
LaTTeLaTTe: :
An OpenAn Open--Source Java VM JustSource Java VM Just--inin--Time Time

Compiler Compiler

S.-M. Moon, B.-S. Yang, S. Park, J. Lee,
S. Lee, J. Park, Y. C. Chung, S. Kim

Seoul National University

Kemal Ebcioglu, Erik Altman
IBM T.J. Watson Research Center

Sponsored by the IBM T. J. Watson Research Center

Introduction to theIntroduction to the LaTTeLaTTe ProjectProject

• Brief history
• LaTTe is a university collaboration project between IBM and SNU,

which begun on Nov. 1997
• Released the source code of LaTTe version 0.9.0 on Oct. 1999
– Released the new version 0.9.1 of LaTTe on Oct. 2000

• With additional performance enhancements
– More than 1000 copies have been downloaded so far

• Close interaction between SNU and IBM
– Active participants: 7 in SNU and 2 in IBM Watson
– Many video and phone conferences

Overview of Overview of LaTTe LaTTe JVMJVM

• Includes a fast and efficient JIT compiler
– Fast and efficient register allocation for RISCs [PACT’99]

– Classical optimizations: redundancy elimination, CSE,..
– OO optimizations: customization, dynamic CHA

• Optimized JVM run-time components
– Lightweight monitor [INTERACT-3]

– Efficient exception handling [JavaGrande’00]

– Efficient GC and memory management [POPL’00]

Current Status of LaTTeCurrent Status of LaTTe
• LaTTe JVM works on UltraSPARC .

– Faster than JDK 1.1.8 JIT by a factor of 2.8 (SPECjvm98)
– Faster than JDK 1.2 PR by a factor of 1.08
– Faster than JDK 1.3 (HotSpot) by a factor of 1.26
– Translation overhead : 12,000 cycles per bytecode on

SPARC
– Started from Kaffe 0.9.2
– Supports JAVA 1.1

OutlineOutline
• JIT compilation technique

– Fast and aggressive register allocation
– Classical optimizations
– OO optimizations: virtual call inlining

• VM run-time optimizations
– Lightweight monitor handling
– Efficient exception handling
– Memory management

• Experimental results

Two Issues in JIT Register AllocationTwo Issues in JIT Register Allocation

• Efficient allocation of Java stack into registers
– Bytecode is stack-based, RISC code is register-based.
– Map stack entries and local variables into registers
– Must coalesce copies corresponding to pushes and

pops between stack and local variables

• Fast allocation
– Do not want to use graph-coloring register allocation

with copy coalescing

Approach of LaTTeApproach of LaTTe

• Two-pass code generation with CFG
– Build CFG of pseudo code with symbolic registers
– Allocate real registers while coalescing copies

• Slower but better register allocation than single-
pass algorithms (e.g., Kaffe and old VTune)

• Our engineering solution just enough for Java JIT
– JIT overhead consistently takes 1~2 seconds for

SPECjvm98 which run 40~70 seconds with LaTTe.

JIT Compilation Phases in LaTTeJIT Compilation Phases in LaTTe

Bytecode

CFG of
Pseudo SPARC Code

CFG of
Real SPARC Code

Native SPARC Code

Bytecode translation
Java stack is mapped to symbolic registers.

Register allocation & Optimizations
Symbolic registers are allocated to machine

registers.

Code emission
Binary image is generated from the CFG.
Determines locations of basic blocks

Bytecode Bytecode Translation ExampleTranslation Example

0: iload_1
1: iload_2
2: if_icmplt 9
5: iload_1
6: goto 10
9: iload_2
10: iload_3
12: istore 4
14: aload_0
15: iload 4
17: invokevirtual

<int work(int)>
20: ireturn

bytecode

int work_on_max(int x,int y,int tip) {
int val=((x>=y)?x:y)+tip;
return work(val);

}

Java source Control Flow Graph

0: mov il1, is0
1: mov il2, is1
2: cmp is0, is1

bl

5: mov il1, is0 9: mov il2, is0

10: mov il3, is1
11: add is0,is1,is0
12: mov is0, il4
14: mov al0, as0
15: mov il4,is1
17: ld [as0], at0

ld [at0+48], at1
call at1

20: ret

F T

Many COPIES!!

