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The Reliability Problem

Eniac (1945)



Conventional Solutions

Voyager (1977)
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The Power Wall

Mobile Systems High Performance Systems

Clearly, low cost resilience techniques are needed

4 million devices by 2020

L1 cache soft errors once every 5 

hours on 104K node BlueGene/L

Clearly, low cost resilience techniques are needed



Stop ignoring non-determinism, error tolerance

Applications E

Designed/architected 
from ground up 

to minimize energy 
by exposing errors 

Number and nature 
of errors dictated by

application-level 
error tolerance

Our research focuses on approaches to 
architect, design, and program stochastic processors

Deterministic Devices

Processor

Non-Deterministic Devices

Stochastic Processor

by exposing errors 
to software

error tolerance



Non-Deterministic Devices

E

Stochastic Processor

Error Tolerant ApplicationsApplications

Non-Deterministic Devices

E

Stochastic Processor

HW-based Error Resilience

Applications

Non-Deterministic Devices

E

Stochastic Processor



Application and Algorithm Awareness

• Natural Error Tolerance

Hello?

Error 

Intolerant
Error 

Tolerant



Spatial Reuse Temporal reuse

Fault containment

Application and Algorithm Awareness

Fault containment

This talk:  application and algorithm-aware approaches 

for low cost error resilience



Robustified

Application

Application Robustification (AR)

Conventional  

Application

• Goal:   Redesign applications to produce acceptable 
output in presence of errors 

• Same as output without errors for most applications 

• Within certain tolerance for other applications



An Optimization-based Approach to AR

f(x)

ρo

ρ1Conventional 

Application

Optimization 

Problem

Primary Issues

• How to construct f(x) when we don’t know x*?

• What is the most efficient solver for f(x)?

f(x)
x*



Example 1:  System of Equations (SOE)

• Problem:  Solve a system of equations. 
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• Traditional solution methods:    SVD, QR, Cholesky
factorization.

 22210 yxccc2221100 yxcxcxc =++



Robustified System of Equations 

• Equivalent Optimization Problem:

2|||| bAx −

bAx =

2||||)(min bAxxf −=

AxbAxAx TTT 2−≈

Appropriate Solver Used for Quadratic Problem



Example Formulation 2:    Sorting

• What is sorting?

• Finding the correct relative position of each element in the 
unsorted list.  [Permutation matrix]

• Example

• Input u = [5,2,8]T

• X:  3x3 Permutation Matrix 
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Permutation to reverse

• X:  3x3 Permutation Matrix  58001
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Permutation to sort

• Robustified Formulation

• The list which arranges the elements of list in ascending 
order will minimize the product -v(Xu)
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Robustified Sorting Example (contd)
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Robustified Sorting (contd)

• Constraints need to be set up correctly:

XuvT

Rx nxn
−

∈
min
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• As unconstrained problem:
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Penalty Function



Example 3: Bipartite Graph Matching  

• Input:   W is matrix of weights for all    
edges in the graph a
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• What is Bipartite Graph Matching?
• Find the assignment of edges which do not 
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• Find the assignment of edges which do not 

share any vertices and gives the largest total 

weight.



Example 3: Robustified GM

• Constraints need to be set up correctly:
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Scope of Transformations

SOE:

SORT:

GM:

AxbAxAx TTT

Rx nx
2min

1
−

∈

XuvT

Rx nxn
−

∈
min

><−
∈

XW
nxnRx

,min

(as Quadratic Program)

( as Linear Program)

( as Linear Program)

• Large class of problems can be solved as LP.  

• Any polynomial algo can be emulated in polynomial time

• Applicable for harder problems as well! 

• NP, ILP, discrete/combinatorial optimizations

∈Rx



Identifying the Best Solver

• Desirable attributes of a good solver
• Fast convergence

• Good error tolerance

• Low power

• User controllable degree error tolerance

• Applicable to a wide range of problems

f(x)

αρ+=+ ii xx 1

)( ixf−∇=ρ )( ixf−∇=ρ

Other solvers possible as well: subject of future work

Option 1:  Gradient Descent 

(GD)   
• Advantage: shown to be 

robust under errors

• Disadvantage: can take many 

iterations to converge

Option 2:  Conjugate 

Gradient(CG)
• Advantage: relatively fast

• Disadvantage: objective 

function specific [quadratic]



System of Equations (100x10) using GD / CG
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100%  Accuracy even for large error rates.  



