
ELI-C: A Loop-level Workload Characterization Tool

Elie M. Shaccour
American University of Beirut

Beirut, Lebanon
ems10@aub.edu.lb

Mohammad M. Mansour
American University of Beirut

Beirut, Lebanon
mmansour@aub.edu.lb

Abstract—Every processor manufacturing cycle includes a
workload gathering step. The input to this step is a diverse
set of workloads from processor-specific domains. Simulating the
entire workload set is time consuming and resource intensive,
and therefore is infeasible. To reduce the simulation time, some
techniques in the literature have exploited the internal pro-
gram repetitiveness to extract representative segments. Other ap-
proaches involve exploiting the program similarities and reducing
the number of workloads. In this paper, we propose an orthogonal
and complementary approach to reduce the simulation time by
exploiting loop-level program characterization similarities across
workloads in a set. We developed a loop-level analyzer, dubbed
ELI-C, that extracts loop characterizations from workloads, and
then applies a machine learning technique to group workloads
based on similarities. Finally, we employ a novel heuristic to
exclude workloads that are highly similar and arrive at a smaller
representative subset that preserves the characteristics of the
initial set. Simulation results demonstrate that applying this
technique to a set of 20 workloads reduces the set size into half
while preserving the main characterization of the initial set of
workloads.

Keywords—Loop-level analysis, performance, workload charac-
terization.

I. INTRODUCTION

A processor is typically optimized for its targeted ap-
plication domain. The design phase begins by choosing the
reference workloads for which the processor is targeted for.
For example, if a processor is targeted for media usage
then the set of reference workloads would include media
applications like video decoders, signal-processing and other
relevant workloads. Since most domains span a wide range of
applications, we end up with a large workload set. Further-
more, a processor currently at the beginning of manufacturing
will not be released for at least three years. So the previously
chosen workloads might become obsolete when the processor
is released. To overcome this situation, computer architects
try to predict future usages within the targeted domain and
add them to the workload set. In brief, the workload collec-
tion stage generates a large workload set to understand and
optimize the processor design. To narrow down the design
features, computer architects analyze and characterize each
benchmark’s execution behavior. For example, identifying high
data sharing numbers might lead to designing a larger common
L2 cache for the various cores rather than higher independent
L1 caches. Once the general processor features are decided
(memory hierarchy, number of cores, etc.), a simulator will

This research has been supported by Intel Corporation under the Middle
East Energy Research collaboration project.

be developed to pin down the final properties, e.g. L1 cache
size 1MB instead of 2MB. For this, the workload set needs
to be simulated with each configuration to determine the best
possible outcome.

To discover optimization opportunities, the developed sim-
ulator collects detailed simulation results from the chosen
workloads and as such requires a lot of processing power
and time. Some simulations can take up to days and even
months to completion thus making it unfeasible to run all the
workload set with each configuration. To reduce simulation
time, architects can resort to either a less detailed simulation
or a reduced workload set. While lower detailed simulations
lead to less fine-grained results, a reckless reduction in the
simulation set might lead to completely hiding-out certain
results. Recently, researchers targeted the latter solution with
systematic reduction techniques to identify the similarity. Yet,
what is similarity? And how is it defined between workloads?
Even though each of the applications might differ by descrip-
tion and by the tasks they perform, it might be evident that they
interact in a similar approach with the processor such that ana-
lyzing and optimizing for only one of them would be sufficient
to drastically improve the execution of the other. Being able to
identify this similarity and thus remove redundant workloads
would reduce the workload set and thus simulation time. For
example, our previous media set might include both an MPEG
codec for videos and a JPEG codec for images. Although they
have different described applications, yet MPEG includes a
JPEG codec, which might seem redundant in this set.

In this paper we propose a loop-based characterization
tool, ELI-C, to systematically analyze and reduce a workload
set. The proposed framework starts by identifying and char-
acterizing key loops from the workloads in the set. Using the
characterizations, we construct a feature vector for each loop
and feed these vectors into a machine learning tool which
classifies them into clusters based on similarity. Remapping
the workloads into a vector of these cluster centers provides
a standardized way to represent these workloads so that they
can be compared. We define a similarity score between two
workloads as the inner product of the two workload vectors.
Finally, we start to eliminate similar workloads one by one
using a heuristic that works with the similarity scores. By using
this framework we were able to achieve a 50% reduction in
the number of applications while preserving dynamic charac-
terization techniques.