8 copies out of
15 instructions

Register Allocation (1)Register Allocation (1)

• Enhanced left-edge algorithm [Tucker, 1975]

• Tree region
– Unit of register allocation in LaTTe
– Single entry, multiple exits

(same as extended basic block)
– Tradeoffs between quality and speed of register

allocation

Register Allocation (2)Register Allocation (2)

• Visit tree regions in reverse post order
– Register allocation result of a region is propagated to

next regions
– At join points of regions, reconcile conflict of register

allocation using copies
• Similar to replacing SSA φ nodes with copies

Register Allocation (3)Register Allocation (3)

• In each region, the tree is traversed twice
– Backward sweep : collects allocation hints for target

registers using pre-allocation results at calls/join points
(works as a local lookahead)

• preferred map (p_map) is propagated backward
set of (symbolic, hardware) register pairs

– Forward sweep : performs actual register allocation
based on the hints

• h/w register map (h_map) is propagated forward

Register Allocation (4)Register Allocation (4)

• Aggressive copy elimination
– Pseudo code has many copies from push and pop.
– Source and target are mapped to the same register.

• Copies do not generate code, but only update h_map.

• Generation of bookkeeping copies
– To satisfy calling conventions
– To reconcile h_map conflicts at join points of regions
– Backward sweep reduces these copies.

Register Allocation ExampleRegister Allocation Example

Tree Region A

Tree Region B

0: mov il1, is0
1: mov il2, is1
2: cmp is0, is1

bl

5: mov il1, is0 9: mov il2, is0

10: mov il3, is1
11: add is0,is1,is0
12: mov is0, il4
14: mov al0, as0
15: mov il4,is1
17: ld [as0], at0

ld [at0+48], at1
call at1

20: ret

F T

Allocation Result of Allocation Result of Region ARegion A

10: mov il3,is1
11: add is0,is1,is0 (o1)
12: mov is0,il4
14: mov al0,as0
15: mov il4,is1
17: ld [as0],at0
17: ld [at0+48], at1
17: call at1 (as0,is1)
20: ret

2: cmp %i1,%i2
bl

mov %i2,%i1

h={(al0,%i0) (il3,%i3) (is0,%i1)}

bookkeeping copy to
reconcile allocation
conflict at the join

This map is passed
from Region A to

Region B.

Register Allocation ResultRegister Allocation Result
-- After register allocation of After register allocation of Region BRegion B

11: add %i1,%i3,%o1
17: ld [%i0],%l0
17: ld [%l0+48], %l0

mov %i0, %o0
17: call %l0

mov %o0, %i0
20: ret

2: cmp %i1,%i2
2: bl

mov %i2,%i1

0: mov il1, is0
1: mov il2, is1
2: cmp is0, is1

bl

5: mov il1, is0 9: mov il2, is0

10: mov il3, is1
11: add is0,is1,is0
12: mov is0, il4
14: mov al0, as0
15: mov il4,is1
17: ld [as0], at0

ld [at0+48], at1
call at1

20: ret

F T

8 copies
are reduced

to only 3
copies.

is0 is mapped
to %o1. The value
of is0 will be used

as the 2nd arg.

bookkeeping
copies due to
SPARC calling

convention

Classical OptimizationsClassical Optimizations

• LaTTe performs
– Redundancy elimination : CSE, check code elimination

• Based on value numbering

– Loop invariant code motion/Register promotion
– Copy propagation
– Constant propagation, folding
– Method inlining : static/private/final methods

• Unit of optimizations : tree region

ObjectObject--Oriented OptimizationsOriented Optimizations

• Reduce virtual call overheads
– Virtual calls are normally translated into ld-ld-jmpl
– With OO optimization, virtual calls can be translated into

static calls or can even be inlined

• Two kinds of VC optimizations in LaTTe
– Customization and specialization
– Inline of de facto final methods through backpatching

• Assume a virtual method is final at first.
• Create backpatching code when the method is

overriden.
– The latter outperforms the former.

VM RunVM Run--time Optimizationtime Optimization

• Lightweight monitor [INTERACT-3]
– Optimized for single-threaded programs

• Efficient exception handling [JavaGrande’00]
– On-demand translation of exception handlers
– Exception type prediction

• Fast mark-and-sweep GC [POPL’00]
– Fast object allocation
– Short mark and sweep time

• Make frequent operations faster
– Frequent : free lock manipulation
– Infrequent: lock contention or wait/notify

• lock
– Accessed frequently
– Embedded in the object header as a 32-bit field

• lock queue, wait set
– Accessed infrequently
– Managed in a hash table
– Created only when they are actually accessed

Lightweight MonitorLightweight Monitor

nest_count[31:17] has_waiters[16] owner_thread_id[15:0]

Efficient Exception HandlingEfficient Exception Handling

• No performance degradation of the normal
flow due to exception handlers

– Do not translate EHs on JITing a method
– Only if an EH is to be used, translate it.

