LaTTe:
An Open-Source Java VM Just-in-Time
Compiler

S.-M. Moon, B.-S. Yang, S. Park, J. Lee,
S. Lee, J. Park, Y. C. Chung, S. Kim
Seoul National University

Kemal Ebcioglu, Erik Altman
IBM T.J. Watson Research Center

Sponsored by the IBM T. J. Watson Research Center

Introduction to the LaTTe Project

* Brief history

« LaTTe is a university collaboration project between IBM and SNU,
which begun on Nov. 1997

 Released the source code of LaTTe version 0.9.0 on Oct. 1999

— Released the new version 0.9.1 of LaTTe on Oct. 2000
» With additional performance enhancements

— More than 1000 copies have been downloaded so far

* Close interaction between SNU and IBM
— Active participants: 7 in SNU and 2 in IBM Watson
— Many video and phone conferences

Overview of LaTTe JVM

* Includes a fast and efficient JIT compiler
— Fast and efficient register allocation for RISCs [PACT99]
— Classical optimizations: redundancy elimination, CSE,..
— OO optimizations: customization, dynamic CHA

* Optimized JVM run-time components
— Lightweight monitor [INTERACT-3]
— Efficient exception handling [JavaGrande’00]
— Efficient GC and memory management [POPL’00]

Current Status of LaTTe

 LaTTe JVM works on UltraSPARC .
— Faster than JDK 1.1.8 JIT by a factor of 2.8 (SPECjvm98)
— Faster than JDK 1.2 PR by a factor of 1.08
— Faster than JDK 1.3 (HotSpot) by a factor of 1.26

— Translation overhead : 12,000 cycles per bytecode on
SPARC

— Started from Kaffe 0.9.2
— Supports JAVA 1.1

Outline

* JIT compilation technique
— Fast and aggressive register allocation
— Classical optimizations
— OO optimizations: virtual call inlining

* VM run-time optimizations
— Lightweight monitor handling
— Efficient exception handling
— Memory management

* Experimental results

Two Issues in JIT Register Allocation

 Efficient allocation of Java stack into registers
— Bytecode is stack-based, RISC code is register-based.
— Map stack entries and local variables into registers

— Must coalesce copies corresponding to pushes and
pops between stack and local variables

e Fast allocation

— Do not want to use graph-coloring register allocation
with copy coalescing

Approach of LaTTe

* Two-pass code generation with CFG
— Build CFG of pseudo code with symbolic registers
— Allocate real registers while coalescing copies

« Slower but better register allocation than single-
pass algorithms (e.qg., Kaffe and old VTune)

« Our engineering solution just enough for Java JIT

— JIT overhead consistently takes 1~2 seconds for
SPECjvm98 which run 40~70 seconds with LaTTe.

JIT Compilation Phases in LaTTe

Bytecode
Bytecode translation
1 Java stack is mapped to symbolic registers.
CFG of

Pseudo SPARC Code : : o
Register allocation & Optimizations

1 Symbolic registers are allocated to machine
registers.
CFG of
Real SPARC Code
Code emission
1 Binary image is generated from the CFG.

Native SPARC Code Determines locations of basic blocks

[
|
e
¥

Lo

Bytecode Translation Example

Java source

int work_on_max(int x,int y,int tip) {
int val=((x>=y)?x:y)+tip;
return work(val);

}

bytecode

0: iload_1

1: iload_2

2: if_icmplt 9

5: iload_1

6: goto 10

9: iload_2

10: iload_3

12: istore 4

14: aload_0

15: iload 4

17: invokevirtual
<int work(int)>

20: ireturn

Control Flow Graph

0: mov il1, isO Many COPIES!!

