
Building Robust Systems for the Energy Constrained Future:
Application and Algorithm Aware Approaches

Rakesh KumarRakesh Kumar

University of Illinois

Urbana-Champaign

The Reliability Problem

Eniac (1945)

Conventional Solutions

Voyager (1977)
A

Input Output

Output

IBM G5

Boeing 777 (1994)

B

C

Voter
Output

Compaq Himalaya

The Power Wall

Mobile Systems High Performance Systems

Clearly, low cost resilience techniques are needed

4 million devices by 2020

L1 cache soft errors once every 5

hours on 104K node BlueGene/L

Clearly, low cost resilience techniques are needed

Stop ignoring non-determinism, error tolerance

Applications E

Designed/architected
from ground up

to minimize energy
by exposing errors

Number and nature
of errors dictated by

application-level
error tolerance

Our research focuses on approaches to
architect, design, and program stochastic processors

Deterministic Devices

Processor

Non-Deterministic Devices

Stochastic Processor

by exposing errors
to software

error tolerance

Non-Deterministic Devices

E

Stochastic Processor

Error Tolerant ApplicationsApplications

Non-Deterministic Devices

E

Stochastic Processor

HW-based Error Resilience

Applications

Non-Deterministic Devices

E

Stochastic Processor

Application and Algorithm Awareness

• Natural Error Tolerance

Hello?

Error

Intolerant
Error

Tolerant

Spatial Reuse Temporal reuse

Fault containment

Application and Algorithm Awareness

Fault containment

This talk: application and algorithm-aware approaches

for low cost error resilience

Robustified

Application

Application Robustification (AR)

Conventional

Application

• Goal: Redesign applications to produce acceptable
output in presence of errors

• Same as output without errors for most applications

• Within certain tolerance for other applications

An Optimization-based Approach to AR

f(x)

ρo

ρ1Conventional

Application

Optimization

Problem

Primary Issues

• How to construct f(x) when we don’t know x*?

• What is the most efficient solver for f(x)?

f(x)
x*

Example 1: System of Equations (SOE)

• Problem: Solve a system of equations.

















=
































2

1

0

2

1

0

210

210

210

y

y

y

x

x

x

ccc

bbb

aaa

2221100

1221100

0221100

yxcxcxc

yxbxbxb

yxaxaxa

=++
=++
=++

• Traditional solution methods: SVD, QR, Cholesky
factorization.

 22210 yxccc2221100 yxcxcxc =++

Robustified System of Equations

• Equivalent Optimization Problem:

2|||| bAx −

bAx =

2||||)(min bAxxf −=

AxbAxAx TTT 2−≈

Appropriate Solver Used for Quadratic Problem

Example Formulation 2: Sorting

• What is sorting?

• Finding the correct relative position of each element in the
unsorted list. [Permutation matrix]

• Example

• Input u = [5,2,8]T

• X: 3x3 Permutation Matrix 















=
































=
5

2

8

8

2

5

001

010

100

Xu

Permutation to reverse

• X: 3x3 Permutation Matrix  58001

















=
































=
8

5

2

8

2

5

100

001

010

Xu

Permutation to sort

• Robustified Formulation

• The list which arranges the elements of list in ascending
order will minimize the product -v(Xu)

Tnv]....1[= XuvT

Rx nxn
−

∈
min

Robustified Sorting Example (contd)







= 010

001

X 





= 001

010

X

v = [1 2 3]TUnsorted list: u = [5 2 8]T

Original Permutation: Correctly Sorted Permutation :











=
100

010origX











=
100

001sortX

(lower than unsorted)

33−=− uXv orig
T 36−=− uXv sort

T

Objective: Objective:

Robustified Sorting (contd)

• Constraints need to be set up correctly:

XuvT

Rx nxn
−

∈
min

1,1,0.. ≤≤≥ ∑∑
j

ij
i

ijij XXXts

• As unconstrained problem:

∑∑∑∑∑ +++ −+−++−
i

ij
jj

ij
iij

ij
T XXXXuv 222]1[]1[][λλλ

Penalty Function

Example 3: Bipartite Graph Matching

• Input: W is matrix of weights for all
edges in the graph a

c

b

x

z

y

 825a

5

2

8

1

6

2

9

3

7

• What is Bipartite Graph Matching?
• Find the assignment of edges which do not

















=
739

261

825

c

b

a

W

Total Weight= 10 Total Weight= 23

2

1

7

8

6

9

x y z

• Find the assignment of edges which do not

share any vertices and gives the largest total

weight.

