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In rean t  years, Cumulati\r Sum (Cusum) control schemes (cham) haw become increasingly popu- 
lar in industrial quality control as means for monitoring ihe quality of manufactured producu. This 
popularity is based on tbe fact that performance of ~ & u m  kbemes is proven to be statistically su- 
perior to their classical counterparts - SheuShan schemes ( E -cham. p-chanr, etc.) in the senre that 
with the same degree of prouction agaiost fake alarms, chey have a much betur ~ns i t i \ i ty  witb re- 
spect to out-of-conuol situations. One of tbe most attractive properlies of a Cusum control scheme 
is iu "designabiiity". In other words. once the "good" and "bad" levels of che process as well as 
corresponding semiti\*ity requiremenu are specified, one can come up m-itb a Cusum scheme (and 
determine the rele\qnt sampling intensity) to meet these requiremenu. This property of Cusum 
schemes is especially imponant in situatiom wbere dam is collected and/or processed automatically 
and in situations where se\'eral parameters are controlled simullancously. In the present work use 
discuss wme simple methods for design of one-sided and two-sided Cusum-Shewbarc scbemes. We 
introduce the package C O W  for design. analysis and running of Cusum-She\\*ban schemes and 
give examples of i u  application. 
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1. Innoducfion. Control schemes and d u r n d h t i o n  of their pdorrmnce 

Let x,. x2. ... be a sequence of obsen~tions related to a certain proass. The obsenation xi may 

represent, for example 

sample percentage of defectiw chips in the fh produced lot; 

tobl number of defects found in the fh  produced wafer. 

sample mean of 4 diameters of ball beariDg chosen at random during the flh pduc t ion  period; 

sample standard deviation of 10 simultaneous measurements (comspondii  to various lo- 

cations) of polyethylene film chickoess taken duridg the fh sampling period; 

waiting time of the fl customer in the queue; 

discrepancy between the actual amount of product shipped in the Fh month and that predicted 

by a given model, 

and so on - for purposes of our discussion the nature of incoming observations is immaterial. In most 

practical situations we would like our observations to behaw in a certain way, ex. to fall as close as 

possible to some target value. to stay belou, some prescribed limit, etc. Failure of the observations 

to comply with this desired behavior is considered as an out-of-control situation; are would like to 

detect such behavior as early as possible. 

In order to monitor sequences of obsen~tions we use control schemes. A control scheme is a set of 

criteria in order to test, at any given moment of time whether the process generating the obsen-ations 

is under control. Clearly, many different control schemes can be associated aith the same sequence 

of obsen*ations; some of the better known include Shewhart schemes, Moving Average schemes of 

various types, etc. In order to compare different types of schemes ure oeed to introduce some criterion 

of performance of a control scheme. The most imponant one is represented by UIC Run Length (RL) 

of a scheme. If the input obsen.ations correspond to on-target sitc~ation, we n*ould like the RL to be 

as long as possible; otheru*ise, it should be as shon as possible. Since the RL is a random variable, the 



rcual  camparkon k m e n  control schemes k usually based on wme of irr cbuocteristics, such 

Avenge Run Length (ARL). Median or some ocher quantile of rh Run Length, e t c  

For example, k t  us assume that the obsennli01U are independent. identically diruibuttd (iid) and 

normal with mean p and rd. a -1. The w e t  k w l  of the process k p -0. Let m draw an ARLcorvc 

as a function of the pmcess level p for a Shewban scbeme (signal is uiggered if a single observation 

f?Us above 3) and for an (unspecified) Cusum scheme (Ti 1.1). 

Curum n. Shewhort - - - - - 
- - Cusurn - - Shewhort - - - 
- - - - - - - - 

0 1 2 3 

Process Mean 

Fig. 1.1. Comparison between Cusum and Shewhan schemes. 

Thus. U rh proass is on target, both scbemes have roughly the same degree of protection against 

false danns (ARL = 740). However, as the process level shifts, the Cusum scheme becomes much 

more sensitive. For example, for p - 1 uve have ARUCusum) E 10 uvhile ARL(Shewhan)+: 45. 

Another interesting question is as follou's: if ure look n obsenations at a time and applied a Shewhan 

scheme u, their sample means, how large should n be to assure the m e  sensiti\*ity at p -1 as our 

Cusum scheme? Ooe can show lhat to achieve that we need lo lake n - 3; a direct mnchaion is that 

in some situations by using a Cusum scheme instead of a Shewhart one can reduce the sampling in- 
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tensity by a faaor of 3 and still keep the saw "msolucion" betuwn "good" and "bad" levels of the 

process.' 

In the present work uv consider a Cusum - Sheahart class of control schemer These schemes assure 

about the best possible sensitivity for a g i \m le\vl of protection against false alarms. and, in addition. 

poness certain desirable features listed. for example, in Yashchin (1985% p. 378). Fvst of all, Cusum 

- Shewharl scbemes are "adyzable". In other words. it is possible to examine, by analytic means, 

tbe RL behavior of a scheme for any given stochastic pattern of incoming (iid) obsen%tions; ap- 

proximate ~ s u l u  for some aoa-iid ases are also aai labk (ex. see Bnphaw and Johmon (1974. 

1975)). Another important quality is "desiplability". Indeed, once tbe "good" and "bad" k w l s  of 

ch pmccss as well as comspondimg sensihity tequiremenls arc specified, om cm. h a relatively 

straightfoorwud way, design a Cusum - Sbeu.hart scheme and determine the rekvant sampling inten- 

sity to w e t  these requirrments (see Woodall (1985 a, b). Yasbchin (1985a)). SiDa analysis of this 

type of scbemes is associated uith an extensive computational effort. includig mavix analysis. both 

problems of analysis md design arc hardly treatable unless an appropriate software package is avail- 

able. In the present work we invoducc such package (CONIRD, pre\iously called DARCS) and give 

u\vral examples of its application. A reparale package CONIRF' for plotting of Cusum-Sbenhan 

rcbemes is presently under testing and mill k d d k d  in a fonhcoming repon 

Analysis of chc RL and careful design of control schemes are especially important in situations wbere 

measurements are taken and p n m w d  automatically and/or where several parameters an controlled 

simultaneously. In such situations frequent out-of-control signals associated with pracrical!v non- 

important changes in pmccss parameters may c a w  frequent unjustified corrective actions and/or 

eventually ruin the discipline of the operator; on the other hand, failure to detect a m ~ l y  out-of- 

control situation rapidly may result in a subsmtial amount of poorquality product 

' Formally. one a n  derm the "molution" of a mntml schcmc. lor example. as n l m  bctsrcn the ARL'r comcrponding 
u, .malable 1"rood"l and unam~tablc ("bad") k \ r b  of  lhc  mu (Illex kvck arc dctcmhcd on rhe bask of ~- -~~~ - ~ - -  . . 
pnctial  md/or cmmmic;llmmklenlioml. In rilwtions mhcrc the IamplinF inlcrrJl k no1 a r icd numbrr.il b nrlunl 
tochanc~erizc ihc wr(ormancc of a scheme in t c m  of lhc Tune IoSt~naI (TSI inncadol thc Run Lenplh: in such N c r  
m c  an dclinc lhc rcrolution as a n t w  bclurcn lhc ATS'r IAvcngc Tim< lo Sighlll mrrcylOnding lo "Food: and "bzd" 
b c l r  of thc p m .  
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For example. consider the following situation related to the production of surface-mounted printed 

circuit boards. Assume that a board has 400 pads each containing a certain amount of solder paste 

deposited by squeezing it Uuough a mask. Before mounting the components onto the board and re- 

flowing the solder, the volumes of solder paste on each pad arc measured by an optical scanner. If the 

measurements corresponding to some pad show an erratic behavior (which may be caused, for ex- 

ample, by a partially clogged slot in the mask). an out-of-control signal is triggered. It is clear that uw 

of a 3-sigma Sheu'han scheme to control the subsequent volumes on a pad would resulr, on the av- 

erage, in one false outsf-control signal per board! (Indeed, Fig. 1.1 implies that the on-target ARL 

for a two-sided Shewhart scheme is approximately 740/2-370). So. if we wanted the probability of 

a fake alarm within an 8-hour shiit not to exceed 596. we should have undergone the appropriate 

design and analysis procedure. The fmal control scbeme would probably represent some kind of a 

compromise between the desired sensitivity and degree of protection against fake alarms. 

l'his example makes it clear that one cannot blindly apply standard conlrol schemes considered in 

some Quality Conval texibooks to situations invol\'ing simultaneous control of several parameters. 

Yet, such situations are rather common in modem industry, and it is not unusuai to see thousands of 
.. 

sequences monitored simultaoeously. To summarize, any controlscheme associated with automatic data 

processivg mrd/orsimultaneour confro1 of sewralparamete~~ shodld be thoroughly anabzed before it con 

be mammmded for use. The analysis should involve identification of various possible joint disuib- 

utions of observations and investigation of the corresponding run length distributions. Its ultimate aim 

is to assure that the run length of the scheme under consideration is sufficiently long if the changes 

in process parameters arc notpracticallyimpo~ant and sufficiently short if they are. 

In the context of modem process control, another property of a control scheme ,beconies crucial. 

namely. its capability to incorporate new information immediately upon its arrival, and update itself 

accordingly. This criterion corresponds to one of the weakest points of Shewhart control schemes. 

which are typically associated with first st~bgrot~ping obsen'ations into samples and only then updat- 

ing the scheme. Clearly. in situations wbere observations (measurements) are not "naturally" 

grouped, but rather arrive one at a tin~e, such artificial subgrouping leads to waste of time and loss 



of resolution power of the scheme; it is not inherently tied to the problem of control itself. One of 

the main reasons for creating artificial samples when running Shewhart schemes is related to concern 

that individual observations may have other than normal distribution; by using sample averages one 

could bring the scheme characteristics closer to those predicted by the normal model2 

As the reader will see from the next section, in the case of Cusum - Shewhart schemes the process 

of cumulative summation itself brings us (by virtue of the Central Limit Theory) into the normal do- 

main. eliminating any necessity for artificial grouping. In general, every scheme considered in the 

present work is based on the principle of immediate utilizafion of incoming l?/otmation; the term 

"sample size" will typically refer to a group of observations (measurements) arriving into the control 
L 

system at the same moment of h e .  

In practical applications. it is not always clear what actions should be taken as a result of an out-of- 

control signal. The strictest one calls for an immediate stopping of the production process until the 

situation is clarified and the problems (if any) dealt with Another possibility would be to increase 

the sampling intensity and/or switch to a tighter mode of operation which. in turn. could lead to either 

-- more drastic actions or return to the normal operating mode, depending on subsequent behahiour of 

the process. In situations related to automated control (ex. robot control) one could try to estimate 

the cumnt  kvel of the pr- of observations and introduce a correction by means of a feedback 

loop. Clearly. many other actions could be suggested; the actual choice uiU always depend primarily 

on the specific nature of the situation Unfonunately. (he scope of the present work does not enable 

us to discuss in detail the questions related to actions foUoving an out-of-control signal as well as 

many other important aspects of the Cusum technique; the reader will undoubtedly find useful the 

monographs by van Dobben de Bruyn (1968) and Woodward. R. and Goldsmith (19G4). Bissell 

(1969) and guide by the British Standards Institution (1980-1983). 