Solution:  An accelerator architecture that speeds up linear algebra 

operations [optimization-based design is often more parallelizable]

Accelerated Non-Accelerated 

Stepping Back

105

Graph Matching (64x64) Performance

Advantage:  Generality.  Many applications can use this formulation

Disadvantage: Some applications may take  a long time to converge
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Long convergence times still a 

limitation for certain app classes (sort).    



Sparse Linear Algebra

• Future Applications:  A large class utilize sparse linear 

algebra algorithms (e.g. graph-based, data mining, and 

recognition)

• HPC Applications: PDE/ODE Solvers 
• Linear System Solvers (e.g. Conjugate Gradient)
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• Common linear operation for many of these kernels: 

• Matrix Vector Product:

f(x)

ρ1

Axy =

Goal:  Techniques for fortifying sparse linear algebra 

for unreliable hardware.



Detection for Linear Algebra: Past Approaches

f(x)

Design a low-complexity mathematical invariant that can 

be used to check computation

x y

Example:  Matrix vector multiplication (MVM) uses 

traditional linear error correcting codes to develop 

invariant

Check Error

A x y=



Past Approach:  Matrix Vector Multiplication

A x y

=*

* =

Compare checksums

O(n2)

For sparse problems, the complexity of this dense 

O(n)Sparse 

Matrix

Column Sums [ABFT ‘85] 

τ>− |)1()(1| xAy TT

Ax)(1T xAT )1(=

O(n)

For sparse problems, the complexity of this dense 

check is identical to the protected operation! O(n)



Structure in Sparse Problems

Qpband msc00726


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
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=
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n
xAAx TT )1()(1

Sampled (s)

Qpband msc00726

Uniformity in the column sums allows for sampling 

of the MVM check for these problems.



Frequent Reuse in Sparse Problems

• Many linear algebra applications use the same data as 
a part of many individual operations.



Conditioning:  Identity

∑

Key Insight: Frequent reuse may allow for preconditioning 

in spite of high setup costs

• How can the check be preconditioned?

1. Observe: basic approach is special case with a code:   c=1

2. Choose code  s.t. checksum is smoothed

∑

Identity Conditioning



Conditioning:  Null

• Conditioning can also make the problem more 

applicable for sampling or clustering

• Choose code that eliminates half 

of check entirely. 

0

Find vector in null space

Null Conditioning

Applicable for Dense Problems as well!



Matrix Vector Multiplication Results

Detection Overhead 50-60% lower than 

dense checks for sparse problems.



Detection Doth Not Efficient Fault Tolerance Make
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Under high error rates, the overhead of Error 

Correction may become prohibitive



Partial Recomputation

• Insight:  outputs/state are usually only partially 
wrong when faults occur.

A

B1

error

Partially recompute output

C

Bn

Bn-1

Strategy:  Upon detecting an error, only partially 

recompute the output (i.e. the segment which contains 

the error)

error



Error Localization

A

B1
Low overhead check 

across all outputs

Apply sub-checks

Localized error

Compute and verify sequence of checks such that 

errors are localized to specific subcomputations

(cone-analysis in hardware).

Bn

Bn-1 Localized error



Matrix Vector Multiplication (MVM)

A x y

=*

* =

Output error in fraction of 

output vector

Partially recompute output=*

As x ys=

Localize errors



Error Localization for Matrix Vector Multiply
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Results with increasing fault rates

Partial recomputation leads to 2x-3x less 

overhead for high fault rates. 



Results with increasing fault rates

Under high error rates Partial recomputation converges 

70% more often given maximum iteration limit.



Building Robust Applications via Statistical Inference

states
x1 x2 x3

p
d

f

Application

Draw 

Samples

x1, x2, x3

Stochastic Information Processing Framework

1. How do we generate this distribution for different applications?

2. What sampling techniques should we use?

3. Other issues : 

generality, programmability, completeness, complexity

Converting applications to a 

stochastic local search framework



Robust and Efficient Architectures

• What hardware components do these algorithms 
map to naturally?

n-sided 

dice
w

e
ig

h
ts

sample
w

e
ig

h
ts

• Which components need to be robust?

• How can these be mapped to nano-blocks?