Example 3: Robustified GM

• Constraints need to be set up correctly:

><−
∈

XW
nxnRx

,min

1,1,0.. ≤≤≥ ∑∑
j

ij
i

ijij XXXts

• As unconstrained problem:

ji

∑∑∑∑∑ +++ −+−++><−
i

ij
jj

ij
iij

ij XXXXW 222]1[]1[][, λλλ

Penalty Function

Scope of Transformations

SOE:

SORT:

GM:

AxbAxAx TTT

Rx nx
2min

1
−

∈

XuvT

Rx nxn
−

∈
min

><−
∈

XW
nxnRx

,min

(as Quadratic Program)

(as Linear Program)

(as Linear Program)

• Large class of problems can be solved as LP.

• Any polynomial algo can be emulated in polynomial time

• Applicable for harder problems as well!

• NP, ILP, discrete/combinatorial optimizations

∈Rx

Identifying the Best Solver

• Desirable attributes of a good solver
• Fast convergence

• Good error tolerance

• Low power

• User controllable degree error tolerance

• Applicable to a wide range of problems

f(x)

αρ+=+ ii xx 1

)(ixf−∇=ρ)(ixf−∇=ρ

Other solvers possible as well: subject of future work

Option 1: Gradient Descent

(GD)
• Advantage: shown to be

robust under errors

• Disadvantage: can take many

iterations to converge

Option 2: Conjugate

Gradient(CG)
• Advantage: relatively fast

• Disadvantage: objective

function specific [quadratic]

System of Equations (100x10) using GD / CG

1.00E-08

1.00E-06

1.00E-04

1.00E-02

1.00E+00

R
e

la
ti

v
e

 A
cc

u
ra

cy
 (

w
.r

.t
.

Id
e

a
l)

SGD N=1000

Cholesky

SVD

CG N=5

CG and GD significantly more robust
than SVD or QR at high fault rates.

1.00E-12

1.00E-10

0.001 0.01 0.1 1 10R
e

la
ti

v
e

 A
cc

u
ra

cy
 (

w
.r

.t
.

Id
e

a
l)

Fault Rate (% of FLOPs)

CG N=5

CG N=10

40

60

80

100

S
u

cc
e

ss
 R

a
te

 (
%

)

Baseline

SGD
60

80

100

S
u

cc
e

ss
 R

a
te

 (
%

)

Sorting (size=10) and Graph Matching(5x6) using GD

Sort Graph Matching

0

20

40

0.1 1 10 100

S
u

cc
e

ss
 R

a
te

 (
%

)

Fault Rate (% of FLOPs)

SGD

(iter=10k)

0

20

40

0.1 1 10 100

S
u

cc
e

ss
 R

a
te

 (
%

)

Fault Rate (% of FLOPs)

100% Accuracy even for large error rates.

Solution: An accelerator architecture that speeds up linear algebra

operations [optimization-based design is often more parallelizable]

Accelerated Non-Accelerated

Stepping Back

105

Graph Matching (64x64) Performance

Advantage: Generality. Many applications can use this formulation

Disadvantage: Some applications may take a long time to converge

TB=

Output Quality =

completeness of

matching (%)

Accelerated

Iterative

Non-Accelerated

Iterative

80

85

90

95

100

105

0.1 1 10

O
u

tp
u

t
Q

u
a

li
ty

Relative Time

0%(Acc-Iter)

5.34%(Acc-Iter)

33.33%(Acc-Iter)

0%(Non-Acc-Iter)

5.34%(Non-Acc-Iter)

33.33%(Non-Acc-Iter)

Baseline

Long convergence times still a

limitation for certain app classes (sort).

Sparse Linear Algebra

• Future Applications: A large class utilize sparse linear

algebra algorithms (e.g. graph-based, data mining, and

recognition)

• HPC Applications: PDE/ODE Solvers
• Linear System Solvers (e.g. Conjugate Gradient)

0
2

2

2

2

=
∂
∂+

∂
∂

y

u

x

u

• Common linear operation for many of these kernels:

• Matrix Vector Product:

f(x)

ρ1

Axy =

Goal: Techniques for fortifying sparse linear algebra

for unreliable hardware.