We believe that because of their excellent statistical propenies, "designability", easy visual interpre- 

tation and other imponant featt~res, Ctisum-Shewhart control schemes \\.ill become a doniinant tool 

Othcr reasons for not updating the szhemes immcdbvly may be rulalcd to cost or inromtalion p m u i n g  of even romc 
stalktical mnsidcntians (scc Example B.6. Appendix UI. 



for on-tine process control in the coming years. Our hope is that engimers working in the area of 

quality control mill find the package CONTRD a helpful and easy to use tool for design. analysis and 

running of this type of control schemes. 

2. Cusmn and Cusvm - Shewhart control schemes. Page's and V 4  graphical reprerntations of a 
Clamn - Sheahart scheme 

In this section we give a shon ~ m i n d e r  on application of some typical Cusum-Shewhart schemes to 

our sequence of observations x,. x2. ... . As we shall see, these schemes can be used in one of two 

modes hge's mode and a V-mask mode. We start by introducing the upper Page's scheme. 

0 Upper Page's scheme 

Let us suppose that we arc primarily concerned about the possibiity that the proass might shift up 

towanis an unacceptable kvel (typical example - monitoring sample proportions of defectives in 

successive lou). Upper Page's schemes represent a type of Cusum control schema that can be used 

to detect the presence of such conditions. The scheme is defmed in tenus of three parameters: 

h+ 2 0 (signal level), k+ (reference value) and 0 5 < h+ (beadstart). It is applied as follo\vs: 

a) Start from @ and compute the sequence of cumulative sums: 

b) If N+ is the first index i for which si+ > h+, trigger an out-of-control signal at time N+. 

Note that N+ represents the RL of the scheme. If an additional signal criterion is introduced. namely 

C) If a single observation xi satisfies xi > c+. trigger the out-of-control signal at the moment i, 

the procedure is called an upper Page's scheme sit11 parameters (h+ .  k+. $) supplemented by 

Shen-hart's limit c+.' Here and in what follo\vs \Ire refer to such (supplernenLed) Page's scbemes as 

Cusum-Shewhan control schemes. 

' It is ckar that in order lo rffccl lhc pctformancc 01 Ihc control whcmc lhc Sheulmrt's limit must utbly 
c+ < h+ + k+ .  Also. if c+ 5 k+. thcn an out of conrml sign31 can be Iri%mrcd only il h c  Shcn.han'l $it has been 
violaled ic. mx obtain a pure Shcul~art whemc with upper control ibtlil c*. 



Let us clarify the roles of the parameters in a Cusum-Shewhart scheme. The reference value k+ is 

usually chosen to be close to the midpoint between the acceptable and unacceptable levels of the 

process, as shown in Fig. 2.1. Thus. it acts as an "anchor" keeping the scheme from drifting in on- 

target situations. On the other hand. if the process level is unacceptable. the successive differences 

(xi - k+) bewme typically positive. they armmulate in (2.1) causing the h e m e  to eventually 

,, float up" and signal. 

The signal level h+ characterizes the degree of accumulation of hformation allowed in the control 

scheme. If h+ - 0, we do not allow any armmularion of evidence a@t the on-target hypothesis 

and am prepared to signal on the basis of a siogle obsefvation - in other words our Cusum scheme 

turn into a pure Shewhart scheme with upper conuol l i t  k+. 

The beadsran @ implements the Fast Initial Respoose feature, Le. it provides an ianrument for 

detecting initiulb p m t  out-of-control conditiom earlier than similar conditions occuniog later. 

The rationale for using a headstart is as follows: if the pr- is on target, the Page's scheme will be 

(most likely) brought to zero by the reference value, so that in this case the expected effect of the 

beadstan is minimal; otherwise, hou*ever, the outaf-control will be uiggered much sooner (ex see 

Lucas and Crossier (1982)). Fially, supplementing the scheme by a Shewhart's limit improves the 

seositivity of the scheme with respect to suhstaotial increases in the process level - in other words. it 

removes some of the "inertia" of a Cusum scheme when facing a sharp change of the process (ex. see 

Lucas (1982)). There are also cases in which Shewhart's limits are introduced because of some special 

features of the associated production process or other considerations. 

Note that schemes based on only two parameten, signal level and reference value, are frequently 

found quite satisfactory for practical purposes. 

(U) Lower and two-sided Page's schemes 

Now assume that we are primarily concerned about the possibility that the process might shift down 

to some unacceptable lower level (typical example - monitoring successive inter-failure times of an 

electronic device). A natural way to monitor such sequences is to apply an upper Page's schen~e with 



parameters h- 2 0. k-. 0 5 SF s h- and c- to the sequence of "refiected" obsenrations. 

- 11. - 3. ... . Such procedure defmes a Iowr Page's scheme: 

signal if sr > h-. In accordance with our recommendations regardiig choice of the reference value. 

( - k- ) should be chosen close to the "midway" between the acceptable and (lower) unacceptable 

proan level (Fig. 21). Adalogously. if the lower scheme is supplemented by a Sheu.han limit, an 

immediate outof-control s i p 4  should be triggered if ( -xi ) > c-. Note that if the target level of 

om scquemx is 0. the reference values (and Shewhart limits, if present) of both upper and lower 

"bad" "good" "bad" 

w P r o c e s s  Level 

-i 

Recommended Recommended 
value of (-k-) value of k+ 

Fig. 2.1. Choice of the reference values. 

In situations where we would Like to detect rapidly both types of shift of process froni its target le\.el, 

it makes sense to run both schemes simultaneously and to trigger an out-of-control signal as soon as 

one of the one-sided schemes signals. ?his procedure will be called a two-sided Page's scheme with 

parameters (h+, k+. so+. h-. k- , 6-). possibly supplemented by She\\'han's limiu (c-, c+). It is 

clear that we must always have ( - c-) < c+. Moreover.Fig. 2.1. indicates that for all "reasonable" 

two-sided schemes ( - k-) < k+; in what follo\vs, we shall always assume that this condition is 

satisfied. 

To illustrate the use of Page's schemes, let us consider the follo%ving example. 
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Example 2.1 In the oxidation process of silicon wafers, we are interested in keeping the difference 

between the actual mean thickness of the grown Si02 layer and its target value (we denote this dif- 

ference by A) as close to zero as possible. In order to achieve t h a ~  we take n measurements of film 

thickness per lot and test for presence of significant systematic deviation between the actual mean 

thickness and the target value. Let the measurements comspondiig to the fi lot bey,,, );2. ... yh 

(denote their average by & ) and let us base our control scheme on the sequencexl. 3. ... .where 

xi is the difference between Ji and the target value. 

The consequences of systematic deviations between the actual mean thick- and iu target level 

depend not only on the magnitude but ako on the sign of the deviation So. we would l i e  to guard 

ourselves against situations in which A is more than 6A or kss than ( -4A). Let us apply the two- 

sided Page's scheme with parameters (h+ - 9. k+ - 3. s$ - 2. h- - 5. &- - 2, g - 1) to the 

sequence of observationsxl, x2, ... presented in Table 21. The resulting chart is given by Fig. 2.3. 

a). and the values of the one-sided schemes correspond to columns 3 and 4 of the mentioned table. 

The out-of-control signal is triggered by the upper scheme at time i - 40. 

In the situation dwcribed in the above example. one would usually try to control not only the mean 

(level) of the sequence, but also a, the variability within each sample. 'Ihis can be done by means of 

A A 
a Cumulative a- ch- where a is the sample standard deviation: 

A A 
We do not have a panicular "target" value for the sequence 01. a2. ... ; instead. we have a "target" 

region, namely. we want .the underlying "me" standard deviation a to lie within the interval 

0 < a 2 2A. On the other hand, we would like to detect as quickly as possible the situation in which 

A A 
a 2 4A. Let us apply the scheme ( h - 5A k = 3A, so - IA 1 to our sequence a], 02, ... . In the 

k t  two columns of Table 2.1 uve give the observed realization of this sequence and the corresponding 

values of the Page's scheme. sl, s2, ... . 4 

hbtc that lor both comidcrcd schemes thc rrfcrrncc \alucr urrr chosen about thc midax). bctwcen "goodq and "bad" 
h c k  of the proms. 
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Finally. in situations of thi type there usually arc other sources of variability of interest, for example 

wafer-to-wafer variability within a lot, lot-to-lot variability. e t c  These components of variability 

should be convolled separately by using appropriate sequences of ertimatorr It is natural to choose 

the corresponding target regions so as to maintain the total variability (which is a primary factor that 

determines the process escape rate) sufficiently smalL In general, it is also a good practice to maintain 

a separate chart for controlling the total variability. 

To iUustrate the above point, let us assume that the usderlying mean of the population corresponding 

to the i -th sample is itself a random variable with mean 0 and standard deviation ab. If the within- 

sample variability a is small compared to ab and generally behaves in a stable way. an appropriate 

ptucedure for controlling the lot-to-lot variability could be based on the sequence 

4 - 0 1 + - 1 . i - 1.2. ... . Indeed, it is well known that the expected level of this a- 

quence is 

.. 
thus, for situations of interest its relative bias is rather small. For example. if n-5 and 

o/ab 5 0.5. it does not exceed 0.S2/(2 x 5) - 0.025. In situations where a is not sufficiently small 

and, consequently, plays a significant role in determining the lewl of our sequence, an alternative 

approach is needed; detailed analysis of such situations. however, falls beyond the seopt of the 

present work. 

(iii) An alternative approach: V-muk scheme 

In this subsection we consider an alternative way of applying a Page's schemes to a sequence of ob- 

servations - V-mask schemes. For purposes of control, both types of schemes are completely equiv- 

alent; the difference is only in the graphical representation. 

Suppose, as previously. that we observe the process x l ,  x2, ... . Let us define the cun~ulati\.e sum 

process co. C I .  . . . by 

10 



where 6 is some "convenient" constant (ex, target value; as we shaU see later, this constant does 

not play any role in the control procedure ilself. but rather serves for convenience of graphical inter- 

pretation only). Funber. let us plot the resulting values c, against i and construct a mask with pa- 

rameters ( h+. k+. h-. k- ) as sbown in Fig. 22 Note that if the horizontal line is marked as 

having slope rg. then k+ and - k- represent the slopcr of the IOU-er and upper arms of the mask, 

rrspecti\*ely. If our scheme is supplemented by Shewhart limits ( c-, c+), the mask will be slightly 

"paraboliid" mar the origin. Now let us apply the V-mask to the cumulative sum as shown in Fig. 

22, and t r iger  an outof-contml signal a t  the f i i  moment the Cusum path fails to fall within the 

anas of the V-mask for one-sided control we apply the appropriate half of the V-mask only. To im- 

plement the Fast Lnitial Response feature. we put two artificial obsenmtions (0. - 6) and (0. 6) 

" onto the chart and trigger a signal also if one of these observations falls outside the mask. 