II. BACKGROUND AND RELATED WORK

Workload characterization has been employed to under-
stand the execution behavior of multiprocessor workload
projects. Due to the power wall limitation, the trend of



Fig. 1: Loop time of various scientific workloads

microprocessor development has shifted from a faster single
processor core to the integration of multiple cores on the same
die. However, building many core simulators is a challenging
process and very few architectural simulators are designed to
take advantage of the multiple cores offered in today’s pro-
cessors: for example MIT Graphite simulator [1]. To manage
simulation time and resource challenges for multiprocessor de-
velopment projects, two complementary approaches are often
taken to reduce the target workloads.

The first approach is to reduce the simulation time of each
application by only running smaller yet representative portions
of the application. Sherwood et al. [2] presented a methodology
to extract a reasonable sized interval from the program which
has a similar fingerprint to the full program. This is achieved
by building the basic block vectors (BBV) of the program.
The BBV contains the normalized execution frequency of
Basic Blocks (single entry, single exit parts of the code).
After isolating the initialization section, clustering is performed
on the remaining part of the BBVs to find the reduced set.
This method exploits the internal similarity/redundancy of the
programs, and aims at reducing the simulation time by using
the representative program phase as the proxy of the entire
program execution. The SMARTS framework proposed by
Wunderlich et al. [3] employs a statistical sampling strategy
to predict a given cumulative property (CPI) of the entire
workload with a desired confidence level. It uniformly samples
the program intervals in the dynamic instruction stream for
detailed simulation, and uses fast-forwarding and warm-up on
the discarded instructions to speed up the simulation time.

The second approach, which relies more on characteriza-
tions, is to identify the similarity between the workloads and
remove redundant programs to yield a smaller representative
subset. Biena et al. [4] presented a comprehensive comparison
between PARSEC and SPLASH-2 benchmarks. Their study
used execution driven simulation on PIN to obtain chosen
characteristics including instruction mix, working set sizes,
and sharing size and intensity. Using the collected data, they
applied Principle Component Analysis (PCA) to choose the
uncorrelated data and then applied hierarchical clustering to
group similar programs into single clusters. Phansalkar et
al. [5] explored the benchmark similarity inside SPECcpu 2006
benchmark suite to identify the distinct and representative
programs. They used micro-architecture dependent hardware
counters to collect program characteristics. Then, in a similar

Fig. 2: ELI-C data flow graph

methodology to Biena et al. [4] they used PCA to extract
uncorrelated dimensions from a diverse set of workload char-
acteristics, and finally they measured the program similarity
with K-means clustering analysis. It is good to point out that
in [4] they used PIN, a detailed software simulator, while [5]
exploited the limited view hardware counters approach.

Joining both previous approaches, Lieven et al. [6], pro-
posed a methodology that exploits both the program’s internal
repetitive phase behavior and cross-program similarities. They
used SIMPOINT [7], a program phase analysis tool, to break
each program into intervals and collect their microarchitecture-
independent characteristics. Representative phases from the en-
tire benchmark suite are collected. This methodology reduced
the number of simulated instructions by 1.5 over SIMPOINT.
Our proposed framework, similar to Lieven [6] tries to exploit
internal as well as cross-program repetitiveness. However,
rather than being solely based on execution dynamics, our
framework integrates analysis of critical program structures
such as loops which not only provides additional views,
accuracy and lower simulation time, but also opens up a
new possibility to explore emerging workloads using the
combination of these structures. A number of researches have
looked at loop-centric analysis. Moseley et al. [8] presented
a set of loop-centric profiling tools: an instrumentation-based
loop profiler, which uses basic blocks to detect and account
the loops; and a light-weight sampling based loop profiler,
which has a faster profiling speed but provides less detailed
information. The goal of their profiler was to help exploit
loop level parallelism and expose the program hotspots. Our
loop level analysis differs from other loop-centric analysis
by having the capability of extracting characteristics such
as arithmetic intensity, instruction mix, branch misprediction
ratio, data reuse patterns, etc.

