
An off-line multiprocessor real-time scheduling
algorithm to reduce static energy consumption

Vincent Legout, Mathieu Jan
CEA, LIST

Embedded Real Time Systems Laboratory
F-91191 Gif-sur-Yvette, France
{vincent.legout,mathieu.jan}@cea.fr

Laurent Pautet
Institut Telecom

TELECOM ParisTech
LTCI - UMR 5141 Paris, France

laurent.pautet@telecom-paristech.fr

Abstract—Energy consumption of highly reliable real-time
embedded systems is a significant concern. Static energy con-
sumption tends to become more important than dynamic energy
consumption. Therefore, this paper aims to propose a new off-
line scheduling algorithm to put as much as possible processors
in low-power states instead of idling. In these states, energy
consumption is reduced, enhancing the battery life-time of
mission critical systems. However, no instruction can be executed
and a transition delay is required to come back to the active state.
Activating deeper low-power states requires producing larger idle
periods. As the processor usage is constant for a given task set,
this objective implies reducing the number of idle periods. Our
proposal is to modelize the processors idle time as an additional
task. Then we formalize the problem as a linear equation system
with the objective of reducing the number of preemptions (or
executions) of this additional task. Simulations show that our
algorithm is more energy efficient than existing algorithms.

I. INTRODUCTION

Embedded systems tend to have a limited power supply
usually provided by batteries. Therefore minimizing the power
consumption is an important concern to increase the autonomy
of the embedded electronics. For example, power consumption
is a major concern in the design of Unmanned Aerial Vehicles,
which must also perform real-time processing. Fulfilling both
constraints in a reliable way is still challenging. In such real-
time systems, many devices can consume power. This work
concentrates on the consumption of processors.

The energy consumption can be divided into two categories:
dynamic consumption and static consumption, the former
being caused by the activity of the processor while the later
(mainly due to leakage current) cannot change when the
processor is active, no matter the activity. Note that thermal
considerations on energy consumption are out of the scope
of this work. Solutions to save energy exist at both hardware
and software level. DPM (Dynamic Power Management) and
DVFS (Dynamic Voltage and Frequency Scaling) are the two
main software solutions. DPM aims to reduce static con-
sumption by putting system components in low-power states
where energy consumption is reduced but no instruction can be
executed. A transition delay is required to get the system back
to the active state. DVFS deals with dynamic consumption and
tries to execute tasks at lower frequencies (and therefore lower
supply voltage).

Dynamic consumption used to be more important than static
consumption. Therefore, most of the research works were
dedicated to design approaches based on DVFS. Existing
algorithms rarely try to reduce static consumption. They
mainly use DPM only when DVFS is no longer efficient
(e.g. [10], [6]). However, static consumption becomes more
important than dynamic consumption, one reason being the
higher density of chips or the smaller supply voltage [11]. We
compared the DPM solution introduced in this paper and a
DVFS solution using a specific processor. The results showed
that DPM can already be more efficient than DVFS, especially
when the number of available frequencies is limited. The
efficient use of DPM is therefore becoming an important issue,
especially in real-time embedded systems. However, only few
publications address the management of static consumption
on multiprocessor systems and the existing solutions are not
efficient enough, producing shorter idle periods than possible.

This paper explores the problem of maximizing the use
of low-power states on symmetric multiprocessor embedded
real-time systems in order to save energy when scheduling
tasks. On hard real-time systems, deadlines must be respected,
thus low-power states should be used with care in order for
processors to be ready when the system needs them. Transition
delays required to come back from a low-power state to the
running state must be taken into account.

The contribution of this paper is to propose an off-line
scheduling algorithm that reduces static consumption. While
guaranteeing the schedulability of the task set, the objective of
the algorithm is to increase the duration of the idle periods by
merging them when possible. The processor usage being con-
stant for a given task set, the time processors are expected to be
idle remains identical whatever the scheduler used. Therefore
the objective can also be expressed as the minimization of the
number of idle periods. Contrary to current algorithms, it does
not use priority assignment to schedule tasks. It formalizes the
problem using linear programming such that the constraint
(satisfying deadlines) and the objective (generating larger idle
periods) of the scheduling algorithm can be met.

The remainder of this paper is as follows. Section II
describes the main solutions found in the literature, then
section III defines the processor and task models used in
this paper while section IV details our algorithm. Section V

presents the experimental results and section VI concludes.