Fig. 2.2. The V-mask scheme. 



The described procedure is called a V-mask scheme. As we mentioned earlier. it is completely 

equivalent to a Page's scheme in the sense that one of the schemes signals at some moment of time 

if and only if the other one does (ex. see Duncan (1974, p.469)). As an example. let us apply a V- 

mask scheme to the chart ( i ,  ci) associated with observations xl. 3. ... from Table 2.1 (see Fig. 

2.3. b)). As one can see, both schemes signal at the same time i - 40.= 

The main benefits of the method of Cusum plotting used in the V-mask scheme are related to con- 

venienoe for purposes of graphical data analysis. Indeed. the cumulative sum trajectory represents a 

natural instrument for smoothig the data without loss of information in the sense that it enables 

imwdiate restoration of individual observations. Its slope at any moment of time cornsponds to the 

current kvel of the process of observations; it can be eaJily estimated by means of a protractor (slope 

guide). The latter can be used either as shown in the bottom right part of Fig. 2.2 or as in Fig. 2.3.b. 

where slopes corresponding to rays of the protractor are dbplayed instead of the values of cumulative 

sum. Clearly. these values can be easily restored, since the cusum path always starts at the origin and 

the pmuactor size is known. This type of display is especially convenient for automated data proc- 

.. essing. as the protractor is always located in the same place. In addition, Cusum plot enables imme- 

diate evaluation of the average of observations within any given interval of time by connecting the 

ends of the Cusum path by the ruler and matching its slope with an appropriate ray of the protractor. 

One of the main drawbacks is related to the fact that the Cusum path is not I'ilited to a horizontal 

strip of paper (screen) and it can run out of the prescribed margins. There are several ways to over- 

come this diificulty (ex  by re-initiating the chart once it runs out of prescribed margins), hut all of 

them come at  the expense of convenience of visual evaluation. An additional drawback is related to 

necessity to specify the value of to in order to ensure approxinlate horizontality of the "on-target" 

Cusum path. In addition, special scaling is required in order to have "reasonable" angles of the V- 

mask. In some cases. this requirement represencs a nuisance, especially when a standard-grid graph 

' Readers familiar uith thb topic rill nalicc 1h31 in s l ~ l k t i n l  litcnturc \'-mash arc 1)'pic~IIs dc l i ed  in lcrms ol  so nllcd 
"kldingdislancea*' m d  andes 01 lltc mask arms icx. x c  Duncan (1974. p.47011. Our dclinition hzs wveml immnant - 

8d\antaecs. F i l .  our panmelers arc in\;lrianI with respccl lo sulin: 01 lhc axes. In addition. our pznmacrs an: rlrr 
sane lor both l)pcs 01 C u m  whcmcs. 
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Table 2.1 The observed d u e s  of sample means. !I,]. fomsponding %-slues Is:. 5 7 1  of che xbeme 
lh+  - 9. k+ - 3.3,jj - 2. h' - 5. k- - 2,sc - 11 and Ic,l of the "pure" CUSUM (rbe fint five 

A mlumnr): The observed vduts of the sample standard de%iationr. {oil. and tbe mmsponding vdues 
(sil of rbe one-sided scheme ( h  - 5. k - 3. so - I I ( b e  k t  two columm). 



Fig. 2.3. Cusum control schenies. The scale symbols of ci - axis correspond lo slopes. The tic marks 
on the horizontal ray 01 the protractor can be used to obtain mt~ltiple values 01 the slopes. 
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paper is used for plotting. However, our experience shows that none of these drawbacks can be 

considered as serious in the context of computerized (esp. interactive) plottiog. Page's scheme is free 

of the above drawbacks, but it is less informative since the only information we keep is that required 

for control purposes. In what foUou.s. we shall work in terms of Page's schemes only; 'however, the 

user should bear in mind that all the results can be applied directly to eases in which V-mask is used. 

3. 'Ihc structure of package CON'IRD. Typical outpots of the functions for aualysk and dedgn 

In this section we give a desaiption of APL/APU package (workspace) CONTRD for design. 

analysis and runniag of Cusum-Shewhan control schemes developed recently in the Department of 

Mathematical Sciences of Thomas J. Wacson Research Center (IBM). It represents a substantially 

modified and enhanced version of the package DARCS described in Yashchin (1985a). CONTRD 

can be loaded eitber by typing )LOAD CONIXD after entering manually the APL/APL2 envi- 

ronment, or by using an exec CONTRD which is supplied with the workspace. To exit from the 

workspace. one should type )OFF. One of the important features is that there is no need to know 

.. APL or to have an APL keyboard in order to use the functions of CONTRD. These functions in- 

clude: 

Special functions CUSUMC, CUSUMP, CUSUMS. CUSUMT and CUSUMX for design and 

analysis of Cusum c-chak. p-charts, s-charts. Tie-Between-Events (t)-charts and f - 
charts, respectively. This set of functions is sufficient for many users of Cusum schemes; 

Distribution functions of some commonly used random variables; every function whose name 

starts with letten DF is one of such functions (ex. DFNORM, DFBINOM. etc.). They are used 

to specify the nature of incoming observations when analyzing properties of the scheme. A full 

list of provided distribution functions can be found in Appendix A. 

Functions for analysis of upper Page's schen~es (ONEAN, ONEVARY. ONEXPLR) and lower 

schemes (ONEANL, ONEVARYL, ONEXPLRL); 



r Functions for design of upper Page's schemes (ONEFIND. ONEXPLRD) and lower schenies 

(ONEFINDL, ONEXPLRDL); 

Functions for analysis of two-sided Page's schemes (TWOAN, TWOVARY. TWOXPLR); 

r Functions for running om- and two-sided Page's schemes (ONERUN, ONERUNL. 

TWORUN); 

Functions for special purposes (ASSTGh'. IDENTIFY. QLJlT, RESET. SET. SETI, SETFIND. 

r Other functions (primarily for generating various types of random variables and sequences. and 

statistical analysis). 

The package has a complete internal documentation (functions DESCRIBE and HELP). For exam- 

ple, infonuation related to the function CUSUMC can be obtained by typing HELP 'CUSUMC'. The 

function HELP can also be used to obtain information on the general structure of the package, Sit 

. of available distributions. list of abbreviatiou. etc 

Consider the functions related to design and/or analysis of one-sided schemes. A function for anal- 

ysis usually results in a table including confirmation of scbeme parameters as well as the results of 

analysis. It typically looks as follou.~: 

Analys is  o f  upper Cusum scheme w i t h  parameters H,K = 3 1 
The l e v e l  o f  d i s c r e t i z a t i o n  is 30 
The obse rva t ions  a r e  normal with SIGkIA=l 
The changing parameter name is PIEU 
The scheme is supplemented by t h e  Shewhart l i m i t  3.5 

MEU ARL SDRL 5 10 20 50 
0.0 1507.3 1505.4 .99760 .99430 .98772 .96823 
0.5 111.0 108.2 .97515 .93225 .84995 .64403 
1.0 17.1 14.1 .84008 .59530 .29071 .03376 
1.5 6.3 3.9 .48629 .I2590 .00780 .OOOOO 

As one can see, this output is quite self-explanatory. For example, it says that if the process level is 

p '1.5. the corresponding ARL and SDRL (Averaze and Standard Deviation of the Run Length) are 



6.3 and 3.9. respectively; the probability that the Run Lcngth will be greater than 5 is 0.45629. the 

probability that it will be greater than 20 is 0.00780. etc6 

For purposes of analysis. u9e assume that the intend (0, h ) is subdivided into d groups having the 

same length 6 (except the group containing 0) and. at each step. the values of the Page's scheme are 

rounded to a center of a corresponding group. We refer to d and 6 as the lewl and intern1 of 

dircretization, respectively. The notion of discretization is discussed in detail in Appendix C. 

The output table corresponding to two-sided schemes is analogous.' In addition to columns sho\vn 

above, it has a column P(UP) containing the probabilities that the signal is triggered by the upper 

scheme. Also, some additional information related to the nature of the two-sided scheme (presence 

aod power of inviasic interaction, e tc)  may appear. For details, see Yashchin (1985a. pp. 381-384) 

or Yashchin (1985b). 

The functiom for design of one-sided schemes perform a search for a signal level, h, for which the 

ARL (or specified Quantile of the Run Length) is equal to a specified number. Other parameters of 

the scheme are fixed; they are either derived automatically (as in special functions CUSUMC, 

.. 
CUSUMF', etc.) or specified by the user. Analogously, the initial approximation &for the search 

procedure can be chosen automatically (special functions) or should be provided by the user. A typ- 

ical output of a design function is as follous: 

Sea r ch  for t h e  v a l u e  o f  H s a t i s f y i n g  ARL=3.9 
The l e n g t h  o f  i n t e r v a l  o f  d i s c r e t i z a t i o n  is 0.53301 
The o b s e r v a t i o n s  are d i s t r i b u t e d  a s  X-bar w i th  flEU=110 SIGEIA=10 SMIPLE=3 
H=15.7238 Leve l  o f  Discr.=30 ARk3.89715 
H46 .2568  Level  o f  Discr.=31 ARI~4.00394 
The i n t e r p o l a t e d  v a l u e  o f  H i s  15.738 

This output corresponds to Example 5.6 considered later (in this example & = 12, k = 105 ). It 

shours that the procedure of search for h resulls in an inten'al. If the design procedure is aittomatically 

followed by an analysis of the resulting scheme. the signal level for which the ARL is closer to the 

target value will be chosen. So. since in our case the ARL=3.897 for h = 15.735 is closer to the 

Notc that the last dsplapd table is alwa)'s stored in lhc workpxc undcr thc namc TABLE So. lo see some' ~ddi l ion l l  
signilircant digits or the output mblc. onc should 1 3 ~  TABLE. 
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desired value. 3.9, it will be chosen. by default, for the subsequent automated analysis. Note that this 

default mode can be changed (Sec. 5.6). 

In cases where choice of the initial approximation, ho has been grossly umuccessful. the search 

procedure may fail. In sucb cases the last approximation and other related information is displayed; 

the user should use this information in order to suggest an alternative initial approximation and repeat 

the relevant function 

Tbc information specific to functions for design and analpis of general Cusum-Shewhart schemes 

will be provided in Sec 5. 

4. S p d  f d o m  for dedgrr .nd d y d s  of commonly twd control charts 

In this seaion we consider the special functioas for design and analpis of Cusum schemes for several 

types of "popular" m u m 1  situations - control of the mean and standard deviation of a normal pop- 

ulation. sample proportion of defectives. and so o n  These functions have a unified format and are 

very easy to use. We feel that they may satisfy the needs of a substantial proportion of Cusum users. 

. Fit, we describe the common features of this group of functions and then provide more specific in- 

formation and examples. Several sample runs of special function can be found in Appendix B. 