Detection for Linear Algebra: Past Approaches

f(x)

Design a low-complexity mathematical invariant that can

be used to check computation

x y

Example: Matrix vector multiplication (MVM) uses

traditional linear error correcting codes to develop

invariant

Check Error

A x y=

Past Approach: Matrix Vector Multiplication

A x y

=*

* =

Compare checksums

O(n2)

For sparse problems, the complexity of this dense

O(n)Sparse

Matrix

Column Sums [ABFT ‘85]

τ>− |)1()(1| xAy TT

Ax)(1T xAT)1(=

O(n)

For sparse problems, the complexity of this dense

check is identical to the protected operation! O(n)

Structure in Sparse Problems

Qpband msc00726








=
s

n
xAAx TT)1()(1

Sampled (s)

Qpband msc00726

Uniformity in the column sums allows for sampling

of the MVM check for these problems.

Frequent Reuse in Sparse Problems

• Many linear algebra applications use the same data as
a part of many individual operations.

Conditioning: Identity

∑

Key Insight: Frequent reuse may allow for preconditioning

in spite of high setup costs

• How can the check be preconditioned?

1. Observe: basic approach is special case with a code: c=1

2. Choose code s.t. checksum is smoothed

∑

Identity Conditioning

Conditioning: Null

• Conditioning can also make the problem more

applicable for sampling or clustering

• Choose code that eliminates half

of check entirely.

0

Find vector in null space

Null Conditioning

Applicable for Dense Problems as well!

Matrix Vector Multiplication Results

Detection Overhead 50-60% lower than

dense checks for sparse problems.

Detection Doth Not Efficient Fault Tolerance Make

400

600

800

1000

P
e

rf
o

rm
a

n
ce

 O
v

e
rh

e
a

d
 v

s
N

o

Fa
u

lt
s

(%
)

Parallel CG (10 nodes, accuracy target 1e-6)

Ckpt-Restart

(perfect

detection)

0

200

400

1.00E-09 1.00E-08 1.00E-07 1.00E-06 1.00E-05

P
e

rf
o

rm
a

n
ce

 O
v

e
rh

e
a

d
 v

s
N

o

Fa
u

lt
s

(%
)

Fault Rate (Faults per Operation per node)

detection)

Under high error rates, the overhead of Error

Correction may become prohibitive

Partial Recomputation

• Insight: outputs/state are usually only partially
wrong when faults occur.

A

B1

error

Partially recompute output

C

Bn

Bn-1

Strategy: Upon detecting an error, only partially

recompute the output (i.e. the segment which contains

the error)

error

Error Localization

A

B1
Low overhead check

across all outputs

Apply sub-checks

Localized error

Compute and verify sequence of checks such that

errors are localized to specific subcomputations

(cone-analysis in hardware).

Bn

Bn-1 Localized error

Matrix Vector Multiplication (MVM)

A x y

=*

* =

Output error in fraction of

output vector

Partially recompute output=*

As x ys=

Localize errors

Error Localization for Matrix Vector Multiply

c=

c= c=

1 1

1 1. . 0 0. . 1 1. .

xAcAxc TT)()(=

c= c=1 1. . 0 0. . 0 0. . 1 1. .

1 1 1 10 0. . 0 0. .00 00..

Results with increasing fault rates

Partial recomputation leads to 2x-3x less

overhead for high fault rates.

Results with increasing fault rates

Under high error rates Partial recomputation converges

70% more often given maximum iteration limit.

Building Robust Applications via Statistical Inference

states
x1 x2 x3

p
d

f

Application

Draw

Samples

x1, x2, x3

Stochastic Information Processing Framework

1. How do we generate this distribution for different applications?

2. What sampling techniques should we use?

3. Other issues :

generality, programmability, completeness, complexity

Converting applications to a

stochastic local search framework

Robust and Efficient Architectures

• What hardware components do these algorithms
map to naturally?

n-sided

dice
w

e
ig

h
ts

sample
w

e
ig

h
ts

• Which components need to be robust?

• How can these be mapped to nano-blocks?

• Energy, performance, quality tradeoffs

Summary

• Conventional Fault Tolerance Techniques not practical for
future power-constrained systems

• Even disregarding power constraints, the techniques do
not suffice when fault rates are high

• Too much cost to detection/recomputation

• Applications Robustification• Applications Robustification

• Algorithmic Techniques to build inherently robust
Applications that “roll forward” on errors

• Error Localization and Partial Recomputation
support the same goal

Conventional Fault Tolerance Approaches

• Hardware-based fault tolerance approaches may be
impractical for severely power-constrained systems .