III. CHARACTERIZATION FRAMEWORK

Traditional characterization approaches either execute ev-
ery instruction of the workload or sample periods of execution.
These approaches disregard workload behavior characteristics.
In this work, we studied execution trends of several open
source workloads: NPB, PARSEC, HPCC, etc. This study led
us to perceive that scientific workloads spend the majority of
their time in loops, Fig. 1. Loops are repetitive and execute one
of many instruction paths over the various iterations. To reduce



simulation time, we identify and characterize a single iteration
of the most executing paths of a loop body (different control
flows constitute different loops) hoping it will be enough to
understand the execution behavior of the entire workload.
The execution path of our characterization tool ELI-C, efficient
loop identifier and characterizer, is shown in Fig. 2.
We restrict our tool to binary analysis as it presents the most
noise reduced form of what will execute on the processor. In
the simulator phase, the binary will be executed simultaneously
on both Gprof [9] and Valgrind [10]. Gprof is used to calculate
the absolute execution time spent in each function, while
Valgrind’s internal tools Callgrind and Cachegrind are used
to extract instruction execution count as well as cache misses
for various cache sizes, respectively. Using both the binary
and the instruction execution count, loops are identified with
a novel developed ratio, execution complexity ratio:

ECR =
AEC

TEC
:


<1, conditional statement
= 1, serial code
>1, loop code

(1)

where AEC is actual execution count or number of times
the assembly line executed while the TEC is the theoretical
execution count or number of times this assembly line would
have executed if it was part of a serial code , i.e., number of
times the function has been called. Once loops are isolated,
the following characterizations will be collected.

A. Direct Characterizations

Direct characterizations are those computed cumulatively
across each loop instruction without depending on other in-
structions.

• Loop iterations Number of times the loop body was
executed.

• Static instructions Number of assembly instructions
executed in the loop in a single iteration.

• Relative size Static instructions aren’t indicative of
the weight of the loop since a single-instruction
loop executing a million times could be perform-
ing more computations than a 1000-instruction 10-
iteration loop. This characterization shows the rel-
ative size of the dynamic number of instructions
executed by the loop relative to the total num-
ber of instructions executed by the workload , i.e.,

(LoopIterations)∗(StaticInstructions)
(DynamicNumberOfInstructionsExecuted) .

• Scalar instructions Number of single-operation,
single-data instructions.

• Vector instructions Number of single-operation
multiple-data, SIMD, instructions. This identifies par-
allelism in the code.

• Floating Point instructions High latency instructions,
some of which take hundreds of cycles. It is essential
to keep track of these instruction to help us understand
the bottleneck of the loop.

• Bytes (raw) Previous characterizations dealt with the
computational aspect of the loop. Memory is the other
crucial aspect to look at in the characterizations. The

virtual memory system starts with cache and goes up
to the disk storage, this characterization presents a
sum of all the data requests made by the loop to the
virtual memory system. This characterization is further
divided between bytes-loaded and bytes-stored.

• Memory accesses Raw bytes represents the data
requests in bytes. Absolute numbers e.g. 128 bytes,
might not be useful since a single instruction might
load the 128 bytes or it might be a one-byte load
instruction executed 128 times. To better represent this
number, we split the number of instructions responsi-
ble for the data loads and stores. This characterization
is further divided into scalar loads, scalar stores, vector
loads and vector stores.

• Bytes (filtered) Another problem with the raw byte
characterization is that it doesn’t represent the behav-
ior of the loop in today’s architecture with caches.
Filtering the references through the cache allows us to
learn about data reuse in the loop. The tool is equipped
with a configuration file to allow the user to simulate
for the needed cache configurations.

• Branch mis-prediction It has been previously men-
tioned that the number of loop iterations is an average
representation. This is due to the fact that a conditional
loop might not always be executed or may be executed
a different number of times. Given that each loop
execution might have a different control flow graph,
this characterization helps us know the confidence
with which this loop was executed.

B. Indirect Characterizations

Indirect characterizations require an extended view of pre-
vious and latter instructions to help classification.