4.1. Some common features 

Every function has a right argument, vector R, specifying the requiremenlr of the design procedure, 

and a left argument. vector L, containing such information as sample (subgroup) size, acceptable and 

non-aexptable le\*els of the controlled parameter, and standard deviation of a single measuremenL 

The last two components of L are always opiional and will be discussed later. 

At the first step (design) the function au~omatically picks an appropriate reference value. k ,7 and 

then performs a watch for the value of the signal level h for which the on-targer ARL (or on-target 

' The chdre of k k nsuallr bved on W;clhood n l io  mnsidcnlions. which auurcs about the bcsl wsrible rcsolulion 
p u r r  u nrll u CCNin 8symplol~ oplimalils pmpcnin lcx. x e  L ~ r d c n  (1971 I ) .  The rcadcr lamililr rill, the theory 
oi Scqucnlial Pmbabiity Ralio Tcsu (SPRTsI ulll nolicc l h ~ l  lor silulions cOmspOnding to spccul funcuom IIIC 
rtructw of SPRT k anabgou l o  Ihal o l  thc Pas's schcme. So. the %aluc 01 k lacd in the special lunclions (cxcrpl 
CUSU.W) a n  bc derived d ia l ) '  Iran the appmprialc SPRT. Ii the diiribucmn or the obscnations~b similar lo 
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quantile of the Run Length) is equal to a prescribed value; this value should be provided in R [I] . If 
R [I] represents the quantile, then an additional component, R [2] , is required; this component 

should provide the order of the quantile. U the right argument. R. cootaim a third component. then 

R [I] specifies the desired off4age1 ARL (in this case R [2] must be set to 0) or the des-cd offitaget 

quantile. 

The initial point ho used in the procedure of search for h is chosen automatically. However,as we 

mentioned in the previous section. in some c a ~ s  this choice is too low compand to the sought value 

of h . In such cases Step 1 fails and a message appears indicating that the upper bound of search has 

been reached On the basis of (displayed) last approximation to h . the user should introduce an 

additional (the f i t  optional) component of I. reprrsedting some larger initial point of rearch, and 

then repeat the function It is also recommended to use this optional component if a good approxi- 

mation to the sought value of h is available - this will save CPU time. The second and last optional 

component of L represents either the inten-al of discretization (for functions dealing with counted 

variables - CUSUMC and CUSUMP) or the level of discretization The default in tend of 

.. discretization is 0.1; the default level of discretization is 30. 

Once the search p d u r e  for h is completed, Step 2 of a special function (iceractive analysis) is 

initiated by the message: 

Enter the wlues of H, K. H B D S T .  and CD for further ana!bsir (or 0 to exit): 

At this point the user can examine additional properties of the scheme derived at Step 1 (or any other 

scheme). Only the f i t  component (signal level, H) must be entered If the third component falls 

between 0 and H, it will be used as a headstart; otherwise. a steady state analysis will be performed 

(see Appendix D).'The code CD enables the user to control the extent of analysis 

CD-1 will prompt the user to introduce additional values of the controlled parameters 
to be explored in the analysis; 

normal. lhis sugpslr to choose k in the midwn). beiwern "good" m d  "bad" kvek of the p m s .  u noled earlier. in 
Scc. 2. Mom n~aterial o n  ihc analon beluren SPRTs and Cusum control whcmcs can be found. lor example. in Khan 

In lhe steady slalcanal)sb rhc on-larpel d'ilribulion is lllc one cornspondin: l o  lhc ]-st mu.of rhc oulpukt~blc. 'Ihb 
row urwlly cornsponds lo the acceptable kvcl of lhc conlmllcd pannrvr .  



CD-2 will prompt the user to introduce the values of r for which Prob.(RL > r )  will 
be computed; 

CD-3 mill prompt the user to invoduce a Shewhan limit; 

CD-0 cancels all the above conditions and returns to the original extent of analysis. 

Other values of CD will pmmpt the user to invoduce pan (or all) of the above conditions (ex 

CD-12 is equivalent tosimultaneous use of CD-I and CD-2). Some additional possibilities for the 

choice of CD are available when using the function CUSUMX, see Sec 4.6. 

4.2. Design of 8 errmulative e - chart for contmIIing the mean of 8 P k n  population. The function 
CUSUMC 

The function CUSUMC designs and analyzes a ctimulative c-chart. This scheme is used to control 

the mean A of a sequence of Poisson random variables (typical example - monitoring numbers of 

dele& found in successively produced units). Thus. the observations in this type of scheme are in- 

tegers. The format is as follou.~: 

L CUSUMC R 
-. 

where the right wumen t  R has a general form described in Sec 4.1. The left argument L contains 

fmm two to four components: 

a5 [I] is the acceptable level, hg; 

L [-'I is the unacceptable level, XI  > Ao; 

L [3] ( o p t i o ~ l )  is the initial approximation ho used in the procedure of search for h . Its default 
value is 2.95. 

L [4] ( o p t i o ~ l )  is the interval of discretization. 6 (default 0.1).9 

The value of k used in the design procedure is 

h'ote that by specifying lhc h r c d  of diirclhalion ar arc able to c l i inatc  thc mundolf c m r  (see Appendix Cl. 
Honzver. by doing lhal m r  bw the dircct conlml m r r  the k1r1 01 diirctiulwn. So. schemes aith Signal IcrcL say. 
* k c  10  w U  kad to  a b e 1  of discm'mlion of order drlOO and. comcqucnlly. to cncnrivc CPU timc requircmcnu. 
Tkrcfore. if our preliminor). run indioles lhat hi& %alucs of h may bc required. it is rcmmmcnded to uw a longer in- 
tcn-dl of d i r r tha l ion .  say. 6 = 0.2.0.5 or I. 



rounded to the nearest multiple of 8 (ex. see Lucas (1985)). 

Example 4.2. Let the acceptable and unacceptable levels of A be A. - 1.5 and XI = 3.5. We \vould 

like to have a scheme (i.e. to fmd h ; remember that k is determined automatically) for which the 

ARL (for A - 1.5) is 200. So. we can use 

1.5 3.5 CUSUMC 200 

Jf our goal were to find a scheme for which Prob.(RL > 20 1 A = 1.5) = 0.9, and a good initial 

approximation ( ho - 3.7 ) were available. we should have used the statement 

1.5 3.5 3.7 CUSUMC 20 0.9 

Jf our goal were to l i  a scheme for whicb the ARL (for A - 3.5) is 2.5, we should have used the 

statement 

1.5 3.5 CUSUMC 2.5 0 1 

A case related to use of CUSUMC is considered io Appendix B (Example 8.3). 

43. Design of n cumulatirc p - chart for controUing the process proportion of defective units. ?he 
function C U S ~  

The function CUSUMP designs and analyzes a cumulative p-chhan This scheme is used to control 

the process proponion of defectives p on the basis of numbers (counts) of defective units found in 

successive samples of size n. In general, this type of scheme represents an instrument for controlling 

the parameter p of a binomial population. Clearly, the observations in this type of scheme are inte- 

gers. The format is as follo\\,s: 

where the right argument R has a general iorn~ described in Sec. 4.1. TIle left argument L contains 

from three to five components: 

L [I] is the sample size, n; 
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L 121 is the acceptable level, pg; 

L [31 is the unacceptable level. p, >p,,; 

L [4] (oplionul) is the initial approximation ho used in the procedure of search for h . lu default 
value is 2.95. 

L [5] (opfionul) is the interval of discretization. 6 (default O.l).'O 

The value of k used in the design procedure is 

rounded to the nearest multiple of 6 .  

Example 4.3. Let tbe acceptable and unacceptable levels of p be p,, - 0.01 and pl - 0.04, and let 

the sample size be n - 25. We would like to have a scheme (ie. lo find h ; remember that k is de- 

termined automatically) for u.hich tbe ARL (for p - 0.01) is 500. To derive an appropriate scheme, 

we can use 

If our goal were to find a scheme for which Prob.(RL > 20 I p - 0.01) - 0.95, and a good initial 

approximation ( - 3 ) u,ere available, are should have used the statement 

25 0.01 0.04 3 CUSUMP 20 0.95 

If our goal were to find a scheme for which the ARL (for p = 0.04) is 2.5, we should have used the 

statement 

Note that CUSUMP can also be used to derive a scheme for monitoring p on the basis of sample 

proponions of defectives (instead of councs). If the sample size n is fixed. one should just divide the 

derived scheme parameters by n. If the sanlple sue varies. we have no choice but to use the sample 

" Scc the loolnorc on p. 20. 



proportions; in this case we could set n to some "expected" sample size, derive an appropriate 

scheme, and then examine its performance with respect to ocher, fiied as well as random sample sues 

(also see Example 5.7). 

4.4. Dedgn of a cumulative s - chart for conmlling the standard dehtion of a normal population. ?he 
function CUSUMS 

The function CUSUMS designs and analyzes acumulative sshart. This scheme is used to control the 

standard deviation a of a normal population on the basis of a sequence of sample standard deviations 

A A 
a a ... (see (2.3)) mmspondiig to successive samples (subgroups) of size n. Cumulative s- 

charts represent nn alternative for the "dasscal". s-cbans and r-chans (see Duncan(1974. Ch. 21). 

Note that in most practical situatiom the subgroup size n does not exceed 5. 

Tbe format is as follows: 

L CUSUMS R 

.; where the right argument R bas a general fonn desuibed in Sec 4.1. The left qumen t  L contains 

from t hee  to five components: 

L [I] is the sample size, n; 

L [?I is the amptabk level of variability, 00; 

L 131 is the unacceptable level, a l  > ag; 

L [4 (optional) is the initial ap roximation ho used in the procedure of search for h . Its default P. value is 3a0/ 2n 

L [S] (optionuf) is the level of discretization, d (default 30). 

The value of k used in the design procedure is k - (ao + al)/2c(n). where 

in particular, for sample size of n - 2. 3.4, 5, 6. and 7 this constant is 1.25, 1.13, 1.09. 1.06, 1.05 

and 1.04. respectively. 
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Example 4.4. Let the amptable and unacceptable levels of a be 00 = 0.1 and a1 = 0.3. and let the 

sample size be n = 4. We would like to have a scheme (i.e. to find h ; remember that k is determined 

automatically) for which the ARL (for o - 0.1) is 200. To derive an appropriate scheme, we can use 

4 0.1 0.3 CUSUMS 200 

If our goal were to fi id a scheme for which Prob.(RL > 20 1 a - 0.1) - 0.9. and a good initial 

approximation ( hg - 0.03 ) were available, we should bave used the statement 

4 0.1 0.3 0.03 CUSUMS 20 0.9 

If our goal were to fiid a scheme for which the ARL (for a - 0.4) is 1.5, we should have used the 

statement 

4 0.1 0.3 CUSUMS 1.5 0 1 

The forni of the reference value given above is related to the fact that sample standard deviation 

represent a biased (downwards) estimator for a; to obtain an unbiased estimator, one would need to -. 
multiply it by c(n). Therefore, when using the V-mask venion of the cumulative s-chart, the current 

level of the sequence as shown by the protractor should also be multiplied by c(n) to obtain an un- 

biased assessment of a. If it is imponant, for reasons of graphical data presentation, to base the 

control scheme on the sequence of unbiased estimators, one could simply multiply the sample stand- 

ard deviations as well as the scheme parameters by c(n). Another way u~ould be, of course, to base 

the control procedure on the sequence of sample variances. Though this sequence is less appealing 

from the point of view of graphical presentation and, moreover, its members are relatively highly 

skewed. it may be preferred in situations of extceniely high sanipling intensity (ex. control of robots) 

where speed of co~iiputing values of the schenie may become an important factor." Since its use does 

not typically lead to improvement in scheme performance, this possibility will not be considered in the 

present work. 