II. RELATED WORK

One of the first approaches to use DPM on hard real-time
systems was proposed by Lee et al. [12] for tasks with dynamic
or static priority on a uniprocessor system. Their goal was
to extend the duration of the idle periods of the processor.
When the processor is idle, it delays task executions even
when tasks are ready and start executing tasks just in time
to prevent a deadline miss. Jejurikar et al. [10] and Chen
and Kuo [8] improved the solution by increasing the duration
of the procrastination period (i.e. the time spent delaying a
task execution). Zhu et al. [19] proposed another improvement
when tasks do not use all their worst case execution time.

However, these last three solutions all use DPM on top on
DVFS. Indeed, their main common objective is to decrease the
dynamic consumption which is modelized as a function of the
running frequency such as Pdyn ≈ fα (with α between 2 and
3) ([7]). Thus Pdyn being a convex and increasing function of
the processor frequency, there is a critical frequency fcrit such
that running at a frequency lower than fcrit is not efficient
compared to DPM. Therefore many algorithms using both
DPM and DVFS, like [10] or [8], only use DPM when DVFS
schedules tasks at f < fcrit.

On multiprocessor systems, when energy consumption is
not a concern, no optimal scheduling algorithm exists for par-
titioned scheduling (i.e. where tasks are bounded to a specific
processor) and only few exist for global scheduling (i.e. where
migration is allowed). These optimal global algorithms are
mainly based on fair scheduling like PFair [3]. However, par-
titioned scheduling is more widespread than global scheduling
because it is equivalent to uniprocessor scheduling when tasks
have been assigned to processors.

Energy-aware scheduling algorithms mainly use partitioned
scheduling. For periodic task systems, Chen et al. [6] first par-
tition tasks and then use power-aware uniprocessor scheduling
algorithms to decrease both static and dynamic consumptions.
Seo et al. [17] and Haung et al. [9] also use partitioned
scheduling. Their algorithms first partition tasks off-line, then
allow task migration on-line. Indeed, tasks can finish earlier
than expected and the idea is to migrate them to create larger
idle periods. However, these algorithms are on-line and they do
not have a global overview of the duration of all idle periods
on one hyper-period.

Bhatti et al. [4] used global scheduling with DPM. The
goal of their algorithm, AsDPM, is to use as few processors
as possible, letting the others asleep. When one task or more
are ready to be scheduled, AsDPM always keeps one pro-
cessor busy and activates the other ones only when required.
However, the algorithm is not optimal and can activate more
processors than needed because it cannot anticipate all future
job executions.

All these algorithms use DVFS or DPM and base their
scheduling decisions on task priority assignment. It activates
the higher priority task as soon as it becomes ready. This
approach can be suitable for DVFS but it prevents the creation

of large idle periods and thus an effective use of DPM. Among
the other approaches that do not use priority assignment, one
was proposed by Lemerre et al. [13]. They use linear program-
ming to compute off-line a valid schedule. The advantage of
this approach is to be able to add scheduling objectives in the
linear equation system. For example Megel et al. [14] used it
with the objective of decreasing the number of preemptions
for optimal multiprocessor global scheduling.

III. MODEL

This section introduces the notations used in the remainder
of this paper.

A. Processors

The system has m identical processors. Global scheduling
is adopted, i.e. tasks and jobs can migrate from one processor
to another. As existing works ([2]), we do not modelize the
consumption of preemptions and migrations. However, the
number of preemptions is evaluated in section V to make
sure that it does not lessen the performance of our solution
compared to existing algorithms.

To use DPM, we assume processors have at least one low-
power state. In a low-power state, a processor cannot execute
any instruction and its energy consumption is reduced. When
the system decides to wake up a processor, the processor takes
a certain amount of time to come back to the nominal state
and it cannot execute any instruction while waking up. We
assume that the consumption used while waking up is equal
to the consumption in the nominal state.

When the system has to choose a low-power state, it must
be aware of the duration of the idle interval which must be
greater than the transition delay required to wake up. In the
literature the minimal length of an idle period to use a low-
power is called the Break-Even Time (BET).

B. Tasks

We consider a set Γ of n independent, preemptible and
periodic tasks. Each task τ releases jobs periodically every
period T and has a Worst Case Execution Time C (WCET).
Tasks have implicit deadlines, i.e. deadlines are equal to
periods. The task set hyper-period is named H and is the least
common multiple of all periods of tasks in Γ. Task utilization
u is the ratio C

T and the task set global utilization is the sum
of all utilizations: U =

∑n−1
i=0 ui. The job set JΓ contains all

jobs of Γ scheduled during the hyper-period H .
The situation where global utilization is equal to the number

of processors is trivial, all processors are always active. More
generally, a task set with U ∈ N is schedulable such as
U processors are always active while the others are always
sleeping, therefore generating no transition delay. Thus we
assume global utilization U is such as:

m− 1 < U < m (1)

And if m − x − 1 < U < m − x, set m = m − x and let
the x last processors always asleep (x ∈ N∗, x < m).