• Duplication and TMR, expensive

• Typically based on worst-case and conservative designs.

• General software-based approaches may also be impractical.
• Redundancy-based, costs have been well-documented

0

200

400

600

800

1000

1.00E-09 1.00E-08 1.00E-07 1.00E-06 1.00E-05P
e

rf
o

rm
a

n
ce

 O
v

e
rh

e
a

d
 v

s

N
o

 F
a

u
lt

s
(%

)

Fault Rate (Faults per Operation per node)

Parallel CG (10 nodes, accuracy target 1e-6)

Ckpt-Restart

(perfect

detection)

JHP1

Slide 42

JHP1 What are the X-axis units? Error rate as probability? ie. In each cycle, one of 10 nodes makes a error with probability 10^-08. Or is it each node
and hence the overall rate is 10-times for the system?

Traditional FT methods:
Hardware - duplication or TMR.
Time: recompute one or more times, same computation or altered implemention of same function.
Information: Coding, Assertion checks
Software methods use Time and/or Informtion redundancies.
Janak H. Patel, 12/7/2012

The Reliability Problem

F
re

q
u

e
n

cy
 (

G
H

z)
Layout 250nm 180nm

130nm 90nm 65nm

150

250

350

450

250 180 130 90 65 45
Technology Node - Gate Length (nm)

4

8

12

16
Vt σVt / Vt

V
t (

m
V

)

σ
V

t /
 V

t (
%

)

Example: Error Localization

Scaling

As the number of nodes increases the benefits

from partial recomputation only increase.

Limitation

Could be as high as 3x

Area/Energy Overhead A

B

C

Voter

Input

Output

• Why am I talking about this now?

1. Power

2. Power

3. Power

C

• Opportunities lie in compilers and architectural
approaches to exploit application-level error
tolerance

Summary

• Traditional HW/SW contract expects perfect HW

• HW is increasingly non-deterministic

Guaranteeing correctness is expensive,

especially when correctness is not required

• Opportunistically exposing non-determinism affords
significant energy benefits

[HPCA’10, ASPDAC’10,
significant energy benefits

•Novel physical design methodologies

•Microarchitectural optimizations

•Compiler optimizations

• An early prototype confirms significant potential

• Future work will explore truly stochastic computing ,
energy-efficient exascale systems ,
predictably timed systems, and multi-scalar systems

[HPCA’10, ASPDAC’10,
DAC’10, CASES’11, TCAD’11]

[ICCD’10, DATE’10, TECS’11, CASES’11]

[DAC’12A, DAC’12B]

[DAC’12B]

[DAC’12B]

[DATE’09, HPCA’12, DAC’12]

[TVLSI’12]

Architectures for Many-core Resilience

• Dynamic Constitution and In-network Error
Tolerance

• Fluid NMR

Future Work

• Application Robustification
• Investigating other minimization strategies
• Sensitivity analysis of parameters (i.e. penalty, step size,

conditioning)
• Evaluate other benchmark transformations

• Low overhead fault detection for Sparse linear
algebra

• Low overhead fault detection for Sparse linear
algebra
• Modular Resilience

• Understand how the approximate nature of checks have
impact In the context of other applications.

• Algorithmic Partial Recomputation and Error
Localization
• Understand generality in context of different classes of

applications

Architectures and Compilers for Exploiting
Application-level Error Tolerance

QR-based Algorithm

• Inputs: A, b; Output: x

1. [Q, R] = qr(A) // Compute QR factorization (Q
orthonormal, R upper triangular)

// A=QR

// QTAx = QTb

// QTQ = I// QTQ = I

// Rx = QTb

1. z = QTb

2. x = backsubstitution(R,z)

Linear Solver Results

The sparse techniques in the context of a full
system implementation, allow CG to complete 10-

20% faster compared to the traditional dense check.

Matrix reuse amortizes the setup costs for
conditioning and clustering techniques.

