
Efficient Power Management Schemes for
Dual-Processor Fault-Tolerant Systems

Yifeng Guo, Dakai Zhu

The University of Texas at San AntonioThe University of Texas at San Antonio

Hakan Aydin

George Mason University

Outline

� Background and Motivation
� System Models
� POED Algorithm
� Application to Energy Efficient Fault-

Tolerant Real-Time Systems

HARSH-2013, Shenzhen, China

Tolerant Real-Time Systems
� Simulation Results and Discussions
� Conclusions

2

Energy is Precious: Everywhere!

� Popularity mobile devices
� Smart phones: 492 million in 2011

� Battery operated: limited capacity;
Smart phones: a few days
Laptop: 3 – 10 hours

HARSH-2013, Shenzhen, China
3

� Data centers and servers
� Excessive heat ���� cooling
� Operation cost:

1.5% electricity in US (2007)
���� billion $

Power Reduction Techniques
� LCD

� Brightness; on/off

� Memory
� Different power states

� Disks ���� SSD

HARSH-2013, Shenzhen, China
4

� Spin down

� CPU
� Voltage/frequency scaling

� Low power states:
1-5% of the peak power

Pd

f
f/2 f

A Simple System-Level Power Model

E = P * t;
Energy from:
Ps: the same;
Pind: increases;
Pd: decreases

Example: A real time task T needs 2 units with processing speed f

t

Tf

Tf/2

Dexecution power consumption

A simple system power model

HARSH-2013, Shenzhen, China
5

m

ef

ind
ee mc

P
f

1

)1(

−⋅
=Minimum energy

efficient frequency

� A simple system power model
P(f) = Ps+ (Pind+Pd)= Ps+ Pind+Cef f m

[Zhu ’06]

Fault-Tolerant System Design

� Techniques
� Time redundancy

� Faults
� Transient fault

� Temporary, will disappear

� Permanent fault
� System component ���� replacement/redundancy

HARSH-2013, Shenzhen, China

� Time redundancy
� available system slack for recovery execution
� only tolerate transient fault w/o permanent fault
� task with utilization > 50% can not be managed

� Hardware redundancy
� Both transient & permanent fault (e.g., duplex, TMR system)
� Tremendous energy consumption

6

Transient Faults/Reliability vs.DVFS
� Transient faults vs.Critical

charge Qcrit

• smallest charge needed
to flip circuit states

HARSH-2013, Shenzhen, China
7

[Ernst-Micro-2004]

Co-Management of Energy and Reliability
� Reliability-Aware Power Management [Zhu ’06, Qi ’11]

� low supply voltage (DVFS) ���� more transient fault
� time redundancy

� Standby-Sparing [Ejlali ’09] and [Haque ’11]

� dual-processor systems, aperiodic/periodic tasks
� primary processor: primary tasks, DVFS
� spare processor: backup tasks, DPM, deallocation

HARSH-2013, Shenzhen, China

� spare processor: backup tasks, DPM, deallocation
� minimize the overlap between primary and backup
� tolerate transient fault and one permanent fault

� Secondary Execution Time Shifting (SETS) [Unsal ’09]

� periodic tasks
� a mixed manner (P/B tasks)
� static scheme to reduce overlap between primary and backup

8

Application Model
� n periodic real-time tasks Ψ = {T1, …, Tn};

� Ti: (ci, pi)
� ci : worst case execution time (WCET) at fmax (fmax = 1);
� pi: period;
� WCET = ci/f i in a lower frequency;
� ui = ci/pi

U = ∑u , i= 1, …n

HARSH-2013, Shenzhen, China

� U = ∑ui, i= 1, …n

� Bi: backup for Ti
� same parameters (ci & pi)
� no DVFS （（（（transient fault））））
� different CPUs for Ti and Bi (permanent fault)

9

Problem to Solve
� Hardware redundancy: Dual-CPU systems

� Tolerate a single permanent fault
� Tolerate transient faults

� Each task: primary & backupcopies
� Primary & backup need on different CPUs

[Haque ’11]� Standby-Sparing in Dual-CPU
� Example: T1(1, 5) and T2(2, 10)

HARSH-2013, Shenzhen, China
10

CPU1: T1,T2

Secondary
CPU2: B1,B2

B11

time2 4 6 8 10

B12B21

T2,1T1,1 T2,1T1,2
EDF

EDL

f1,2=2/5

Slack time on secondary CPU is wasted!