Fig. 1. An example of 2 tasks with periods of 4 and 12 respectively

t
τ1 w1,1 ∗ |I1|

I1 I2 I3

t
τ2

0 12

w2,2 ∗ |I2| w3,3 ∗ |I3|

4 8

w4,1 ∗ |I1| w4,2 ∗ |I2| w4,3 ∗ |I3|

H

We adopt the representation from [13] and [14] where the
hyper-period is divided in intervals, an interval being delimited
by two task releases. I is the set of intervals and |Ik| is the
duration of the kth interval. A job can be present on several
intervals, and we note wj,k the weight of job j on interval k.
The weight of a job on an interval is defined as the fraction
of processor required to execute job j on interval k. Jk is the
subset of JΓ that contains all active jobs in interval k. Ej is
the set of intervals on which job j can run. It must contain
at least one interval. The example task set in figure 1 has two
tasks and four jobs (jobs 1 to 3 from τ1 and job 4 from τ2).
In this example, E4 is {1, 2, 3} and J1 is {1, 4}.

Verifying the schedulability of the task set can be expressed
as a linear problem from which the weights of all jobs on every
interval can be obtained using a linear solver. For the task set
to be schedulable, the following equations must hold [13]:

∀k,
∑
j∈Jk

wj,k ≤ m (2)

∀k, ∀j, 0 ≤ wj,k ≤ 1 (3)

∀j,
∑
k∈Ej

wj,k × |Ik| = j.c (4)

Where j.c is the worst case execution time of job j.
The first inequality means that the utilization on an interval
cannot exceed the number of processors. The second inequality
forbids the duration of a job on an interval to be negative or
to exceed the length of the interval. And the third equation
guarantees that all jobs are completely executed.

Solving the linear program given by equations (2), (3)
and (4) gives the weight of all jobs on every interval thus
a complete and valid schedule. This schedule however does
not optimize the energy consumption. Our goal is to add
constraints and objectives to generate large idle periods to put
the processor in low-power states. This is the contribution of
this work in the next section.

IV. ALGORITHM

This section introduces the detailed algorithm used to obtain
the weights of jobs in a hyper-period such that it generates
large idle periods. The name of the algorithm is LPDPM, as
in Linear Programming DPM.

Fig. 2. Global-EDF schedule

A. Motivation

We assume that tasks always use their worst case execution
time. Thus, regardless of the scheduler used, the processors
utilization is constant over a hyper-period. Thus to evaluate the
DPM power efficiency of a scheduling algorithm, the number
of idle periods generated can be used, the less the better as:
1) the number of wake up transitions from a low-power state
(and therefore of the associated penalties) is reduced and 2) the
duration of idle periods increases allowing the use of deeper
low-power states. Depending on the length of the idle period,
the most efficient low-power state fulfilling the transition delay
can be selected.

Figure 2 pictures the schedule on a two processors system
of a task set composed of three tasks (with WCET and period
of (3,8), (6, 10) and (4,16)) with Global-EDF. This example
demonstrates that classical schedulers like Global-EDF are
not suitable for DPM. They generate more idle periods than
necessary.

B. Approach

During a hyper-period, one or more idle periods are gener-
ated and one or more processors switch to a low-power state.
The objective is to have as few idle periods as possible. To
address this problem, we choose to modelize the idle time with
an additional task τ ′. τ ′ is a periodic task with a period equals
to H and a utilization equals to m−U . τ ′ thus only has one
job in a hyper-period. Note that this operation is feasible only
because m− 1 < U < m as the utilization of τ ′ must be less
than 1. The new task set has a global utilization of m and is
therefore schedulable.

Getting as few idle periods as possible is now equivalent
to decreasing the number of preemptions of τ ′ inside the
hyper-period. This objective should now be added to the linear
equation system.

However, it should be noted that τ ′ does not represent
the actual idle time when tasks are executed. Indeed, tasks
usually do not use all their worst case execution time. Thus,
at run-time, processors can be idle while not executing τ ′ and
multiple processors can be idle simultaneously. Modelizing the
expected idle time with τ ′ is just a way to help generating
a schedule with guaranteed idle periods in the worst case
scenario.