Z X ( l 0 g o l  -logoo) , " The value al k rrmmmended lor mnlml wlvmc bascd on sample clrianccs is . : 

(I/oit - (l/o;l 



One can see that CUSUMS can be used to control internal variability in slightly more general situ- 

ations. For example, assume that in situation described in Example 2.1 the measurements related to 

a given lot come from three wafers (taken from the middle and both ends of the lot), each corre- 

sponding to a set of five measurements Then, since one can expect that various pans of the lot are 

subject to slightly different conditions, it wmld be natural to estimate the within-wafer standard de- 

viation by taking an average of three standard deviations corresponding to different wafers. Since the 

number of degrees of freedom for estimating a is 3 x (5-1) = 12, our "pooled" sample standard de- 

viation is distributed in the same way as a sample standard deviation corresponding to a sample of size 

12+1 - 13 taken from a homogenuous population Thus, a control scheme based on the pooled 

standard deviation can be designed by using CUSUMS with n - 13. For a more general formulation 

see Yashchin (1984. p.33). 

Additional examples illustrating the use of CUSUMS am considered in Examples B.l and B.7 of 

Appendix B. 

" 4.5. D e  of 8 curnulalive t - dm-& for wntmIling tbe average time between events of a Poisson 
proom Conlrolling the process propodon of defectives on the bask of "gaps" between successive de- 
fective units. The function CUSUAlT 

The function C U S W  desigos and analyzes a cumulative lime-Between-Event chart, or t-chan 

This type of chart is used to control the mean inter-anival time 8 of a Poisson process (i.e. to control 

the mean 8 of a sequence of iid exponentid random variables). They also represent a way of con- 

trolling the rate X - 1/8 of a Poisson process (an alternative way would be to count the number of 

arrivals insubsequent time intervals of some fiied length and then to use a c-chart). In typical prac- 

tical situations we are interested in the loner control scheme only. Indeed, if our observations rep- 

resent, say. times between successive breakdowns in some system or lengths of life corresponding to 

a sequence of tested devices, or inter-arrival times of customers in a queueing system, \ve are inter- 

ested to detect, as soon as possible, situations in \vhich these obsen'ations fall systematically below 

the expected level. 



Another interesting application of this type of schemes is based on the relationship between the 

Bernoulli (0-1) process and the Poisson process. Indeed. let us consider a production process for 

which every produced item is defective with probability p . If p is small, then the number of units 

produced until the next defective one is found has a geometric distribution (which, ps we know. rep- 

resent a discrete analogue of an exponential distribution). If the intensity of sampling was constant. 

then times between consecutive defective units would form a process which can be considered a 

Poisson process for most practical purposes Thus, one could conlml the process proportion of de- 

fectives by means of a 1-chart by treating the observations (number of units produced between con- 

secutive defectives) as approximately exponential random variables This approximation works vely 

well for small values of p ; interested could verify that by applying an appropriate function for 

analysis of general schemes to a geometric distribution An alternative way of controlling p would 

be to form samples of some fued size, n . and then to use a cumulative p-chan comidered earlier. 

If the units are produced and/or inspected one at a time, this way will cause I o n  in th resolution 

power of the scheme - this $ one of situations mentioned in the inuoduction where one should try to 

use the information as soon as it actives rather than "mate" samples purely for purposes of control. 
.. 

It is also worth mentioning that. because of the connection between expon&tial and Weibull dii- 

uibutions, the function CUSUMT can also be wed to design a scheme for conlmlling the mean of a 

Weibull population (typical application - m 0 n i t 0 ~ g  the life iimes of su-ive devices subjected to 

an accelerated life testing procedure); see Example B.5 fmm Appendix B. 

Tbe format of CUSUMT is as follous: 

where the right argument R has a general form described in Sec. 4.1. The left argument L contains 

fronl t\vo to four components: 

L [I] is the acceptable level of the mean time between evens. go; 

L [:I is the unacceptable level. 8 ,  < go; 

L [3] ( o p r i o ~ l )  is the initial approximation ho used in the procedure of search for h . Its default 
value is 2Oo; i 



L [4] (optio~!) is the level of discretization. d (default 30). 

The value of k used in the design procedure is 

Note that the reference value is negative since t-chart cornsponds to a Ionor control scheme. One 

can see that ( - k ) is a reciprocal of the reference value used in cumulative c-cham ( e r  see Lucas 

(1985)). 

Example 45. Let lhe amptable and o~acccptable k\&ls of 0 be Bo - 1000 and 8,  - 500. In the 

context of controlling the rate of defectives. this meam tbe folloukg. U the average rate of defectives 

is one per 1000 produced units (ie. p - 0.001 ). we comider it quite satisfactory and, under these 

conditions, we would like to avoid false alarms; if. however. the average rate becomes one per 500 

anits, we would like an out-of-control signal to be triggered ar soon as possible. 

We arr intemted in a scheme (ie. in f d i g  an appropriate value of the signal level h ; remember 
-. 

that k is determined automatically) for which the ARL (for 8 - 1000) is 200. In other words. if 8 - 1000, we would like the Avemge to Signal ( A n )  to be I000 x 200 - 200000. To derive 

m appropriate scheme, we can use 

U our goal were to fiid a scheme for which Pmb.(RL > 20 1 8 - 1000) - 0.9. and a good initial 

approximation ( ho - 2900 ) were available, we should have used the statement 

At this point. an important remark is in place. As we saw earlier, the Average Time betuveen Signals 

can be explicitly derived from the ARL This is a direct consequence of Wald's identity (ex. see Feller 

(1971)). Unfonunately, this identity CaMOt be extended to other characteristics of the Run Length 

(ex. quantiles). So. Prob.(RL > 20 I 0 = 1000) - 0.9. does not. in general, iirjply that 



Prob.(TS > 20 x 1000 I 8 - 1000) - 0.9. Such relationship is not more than a (rather useful) ap. 

proximation. 

Finally. if our goal were to find a scheme for which the ARL (for 8 - 500) is 2 (in other words. if 8 

- 500. we utould like the ATS to be 500 x 2 - 1000). we should have used the statement 

4.6. Dedgn of a cumulative .T - chvt for controlling the mean of a n o d  population 'Ihe function 
CUSU.MX 

The function CUSUMX designs and analyzes a cumulative .T This scheme is used to control 

the mean p  of a normal population on the basis of sample avenges corresponding to successive sam- 

ples (subgroups of measurements) of size n. Cumulati\.e .Y s h a n s  reprrsent an alternative for the 

"cl'classical" (Shewhart's) F - charts (ex see Duncan(1974. Ch. 21). In most practical situations the 

subgroup size n used in this type of scheme does not exceed 5. 

The format is as fo1lon~s: 

.. 
L CUSUMX R 

where the right argument R has a general form described in'Sec. 4.1. The left argument L contains 

from four to six compooenls: 

L [I] is the sample size, n; 

L [?I is the standard deviation of a single measurement. ao; 

L [31 is the acceptable level of the mean. po > 0; 

L 141 is the unacceptable level, p,  > pg: 

L [5] (oprional) is the initial approximation ho used in the procedure of search for h . Its default 
value is 3n0/&, i.e. three standard deviations of an obsen~ation (representin: 
an average of n measurements). 

L [6] (opt io~l )  is the level of discretization, d (default 30). 

The value of k used in the design procedure is k - (ao + p , ) / 2 .  



Note that for chis function, additional possibilities of analysis are available in iu Second step. In par- 

ticular, specifying a four-digit CD will lead to analysis of a symmetric two-sided scheme with the given 

parameters.'= The last three digits conml the extent of analysis as described in Sec. 3.1. For example, 

CD - 1012 will prompt the user to invodua additional values of p to be considered as well as values 

of r for which Prob.(RL > r )  are to be computed; CD - 1000 wiU cancel a11 special conditions and 

continue analysis in a rue-sided mode, etc. To return to the one-sided mode of analysis. one should 

use CD - 0. 

Example 4.6. Let the acceptable and unacceptable levels of p be & - 2 5  and p, - 4.5. and let the 

sample (subgroup) size be n - 4 and the standard deviation of a single measurement be a = 1.2. 

We would like to design a one-sided scheme (ie. to f d  h ; remember that k is determined auto- 

matically) for which the ARL (for p - 2 5 )  is 200. To derive an appropriate scheme, we can use 

4 1.2 2.5 4.5 CUSUMX 200 

If our goal were to fmd a scheme for which Prob.(RL > 20 1 p = 2.5) - 0.9, and a good initial 

. approximation ( hg - 0.5 ) were available, we should have used the statement 

4 1.2 2.5 4.5 0.5 CUSUMX 20 0.9 

If our goal were to find a scheme for which the ARL (for p - 4.5) is 1.5, we should have used the 

statement 

4 1.2 2.5 4.5 CUSUMX 1.5 0 1 

Additional examples related to the use of CUSUMX can be found in Exan~ples B.2. B.6 and B.7 of 

Appendix B. 

This option should be uscd only ahcn thc large1 lcvcl mmspondinc lo thc lwo-sidcd xhcmc is 0. 
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5. Functions for design and analysls of general Cusum - Shewharf schemes 

In the previous section our discussion was centered around functions for design and analysis of 

schemes appropriate to a rather limited class of situations All of our special functions deal with 

one-sided schemes the only exception being function CUSUMX: but the only two-sided schemes the 

latter can handle are symmetric schemes with normally distributed observations. Of course. we could 

not write special functions for every situation that might become relevant - so, we created functions 

to handle situations in uvhich a general Cusum-Shewhart control scheme is applied to a general pat- 

tern of incoming (iid) observations. These functions can be used not only directly. but also as a toolkit 

which enables the user to create his own functions for design and analysis of schemes correspondimg 

to specific situations." 

In the present section we invoduce the class of such functiom We refer to them as general functions 

as opposed to the special functions considered in the previous section. As we shall see. all of then1 

have a simiiar format and many other common features. So, we proceed by providing some general 

information about this group of functiom. 

5.1. Some general information. UnUied f o m t  of the general functions. Interactive, EXPLR- and 
VARY- modes of analyds 

To analyze the RL of a general Page's scheme one needs to specify Ule scheme parameters as well 

as the nature of incoming obsenations So. ewry function for analysis and/or design of a general 

one-sided Page's scheme has the following form: 

Y function DFNAhlE 

where function represen& the type of design and/or analysis function. The argunients are as fol lo~~s:  

' In fact.thc special functions diwurscd carticr rcprcscnt mcxamplc or using thc gcncnl functions as 3 toolkit.0f coune. 
lo use thc gcnenl functions in this aa).onc should be bmilisr Wilb APL. 