• Fast control transfer to an EH
– Predict the exception type of an exception instruction
– Directly connect the predicted EH to the instruction
– No intervention of the JVM exception manager

Memory ManagementMemory Management

• Small object allocation
– Very frequent : Speed is important.
– Uses pointer increments in the most common case
– Worst-fit if allocation failed with pointer increment

• Large object allocation
– Not very frequent : Avoiding fragmentation is important.
– Use a best-fit algorithm

• Partially conservative mark and sweep
– Run-time generation of marking functions
– Selective sweeping at low heap occupancies (POPL’00)

Experimental ResultsExperimental Results
• Test environment

– SUN UltraSPARC II 270MHz with 256MB of memory, Solaris 2.6
– single-user mode
– run 5 times and take minimum value

• Benchmarks
– SPECjvm98, Java Grande Benchmark

• Configuration
– LaTTe(B) : LaTTe with fast register allocation w/o optimization
– LaTTe(O) : LaTTe with full optimization
– LaTTe(K) : LaTTe with Kaffe’s JIT compiler

– JDK1.1.8 : SUN JDK 1.1.8 Production Release with JIT on SPARC
– JDK1.2 PR : SUN JDK 1.2 Production Release
– JDK 1.3 HotSpot : SUN JDK 1.3 HotSpot Client

Total Running Time of 3 Total Running Time of 3 JITs JITs in LaTTein LaTTe

0

20

40

60

80

100

120

140

160

180

200

L(
B)

L(
O

)

L(
A

)

L(
B)

L(
O

)

L(
A

)

L(
B)

L(
O

)

L(
A

)

L(
B)

L(
O

)

L(
A

)

L(
B)

L(
O

)

L(
A

)

L(
B)

L(
O

)

L(
A

)

L(
B)

L(
O

)

L(
A

)

EX (Total Time - TR)
TR

201
compress

202
jess

209
db

213
javac

222
mpegaudio

227
mtrt

228
jack

Analysis of LaTTe JIT CompilerAnalysis of LaTTe JIT Compiler

• TR overhead is negligible in L(B) and even in L(O)
– TR time in L(B) takes consistently 1-2 seconds for all

programs that run 30-70 seconds with LaTTe
– Except for _213_javac, TR time is small even in L(O).
– L(B) spends more TR time than L(K) by factor of 3.

• LaTTe JIT of L(B) : 12,000 SPARC cycles/bytecode
• Kaffe JIT : 4,000 SPARC cycles/bytecode

• Compared to Kaffe JIT, LaTTe JIT of L(B) improves
JVM performance by factor of 2.2.

Overall Performance of LaTTeOverall Performance of LaTTe

1.
00

3.
09

2.
53 2.
75

3.
32

1.
23

0

1

2

3

4

5

6

7

_201_compress _202_jess _209_db _213_javac _222_mpegaudio _227_mtrt _228_jack GEOMEAN

SUN JDK1.1.8 PR
SUN JDK1.2 PR
JDK 1.3 HotSpot
LaTTe(base)
LaTTe(opt)
LaTTe(kaffe)

Relative performance compared to SUN JDKs

Overall Performance of LaTTeOverall Performance of LaTTe

1.
00

1.
62

1.
53 1.

51 1.
84

0.
74

0

1

2

3

4

5

6

Se r ie
s

LUFact
SOR

He apSor t
Crypt FFT

Spars eM atM ult
Se arch

Eule r

M olDyn

M onteCar lo

RayTrace r

GEOM EAN

SUN JDK1.1.8 PR
SUN JDK1.2 PR
JDK 1.3 HotSpot
LaTTe(base)
LaTTe(opt)
LaTTe(kaffe)

Relative performance compared to SUN JDKs

SummarySummary

• LaTTe’s performance is competitive, due to
– Fast and efficient JIT compilation and optimizations

• Virtual call overhead reduction technique

– Lightweight monitor implementation
– Efficient exception handling
– Highly-engineered memory management module

• Source code available at http://latte.snu.ac.kr
– BSD-like license

Future WorkFuture Work

• Proceed with further optimizations (a lot of leeway
still available)

• Aggressive re-optimization of frequent code
• VLaTTe: JIT compiler for VLIW
• Re-integration with Kaffe, multiple platforms
• …
• We invite volunteers worldwide to join our LaTTe

open source development team
– and help us implement the exciting, leading edge JIT compiler, VM

and instruction level parallelism optimizations to come