Householder Factorization (QR)

Back substitution

• x=backsubstitute(U,b)

n = length(b);
x = zeros(n, 1);
for i=n:-1:1 for i=n:-1:1

x(i) = (b(i) - U(i, :)*x)/U(i, i);
end

FFT

• Staged computation

• Recursively apply
energy check
(Parseval’s thm.):

• Recompute sub-DFT
if error detected

Barnes-Hut

• Detect faults by
conservation of energy on
subset of bodies:

• For faulty subset:• For faulty subset:

• Re-build Hierarchy

• recompute forces

• Foreach body: potentially
update position and velocity

Methodology

• Fault Models
• Symmetric

• Distribution w/ single and two Gaussian modes

• Memory

• An exponential distribution representing bit-flip model

• Non-symmetric• Non-symmetric

• Distribution w/ Gaussian centered at large positive (1e5
or 1e10) representing unsigned representation faults.

• Benchmarks
• University of Florida Sparse Matrix Collection

• Linear Solvers (CG and Richardson iteration)

Methodology (2)

• Detection Accuracy for MVM measured by F1-Score
• TP= True Positives, FP= False Positives, FN= False

Negatives

• 20 Millions runs for each configuration

FNFPTP

TP
F

++
=

2

2
1

• 20 Millions runs for each configuration

Example 2: Robustified GM (contd)

• Input Matrix:

• -<W,X> for one example of a matched graph

001825




























=
739

261

825

W

• -<W,X> for the correctly matched graph:

18

100

010

001

,

739

261

825

−=
































(lower than

incorrectly matched

Graph)

23

001

010

100

,

739

261

825

−=
































Other Work

• Past

• Hardware/System Support for Four Economic Models
for Manycore Computing [UIUC-CRHC-TR 2007]

• Towards Scalable Reliability Frameworks for Error
Prone CMPs [CASES 2009]

• Future

• Viewing all computation as Statistical Inference

• System-level Optimizations for Exploiting Application
Error Tolerance

• Performance/Robustness Tradeoffs of ODE Solvers in
face of Error-prone Hardware

Limitations

• Gradient Descent (1st order)
• learning rates can be difficult to select and slow

• E.g. choosing sequence of penalty parameters

• Newton-based approaches (2nd order)
• Expensive per iteration cost for Hessian calculation

0

2

4

6

8

10

0 20 40 60 80

E
xe

u
ct

io
n

 T
im

e
 (

M
in

u
te

s)

Input Size

Sort Scaling (interior point method –

newton-based)

Graph Matching (64x64) using Gradient Descent
(300 Iterations)

• Faulty MV product output (v’):

• Traditional ABFT corrects up to faults where k is

number of check vectors.

• Applications may only be concerned reducing error

(RMS Accuracy:)

Approximate Correction

eAuv +='








2

k

2||'|| vv −(RMS Accuracy:)

•
• Subtract projection of error on code space:

• Guaranteed to improve accuracy

2||'|| vv −

2||||

)(
'''

c

cec
vv

T

−=
e

c

Projection e onto c
22 ||'||||''|| vvvv −≤−

2

2
22

||||

)(
||'||||''||

c

ec
vvvv

T

−−=−

Decision Tree Based Results

Approximate Random (sampling) was frequently chosen

by the decision tree. The D-Tree configurations were

comparable the oracle configurations >90% of time.

MVM Results

50-60% Performance reductions are typical for large and

sparse problems for the same detection accuracy as

traditional dense checks.

Graph Matching(5x6) using
Gradient Descent (10k Iterations)

40

60

80

100
S

u
cc

e
ss

 R
a

te
 (

%
)

Baseline

100% Accuracy with Graph Matching using SGD even in
face of large error rates.

0

20

40

0 20 40 60

S
u

cc
e

ss
 R

a
te

 (
%

)

Fault Rate (% of FLOPs)

SGD, ALL

(iter=10k)

Future work

• Investigating other minimization strategies
• Sensitivity analysis - to parameter, compiler etc.

exact parameter want to explore
• Other benchmarks
• Comparison NMR – something to say about
• Other Solvers for numerical Optimzation formulations
• NMR approaches• NMR approaches

• Detection Limitations
• Dsn limitations
• Modular resilence – note that our detection work –
• In context of other applications approximateness of

detection

Additional Work

• Statistical Inference

• Partial Recomputation and Error Localization

• Modular Reliability

• PDE Reliability

Impact of Errors on Software

Profane

Instructions

Sacred

Instructions

Conclusion:
Points to categorization of instructions

Sacred instructions = error intolerant
Profane instructions = error tolerant

Instructions

First Step

Key Idea:

• Run profane
instructions in low
power/unreliability

Sacred

Instructions Sacred

Processor

Execute

power/unreliability
mode

• Run sacred
instructions in high
power/reliability mode

Profane

Instructions

Profane

Processor

Execute

Instruction Interleaving

movss (% r s i) ,%xmm0

l e a (%r15 ,%r9 , 1) ,%r a x

a d d s s (%r c x) ,%xmm0

movaps %xmm3,%xmm1

add $0x1 ,%r10d

add %r d i ,% r s i

add %r d i ,%r9

mul s s (%rax ,%r8 , 4) ,%xmm1

add %r d i ,%r c x

a d d s s (%rdx) ,%xmm0

add %r d i ,%rdx

24 a d d s s (%rax ,%r12 , 4) ,%xmm0

26 a d d s s (%rax ,%rbp , 4) ,%xmm0

28 a d d s s (%rax ,%rbx , 4) ,%xmm0

30 mul s s %xmm2,%xmm0

32 s u b s s %xmm1,%xmm0

Fine grained interleaving of
profane/sacred instructions

(7-10 instructions on average)
32 s u b s s %xmm1,%xmm0

34 movss %xmm0,(% r11)

add %r d i ,%r11

cmp %r10d ,%r14d

j g .L1

movss (% r s i) ,%xmm0

l e a (%r15 ,%r9 , 1) ,%r a x

a d d s s (%r c x) ,%xmm0

movaps %xmm3,%xmm1

add $0x1 ,%r10d

add %r d i ,% r s i

add %r d i ,%r9

mul s s (%rax ,%r8 , 4) ,%xmm1

add %r d i ,%r c x

a d d s s (%rdx) ,%xmm0

add %r d i ,%rdx

24 a d d s s (%rax ,%r12 , 4) ,%xmm0

26 a d d s s (%rax ,%rbp , 4) ,%xmm0

28 a d d s s (%rax ,%rbx , 4) ,%xmm0

add %r d i ,%r11

cmp %r10d ,%r14d

j g .L1

Mode switches can take
100-10000 cyles!

May kill any potential
benefit

Instruction Interleaving

movss (% r s i) ,%xmm0

l e a (%r15 ,%r9 , 1) ,%r a x

a d d s s (%r c x) ,%xmm0

movaps %xmm3,%xmm1

add $0x1 ,%r10d

add %r d i ,% r s i

add %r d i ,%r9

mul s s (%rax ,%r8 , 4) ,%xmm1

add %r d i ,%r c x

a d d s s (%rdx) ,%xmm0

add %r d i ,%rdx

24 a d d s s (%rax ,%r12 , 4) ,%xmm0

26 a d d s s (%rax ,%rbp , 4) ,%xmm0

28 a d d s s (%rax ,%rbx , 4) ,%xmm0

30 mul s s %xmm2,%xmm0

32 s u b s s %xmm1,%xmm0

Sacred

Processor

…

• Decoupling fine
grained interleaving
/dependencies not

32 s u b s s %xmm1,%xmm0

34 movss %xmm0,(% r11)

add %r d i ,%r11

cmp %r10d ,%r14d

j g .L1

movss (% r s i) ,%xmm0

l e a (%r15 ,%r9 , 1) ,%r a x

a d d s s (%r c x) ,%xmm0

movaps %xmm3,%xmm1

add $0x1 ,%r10d

add %r d i ,% r s i

add %r d i ,%r9

mul s s (%rax ,%r8 , 4) ,%xmm1

add %r d i ,%r c x

a d d s s (%rdx) ,%xmm0

add %r d i ,%rdx

24 a d d s s (%rax ,%r12 , 4) ,%xmm0

26 a d d s s (%rax ,%rbp , 4) ,%xmm0

28 a d d s s (%rax ,%rbx , 4) ,%xmm0

add %r d i ,%r11

cmp %r10d ,%r14d

j g .L1

Profane

Processor

…
/dependencies not
easy

• Use queue to
communicate
between modes

Proposed Execution Model

add $c, $a, $b

mul $d, $c, $a

mul $e, $c, $b

add $d, $d, $e
add $c, $a, $b

mul $e, $c, $b

push $(PBlockAddr)

push $c

push $e

Sacred

Processor

…
pop (update PC)

pop $c

mul $d, $c, $a

add $d, $d, $e

Profane

Processor

…Typical
Communication:
Sacred-> profane
.
.
.