• Instruction Classes Classifying the instruction by
type requires tracking the registers and their ultimate
use. The tool creates a buffer for each loop and
keeps track of registers and the way they are used.
A careful breakdown of each instruction had to be
taken into consideration as some instructions don’t
have a destination register (j), while others have the
first operand also a destination (add), and the rest have
a separate register for destination (mov). The following
is a description of the classes of instructions:

1) Address calculation instructions Architec-
tural register limitations presented by the
x86/64 architecture is compensated by fre-
quent trips to the memory and by providing
more physical registers. The x86/64 provides
complex memory addressing modes and thus
some instructions, considered as overhead in-
structions, are used to calculate the memory
addresses [11].

2) Control instructions Number of execution
path changing instructions that are part of the
loop, e.g. jumps and calls. This characteriza-
tion helps reveal, among other details, if this
loop is part of another nested loop.

3) Compute instructions After removing the
previous overhead instructions, we are left



with pure compute instructions that are used
to perform the high level operations they are
assigned for. This characterization helps us
know the size of the computations performed
in the loop.

• Memory Access Patterns The main factor that effects
the cache hit rate, bytes (filtered), is the memory
access patterns. For example, if we have a loop that
accesses a fixed word-length stride pattern then cache
misses decrease since a miss is followed by a cache
hits if cache-line size is greater than one word. To
discover memory access patterns, the tool keeps track
of the static addresses of both the reads and the writes,
separately e.g. address [esp - 5] is stored as is rather
than replacing esp by its address. Although this hides
out some indirect patterns yet it reduces the analysis
time. Our pattern detection algorithm is then run over
the archived load and store addresses. It will detect
any pattern that is repeated more than 2 times and
could be of any frequency, e.g., -5,-5,-5, or -5, +6, -5,
+6, etc.

IV. ELIMINATION SCHEME

Starting with a set of workloads, our target is to get a
reduced set while maintaining the characterizations of the
initial set. In brief, we achieve this procedure by:

1) Simulating workloads on ELI-C
2) Creating a representative vector for each loop
3) Joining loop characterizations from the same work-

load to get a workload-specific signature vector
4) Calculating pair-wise workload similarity
5) Applying an elimination procedure on the workload

set

Each of the previous steps is refined to remove biasing and
improve the resulting outcome as discussed below.

A. Simulation

The first and simplest step is simulating the workloads
using ELI-C to get loop-level characterizations.

B. Data Preprocessing

As in any general data mining problem, the simulated data
set is preprocessed to remove noise and outliers. Preprocessing
is carried out in two complementary ways. In a general view,
the data we begin with can be considered as a k*n matrix, we
will reduce the number of rows by removing outliers, through
data cleaning, and the number of columns by reducing the
data dimensions, data reduction.

1) Data Cleaning: Data cleaning is divided into 2 phases.
The first phase occurs before integrating data from the various
workloads into a single data structure. For each simulated
workload we calculate the loop execution time relative to
the entire workload’s execution. Since our target is to have
the loop characterizations representative of the workload, then
workloads with low execution time are removed. In the second
part, we look at loops from each workload separately. Not
every loop has significant execution time. Significant loops, in

our case, are those with relative execution time greater than
0.1%. Anything below this number is considered redundant
and thus removed.

2) Data Reduction: Collected characterizations are split
between architecture dependent and independent. Correlation
between characterizations results in data biasing and ultimately
a biased classification. Correlation is difficult to detect and
remove manually. Principle component analysis, PCA, is a
common applied algorithm that removes correlation and re-
duces a data set’s dimensionality. Another source of data
biasing is having characterizations on a different scale. To
overcome this, we normalize all the characterizations. The
output of normalization is a matrix, whose numeric values
range between 0 and 1. The input to PCA is the normalized
matrix in which the rows are the set of reduced loops and
the columns are the collected characteristics. PCA computes
new variables, called principle components (PC), which are
a linear combination of the initial characteristics. The new
characteristics, PCs, are uncorrelated, independent and used to
represent the loops in the classification algorithm. However,
the new PCs also have different ranges, so we normalize the
characterizations again.