Example: T1(1, 5) and T2(2, 10)

Mixed Allocation of P/B Tasks

� Each CPU gets a set of mixed P/B tasks
� Scale down primary tasks

CPU1: T1,B2
B21T1,1 T1,2

B21

f1=1/4

f =1/4 EDF

HARSH-2013, Shenzhen, China
11

CPU2: T2,B1
B11

time2 4 6 8 10

B12T2,1 T2,1

f2=1/4 EDF

Problem: backup tasks run concurrently with
primary tasks ���� more energy consumption!

Differentiate Executions of P/B Tasks

� P/B tasks: different preferences
� Primary tasks: as soon as possible (ASAP)

� Backup tasks: as late as possible (ALAP)

CPU1: T1,B2
B21T1,1 T1,2

B21

f1=1/4

HARSH-2013, Shenzhen, China
12

CPU2: T2,B1
B11

time2 4 6 8 10

B12T2,1 T2,1

f2=1/4

Problem: how to efficiently schedule RT tasks
with different preferenceson each CPU?

RT Tasks with Preferences and Schedule

� A set of n periodic tasks: Ψ = {T1, …, Tn}
� Each task has a preference: ASAPor ALAP
� ASAP tasks (ΨS) & ALAP tasks (ΨL)

Ψ = ΨS ∪ ΨL [Guo TR’12]

HARSH-2013, Shenzhen, China
13

� A feasible schedule of tasks
� Schedule:
� Ti is executed in time slot [t, t+1):
� No deadline miss

S : t → Ti,0 ≤ t ≤ LCM,1≤ i ≤ n
S(t) = Ti

Accumulated ASAP/ALAP Executions

0 ≤ t ≤ LCM∆(S, t) = δ(S, z)
z=0

t

∑

δ(S, z) =1 S(z) = Ti Ti ∈ Ψ s

� Accumulated ASAP execution beforetime t

where if and

HARSH-2013, Shenzhen, China
14

0 ≤ t ≤ LCM

S(z) = Ti

� Accumulated ALAP execution after time t

where if and

Ω(S, t) = ω(S, z)
z=t

LCM−1

∑

ω(S, z) =1 Ti ∈ ΨL

Optimal Preference-Oriented Schedules
� An ASAP-optimal schedule:

� If is a feasible schedule and, for any other feasible
schedule S, there is:

Sasap
opt

Sasap
opt

∆(Sasap
opt ,t) ≥ ∆(S, t) (0 ≤ t ≤ LCM)

� An ALAP -optimal schedule:
� If is a feasible schedule and, for any other feasible

Salap
opt

Salap
opt

HARSH-2013, Shenzhen, China
15

� If is a feasible schedule and, for any other feasible
schedule S, there is:

Salap

Ω(Salap
opt , t) ≥ Ω(S, t) (0 ≤ t ≤ LCM)

� An PO-optimal schedule:
� If is a feasible schedule and, for any other feasible

schedule S, there is:
and

Sopt

Sopt

∆(Sopt, t) ≥ ∆(S, t) Ω(Sopt,t) ≥ Ω(S,t) (0 ≤ t ≤ LCM)

Optimal Schedules vs.System Loads
� U < 1: discrepantoptimal schedules with idle time

� Example: T1 (1, 3), T2 (1, 4) and T3 (1, 6), U = 0.75
where ΨS = {T1}, ΨL = {T2, T3}

LCM

T1,1 T2,1 T1,2 T3,1 T1,3 T2,2 T1,4

T1 T2 T1 T3 T1T2

5 10940 32 61 7 8 11 12

T2,3 T3,2

T1 T2

T3
not ALAP-

optimal

HARSH-2013, Shenzhen, China
16

5 10940 32 61 7 8 11 12

T1,1 T1,2 T1,3

An ASAP-optimal schedule

An ALAP-optimal schedule

5 10940 32 61 7 8 11 12

T2,1 T3,1 T2,2 T1,4 T2,3 T3,2
not ASAP-

optimal

� U = 1: harmoniousoptimal schedules

Preference-Oriented Earliest Deadline Heuristic

� ASAP Scheduling Principle
� At any time, if there are ready ASAP tasks, they

should be executed first provided that such executions
will not lead to deadline miss for ALAP tasks

� ALAP Scheduling Principle
� If there is no ready ASAP tasks, CPU should idle

provided that it will not lead to deadline miss for

HARSH-2013, Shenzhen, China

provided that it will not lead to deadline miss for
ALAP tasks

� Explicitly manage idle time with wrapper task
� Idle time ���� wrapper taskswith deadlines