C. Objectives

As stated in the last section, the hyper-period is divided into
multiple intervals. An interval in which the weight of τ ′ is 1
is called an idle interval. And an interval in which the weight
of τ ′ is 0 is called a busy interval.

In order to generate as few preemptions as possible, an
interval should be either an idle or a busy interval and similar
intervals (busy or idle) should be consecutive. Say differently,
the weight of τ ′ on every interval should be either 1 or 0, and
similar intervals where the weight of τ ′ is identical should
be consecutive. Intervals where the weight of τ ′ is strictly
between 0 and 1 are the less attractive because they include
a preemption. To simplify, the weight of τ ′ on interval k is
written wk. The objectives can be summarized as:

• wk should be either 1 or 0
• Intervals where wk = 1 should be consecutive
• Intervals where wk = 0 should be consecutive

However, it may be unavoidable to generate non-busy/idle
intervals, that is where the weight of τ ′ would be neither 1
nor 0.

D. Formalization

Objectives should now be written as linear equations in
order to use them in our linear equation system. As defined
in the last paragraph, the first objective is to obtain as many
intervals as possible where the weight of τ ′ is one, that is
idle intervals. In terms of linear programming, expressing this
constraint requires adding a new variable to express the non-
available floor function. Let fk be a binary variable such that:

fk =

{
0 if wk = 1

1 otherwise
(5)

This equation can be linearized as:

wk + fk ≥ 1 (6)

Such that minimizing fk forces wk to be equal to 1. The
objective is therefore to minimize the sum of all fk in order to
obtain a maximum number of idle intervals, that is for which
wk = 1.

The second objective is to obtain periods where wk is zero,
that is busy intervals. Like fk, let ek be a binary variable such
that:

wk − ek ≤ 0 (7)

And having for objective to minimize the sum of all ek will
increase the number of busy intervals.

The next goal is to make idle or busy intervals consecutive.
Let fck and eck be two binary variables such that:

fck =

{
1 if fk = 1 and fk+1 = 0

0 otherwise
(8)

eck =

{
1 if ek = 1 and ek+1 = 0

0 otherwise
(9)

Those two equations can be modelized as:

Fig. 3. LPDPM schedule


fk − fk+1 − fck ≤ 0

−fk + fck ≤ 0

fk+1 + fck ≤ 1

−fck ≤ 0

(10)


ek − ek+1 − eck ≤ 0

−ek + eck ≤ 0

ek+1 + eck ≤ 1

−eck ≤ 0

(11)

Minimizing the sum of all fck and the sum of all eck is then
going to make idle or busy intervals consecutives. Therefore,
the final objective is (subject to equation (2), (3), (4), (6), (7),
(10) and (11)):

Minimize
∑
k

fk + ek + fck + eck (12)

E. Scheduling inside an interval

Resolving the linear system gives a weight for each task
on every interval such that the number of idle periods is
minimized. It outputs a solution that satisfies the linear system
which however may not be the optimal solution. To schedule
tasks inside intervals, EDZL [18] or IZL [14] can be used.

Unfortunately, as explained previously, the solver can gen-
erate intervals where the weight of τ ′ is neither 1 nor 0 (non-
idle/busy intervals). Those intervals where 0 < wk < 1 are the
only intervals where the on-line scheduler should be careful
not to generate additional idle periods if possible. In particular,
an additional idle period should be merged with a previous
idle period to save transition delays. To solve this problem,
we choose to schedule τ ′ at the beginning or at the end of the
interval to stick the execution of τ ′ in the current interval to
the one in the previous or next interval.

During the execution of τ ′, the scheduler then activates the
deepest low-power state according to the length of the idle
period. And if the idle period is not large enough, the processor
stays idle.

Figure 3 pictures the schedule of the task set from subsec-
tion IV-B with LPDPM. Where Global-EDF was generating 9
short idle periods, LPDPM creates 2 much larger idle periods.

V. EVALUATION

In order to compare our solution with existing algorithms,
we conducted a simulation-based experimental study using the
energy information of the STM32L boards, which are based
on the ARM Cortex-M3 processor [1]. It has four low-power
states described in table I. Using a simulator, we generated

Fig. 4. Mean number of idle periods

3.0 3.2 3.4 3.6 3.8 4.0
Global utilization

0

10

20

30

40

50

60

70 RUN
U-EDF
LPDPM

random task sets and scheduled them on two hyper-periods
with several schedulers. This simulation was conducted with
4 processors and each task set has 10 tasks. Task utilizations
are computed randomly between 0.01 and 0.99 with a uniform
distribution using the well-known UUniFast algorithm from
Bini et Buttazzo [5]. The period of each task is also chosen
randomly between 10 and 100.