• Energy, performance, quality tradeoffs



Summary

• Conventional Fault Tolerance Techniques not practical for 
future power-constrained systems 

• Even disregarding power constraints, the techniques do 
not suffice when fault rates are high

• Too much cost to detection/recomputation

• Applications Robustification• Applications Robustification

• Algorithmic Techniques to build inherently robust 
Applications that “roll forward” on errors

• Error Localization and Partial Recomputation
support the same goal





Conventional Fault Tolerance Approaches

• Hardware-based fault tolerance approaches may be 
impractical for severely power-constrained systems .

• Duplication and TMR, expensive

• Typically based on worst-case and conservative designs.  

• General software-based approaches may also be impractical.
• Redundancy-based, costs have been well-documented
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Slide 42

JHP1 What are the X-axis units? Error rate as probability? ie. In each cycle, one of 10 nodes makes a error with probability 10^-08. Or is it each node
and hence the overall rate is 10-times for the system?

Traditional FT methods:
Hardware - duplication or TMR.
Time: recompute one or more times, same computation or altered implemention of same function.
Information: Coding, Assertion checks
Software methods use Time and/or Informtion redundancies.
Janak H. Patel, 12/7/2012



The Reliability Problem
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Example:  Error Localization



Scaling

As the number of nodes increases the benefits 

from partial recomputation only increase.



Limitation

Could be as high as 3x 

Area/Energy Overhead A

B

C

Voter

Input

Output

• Why am I talking about this now?

1. Power

2. Power

3. Power

C



• Opportunities lie in compilers and architectural 
approaches to exploit application-level error 
tolerance



Summary

• Traditional HW/SW contract expects perfect HW

• HW is increasingly non-deterministic

Guaranteeing correctness is expensive, 

especially when correctness is not required

• Opportunistically exposing non-determinism affords 
significant energy benefits

[HPCA’10, ASPDAC’10, 
significant energy benefits

•Novel physical design methodologies

•Microarchitectural optimizations

•Compiler optimizations

• An early prototype confirms significant potential

• Future work will explore truly stochastic computing              ,
energy-efficient exascale systems                                      ,
predictably timed systems, and multi-scalar systems

[HPCA’10, ASPDAC’10, 
DAC’10, CASES’11, TCAD’11]

[ICCD’10, DATE’10, TECS’11, CASES’11]

[DAC’12A, DAC’12B]

[DAC’12B]

[DAC’12B]

[DATE’09, HPCA’12, DAC’12]

[TVLSI’12]



Architectures for Many-core Resilience 

• Dynamic Constitution and In-network Error 
Tolerance

• Fluid NMR



Future Work

• Application Robustification
• Investigating other minimization strategies
• Sensitivity analysis of parameters (i.e. penalty, step size, 

conditioning)
• Evaluate other benchmark transformations

• Low overhead fault detection for Sparse linear 
algebra

• Low overhead fault detection for Sparse linear 
algebra
• Modular Resilience 

• Understand how the approximate nature of checks have 
impact In the context of other applications.

• Algorithmic Partial Recomputation and Error 
Localization
• Understand generality in context of different classes of 

applications



Architectures and Compilers for Exploiting 
Application-level Error Tolerance



QR-based Algorithm

• Inputs:  A, b;   Output: x

1. [Q, R] = qr(A)      // Compute QR factorization (Q 
orthonormal, R upper triangular) 

// A=QR 

//  QTAx =  QTb

//  QTQ = I//  QTQ = I

//  Rx =  QTb

1. z = QTb

2. x = backsubstitution(R,z)



Linear Solver Results

The sparse techniques in the context of a full 
system implementation, allow CG to complete 10-

20% faster compared to the traditional dense check.   

Matrix reuse amortizes the setup costs for 
conditioning and clustering techniques.



Householder Factorization (QR)



Back substitution

• x=backsubstitute(U,b)

n = length( b ); 
x = zeros( n, 1 ); 
for i=n:-1:1 for i=n:-1:1 

x(i) = ( b(i) - U(i, :)*x )/U(i, i); 
end 



FFT

• Staged computation

• Recursively apply 
energy check 
(Parseval’s thm.):

• Recompute sub-DFT 
if error detected



Barnes-Hut

• Detect faults by 
conservation of energy on 
subset of bodies:

• For faulty subset:• For faulty subset:

• Re-build Hierarchy 

• recompute forces

• Foreach body:  potentially 
update position and velocity



Methodology

• Fault Models 
• Symmetric

• Distribution w/ single and two Gaussian modes

• Memory 

• An exponential distribution representing bit-flip model

• Non-symmetric• Non-symmetric

• Distribution w/ Gaussian centered at large positive (1e5 
or 1e10) representing unsigned representation faults.