17

[Zhu ’09]

Preference-Oriented Earliest Deadline Heuristic

� POED scheduling algorithm: at time t
� If Tk is a ready ASAP task with earliest deadline dk,

check look-ahead interval [t, dk]
� If there is free time, execute Tk (maybe wrapped execution)
� Otherwise, urgent execute the earliest deadline ALAP task

� If wrapper tasks Tx with deadline dx （（（（ASAP））））, check
look-ahead interval [t, dx]

HARSH-2013, Shenzhen, China

look-ahead interval [t, dx]
� If there is free time, execute Tx (CPU free)
� Otherwise, urgent execute the earliest deadline ALAP task

� No ASAP/wrapper tasks: execute ALAP tasks with EDF

18

Look-Ahead Interval
� ，，，，

ay dydx

t t' dk

Ty Ty TyTx

Qla = {Tx,Ty} Tx,Ty ∈ ΨL

free

，，，， ，，，，Q = {T ,T ,T } T ,T ∈ Ψ T ∈ Ψ

HARSH-2013, Shenzhen, China
19

� ，，，， ，，，，Qla = {Tx,Ty,Tz} Tx,Ty ∈ ΨL Tz ∈ ΨS

ay dydx

t t' dk

Ty Ty TyTxTz

az dz

TzTz

no free
section at

the
beginning

POED-Based EEFT on Duplex Systems
� Steps:

� map primary tasks to two CPUs (e.g., WFD)
� cross assign backup tasks to CPUs
� calculate scaled frequency for primary tasks on each

CPU
� on each CPU, execute tasks with the POED scheduler

HARSH-2013, Shenzhen, China

� Primary tasks have ASAP preference
� Backup tasks have ALAP preference
� When a task completes successfully on one CPU, notify other

CPU to cancel its backup

� Online Extension
� dynamic slack from task cancellation & AET << WCET
� further slow down primary/delay backup

20

An Example
� T1 (1, 5) and T2 (2, 10), U = 0.4

T TB2,1 B2,1

LCM

T1,2 T2,1B1,1 B2,1

T , B

f1 = 1/4

T1,1 B1,2

HARSH-2013, Shenzhen, China
21

T1,1 T1,2

B1,1 B1,2

B2,1 B2,1

T2,1 T2,1

6 10840 2

T1, B2

T2, B1

f2 = 1/4

Simulation Settings

Power

Ps 0.01

Pind 0.1

Cef 1

m 3

frequency levels 0.4, 0.6, 0.8, 1.0

Num Tasks/Task Set 10, 20, …, 100

Utilization of Each Task UUniFast scheme [Bini ’04]

HARSH-2013, Shenzhen, China
22

Application

Period of Each Task [pmin, pmax] uniform dist.

pmax 100

pmin 10

Num Tasks Sets/Data Point 100

U (static load) 0.3, 0.4, …, 1.0

αi (dynamic load) Uniform dist. w/ average α

Processor Num of Processors 2 (dual-processor system)

Schemes for Comparisons
� Baseline: Basic-SS

� Basic standby-sparing w/o scaled frequency

� Existing schemes for comparison
� SS-SPM

� Standby-sparing w/ offline scaled frequency

� SS-DPM (ASSPT[Haque ’11])

HARSH-2013, Shenzhen, China

� Standby-sparing w/ further scaled frequency using online slack

� Proposed schemes
� POED-SPM

� POED w/ offline scaled frequency

� POED-DPM
� POED w/ further scaled frequency using online slack

23

Energy Savings: POED vs.Standby-Sparing

HARSH-2013, Shenzhen, China
24

Normalized energy consumption vs.static load;
20 tasks per set

Energy Savings: POED vs. Standby-Sparing

HARSH-2013, Shenzhen, China
25

Normalized energy consumption vs.dynamic load;
20 tasks per set

Conclusions & Future Work
� POED-based EEFT for dual-processor systems

� Objective
� co-management of energy with reliability

� Results
� significant energy savings vs.standby-sparing

� Future work

HARSH-2013, Shenzhen, China

� Future work
� Effects of additional DVFS transition
� Multiprocessor system with more than two processors

26

Thanks & Questions

HARSH-2013, Shenzhen, China
27

http://www.my.cs.utsa.edu/~yguo