Preconditioned Linear Solvers

Preconditioned-CG showed less improvement due
to less tolerance of intermediate errors on the solver.
IR (Richardson Iteration) showed improvements up
to 40% due to greater error tolerance and slower

convergence.

Fault Model Sensitivity

The fault model had little impact on the observed trends

across the techniques. Fault rate was a much more

significant system parameter.

Fault Rate sensitivity for Linear Solvers

Robustified

Application

Application Robustification

• Goal

• Redesign applications that produce acceptable output in

Conventional

Application

• Redesign applications that produce acceptable output in
presence of errors

• Same as output without errors for most applications [in spite of
intermediate stochastic behavior]

• Within certain tolerance for other applications

• Lower costs than simple re-execution based techniques

GD Solver Variations

• Shape of objective function impacts performance and
accuracy

Solver ‘friendly’ objective ‘unfriendly‘ objective

• Techniques for making objective more friendly
– Preconditioning

• Techniques for improving performance with
unfriendly objectives
– Projected Gradient/Rounding

– Fixed Rate/Adaptive Step Sizing

– Exploit sparsity in input matrices

Solver ‘friendly’ objective ‘unfriendly‘ objective

Graph Matching(5x6) using
Gradient Descent (10k Iterations)

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

Baseline SGD,LS SGD,SQS PRECOND ANNEAL ALL

100% Accuracy with proper subset of techniques for
arbitrary inputs

0

20

40

60

0 10 20 30 40 50 60

S
uc

ce
ss

 R
at

e
(%

)

Fault Rate (% of FLOPs)

Convergence of other Optimization Formulations

On traditional architectures, some low complexity
applications (polynomial) can incur large execution

overheads compared to the baselines.

Parallelism Opportunities

• By formulating applications as numerical optimization

problems, the solution is inherently parallelized.

Exploit with parallel architectures and accelerators.

(Solver-Engine) [Kesler, et al, 2010]

Linear Solver
Fault Injections

All of the solvers, on
average, show inherent error

tolerance.

The sparse techniques
detect fault magnitudes

which tend to result in critical
linear solver errors, with high

accuracy.

Algorithmic Decision Tree

Algorithmic Fault Correction

• Detection + Rollback recovery techniques really help
when errors are rare.

• Under high error rates, techniques for forward error
correction are needed.

• Application Robustification in an example of forward error
correction.correction.

• Our current work is aimed at algorithmic fault
correction, by relying on inherent application fault
tolerance.

• General problem formulation:

• given an application with unknown correct output y*, ensure
that the app, even in the presence of faults, produces an output
y within a certain threshold of y*.

• Faulty MV product output (v’):

• Traditional ABFT corrects up to faults where k is

number of check vectors.

• Instead, application may only care only about

Algorithmic Fault Correction for Linear Algebra (
MV Product)

Auv =Auv ='








2

k

• Instead, application may only care only about

approximately correcting vector error (e = v’ -v) and

improving accuracy. (RMS Accuracy:)

• Approx correction by subtracting the projection of

error onto the code space (check vector=c) The

partially corrected MV product output (v’’):

2||'|| vv −

2||||

)(
'''

c

cec
vv

T

−=

e

c

Projection e onto c

Algorithmic Fault Correction Benefits

• Guaranteed to improve accuracy

• Include multiple codes in check to meet necessary
accuracy targets.

22 ||'||||''|| vvvv −≤−
2

2
22

||||

)(
||'||||''||

c

ec
vvvv

T

−−=−

• Include multiple codes in check to meet necessary
accuracy targets.

• A given application sees faults manifested in different
ways (performance and accuracy).

• Approximate Error Correction efficiently provisions
the correction technique to account for the most
important faults, in terms of performance and
accuracy. Ongoing work

Replace prior graph with the following

• GM (32 x 32)
• Fault rate vs error rate

• Interior point method
• Simplex
• SGD
• Baseline
• Baseline DMR
• Baseline TMR

Performance Scaling

y = 0.002e0.112x

4

6

8

10

12

E
x

e
u

ct
io

n
 T

im
e

 (
M

in
u

te
s)

linear program scaling (interior point

method - cvxopt)

0

2

4

0 10 20 30 40 50 60 70 80

E
x

e
u

ct
io

n
 T

im
e

 (
M

in
u

te
s)

Input Size

A

B1

C

Bn

Bn-1

Discussion

1. An iteration of an optimization-based formulation
may have higher complexity than the baseline for
some apps (e.g. sort).