2000 task sets were generated for each global utilization.
Then, each task set was scheduled by the following schedulers:
RUN [16], U-EDF [15] and LPDPM. RUN and U-EDF are
two optimal multiprocessor scheduling algorithms aiming to
reduce the number of preemptions and migrations. The imple-
mentation of LPDPM uses IBM ILOG CPLEX to solve the
linear problem. We limited the solving time to 60 seconds and
we rejected the task set when a solution was not found.

TABLE I
STM32L LOW-POWER STATES

Mode Current consumption Transition delay
Run 7.8 mA

Sleep 2.3 mA 0.1
Low power run 25 µA 0.4

Stop 3.1 µA 0.8
Standby 1.55 µA 5

The mean number of idle periods is plotted on figure 4 for
each global utilization. Figure 5 gives the repartition of the
idle periods lengths for each scheduler. Those figures illustrate
the fact that LPDPM generates less and larger idle periods.
For example, all idle periods created by the other algorithms
have a length less than 120 while LPDPM can generate idle
periods with a length up to 240. Note that the ordinate is
plotted on a logarithmic scale in figure 5. Figure 6 gives
the relative consumption of other schedulers, the consumption
of LPDPM being always one. The consumption is computed
based on the values from table I. LPDPM is always more

Fig. 5. Distribution of idle periods lengths

0-40 40-80
80-120

120-160
160-200

200-240

Idle period Length

103

104

105

106

107

RUN
U-EDF
LPDPM

Fig. 6. Relative consumption (LPDPM = 1)

3.0 3.2 3.4 3.6 3.8 4.0
Global utilization

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

RUN
U-EDF
LPDPM

energy efficient and the difference is of course reduced when
the global utilization increases.

Finally, figure 7 pictures the number of preemptions for
each scheduler. Even if RUN and U-EDF are two algorithms
specifically designed to reduce the number of preemptions,
LPDPM behaves as well as U-EDF and only less than 1.5
worse than RUN. This makes LPDPM viable. Improving the
linear problem to decrease the number of preemptions of the
regular tasks is left for future works.

VI. CONCLUSION

In this paper we introduced LPDPM, an off-line power-
aware scheduling algorithm for multiprocessor real-time sys-
tems focusing on static energy consumption. The algorithm
tries to increase the duration of the idle periods such that
deeper low-power states can be activated. It introduces an
additional task accounting for the time where processors

Fig. 7. Mean number of preemptions

3.0 3.2 3.4 3.6 3.8 4.0
Global utilization

0

100

200

300

400

RUN
U-EDF
LPDPM

are expected to be idle. It then decreases the number of
preemptions of this task.

Contrary to other DVFS or DPM algorithms, LPDPM uses
an off-line approach. Another difference is that LPDPM does
not consist in mapping task to priorities in order to schedule
the system. Using linear programming, it assigns weights to
tasks on intervals where each interval is delimited by two task
releases. With this approach, constraints and objectives can be
formally expressed. The constraint is to meet deadlines. The
objective is to decrease the number of preemptions of the idle
task. Simulations show that LPDPM significantly decreases
the number of idle periods and is more energy efficient than
existing algorithms.

The objective of LPDPM is to minimize the number of idle
periods. And then, based on the length of the idle period,
a low-power state can be selected. Thus the linear equation
system does not depend on the processors used. However,
the assumption that minimizing the number of idle periods
is always more energy efficient can be false with some
processors. Therefore, we plan to relax this assumption in
future works.

At run-time, if the actual execution time of tasks is lower
than their WCET, the duration of idle periods increases. It
could potentially allow the use of deeper low-power states.
Therefore, an on-line algorithm should be able to use the
unused computation time to increase the length of existing idle
periods, following the same idea as Seo et al. [17]. At present,
LPDPM only works for periodic tasks with implicit deadlines.
We plan to extend our approach to schedule sporadic tasks
with constrained deadlines.

In LPDPM, the idle processor used for each new idle
period can be changed to share the load and decrease the
temperature of processors. But future works should modelize
thermal impacts on energy consumption such that LPDPM
could generate thermal-aware schedules.

ACKNOWLEDGEMENT

The authors would like to thank Vincent David for his
remarks in the early stages of this work.

REFERENCES

[1] ST Microelectronics. STM32L151xx and STM32L152xx advanced ARM-
based 32-bit MCUs. Reference Manual RM0038, 2011.