DFNAME represents the name of the APL function which returns the value of the df. of the 

observations F(x) for any given value of x. Typically, one will use one of the 

functions provided with the package (see Appendix A)." 

is a vector specifying the scheme parameters; it consists of two or three compo- 

nents: Y [I] is the signal level, h. Y [2] is the reference value, k. Y [3] is the 

Shewhart's limit, c (optional). 

Each function for design and/or analysis of one-sided schemes comes in two versions. The fvst one 

is used for purpose of handling upper Page's scbemes. The second plays a similar role when dealing 

with lower schemes. The name of the latter functiondiffersfmm that of the previous one by presence 

of an additional letter. L For example. ONEAN is used for analysis of upper schemes; its counter- 

part, ONEANL, performs a similar analysis of lower schemes. 

Analogously, every function for analysis of a general two-sided scheme has the following form: 

.. T function DFNAME 

where function and DFNAME have the same meaning as in the one-sided sitttations; the vector of 

scheme parameters T can contain four or six components: T [I] and T [3] are the signal levels, 

h+ and h-. respectively. T [2] and T [4] are the reference values, k+ and k-, respectively. 

T [S] and T [GI are the Shewhart's limits. ( - c-) and c+, respectively. The last two components 

are optional; the choice of signs excludes any possibility of confusion. Indeed, if these components 

are present, they must satisfy the inequality T [S] < T [GI ; an immediate out-of-control signal is 

triggered if a single observation falls outside the interval ( T [S] . T [GI ). 
Clearly. this setup is st~fficient to perform an interactive analysis of a given Cusum-Sheahart scheme 

with respect to a given pattern of incoming observations (functions ONEAN(L) and TWOAN). In 

addition to these possibilities, two other modes of analysis are available: 



W P L R  -mode (ONEXPLR(L). TWOXF'LR) enables one to examine the performance of a l i e d  

scheme with respect to a family of distribution functions determined by varying 

the values of a specified parameter (ex. mean of the normal popdation This mode 

of analysis requires the user to specify the name of the varying parameter of the 

distribution as well as its values by means of the function SETXPLR. 

VARY-mode (ONEVARY(L), TWOVARY) enables one to examine the performance of a 

family of control schemes determined by varying the values of a specified scheme 

parameter (ex. the reference value) with respect to a fixed distribution function 

of incoming observations. e m o d e  of analysis requires the user to specify the 

varying parameter of the scheme as well as iu values by means of the function 

SETVARY. 

The functions for design of general one-sided schemes pedorm a search for a signal level h for which 

the ARL (or some specified quantile of the Run Length) is equal to a prescribed number. This 

number as well as some other waditions which determine the type of the search procedure am spec- 

ified by the function S F F I N D .  Other parameters of the scheme (given by Y) arc fixed; the f i i t  

component of Y is used as an initial approximation ho in the search procedure. Tbe function 

ONEFIND(L) p e r f o m  the watch for h only; the function ONEXPLRDCL) f i i t  perfonns the 

search (Step I), and then perfonns an EXF'LR -mode analysis of the resulting scheme (Step 2). 

5.2. SpecUjing the optional conditions for analysis (headstar& level of duelization, etc.). Thc func- 
tions SET, SEll and RESET 

Before using any of the functions, the user can specify several special conditions. These conditions 

correspond to values of selected global variables of the workspace; so, a user familiar with APL could 

change these default values directly. or localize them if he wan& to use the general functions as a 

toolkir Another way to change the mentioned conditions is by using the functions SET or SETI. The 

format of S l T  is as follows: 



CODE SET VAL 

where CODE determines which condition is to be specified and VAL is a value assigned to an ap- 

propriate global variable. The function SET1 has the same fotmat but, before changing the condition. 

it informs the user of its intentions and provides the possibility of aborting the assignment at the last 

moment The meaning of CODE is: 

CODE-0 Specifies the beadstan(s). H VAL bas a single component, it u,ill be used as a 

headstart for analysis of any one-sided scheme's Otbem.ise, VAL represents a 

pair of headstarts that will be used lor analysis of any two-sided scheme;I6 

specifies the level of discretization, d which should be provided in VAL This level 

will be used for design and analysis of one-sided as uveU as two-sided schemes;I7 

in this case VAL should contain the values of r for ~ h i c h  Prob.(RL > r )  is to 

be computed;I8 

is used for the purpose of steady state analysis only. If VAL- I, the next analyzed 

scheme will be considered as an on-target one and the corresponding steady state 

" Thc corresponding global variable is HEADSTARTits dcfaull \slue h 0. Nolc lhal ncpli\.c \3luc ol headstan s i l l  lead 
u, a ncady swlc analysis (or an cmr ntcssagc. whcrc the hllcr k imppmprhlc). This l>pc of analysis is rmilablc lor 
oncaidcd schcmcs onlx. 

Thc corresponding global vector is HEADSTWO fils dcfaull \aluc is (0.011. 

" The mmsponding plobal clrizblcs arc DISCRONEmd DISCRnVO (Ihc dcfaul~ \ ~ I U C  forbollt of lhcm is 01. Sa l t  1h31 
DECRnVO will be used ss a lcvcl of discrclh~lion of line schcnlc will1 a h i e ~ c r  sipnal kvcl. l h c  lcrcl ol discwrhalion 
of lhc opposite whcmc h choscn in such a u3). lhal Illc lcn~llir of discrclizalion inlcn-alr of bolh schenrr be u close 
ns possible. 

" l k  correspondin: global vcctor h R (in llte dchull mode it h cmptyl. 



distribution will be stored. The statement with VAL-0 will cancel this 

conditi~n. '~ 

Some additional possibilities are available for the purpose of running the Cusum-Shewhart schemes. 

These will be discussed in Sec. 6.1. To restore the default modes of all optional conditions simul- 

taneously, one can type RESET. 

Next we consider the "general" functions separately. 

53. I n t e n d r e  analysis of one-dded schemes, The function ONEAN 

This function is used to analyze (in interactive mode) the ARL, SDRL and the Nn kngth distribution 

of a one-sided scheme. Use of ONEAN results in - 
1. printout of the basic information about the scheme; 

2 printout of the complete set of (dimtized) headstans as weU as set of corresponding ARL's 

and SDRL's; 

3. prompting the user to specify values of r for which Prob.(RL > r) are to be computed; 
.. 

4. prompting the user to specify the headscan (or boundsof the segment containing the headstam) 

for which the above probabilities are to be computed; 

5. printout of the table of the computed probabilities; each row of the table corresponds to a single 

6. prompting the user to continue the analysis of the run length distribution. 

'Ihe function ONEANL performs a similar analysis of a lower scheme. 

Example 53. Suppose that we would like to analyze the run length of a scheme with parameters 

h - 3, k P 1. the obsen~ations ( x i ]  bein: distributed normally with niean p - 0 and s.d. o = 1. The 

function returning the values of a nonnal d.f. exists in our workpace under the name DFNORAl. 

Before using this function. we must set its global variables MEU and SlGhfA to be equal to p and 

" The mmrponding globaI\ariable k OhTARGlT ldcl~ull01.  The nc~dys la l c  ditriburion is storcd in thc gl?b,l \cctar 
(we Yoshchii (1984) lor morc dclailrl. 



a. respectively. This can be done either by using two separate APL assignment statements or by 

using our function ASSIGN as shown in the example below. 'Ibus, the interactive analysis is initialed 

by executing the statemenu 

'MEU SIGMA' ASSIGN 0 1 

(3 1) ONEAN 'DFNORM' 

5.4. Analplng a set of oncsided schemes vdth mq~ect to a fied dkttiblaion of iaeoming obsuvationr 
The function ONEVARY 

The function ONEVARY performs, in mn-iteractive mode, the analysis of a sequence of upper 

schemes (depending on a single varying parameter) comspondiig lo a given fixed df. of the obser- 

vations. The function ONEVARYL performs a similar analysis of a sequem-of lower schemes. 
I 

Execution of ONEVARY results in analysis of the scheme with parameters given by Y and, in addi- 

tion, of a sequence of schemes corresponding lo values of a varying parameter of the scheme. Before 

using ONEVARY one should specify this parameter and provide i u  values. This is done by executing 

the function CODE SEIVARY V A L  The left argument. CODE, should be 1.2 or 3 if the varying 

parameter of the scheme is h, k or c. rcspecti\'ely. The right argument. VAL, should provide a l i t  

of values of the varying parameter. If CODE is 0, the varying parameter is the headstan; in chi case 

VAL should provide the bounds of a segment containing headsram for which the analysis is to be 

performed. 

The optional conditions (level of discretization, headstan. etc.) are set as described in Sec. 5.1. 

Example 5.4. Suppose that we would like to analyze the run length of a scheme h - 6. k - 1 sup- 

plemented by Shewhart's timitc - 5.5,and. in addition. of schemes \vith h - 6.1.6.2.6.5 u-ith respect 

to a sequence of iid Weibull observations with shape 1 and scale 2 (i.e. exponential observations with 

mean 2). We would like the output table to include the probabilities Prob.(RL > r) for r - 5. 10 

and 20 (optional condition). So. we use the following statemenu: 



2 SET 5 1020 

1 SETVARY 6.1 6.2 6.5 

'SHAPE SCALE' ASSIGN 1 2 

(6 1 5.5) ONEVARY 'DFWEIB2' 

Note that DFWEIBZ is our APL function computing the values of the distribution function of a 

two-parametric WeibuU random variables; SHAPE and SCALE are its global parameters.m 

55.  W g d n g  a fixed o d d e d  scheme nlth respect to a family of dishibutions of Incoming o b m -  
hns. The function ONEWLR 

The function ONEXPLR performs (be analysis of a one-sided Page's scheme with all tbree (or four. 

if the scheme is supplemented by Shewhan's limit) parameters rued for a set of several df.'s of the 

observations corresponding to different values of a specified parameter. This parameter usually cor- 

responds to one of the global variables of the function DFNAME The function ONEXPLRL per- 

forms a similar analysis of a lower scbeme. -. 
Before using ONEXPLR, one should specify the name of the changing parameter of the distribution 

function as well as its values. This is done by executing the statement NAME SETXPLR VAL where 

NAME is a (character) vector contahhg the name of the changing parameter of the distribution and 

VAL is a vector containing its values. In addition one can specify some optional conditions (level of 

discretization, headstan, etc.) as described in Sec. 5.1.2t 

Example 5.5. Suppose that we would like to analyze the performance of a scheme h = 29 .5 ,  k - 9 

aod c - 18.5 with respect to sequences of (iid) Poisson random variables with means 6.5. 8.5 and 

11.5. Let the headstart of the scheme be 6 = 10 (optional condition). To perform the analysis. we 

execute the following statements: 

Abo note. that one muld nx the APLsutement R c 5 10 20 instead of our l inl slalemcnl. 