C. Data Classification

The normalized PC matrix contains representative features
of each characterized loop. Our target is to classify similar
loops together. We use an Expectation Maximization (EM)
algorithm on the popular WEKA data mining toolkit [12]. The
popular k-means algorithm is a specialized form of EM. EM
was chosen since unlike k-means the algorithm will decide
on the best number of clusters. EM starts with an initial
set of parameters and iterates until the clustering cannot be
improved, that is, until the clustering converges or the change
is sufficiently small. The expectation step assigns objects to
clusters according to the current fuzzy clustering or parameters
of probabilistic clusters. The maximization step finds the new
clustering or parameters that maximize the sum of squared
error (SSE) in fuzzy clustering or the expected likelihood in
probabilistic model-based clustering. Once completed, each
loop will have an additional characterization specifying its
cluster membership.

D. Elimination

At the moment, we have a set of clusters containing similar
loops together. However, since our target is to remove similar
workloads and not loops then we’ll need to form a higher level
of abstraction from the current loop-level view that we have.
So before starting elimination, we iterate over the characterized
loops to form a workload-specific feature vector. This feature
vector (FV) will represent the time spent by the workload in
each of the clusters as follows:

FVWorkloadiatClustern = Workloadi ∩ Clustern (2)

Since each workload has a different execution time value, we
normalize its clusters’ execution time by its total execution
time. Once completed we obtain the blueprint of each workload
using which we are able to compare workloads. The following
subsections introduce the elimination scheme step-by-step.



1) Similarity Score: To recognize similar workloads we
defined a similarity metric between workloads as the inner
product of the two benchmarks’ representative vectors. The
similarity score has a range between 0 to 1 and is mathemat-
ically calculated as follows:

Similarity(BMm, BMn) =

Clustersize∑
i=0

BMmi ∩BMni (3)

2) Similarity Matrix: To visualize similarity between work-
loads we construct a 2D NxN symmetrical matrix containing
all the workloads such that elements (p, q) and (q, p) in the
matrix have the same value. The similarity matrix will be used
to pick the tuple of workloads that has the largest similarity
value, one of which will be eliminated.

3) Elimination Strategy: To eliminate similar workloads we
iterate through the similarity matrix, each time picking the
workloads with the highest similarity , i.e., the largest element
in the matrix. Since both workloads are similar then they are
representative of each other and we could eliminate one of
them without effecting the dynamic execution characteristics
of the workload set. To decide which of the two workloads
we eliminate, we calculate each workload’s similarity with the
rest of the workloads in the set , i.e., for the workload at
(p,q) its similarity with the remaining set is the sum of all
the values in row p or column q excluding its own value. The
workload representing the lower value of both resultants is
then eliminated and so we maintain higher chances of further
redundancy and elimination in the set.

4) Elimination Limit: Loops in the same cluster are similar
and fall within short distance of each other. To maintain
the workload set’s dynamic characterizations, we’ll need to
maintain a certain number of loops within each cluster. Our
stopping criteria monitors the number of loops within each
cluster across elimination iterations. Once an elimination round
causes any of the cluster sizes to drop below 50%, the removed
workload is re-inserted and elimination stops. The threshold
value of 50% was chosen to retain a balance between the
remaining workloads and the set’s characteristics.

5) Validation: To verify that the chosen subset of work-
loads is representative of the initial set and maintains its
behavior, we compare 3 dynamic execution aspects between
the initial and final set on different processor technologies. The
used validation metrics are: cycles-per-instruction (CPI), scal-
ability, data sharing and were collected using Intel Sampling
Enabling Product (SEP) tool version 3.5 from Intel VTune
Amplifier XE 2011 [13].

V. SIMULATION

A. Workload Set

The initial workload set consists of workloads with high
loop execution time, Table I. The selected workloads were
compiled using Intel’s C++ Compiler from the Composer
XE suite 2011 [14]. The workloads were then executed and
analyzed on a system with Intel Xeon E7-4860 processors.
Workload specific signatures vectors were processed by the
WEKA tool [12] using EM clustering algorithm.