1: mov il2, is1

2: cmp is0, is1 8 copies out of
bl 15 instructions
5:movill, is0 9: mov il2, is0

\/

10: mov il3, is1
11: add is0,is1,is0
12: mov is0, il4
14: mov al0, as0
15: mov il4,is1
17: |d [as0], at0
|d [at0+48], at1
call at1
20: ret

Register Allocation (1)

* Enhanced left-edge algorithm [Tucker, 1975]

* Tree region
— Unit of register allocation in LaTTe
— Single entry, multiple exits
(same as extended basic block)

— Tradeoffs between quality and speed of register
allocation

Register Allocation (2)

* Visit tree regions in reverse post order
— Register allocation result of a region is propagated to
next regions

— At join points of regions, reconcile conflict of register
allocation using copies
« Similar to replacing SSA ¢ nodes with copies

Register Allocation (3)

* In each region, the tree is traversed twice

— Backward sweep : collects allocation hints for target
registers using pre-allocation results at calls/join points
(works as a local lookahead)

- preferred map (p_map) is propagated backward
set of (symbolic, hardware) register pairs

— Forward sweep . performs actual register allocation
based on the hints
* h/w register map (h_map) is propagated forward

Register Allocation (4)

» Aggressive copy elimination

— Pseudo code has many copies from push and pop.

— Source and target are mapped to the same register.
» Copies do not generate code, but only update h_map.

» Generation of bookkeeping copies
— To satisfy calling conventions
— To reconcile h_map conflicts at join points of regions
— Backward sweep reduces these copies.

Register Allocation Example

0: movill, isO
1: mov il2, is1 _
2: cmp is0, is1 Tree Region A

bl
5:movill, is0 9: mov il2, is0

e

10: mov il3, is1
11: add is0,is1,is0
12: mov is0, il4
14: mov al0, as0
15: mov il4,is1 Tree Region B
17: Id [as0], at0
|d [at0+48], at1
call at1
20: ret

Allocation Result of Region A

2: cmp %i1,%i2

bl
\ bookkeeping copy to

mov %i2,%i1 <u— reconcile allocation

/ conflict at the join

h={(al0,%i0) (il3,%i3) (is0,%i1)}

\ This map is passed
from Region A to

Region B.

Register Allocation Result
- After register allocation of Region B

8 copies
0: mov il1, isO are reduced n—
1: mov il2, is1 to only 3 25 cmp %i1,%i2
2: cmp is0, is1 I 2: bl
bl copies.
F/\I mov %i2,%i1
5:movill, isO 9: mov il2, isO

\/ isO is mapped

to %o01. The value

10: mov il3, is1 of is0 will be used
11: add is0,is1,is0 as the 2nd arg.
12: mov is0, il4 11: add %i1,%i3,%o01

14: mov al0, as0 17: 1d [%i0],%I0

15: mov il4,is1 17: Id [%I0+48], %l0 bookkeeping

17:1d [as0], atO mov %i0, %00 ¢— copies due to
Id [at0+48], at1 17: call %I0 ./7 SPARC calling
call at1 mov %00, %i0 convention

20: ret 20: ret

Classical Optimizations

* LaTTe performs

— Redundancy elimination : CSE, check code elimination
« Based on value numbering

— Loop invariant code motion/Register promotion
— Copy propagation

— Constant propagation, folding

— Method inlining : static/private/final methods

» Unit of optimizations : tree region

Object-Oriented Optimizations

* Reduce virtual call overheads
— Virtual calls are normally translated into Id-Id-jmpl

— With OO optimization, virtual calls can be translated into
static calls or can even be inlined

» Two kinds of VC optimizations in LaTTe
— Customization and specialization
— Inline of de facto final methods through backpatching
* Assume a virtual method is final at first.

 Create backpatching code when the method is
overriden.

— The latter outperforms the former.

VM Run-time Optimization

* Lightweight monitor [INTERACT-3]
— Optimized for single-threaded programs

* Efficient exception handling [JavaGrande’'00]
— On-demand translation of exception handlers
— Exception type prediction

* Fast mark-and-sweep GC [POPL00]

— Fast object allocation
— Short mark and sweep time

Lightweight Monitor

« Make frequent operations faster

— Frequent : free lock manipulation
— Infrequent: lock contention or wait/notify

* lock

— Accessed frequently
— Embedded in the object header as a 32-bit field

nest_count[31:17] |has_waiters[16]| owner_thread id[15:0]

* lock queue, walit set
— Accessed infrequently
— Managed in a hash table
— Created only when they are actually accessed

Efficient Exception Handling

* No performance degradation of the normal

flow due to exception handlers
— Do not translate EHs on JITing a method
— Only if an EH is to be used, translate it.

