scheduling policies. We also model page faults and

their associated memory accesses, and reflect the delay caused

by memory contention, thread scheduling, and page faults by

adjusting the timestamps in traces. To evaluate DRAM
temperature, we adopt HotSpot 3.0 [28], which calculates

temperature by modeling physical properties. Table 1 shows

the processor and memory configurations. From single-

threaded application of SPEC2000 benchmark and multi-

threaded application of sysbench benchmark, we both select

some benchmarks.

thread11

thread12 thread22

thread21 thread24 thread13 thread23

(a) Default CFS scheduling queue

thread11

thread12 thread22

thread21 thread24 thread13 thread23

(b) All threads in the same thread group are listed together on

one core

thread11

thread12 thread22

thread21 thread24 thread13 thread23

thread27

thread15 thread14

thread17 thread25 thread26 thread16

(c) All threads in the same thread group are listed together

among cores

Figure 5 threads are listed according thread group

4.2 Experimental Results

4.2.1 degree of aggregation

In order to reflect the effect of page allocation in

aggregating memory, we propose a parameter called degree of

aggregation. Degree of aggregation is the average request on

the same memory. We define the following formula:

Degree of aggregation = total request / switch times

Total request represents the total numbers of request

memory, switch times represents times of switching between

accessing two different ranks. For example, we sequentially

list a rank numbers of accessing memory, 1, 1, 2, 3, 5, 3, 3, 4.

Total request is 8, switch times is 5. The 5 times contains the

second 1 to 2; 2 to 3; 3 to 5; 5to 3; third 3 to 4. Degree of

aggregation is 8/5. The bigger degree of aggregation, the

better effect of page allocation in aggregating memory.

Table 1 processor and memory configurations

Parameters Value

Processor 4-core, 2GHz

Memory 2 channels, 2 DIMMs/channel, 2

ranks/DIMM

Memory rank 8 banks/rank

Table 2 shows the comparing default method, PPT with our

PARS in degree of aggregation. PPT is the method proposed

in [16]. From the table, we can see PARS is much better than

other two methods. From the memory request list, we can

obviously find PARS prolong more time accessing on one

rank, and reduce much more switch times than other two

methods.

Table 2 compare the degree of aggregation

 Default method PPT PARS

Degree of aggregation 10.6 27.1 35.4

Because our PASR only adjust non-real time threads’

scheduling, preserving real-time threads can seize other

threads. The degree of aggregation will much bigger if

ignoring the disturb of the real-time threads for our PASR.

How to remove the disturb of the real-time threads is our

future work.

4.2.2 power reducing of the PARS

PARS periodically activates one of the ranks according

running group, but each time only one memory rank is active

except apply a big continuous block which outspace one rank
can supply. Also, our PARS prolongs much more time

accessing one the same rank which reduces frequency of

switching between ranks. Some kernel threads are real-time

threads and always disturb the running according group, which

leading to the frequence switch between ranks of kernel

threads and others. This switching reduce performance, and

even increase power. In order to improve performance, we set

the rank of kernel threads active all the time, and periodically

activate other ranks according running group.

Figure 6 demonstrates the power consumption of PPT and

our PARS comparing with default method. Our PARS can

reduce more than 26% power comparing to default method,

and also much better than PPT.

4.2.3 performance of PARS

In order to improve parallel, reduce the interference among
threads because one bank may receive memory requests from

different cores, which probably have different memory access

characteristics, and lower the cost of switching between

threads, our PARS optimizes in the following parts:

1) partition threads of an application into the same group and

priority schedule threads belonging to the same

application. The cost of switching between the same

application threads is much smaller for sharing the

memory address space;

2) allocate pages of different banks for threads in the same

group. Memory request from different cores almost access

different banks, so seldom interfer among threads from

different cores and improve parallel.

Figure 6 power consumption comparing

Besides improving power efficiency, our PARS improves

performance. Figure 7 illustrates performance comparing

among three methods. Although improving power efficiency,

PPT decreases performance comparing to the default. Our

PARS optimizes both in power efficiency and performance.

Figure 7 performance comparing

Table 3 demonstrates average overhead of cache and TLB

comparing between PPT and PARS. Obviously, our group

partition according applications is effective, which reduces

cache misses and TLB misses.

Table 3 overhead comparing

 PPT PARS

L2 cache miss rate 0.094% 0.013%

DTLB misses 26992646 26948934

ITLB misses 17895 12312

ITBL flushes 66 43

Table 4 illustrates average row buffer miss rate comparing

among different methods. Apparently, our page allocation
according bank is also very effective, which intensely reduces

row buffer miss rate.

Table 4 row buffer miss rate comparing

 Default method PPT PARS

Row buffer

miss rate

58.2% 60.7% 31.3%

4.2.4 fairness of PARS

We use the definition of fairness proposed in [20]. Figure 8

demonstrates the normalized average fairness among threads.

The smaller of the value is, the better fairness is. From the
figure, we can easily find our PARS are more fairness than

PPT, and similar to the default.

Figure 8 fairness comparing

4.2.5 thermal of PARS

Table 5 illustrates the normalized average peak temperature.

In the table, we can find PARS and PPT are better in peak

temperature. Both PARS and PPT periodically activate one

rank and turn down other ranks. After a rank turning down, its

temperature will decrease. Periodically decrease temperature,

not always keeping active can reduce peak temperature. Our

PARS is better than PPT because of eliminating migration
data from low power ranks.