[2] M. Awan and S. Petters. Enhanced race-to-halt: A leakage-aware energy
management approach for dynamic priority systems. In Proceedings of
the 2011 23rd Euromicro Conference on Real-Time Systems, pages 92–
101, 2011.

[3] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportion-
ate progress: a notion of fairness in resource allocation. In Proc. of the
25th annual ACM symposium on Theory of computing, pages 345–354,
1993.

[4] M. Bhatti, M. Farooq, C. Belleudy, and M. Auguin. Controlling energy
profile of rt multiprocessor systems by anticipating workload at runtime.
In SYMPosium en Architectures nouvelles de machines, 2009.

[5] E. Bini and G. C. Buttazzo. Biasing effects in schedulability measures.
In Proc. of the 16th Euromicro Conf. on Real-Time Systems, pages 196–
203, 2004.

[6] J.-J. Chen, H.-R. Hsu, and T.-W. Kuo. Leakage-aware energy-efficient
scheduling of real-time tasks in multiprocessor systems. In Proceedings
of the 12th IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 408–417, 2006.

[7] J.-J. Chen and C.-F. Kuo. Energy-efficient scheduling for real-time
systems on dynamic voltage scaling (dvs) platforms. In Proceedings of
the 13th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, pages 28–38, 2007.

[8] J.-J. Chen and T.-W. Kuo. Procrastination for leakage-aware rate-
monotonic scheduling on a dynamic voltage scaling processor. In Pro-
ceedings of the 2006 ACM SIGPLAN/SIGBED conference on Language,
compilers, and tool support for embedded systems, pages 153–162, 2006.

[9] H. Huang, F. Xia, J. Wang, S. Lei, and G. Wu. Leakage-aware
reallocation for periodic real-time tasks on multicore processors. In
Proceedings of the 2010 Fifth International Conference on Frontier of
Computer Science and Technology, pages 85–91, 2010.

[10] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic voltage
scaling for real-time embedded systems. In Proceedings of the 41st
annual Design Automation Conference, pages 275–280, 2004.

[11] E. Le Sueur and G. Heiser. Dynamic voltage and frequency scaling: The
laws of diminishing returns. In Proceedings of the 2010 Workshop on
Power Aware Computing and Systems (HotPower’10), pages 1–8, 2010.

[12] Y.-H. Lee, K. Reddy, and C. Krishna. Scheduling techniques for
reducing leakage power in hard real-time systems. In Proc. of the 15th
Euromicro Conf. on Real-Time Systems, pages 105 – 112, 2003.

[13] M. Lemerre, V. David, C. Aussaguès, and G. Vidal-Naquet. Equiva-
lence between schedule representations: Theory and applications. In
Proceedings of the 2008 IEEE Real-Time and Embedded Technology
and Applications Symposium, pages 237–247, 2008.

[14] T. Megel, R. Sirdey, and V. David. Minimizing task preemptions and
migrations in multiprocessor optimal real-time schedules. In Proc. of
the 31st IEEE Real-Time Systems Symp., pages 37–46, 2010.

[15] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic. Reducing preemp-
tions and migrations in real-time multiprocessor scheduling algorithms
by releasing the fairness. In Proceedings of the 17th International
Conference on Embedded and Real-Time Computing Systems and Ap-
plications (RTCSA), pages 15 –24, 2011.

[16] P. Regnier, G. Lima, E. Massa, G. Levin, and S. Brandt. Run: Optimal
multiprocessor real-time scheduling via reduction to uniprocessor. In
Proc. of the IEEE 32nd Real-Time Systems Symp., pages 104–115, 2011.

[17] E. Seo, J. Jeong, S. Park, and J. Lee. Energy efficient scheduling of
real-time tasks on multicore processors. IEEE Trans. Parallel Distrib.
Syst., 19(11):1540–1552, 2008.

[18] H.-W. Wei, Y.-H. Chao, S.-S. Lin, K.-J. Lin, and W.-K. Shih. Current
results on edzl scheduling for multiprocessor real-time systems. In Proc.
of the 13th IEEE Intl Conf. on Embedded and Real-Time Computing
Systems and Applications, pages 120–130, 2007.

[19] Y. Zhu and F. Mueller. Dvsleak: combining leakage reduction and
voltage scaling in feedback edf scheduling. In Proceedings of the 2007
ACM SIGPLAN/SIGBED conference on Languages, compilers, and tools
for embedded systems, pages 31–40, 2007.