 Fast control transfer to an EH
— Predict the exception type of an exception instruction
— Directly connect the predicted EH to the instruction
— No intervention of the JVM exception manager

Memory Management

« Small object allocation

— Very frequent : Speed is important.
— Uses pointer increments in the most common case
— Worst-fit if allocation failed with pointer increment

» Large object allocation

— Not very frequent : Avoiding fragmentation is important.
— Use a best-fit algorithm

 Partially conservative mark and sweep
— Run-time generation of marking functions

— Selective sweeping at low heap occupancies (POPL'00) @),

Experimental Results

* Test environment
— SUN UltraSPARC Il 270MHz with 256MB of memory, Solaris 2.6
— single-user mode
— run 5 times and take minimum value

« Benchmarks
— SPECjvm98, Java Grande Benchmark

« Configuration
— LaTTe(B) : LaTTe with fast register allocation w/o optimization
— LaTTe(O) : LaTTe with full optimization
— LaTTe(K) : LaTTe with Kaffe's JIT compiler

— JDK1.1.8 : SUN JDK 1.1.8 Production Release with JIT on SPARC
— JDK1.2 PR : SUN JDK 1.2 Production Release
— JDK 1.3 HotSpot : SUN JDK 1.3 HotSpot Client

200

180

160

140

120

Total Running Time of 3 JITs in LaTTe

B EX (Total Time - TR)

| oTR

100

80

60

40

20

LB) |
L©O)
L(A)

@ 0 < @ 0 < @ 0 < @ 0 < @ ° < @ O
J T X J T = J T X T T X J T X e A

201 _202_ _209_ _213_ _222_ _227_ 2281
compress jess db javac mpegaudio mtrt jack

Analysis of LaTTe JIT Compiler

TR overhead is negligible in L(B) and even in L(O)

— TR time in L(B) takes consistently 1-2 seconds for all
programs that run 30-70 seconds with LaTTe

— Except for _213_javac, TR time is small even in L(O).

— L(B) spends more TR time than L(K) by factor of 3.
 LaTTe JIT of L(B) : 12,000 SPARC cycles/bytecode
» Kaffe JIT : 4,000 SPARC cycles/bytecode

« Compared to Kaffe JIT, LaTTe JIT of L(B) improves
JVM performance by factor of 2.2.

Overall Performance of LaTTe

Relative performance compared to SUN JDKs

O SUN JDK1.1.8 PR

B SUN JDK1.2 PR
O JDK 1.3 HotSpot
O LaTTe(base)
B LaTTe(opt)]
O LaTTe(kaffe)
-
)
3 ™
) o0
t\iN
&
8. -
_201_compress _202_jess _209_db _213_javac _222_mpegaudio _227_mtrt _228_jack

GEOMEAN

Rl
¥

yITE

Overall Performance of LaTTe

Relative performance compared to SUN JDKs

@ SUN JDK1.1.8 PR
B SUN JDK1.2 PR

0JDK 1.3 HotSpot
OLaTTe(base)

mLaTTe(opt)

O LaTTe(kaffe) r

Summary

« LaTTe's performance is competitive, due to

— Fast and efficient JIT compilation and optimizations
* Virtual call overhead reduction technique

— Lightweight monitor implementation
— Efficient exception handling
— Highly-engineered memory management module

» Source code available at http://latte.snu.ac.kr
— BSD-like license

Future Work

* Proceed with further optimizations (a lot of leeway
still available)

« Aggressive re-optimization of frequent code
 VLaTTe: JIT compiler for VLIW

* Re-integration with Kaffe, multiple platforms

 We invite volunteers worldwide to join our LaTTe

open source development team

— and help us implement the exciting, leading edge JIT compiler, VM
and instruction level parallelism optimizations to come