TABLE I: Input workload set

Workload Loop Execution Time Number of Loops
NAS CG 98% 24
NAS EP 99% 5
NAS FT 95% 15
NAS LU 98% 12
NAS MG 94% 21
NAS SP 93% 40
NAS UA 87% 106

PARSEC Freqmine 89% 37
PARSEC Streamcluster 99% 15

Lammps 89% 16
MRI Reconstruction 90% 24

Finite Element Solver 94% 116
Mini MD 96% 12

Splash Water N-squared 98% 149
NU Bench Kmeans 89% 13

HPCC Gups 96% 6
HPCC Singlestream 97% 7

HPCC StarRA 99% 5

B. Experimental setup

To insure fair workload-to-workload comparison we op-
timized all the workloads with similar compilation flags for
speed, vectorization and enabled aggressive loop transforma-
tions such as Fusion, Block-Unroll-and-Jam, and collapsing IF
statements. To validate that the new workload subset is repre-
sentative of the initial set we used three different generations
of Intel processors:

1) Intel Core i7-2600K A 64 bit 4 cores, 8 thread
processor running at 3.40 GHz. Equipped with Turbo
boost 2.0 technology that can boost clock speed up
to 3.80 GHz. It includes an 8MB Smart cache system
and a 5GT/s system bus.

2) Intel Core i7-975 A 64 bit 4 cores, 8 thread processor
running at 3.33 GHz. Equipped with a Turbo boost
technology that can boost clock speed up to 3.6 GHz.
It includes an 8MB Smart cache system and a 6.4
GT/s system bus.

3) Intel Core 2 Extreme CPU X9650 A 64 bit 4 core,
4 thread processor running at 3.00GHz equipped with
a 12MB L2 cache and a 1333MHz system bus.

C. Data Preprocesing

Given the workload set, we gathered the loop charac-
terizations in a single file for preprocessing. This helped
us eliminate outlier loops, those having low execution time,
and thus decreasing the set’s size from around 3000 to 623
loops constituting the final loop set. The data set is then
transformed by normalizing all the characterizations. Now
that all characteristics are equally weighted, we apply PCA
reducing data dimension from 13 characteristics to 11 un-
correlated characterizations. The set was again normalized,
leaving us with a set of 623 loops with 11 equally weighted
characterizations in addition to loop-time and the workload it
belongs to. This data is now ready to be clustered.

D. Data Clustering

Using EM algorithm on WEKA [12], the loops are clus-
tered and distributed among 6 clusters. The output distribution
wasn’t uniform as cluster 4 joined loops from most workloads,



while both clusters 1 and 2 were highly concentrated in single
workloads.

E. Elimination

Elimination started over the similarity matrix, at each
iteration choosing the workload tuple with highest similarity,
then calculating their similarity with the rest of the workload
set and removing the one with lower value. After removing
the 10th workload, one of the clusters’ size dropped below
the 50%, our predetermined cluster size threshold. Thus we
kept the 10th workload and ended up with a final set of size
9.

(a) CPI comparison

(b) Thread speedup comparison

(c) Data sharing comparison

Fig. 3: Dynamic characteristic evaluation of reduced set
compared to initial set

F. Validation

The elimination scheme was able to reduce the set by 50%
of its size. To verify that the reduced set is representative of

Fig. 4: HPCC bottleneck on older Intel generations

the initial set, we executed the workloads on the previously
mentioned Intel processors and collected CPI, sharing data,
and total execution cycles when executed with 1, 2, 4, and
8 threads. The characteristics of the final set was then com-
pared to the initial set, as shown in Fig. 3. Numerically, the
CPI varied between 10%, 4%, 1% on Intel Core 2 Extreme
CPU X9650, Intel Core i7-2600K, and Intel Core i7-975,
respectively as shown in Fig. 3(a). The highest difference
was spotted on the Intel Core 2 Extreme CPU X9650. After
studying workload behavior on the processors, we found that
Intel Core 2 Extreme CPU X9650 is the oldest technology
between those tested and some of the workloads showed slow
execution. This became more clear by comparing the CPI of
HPCC’s MPIRA and SingleStream on the 3 generations. As
shown in Fig. 4, the CPI was reduced more than half between
both generations. Such results are expected since the collected
data is from simulations on newer processors. The speed-up
between 1 and 2, 2 and 4, 4 and 8 threads on Intel Core i7-
2600K varied between 4% and 5%, as shown in Fig. 3(b).
Finally, the comparison of the data sharing, Fig. 3(c), was
around 10%. This difference could be contributed to the tool’s
lack of any collected data sharing characteristics.