• Benchmarks
• University of Florida Sparse Matrix Collection

• Linear Solvers (CG and Richardson iteration)



Methodology (2)

• Detection Accuracy for MVM measured by F1-Score 
• TP= True Positives, FP= False Positives, FN= False 

Negatives

• 20 Millions runs for each configuration

FNFPTP

TP
F

++
=

2

2
1

• 20 Millions runs for each configuration



Example 2: Robustified GM (contd)

• Input Matrix:  

• -<W,X> for one example of a matched graph
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Other Work

• Past

• Hardware/System Support for Four Economic Models 
for Manycore Computing   [UIUC-CRHC-TR 2007]

• Towards Scalable Reliability Frameworks for Error 
Prone CMPs  [CASES 2009]

• Future

• Viewing all computation as Statistical Inference

• System-level Optimizations for Exploiting Application 
Error Tolerance 

• Performance/Robustness Tradeoffs of ODE Solvers in 
face of Error-prone Hardware



Limitations

• Gradient Descent (1st order)
• learning rates can be difficult to select and slow

• E.g. choosing sequence of penalty parameters

• Newton-based approaches (2nd order)
• Expensive per iteration cost for Hessian calculation
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Graph Matching (64x64) using Gradient Descent 
(300 Iterations)



• Faulty MV product output (v’):

• Traditional ABFT corrects up to            faults where k is 

number of check vectors.

• Applications may only be concerned  reducing error 

(RMS Accuracy: )

Approximate Correction
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Decision Tree Based Results

Approximate Random (sampling) was frequently chosen 

by the decision tree.  The D-Tree configurations were 

comparable the oracle configurations >90% of time.



MVM Results

50-60% Performance reductions are typical for large and 

sparse problems for the same detection accuracy as 

traditional dense checks.



Graph Matching(5x6) using 
Gradient Descent (10k Iterations)
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Future work

• Investigating other minimization strategies
• Sensitivity analysis   - to parameter, compiler etc. 

exact parameter want to explore
• Other benchmarks 
• Comparison NMR – something to say about
• Other Solvers for numerical Optimzation formulations
• NMR approaches• NMR approaches

• Detection Limitations
• Dsn limitations
• Modular resilence – note that our detection work –
• In context of other applications approximateness of 

detection 



Additional Work

• Statistical Inference

• Partial Recomputation and Error Localization

• Modular Reliability

• PDE Reliability



Impact of Errors on Software

Profane 

Instructions

Sacred 

Instructions

Conclusion:
Points to categorization of instructions

Sacred instructions = error intolerant
Profane instructions = error tolerant

Instructions



First Step

Key Idea:

• Run profane 
instructions in low 
power/unreliability 

Sacred 

Instructions Sacred 

Processor

Execute

power/unreliability 
mode

• Run sacred 
instructions in high 
power/reliability mode

Profane 

Instructions

Profane 

Processor

Execute



Instruction Interleaving

movss (% r s i ) ,%xmm0

l e a (%r15 ,%r9 , 1 ) ,%r a x

a d d s s (%r c x ) ,%xmm0

movaps %xmm3,%xmm1

add $0x1 ,%r10d

add %r d i ,% r s i

add %r d i ,%r9

mul s s (%rax ,%r8 , 4 ) ,%xmm1

add %r d i ,%r c x

a d d s s (%rdx ) ,%xmm0

add %r d i ,%rdx

24 a d d s s (%rax ,%r12 , 4 ) ,%xmm0

26 a d d s s (%rax ,%rbp , 4 ) ,%xmm0

28 a d d s s (%rax ,%rbx , 4 ) ,%xmm0

30 mul s s %xmm2,%xmm0

32 s u b s s %xmm1,%xmm0

Fine grained interleaving of 
profane/sacred instructions

(7-10 instructions on average)
32 s u b s s %xmm1,%xmm0

34 movss %xmm0,(% r11 )

add %r d i ,%r11

cmp %r10d ,%r14d

j g .L1

movss (% r s i ) ,%xmm0

l e a (%r15 ,%r9 , 1 ) ,%r a x

a d d s s (%r c x ) ,%xmm0

movaps %xmm3,%xmm1

add $0x1 ,%r10d

add %r d i ,% r s i

add %r d i ,%r9

mul s s (%rax ,%r8 , 4 ) ,%xmm1

add %r d i ,%r c x

a d d s s (%rdx ) ,%xmm0

add %r d i ,%rdx

24 a d d s s (%rax ,%r12 , 4 ) ,%xmm0

26 a d d s s (%rax ,%rbp , 4 ) ,%xmm0

28 a d d s s (%rax ,%rbx , 4 ) ,%xmm0

add %r d i ,%r11

cmp %r10d ,%r14d

j g .L1

Mode switches can take 
100-10000 cyles! 