• Robustification still useful when the
computational substrate is inherently stochastic.

2. For other applications, the complexity of a single
iteration may be lower compared to the baseline
(e.g. graph matching).
iteration may be lower compared to the baseline
(e.g. graph matching).

• Robustification may be useful for such
applications even for voltage over scaling related
systems which exploit reliability/power tradeoff.

• By formulating applications as numerical
optimization problems, the problems are more
parallelized. (And can be exploited with an
accelerator)

Thanks ! ☺☺☺☺ Questions

Least Squares (100x10) using
Gradient Descent

1E-7

1E-5

1E-3

1E-1

E
rr

o
r

(w
.r

.t
.

Id
e

a
l)

SGD N=1000

Cholesky

LSQ using GD several magnitudes less error than
baseline with faults

1E-9

1E-7

0 10 20 30 40

R
e

la
ti

v
e

 E
rr

o
r

(w
.r

.t

Fault Rate (% of FLOPs)

Cholesky

SVD

• SVD & QR are not robust to even small fault rates.

Least Squares (100x10) using
Conjugate Gradient

1E-7

1E-5

1E-3

1E-1

E
rr

o
r

(w
.r

.t
.

Id
e

a
l)

Cholesky

SVD

• Floor on accuracy for given fault rate.

1E-9

1E-7

0 10 20 30 40R
e

la
ti

v
e

 E
rr

o
r

(w
.r

.t

Fault Rate (% of FLOPs)

CG N=5

CG N=10

CG converges faster (1000 iterations vs. 5-10 iterations)

Least Squares(100x10)
Energy / Robustness Tradeoffs

[CELLREF]

[CELLREF]

[CELLREF]
[CELLREF]

[CELLREF]

[CELLREF]

40000

60000

80000

100000

120000
E

n
e

rg
y

 (
 P

o
w

e
r*

 #
 o

f
F

LO
P

)

Cholesky

CG

With symmetric positive definite inputs and relaxed
accuracy targets, more than an order of magnitude

energy savings over the best baseline (Cholesky).

[CELLREF][CELLREF][CELLREF]
[CELLREF]

[CELLREF][CELLREF][CELLREF][CELLREF]

[CELLREF]

0

20000

40000

1E-7 1E-5 1E-3 1E-1

E
n

e
rg

y
 (

 P
o

w
e

r*
 #

 o
f

F
LO

P
)

Accuracy Target

CG

Least Squares(100x10)
Energy / Robustness Tradeoffs

40000

60000

80000

100000

120000
E

n
e

rg
y

 (
 P

o
w

e
r*

 #
 o

f
F

LO
P

)

Cholesky

With symmetric positive definite inputs and relaxed
accuracy targets, more than an order of magnitude

energy savings over the best baseline (Cholesky).

0

20000

40000

1E-7 1E-5 1E-3 1E-1E
n

e
rg

y
 (

 P
o

w
e

r*
 #

 o
f

F
LO

P
)

Accuracy Target

Cholesky

CG

Sorting (size=10) and Graph Matching(5x6) using
Gradient Descent

40

60

80

100

S
u

cc
e

ss
 R

a
te

 (
%

)

Baseline

40

60

80

100

S
u

cc
e

ss
 R

a
te

 (
%

)

Sort Graph Matching

100% Accuracy with Sort and GM using SGD even in
face of large error rates.

0

20

40

0 50 100

S
u

cc
e

ss
 R

a
te

 (
%

)

Fault Rate (% of FLOPs)

SGD, SQS

(iter=10k) 0

20

40

0 50 100

S
u

cc
e

ss
 R

a
te

 (
%

)

Fault Rate (% of FLOPs)

Why optimization Solvers

• Iterative algorithms -> successive approximations
to obtain more accurate solutions

• Optimizations problem - > Find best available
solution among several alternatives

• Multiple acceptable possible answers

• Iterative -> repetitive -> redundant • Iterative -> repetitive -> redundant

• Approach

• Get at solution fast

• Evaluate goodness

• Repeat

• Succesively better outputs

• More data flow vs Control -->