'' U, before ming OKEXPIR, one execmu Ihc sutcmcnu 3 SET' I and 0 SET (-1 I (see Scc. 5.21. the steady n a a  
snrlysb will be cnvokcd. In this mal)'sis. Ihe dinribution mrrcsponding to the l inl mmponcnl 01 VAL mill bc lrcalcd 
LI on-target dhtribulion or obwnalions. 



0 SET 10 

'LAMBDA' SETXPLR 6.5 8.5 11.5 

(29.5 9 18.5) ONEXPLR 'DFPOIS' 

5.6. Design of a one-sided scheme. The function ONEFIND 

The function ONEFIND performs an automated search for the signal level h (upperscheme). satis- 

fying one of the two conditions: 

where q and y an specified by the user. All the other parameters of the scheme (provided in the left 

argument, vector Y) remain fixed. The initial point of search, &, should be provided in the first 

component of Y. The function ONEFINDL performs a similar search for a signal level of a loner 
.. 

scheme. 

Before using ONEFIND one should specify the conditions needed to perform a search for an appro- 

priate value of the signal level, h. This is done by executing the statement MODE SETFIND FIX, 

where MODE determines the type of the search procedure. MODE should be 0 if ho provided by 

Y [I] may be a very rough estimate of the sought value of h; it is useful to set MODE to 1 if ho is 

close to the sought value and needs some refining only. ?he first component of the right argument, 

FIX, should contain the value of q; if q represents the quantile (i.e. the user wants the condition of 

type b) to be satisfied), then FIX must have a second component, providing the order of the quantile. 

y. If q represents the ARL, no second component is required. 

If the search for h was successful, the lo\ver and upper approximations for h will be printed out to- 

gether with the corresponding values of ARL (if the user wanted the condition a) KO be satisfied) or 

Prob.(RL > q) if he wanted the condition b) to be satisfied; the corresponding levels of discretization 

will also be printed out. A typical output of ONEFIND is as shown in the second table of  kc. 3. 



In the case that search for h fails. only information related to the last approximation examined by the 

search procedure as well as some diagnostics will be provided. This information can be used to sug- 

gest an alternative initial point of search and repeat the functionn 

Note that ONEFIND will trg to preserve the current kvel of discretization Therefore, the precision 

of the search can be wntrolled by means of the function SET. The default level of d i t i z a t i o n ,  30, 

usually leads to quite satisfactory results. When MODE - 1. the function will alnur)~ preserve the 

length of interval of discretization, computed on the basis of current kvel of direti tat ion and ho (see 

(C.1). Appendix C). This mode is especially useful for dealing with Schemes bawd on counh where 

proper choice of the interval may eliminate roundoff erron usually caused by discretization 

Example 5.6. Let the observations comspond to the sequence of normal means cornspolldig to 

subgroups of size n - 3. Let the mean and standard deviation of a single measurement be p - 110 

and a - 10. Let the reference value be k - 105. Under these conditions, if one is interested in 

fmding a value of h for which the ARL is 3.9, he could achieve it by executing the follouring state- 

ments: 

'MEU SIGMA SAMPLE' ASSIGN 110 10 3 

(12 105) ONEFIND 'DFXBAR' 

(which leads to h - 15.7; ex. see Duncan (1974. p.476)). Our initial approximation for the search 

procedure is ho - 12. Notc that DFXBAR is the function computing the df. of sample mean; MEU. 

SIGMA and SAMPLE are its global parameters. 

If, under the stated conditions. we wanted to l i d  h satisfying Prob.(RL > 3) - 0.95, the sequence 

would be the same except the second statement which becomes 0 SETFIND 3 0.95. 

In ~omc cases failure of Oh'EFlh'D is mlslcd lo non-cxincnse of thc mluc 01 h having the desired propmy. Tltb b 
indicated by m rppmprule m e s a s .  
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5.7. Design and analysis of a o d d e d  scheme. The f d o n  ONEXPLRD 

The function ONEXPLRD can be viewed as acomhination of the functions ONEFIND (Stepl) and 

ONEXPLR (StepZ). In its second stage, the function ONEXPLRD performs (as ONEXPLR does) 

the analysis of a scheme with all three (or four. if the scheme is supplemented by a Shewhan Limit) 

parameters fixed for a set of seteral disuibution functions of the observations comspondi i  to dif- 

ferent values of a specified parameter (which usually corresponds to o m  of the global variables of the 

function DFNAME). However. before performing the analysis. the function determines (Stepl) the 

value of the signal level h satisfying one of the two conditions (5.1). where q and y arc specified by 

the user, exactly as in ONEFIND. Other parameters of the scheme (provided in the left argument, 

Y) remain fixed. As in ONEFIND, the initial point of search, hg. should be provided in the first 

component of Y. The value of h found in the first stage is subsequently used (in Step2) as a signal 

kvcl of the wntml scheme. 

The function ONEXPLRDL p e r f o m  a similar analysis for a lou.er scheme. 

Before using ONEXPLRD o m  should specify the conditions needed to perform a search for h. This 

is done by executing the statement MODE SETFIND FIX. where MODE and F W  have the same 

meaning as in ONEFIND. The only exception is that now MODE may have a second (optional) 

component, MODE [2]. playing the following role. The procedure of search for h (Step 1) results 

in an interval (see second output table, Sec 3). The value of MODE [Z] determines which of ics 

bounds will be selected as an approximation to h. If MODE [Z] - -1. the lower bound wiU be se- 

lected If MODE (21 - 1, the upper one will be selected If MODE [2] - 0. (or if this conlponent is 

absent), the bound for which the value of q is closer to the desired value will be selected. U 

MODE [Z] - 2, the interpolated value will be selected. 

One should also specify the name of the chancing parameter of the distribution function as well as ics 

values. As in ONEXPLR, this is done by executing the statement NAME SETXPLR VAL where 

NAME is a (character) vector containing the name of the changing parameter and VAL is a vector 

containing its values. 

In addition. one can specify some optional conditions as described in Sec. 5.1. i 



Example 5.7. Consider the situation desaibed in Duncan (1974, p.478). We would like to design a 

cumulative v h a r t  satisfying the following conditions: ARL( p - 0.04) - 7.5 and ARL( p - 0.01) 

- 500. Let us choose the reference value to be k - 0.025 (midway between the good and bad 

quality). What remains to be determined are the values of the signal level h and the sample size n. 

First, we specify that are would l i e  the value of h to satisfy ARL(p-0.04) - 7.5. S i c e  for any given 

sample size this value will be determined automatically (in the first stage of ONEXPLRD). use only 

need to find. by trial and error. the appropriate sample size, n. We start by uying n = 10 ... 

'PROB SAMPLE' ASSIGN 0.04 10 

0 SETFIND 7.5 1 

TROW SETXPLR' 0.01 0.02 0.03 0.04 

(0.1 0.025) ONEXPLRD 'DFPROPB' 

?his sequence will use 0.1 as an initial approximation for h . determine h so that the ARL-7.5 and 

apply the rcsul~ing schemeto sequences of observations corresponding to p - 0.01, ... .0.04. The 

function DFPROPB computes the bf. of the sample proponion; SAMPLE and PROB are its global 
.. 

parameten. Tbe reader may verify. chat in order to achieve tbe desired resolution between "good" 

and "bad" quality. we need to use samples of size n = 24. 

One can argue that the special function CUSUMP is more appropriate for dealing with situations of 

this type; in particular, we could initiate the analysis corresponding to n - 10 by using the statement: 

10 0.01 0.04 CUSUMP 7.5 0 1 

'Ibis approach bas an advantage that it automatically selects the level of discretization and k so as 

to eliminate roundoff errors. On the other hand, the latter scheme is based on the sequence of counts 

of defectives. and therefore cannot be recommended in cases where sample size varies from sample 

to sample; in such cases one should use the sequence of sampleproportions of defectives. After de- 

riving a scheme appropriate for a certain "most likely" sample size n. one can use the function 

ONEXPLR to examine its propenies with respect to any other (fixed) sample size. It is worth men- 

tioning that the case of random sanlple size can also be considered. In panicolar. the<function 



DFPROP cornsponds to distribution of sample propoltion under the assumption that the sample size 

is a Poisson distributed random variable with mean SAMPLE. 

5.8. Interactive analysis of two-sided schemes. The function nVOAN 

'Ibe function W O A N  is used for interactive analysis of the ARL. SDRL and the run length distrib- 

ution of two-sided Cusum-Sheahan schemes. In addition, it enables ooe to examine (interactively) 

the probability (hat the signal v..ill be triggered by the upper scbeme. P(VP). 

Use of W O A N  results in - 
1. printout of the basic information about the tWo-sided scheme; 

2. printout of the complete set of (discretized) headstarts as well as set of corresponding ARL's 

and SDRL's for the upper and lon.er schemes separately; 

3. prompting the user to specify the headscans for which the ARL. SDRL and P(UP) are to be 

computed. m e  m u l u  for each pair of headstarts are returned immediately. 

4. prompting the user to specify the beadstarts and the values of r for which Prob.(RL > r) are 

to be computed. The results for each pair of headstarts are retumed immediately. 

5. prompting the user to continue the analysis of the run lenith distribution 

The user has a possibility to snitch from step (4) lo (3) and vice versa (or to exit from the function) 

by specifying a pair of beadstarts which falls out of range. 

As an example, suppose that we would like to analyze the run length of a scheme aith parameters 

h+ - 4. k+ L 1. h- - 4.5. k- = 1.5. the obsenpations ( x i  l being distributed norn~ally aith mean 

p = 0 and standard deviation o - I. Let the scheme be supplenlented by the Shea-hart's liniits 

c- - 3, c+ - 3.5, ie. xi -3 or x, 2 3.5 should trig~er an inmediate out-of-control signal. Then 

the statements needed to initiate the interacti\*e analj.sis are as follo\vs: 

'MEW SIGhlA' ASSIGN 0 1 

(4, 1, 4.5, 1.5, (-3). 3.5) 'M'OAN 'DFNORhl' 



5.9. Analjldng a r t  of two-sided schemes with respect to a Pied distribution of incoming o b m t i o n r  
The function TIVOVARY 

The function TWOVARY perfonns the analysis of a sequence of schemes (depending on a single 

varying parameter o r  a pair of varying scheme parameters) corresponding to a given fixed d.1. of the 

obsen,ations. 

Before using 'IWOVARY. the user should specify the Mlryiag parameter of the scheme ana provide 

its values. As in the fuoction ONEVARY. this is done by executing the function CODE SETVARY 

VAL The left argument. CODE, should contain 1. 2. 3.4. 5 or 6 if the varying parameter of the 

scheme is h+, k+, h-, k-. c- o r  c+. The right argument. VAL, should provide a 

list of values of the varying parameter. If CODE-0. varying parameters am headstans; in this 

case VAL should provide the pairs of beadstans for which the analysis is to be performed. Lf CODE 

is 11.22 o r  33, the varying parameters am pairs ( h+. h- ), ( k+, k- ),or ( - c-. c+ ), respec- 

tively. In this case VAL should pmvide the rekvant pairs of the scheme parameters. 