May kill any potential 
benefit



Instruction Interleaving

movss (% r s i ) ,%xmm0

l e a (%r15 ,%r9 , 1 ) ,%r a x

a d d s s (%r c x ) ,%xmm0

movaps %xmm3,%xmm1

add $0x1 ,%r10d

add %r d i ,% r s i

add %r d i ,%r9

mul s s (%rax ,%r8 , 4 ) ,%xmm1

add %r d i ,%r c x

a d d s s (%rdx ) ,%xmm0

add %r d i ,%rdx

24 a d d s s (%rax ,%r12 , 4 ) ,%xmm0

26 a d d s s (%rax ,%rbp , 4 ) ,%xmm0

28 a d d s s (%rax ,%rbx , 4 ) ,%xmm0

30 mul s s %xmm2,%xmm0

32 s u b s s %xmm1,%xmm0

Sacred 

Processor

…

• Decoupling fine 
grained interleaving 
/dependencies not 

32 s u b s s %xmm1,%xmm0

34 movss %xmm0,(% r11 )

add %r d i ,%r11

cmp %r10d ,%r14d

j g .L1

movss (% r s i ) ,%xmm0

l e a (%r15 ,%r9 , 1 ) ,%r a x

a d d s s (%r c x ) ,%xmm0

movaps %xmm3,%xmm1

add $0x1 ,%r10d

add %r d i ,% r s i

add %r d i ,%r9

mul s s (%rax ,%r8 , 4 ) ,%xmm1

add %r d i ,%r c x

a d d s s (%rdx ) ,%xmm0

add %r d i ,%rdx

24 a d d s s (%rax ,%r12 , 4 ) ,%xmm0

26 a d d s s (%rax ,%rbp , 4 ) ,%xmm0

28 a d d s s (%rax ,%rbx , 4 ) ,%xmm0

add %r d i ,%r11

cmp %r10d ,%r14d

j g .L1

Profane 

Processor

…
/dependencies not 
easy

• Use queue to 
communicate 
between modes



Proposed Execution Model

add    $c, $a, $b  

mul    $d, $c, $a

mul    $e, $c, $b

add    $d, $d, $e  
add    $c, $a, $b 

mul    $e, $c, $b

push $(PBlockAddr)

push  $c

push  $e

Sacred 

Processor

…
pop (update PC)

pop $c

mul    $d, $c, $a

add    $d, $d, $e  

Profane 

Processor

…Typical 
Communication:
Sacred-> profane
.
.
.



Preconditioned Linear Solvers

Preconditioned-CG showed less improvement due 
to less tolerance of intermediate errors on the solver.
IR (Richardson Iteration) showed improvements up 
to 40% due to greater error tolerance and slower 

convergence.



Fault Model Sensitivity

The fault model had little impact on the observed trends 

across the techniques.  Fault rate was a much more 

significant system parameter.



Fault Rate sensitivity for Linear Solvers



Robustified 

Application

Application Robustification

• Goal 

• Redesign applications that produce acceptable output in 

Conventional  

Application

• Redesign applications that produce acceptable output in 
presence of errors 

• Same as output without errors for most applications [in spite of 
intermediate stochastic behavior]

• Within certain tolerance for other applications

• Lower costs than simple re-execution based techniques



GD Solver Variations

• Shape of objective function impacts performance and 
accuracy

Solver ‘friendly’ objective ‘unfriendly‘ objective 

• Techniques for making objective more friendly
– Preconditioning

• Techniques for improving performance  with 
unfriendly objectives
– Projected Gradient/Rounding

– Fixed Rate/Adaptive Step Sizing 

– Exploit sparsity in input matrices

Solver ‘friendly’ objective ‘unfriendly‘ objective 



Graph Matching(5x6) using 
Gradient Descent (10k Iterations)
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Convergence of other Optimization Formulations

On traditional architectures, some low complexity 
applications (polynomial) can incur large execution 

overheads compared to the baselines.