VI. CONCLUSION

In this paper a novel systematic framework to subset
workloads based on program structure characteristics and
machine learning techniques has been presented. Based on the
observation that loops are the key building block for most
workloads, a tool to extract loop specific characteristic has
been proposed. The characteristics were used to from a feature
vector that provides a signature for each loop. Processing
all such vectors through machine learning algorithms, unique
loop structures that are the building blocks of all loops were
identified. Remapping workloads into the unique set of loop
structures generated a signature for the workloads. Using a
systematic elimination process on the similarity scores, the
initial set of workloads was reduced to a smaller representative
subset. To validate our framework, the framework was applied
on a set of 18 workloads from different domains and showed
that the reduced set of workloads preserves the execution char-
acteristics of the initial set over three generations of processors.
This approach provides more accurate subsets than previous
sampling techniques, solely based on the fact that loops are the



essential driving engine for most compute intensive workloads,
thus they should be driving the subsetting algorithm. In the
future, more characteristics could be added to span wider
characteristics and take sharing data into consideration.

REFERENCES

[1] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann,
C. Celio, J. Eastep, and A. Agarwal, “Graphite: A distributed parallel
simulator for multicores,” in High Performance Computer Architecture
(HPCA), 2010 IEEE 16th International Symposium on. IEEE, 2010,
pp. 1–12.

[2] T. Sherwood, E. Perelman, and B. Calder, “Basic block distribution
analysis to find periodic behavior and simulation points in applications,”
in Parallel Architectures and Compilation Techniques, 2001. Proceed-
ings. 2001 International Conference on. IEEE, 2001, pp. 3–14.

[3] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “Smarts:
Accelerating microarchitecture simulation via rigorous statistical sam-
pling,” in Computer Architecture, 2003. Proceedings. 30th Annual
International Symposium on. IEEE, 2003, pp. 84–95.

[4] C. Bienia, S. Kumar, and K. Li, “Parsec vs. splash-2: A quanti-
tative comparison of two multithreaded benchmark suites on chip-
multiprocessors,” in Workload Characterization, 2008. IISWC 2008.
IEEE International Symposium on. IEEE, 2008, pp. 47–56.

[5] A. Phansalkar, A. Joshi, and L. K. John, “Analysis of redundancy and
application balance in the spec cpu2006 benchmark suite,” in ACM
SIGARCH Computer Architecture News, vol. 35, no. 2. ACM, 2007,
pp. 412–423.

[6] L. Eeckhout, J. Sampson, and B. Calder, “Exploiting program microar-
chitecture independent characteristics and phase behavior for reduced
benchmark suite simulation,” in Workload Characterization Symposium,
2005. Proceedings of the IEEE International. IEEE, 2005, pp. 2–12.

[7] E. Perelman, G. Hamerly, and B. Calder, “Picking statistically valid
and early simulation points,” in Parallel Architectures and Compilation
Techniques, 2003. PACT 2003. Proceedings. 12th International Confer-
ence on. IEEE, 2003, pp. 244–255.

[8] T. Moseley, D. A. Connors, D. Grunwald, and R. Peri, “Identifying
potential parallelism via loop-centric profiling,” in Proceedings of the
4th international conference on Computing frontiers. ACM, 2007, pp.
143–152.

[9] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A call graph
execution profiler,” ACM Sigplan Notices, vol. 17, no. 6, pp. 120–126,
1982.

[10] J. Seward, N. Nethercote, and J. Fitzhardinge, “Valgrind, an open-
source memory debugger for x86-gnu/linux,” URL: http://www. ukuug.
org/events/linux2002/papers/html/valgrind, 2004.

[11] I. Intel, “Intel 64 and ia-32 architectures software developers manual,”
Volume 1, 2A, 2B, 2C, 3A, 3B and 3C, 2013.

[12] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[13] I. V. A. X. 2011.
[14] “Intel c++ compiler, composer xe suite 2011,”

http://software.intel.com/en-us/articles/intel-compilers/.