Table 5 Normalized average peak temperature

 Default method PPT MAS

Peak temperature 85.9 76.1 75.8

5 CONCLUSION

In this paper, we propose a periodically active rank

scheduling (PARS) to optimize power efficiency for multi-

core DRAM in smart phones. Our scheduling features a three-

step design: group partition, page allocation, and periodically

active rank scheduling. According to application, we partition

threads from a same application into the same group and list

them sequentially. According to rank and bank, we manage

physical memory page and allocate page based on group and

threads’ id, urgently aggregating memory of the same group
and eliminating the interference among threads from different

cores. According to group, we priority schedule threads in the

same group, which prolongs access one same rank and

keeping other ranks low power. Experimental results show our

PARS can both optimize power efficiency and performance

with negligible fairness losing, other parameters such as

degree of aggregation and thermal are also well.

6 ACKNOWLEDGMENT

This work is supported by the National Science Foundation
of China under grants (No. 61272131, No. 61202053), Jiangsu

provincial Natural Science Foundation (No. SBK201240198),

Jiangsu production-teaching-research joint innovation project

(No.BY2009128). We also gratefully acknowledge the support

of our industrial sponsor, SAMSUNG (CHINA) R&D

CENTER.

7 REFERENCES

[1] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang.

The case for a single-chip multiprocessor. ACM SIGOPS Operating
Systems Review, 30, 1996.

[2] S. Y. Borkar. Platform 2015: Intel processor and platform evolution for
the next decode. Intel White Paper, 2005.

[3] Intel Corporation. Intel’s tera-scale research prepares for tens, hundreds
of cores, 2006.

[4] L. Barroso and U. Holzle. The case for energy-proportional computing.
Computer, 40(12): 33-37, 2007.

[5] G. Dhiman, R. Ayoub, and T. Rosing. Pdram: a hybrid pram and dram
main memory system. DAC, pages 464-669, 2009.

[6] H. Huang, P. Pillai, and K. G. Shin. Design and implementation of
power-aware virtual memory. In ATC, 2003.

[7] M. Lee, E. Seo, J. Lee, and J.-s. Kim. Pabc: Power-aware buffer cache

management for low power consumption. IEEE Transactions on
Computer, 2007.

[8] V. Pandey, W. Jiang, Y. Zhou, and R. Bianchini. Dma-aware memory
energy management. In HPCA, 2006.

[9] H. Huang, K. G. Shin, C. Lefurgy, and T. Keller. Improving energy
efficiency by making dram less randomly accessed. In ISLPED, 2005.

[10] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T. W.
Keller. Energy management for commercial servers. Computer, 2003.

[11] X. Li, Z. Li, Y. Zhou, and S. Adve. Performance directed energy
management for main memory and disks. Transactions on Storage, 2005.

[12] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting phase change
memory as a scalable dram alternative. In ISCA, 2009.

[13] W. Zhang and T. Li. Exploring phase change memory and 3d die-

stacking for power/thermal friendly, fast and durable memory
architecture. In PACT, 2009.

[14] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable and energy efficient
main memory using phase change memory technology. In ISCA, 2009.

[15] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable high

performance main memory system using phase-change memory
technology. In ISCA, 2009.

[16] C. –H. Lin, C. –L. Yang, and K. –J. King. PPT: Joint

performance/power/thermal management of dram memory for multi-
core systems. ISLPED, pages 93-98, 2009.

[17] R. Ayoub, K. R. Indukuri, T. S. Rosing. Energy Efficient Proactive
Thermal Management in Memory Subsystem. ISLPED, 2010.

[18] O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling:

Enhancing both performance and fairness of shared DRAM system. In
ISCA-35, 2008.

[19] S. Cho, and L. Jin. Managing Distributed, shared L2 Caches through
OS-Level page Allocation. In MICRO-39, 2006.

[20] G. Jia, X. Li, C. Wang, X. Zhou, Z. Zhu. Memory Affinity: Balancing

Performance, Power, Thermal and Fairness for Multi-core Systems.
IEEE Conference on Cluster Computing, 2012.

[21] X. Li, G. Jia, Y. Chen, Z. Zhu, X. Zhou. Share Memory Aware

Scheduler: Balancing Performance and Fairness. ACM/IEEE the 22th
Great Lake Symposium on VLSI (GLSVLSI), 2012.

[22] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Balasubramonian,

and A. Davis. Micro-Pages: Increasing DRAM Efficiency with Locality-
Aware. In ASPLOS, 2010.

[23] Y. Kim, M. Papamicheal and O. Mutlu. Thread Cluster Memory

Scheduling: Exploiting Differences in Memory Access Behavior. In
MICRO-43, 2010.

[24] Y. Kim et al. ATLAS: A scalable and high-performance scheduling
algorithm for multiple memory controllers. In HPCA-16, 2010.

[25] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, C. Wu. A Software Memory

Partition Approach for Eliminating Bank-level Interference in Multicore
Systems. In PACT, 2012.

[26] C. Armour-Brown, K. Fitzhardinge, T. Hughes, N. Nethercote, P.

Mackerras, D. Mueller, J. Seward, R. Walsh, and J. Weidendorfer.
Valgrind. http://valgrind.org/, 2000-2007.

[27] D. Wang, B. Ganesh, and B. Jacob. The university of Maryland
memory-system simulator. http://www.ece.umd.edu/dramsim/, 2006.

[28] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,

and D. Tarjan. Temperature-aware microarchitecture. Proceedings of the

30th International Symposium on Computer Architecture, pages 2-13,
2003.

http://valgrind.org/
http://www.ece.umd.edu/dramsim/