Parallelism Opportunities

• By formulating applications as numerical optimization 

problems, the solution is inherently parallelized.  

Exploit with parallel architectures and accelerators.  

(Solver-Engine) [Kesler, et al, 2010] 



Linear Solver 
Fault Injections

All of the solvers, on 
average, show inherent error 

tolerance. 

The sparse techniques 
detect fault magnitudes 

which tend to result in critical 
linear solver errors, with high 

accuracy.



Algorithmic Decision Tree



Algorithmic Fault Correction

• Detection + Rollback recovery techniques really help 
when errors are rare.  

• Under high error rates, techniques for forward error 
correction are needed.

• Application Robustification in an example of forward error 
correction.correction.

• Our current work is aimed at algorithmic fault 
correction, by relying on inherent application fault 
tolerance.

• General problem formulation:  

• given an application with unknown correct output y*,  ensure 
that the app, even in the presence of faults, produces an output 
y within a certain threshold of y*.



• Faulty MV product output (v’):

• Traditional ABFT corrects up to            faults where k is 

number of check vectors.

• Instead, application may only care only about 

Algorithmic Fault Correction for Linear Algebra ( 
MV Product )
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• Instead, application may only care only about 

approximately correcting vector error (e = v’ -v) and 

improving accuracy.  (RMS Accuracy: )

• Approx correction by subtracting  the projection of 

error onto the code space (check vector=c)  The 

partially corrected MV product output (v’’):
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Algorithmic Fault Correction Benefits

• Guaranteed to improve accuracy

• Include multiple codes in check to meet necessary 
accuracy targets.

22 ||'||||''|| vvvv −≤−
2

2
22

||||

)(
||'||||''||

c

ec
vvvv

T

−−=−

• Include multiple codes in check to meet necessary 
accuracy targets.

• A given application sees faults manifested in different 
ways (performance and accuracy).  

• Approximate Error Correction efficiently provisions 
the correction technique to account for the most 
important faults, in terms of performance and 
accuracy. Ongoing work



Replace prior graph with the following

• GM    (32 x 32)
• Fault rate vs error rate

• Interior point method 
• Simplex
• SGD
• Baseline 
• Baseline DMR
• Baseline TMR



Performance Scaling
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Discussion

1. An iteration of an optimization-based formulation 
may have higher complexity than the baseline for 
some apps (e.g. sort).   

• Robustification still useful when the 
computational substrate is inherently stochastic.

2. For other applications, the complexity of a single 
iteration may be lower compared to the baseline  
(e.g. graph matching).
iteration may be lower compared to the baseline  
(e.g. graph matching).

• Robustification may be useful for such 
applications even for voltage over scaling related 
systems which exploit reliability/power tradeoff.

• By formulating applications as numerical 
optimization problems, the problems are more 
parallelized.    (And can be exploited with an 
accelerator)



Thanks ! ☺☺☺☺ Questions



Least Squares (100x10) using 
Gradient Descent
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• SVD & QR are not robust to even small fault rates.



Least Squares (100x10) using 
Conjugate Gradient

1E-7

1E-5

1E-3

1E-1

E
rr

o
r 

(w
.r

.t
. 

Id
e

a
l)

Cholesky

SVD

• Floor on accuracy for given fault rate.
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CG converges faster (1000 iterations vs. 5-10 iterations)



Least Squares(100x10) 
Energy / Robustness Tradeoffs
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With symmetric positive definite inputs and relaxed 
accuracy targets, more than an order of magnitude 

energy savings over the best baseline (Cholesky).
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Least Squares(100x10) 
Energy / Robustness Tradeoffs
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Sorting (size=10) and Graph Matching(5x6) using
Gradient Descent
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100%  Accuracy with Sort and GM using SGD even in 
face of large error rates.  
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Why optimization Solvers

• Iterative algorithms -> successive approximations 
to obtain more accurate solutions

• Optimizations problem - >  Find best available  
solution among several alternatives

• Multiple acceptable possible answers

• Iterative -> repetitive -> redundant • Iterative -> repetitive -> redundant 

• Approach

• Get at solution fast

• Evaluate goodness

• Repeat 

• Succesively better outputs

• More data flow vs Control -->  