In addition. one can specify some optional conditions as described in Sec. 5.1. 

Example 5.9. To analyze the performance of a scheme h+ - 3. k+ - 1, h- - 2.7. k- -0.9, 

supplemented by the Shewhm l h i u  c- = 3.5, c+ - 3.5 and, in addition. of schemes. with 

k+ - 1.1. 1.2. 1.5 with respect to a SequeUCt of ud normal observations uith mean 0 and standard 

deviation 2. one can execute the fouoviog statements: 

'MEW SIGMA' ASSIGN 0 2 

2 SFNARY 1.1 1.2 1.5 

(3,1,2.7,0:9, (-3.5). 3.5) TWOVARY 'DFNORhT 

Now that CODEconrrpon& to wqucnthl order 01 Ilte component olT beins \aricd. 

-- 



5.10. Analyzing a fued two-sided scheme with respect to a family of dlscribulions of incoming obsena- 
t iom The function TIVOXPLR 

f h e  function TWOXPLR performs, in a non-interactive mode, the analysis of a two-sided scheme 

with all the parameters fixed for a set of several df.'s of the observations corresponding to different 

values of a specified parameter. It plays the same role as ONEXPLR docs in the analysis of one-sided 

schemes. 

Before using TWOXF'LR one should specify the name of the changing parameter of the dintxibution 

function as well as its values by executing the statement NAME SETXF'LR VAL. where. as usual 

NAME is a (character) vector containing the name of the changing parameter and VAL is a vector 

containing its values; 

In addition, one can specify some optional conditions as described in Sec 5.1. 

Example 5.10. Suppose that we would like to analyze the performance of a scheme 

h+ = 3, k+ - 1, h- = 3. 'k- = 1, supplemented by the Sbewhan limits c- = 3.5, c+ - 3.5, 

with respect to sequences of sample means corresponding to samples of size 4 from the normal 
-i 

population with rd a-2 and means 0.0.1,O.S. 1. In addition to the usual analysis, we would also like 

to compute Prob.(RL > r) for r - 5. 10 and 100 (optional condition). To perform the analysis. we 

can use the following statements: 

2 S E r  5 10 100 

'SIGMA SAMPLE' ASSIGN 2 4 

'MEW SETXPLR 0 0.1 0.5 1 

(3.1.3, 1. (-3.5). 3.5) TWOXF'LR 'DFXBAR' 

6.Running thc Cusum-Shewhart rhcmes 

So far, our discussion was priniarily related to design and analysis of Cusum-Shewhart control 

schemes by using appropriate functions of CONIRD. However. this package could hardly be con- 

sidered as complete unless it also provided functions for applying Cusum-She\vhan schenks to se- 



quences of observations. Such functions could be used not only for real time monitoring of data, but 

also for purposes of retrospective data analysis. diagnostics, forecasting and graphical data analysis. 

In addition. they would enable one to study (by simulation) the performance of control schemes with 

respect to other than iid pattern of incoming damY Thus, we complete this work by introducing the 

functions ONERUN and TWORUN for running the control schemes 'Ibe reader will see that the 

syntax of these functions is similar to that of functions for analysis we have introduced earlier - the 

only difference is that the right argument specifies the data rather than the distribution function of 

the observations. 

6.1. The frmdion ONERUN for running one-sided schemes 

The function ONERUN is used to apply a one-sided CusurnShewhart scheme to a panicular set of 

data. Its format is as 1oUows: 

S c Y  ONERUN DATA 

where DATA is the name of the vector containiig the observations ( x, { and Y is the vector con- 

taining parameters of the scheme (defied as in Sec 5.1). The output vector S contains the computed 

values of the (upper) Page's scheme.= The function ONERUNL plays a similar role in running lo\ver 

Page's schemes. 

Use of ONERUN also resulu in a global matrix O U T C O M  containing information about the de- 

tected out-of-contml ~bserva t ions .~  Each row of this mauix camsponds to a single out-of-control 

obsen-tion and its seven elements contain the following information: 

1. the sequential order of the out-of-control observation; 

Clearly, the iid pattern a n  rbo bc studied by simuhlion Hour\rr. il a n  bc performed much more e f r i n l l y  by ap- 
plyinga lcchniquc based on lhe uu of empirical dislribulions ( x c  Example 8.4. Appends Bl. 

' Instcad or Lhc APL usigntncnl operalor. 6 . one a n  usc lhc familiar function ASSICK as folloa-s: 
S' ASSIGK (Y OKERIJK DATA) 

" Hcrc and in uhalfoUoas this term h uud insrcad of a more precise "obscnalwns mmsponding to tltc gul-of-conlrol 
sutc or the pracss" 



2. the out+f-control code which is 1 if the signal level h has been exceeded, 2 if the Shewhart's 

limit c has been exceeded and 3 if both these criteria have been violated; 

3. the corresponding value of the Page's scheme; 

4. the correspondii value of the last observation; 

5. the number of observations in the last positirrr portion of the Page's scheme; 

6. the sample average of these observations; 

7. the sample range of these observations. 

By using the function LENGTHS one can create a vector containing the successive NO lengths. For 

example. the statement STATIST LENGTHS will perform a statistical analysis of the run lengths 

comspondiig to the f m  column of OUTCONIR. 

Befom using ONERUN, one could specify optional conditions by executing the familiar function 

CODE SET VAL As usual, CODE-0 is used to specify the beadstart of the scheme (see Sec. 5.2). 

Other possible values of CODE are as follows: 

if VAL-1, the scheme will run in a "quiet" mode. If VAL-0, then information 

about the scheme as well as out-of-control obsen-tions (matrix O U T C O M )  

will be displayed; in addition, the user will have a possibility to display (interac- 

tively) any portion of the data together with associated values of the Page's 

scheme as well as some basic statistics related to this ponion (sample mean. 

standard deviation. range. etc. ).z 

CODE-6 the values of upper and/or lower schemes will be re-set to zero after each obser- 

vation the seqilential number of which is a component of VAL If VAL < 0, the 

* Tkc conrsponding @bal wriabk b IhTERACT (is default value b 01. 



scheme(s) will be re-set to 0 (if VAL--1) or to headstarc (if VAL--2) after each 

detected out-ofsontrol observation if VAGO. no re-settiog will take place.= 

We remind that typing RESET will restore tbe default mode of all optional conditions. 

Example 6.1. The sequence of statemen& 

0 SET 1.5 

6 !33 -2 

S c (6.5. (-1). (-4.5)) ONERUNL (1000 SIMWEIB 2 4) 

will result io values of II lower Cusum-Shenhart.rcbenie with parameters h-6.5. k--1 (supple- 

mented by the Shewhart limit c--4.5, ie. a single obsenation below 4.5 triggers an immediate sig- 

nal). corresponding to a simulated sequence of 1000 WeibuU ohsenatiom uith Shape 2 nod Scale 4. 

The scheme is automatically re-set to its headstarI (1.5) after each out-ofsontrol obwnatioa 

6.2. The function TWORUN for nmning two-sided schemes 

This fuoctioo is used to apply a two-sided Cusum-Shewhart scbeme to a given set of data I& format 

is as follows: 

S c T  TWORUN DATA 

where DATA is the name of the vector containing the obsenations ( xi ] and T is the vector con- 

taining parameters of the scheme (defined as in Sec. 5.1). The output matrix S contains the computed 

values of the upper (first row) and lower (secood row) Page's schemes. 

Use of TWORUN also results in a global matrix OUTCONTR that has the same forn~at as one cre- 

ated by ONERUN except that che out-ofsontrol code can also have values -1. -2 or -3. Negative 

values of the oitt-of-conuol code have the same meaning as their positive counterpans (see 6.1) but 

arc related to signals triggered by the loner scheme. 



?be optional conditions one can me before applying TWORUN, as n.eU as use of the function 

LENGTHS arc analogous to chow described in the previous subsection. 

Example 6.2. The sequence of statements 

S S E T 1  

6 SET -1 

S c ( 3  1 3 I)  TWORUN (1000 SIMNORM 0.1 1.4) 

STATlST LENGTHS 

will result in values of a symmetric twc~ided Cusum-Shewhan scheme nith parameters 

h+ - h- - 3 and k+ - k- - 1. comspooding to a simulated sequence of 1000 normal obsena- 

tiom with mean 0.1 and stamhd deviation 1.4. Tbe scheme is automatically re-set to 0 after each 

out6f-control observation The fist statement leads to automatic mode of execution The last state- 

ment performs a statistical analysis of the resulting nm lengths. 

7. Ocher luncfions 

I .  27te function QUIT. Tbis function is used to "escape" from situations corresponding to an error 

discovered by APL in the middle of execution. We tried to build CONTRD in such a way that such 

situations would never occur (so. we hope that QUIT will remain the only function of the package 

that is never used). However, if they do. p l e a  type QUIT to return to the original conditions= and 

wtify the author. 

2. Functions for simulating randm mriabk. The package includes a set of functions for simulating 

types of random variables typically encountered in practical applications. Every function whose name 

scans uSth ktters SIM is one of such functions (ex. SIMBINOM. SIMNORM, etr). A function of this 

type has a kft argument. L repmenting the quantity of variables to be generated and a right argu- 

menL R, characterizing the panuaeten of the distribution. For example 20 SIMNORM 2 0.3 n.ill 

a Warning: U such an ermr occurs during execution 01 an EWLR - type lunnion. IIIC global f ruy i~~g l  p M m t e r  of the 
currently used b l .  m y  haw a diifercnr value ldter quilting1 h n  h l  n s i p c d  bclorc ihc execution of ihe functwn. 



generate 20 normal random variables with mean 2 and standard deviation 0.3. Other possibilities are 

listed in Appendix E Note that the function SMNORM can also generate a matrix of normal vari- 

ables mith a specified "grand" mean, row-to-mw variability and within-row variability. 

3. The function IDWTIJY. 'Ibis function is used to identify the names of global panmeten of a 

given distribution function as well as their m m n t  valuer The syntax is IDENTJFY DFNAME. 

where DFNlUIE k the name of APL function which returns the values of the dl. of observations 

(see p. 29 and Appendix A). For example. IDENllFY PFNORM' will identify the parameters of 

the normal distribution 

4. lk funaion QUAATILE . This function computes a set of quantiles corresponding to a given 

distribution For example. 0.05 0.5 0.95 QUANTLLE PFNORM' will compute the quantiles of 

order 0.05, 0.5 d 0.95 comspondiing to a normal distribution (mith parameters giwn by global 

variables MEU and SIGMA). 'Zbe function can be applied to distributions listed in Appedix A as 

a.eU as to lbose written by the user. 

5. The function FITDF. 'Ibis function fits a specified distribution to a given set of data For example, 

if D is a wcror containing (he data. Ihe statement D FKDF 'DFNORM' m,iU estimate the parame- 

ters of the normal distribution and display information related to quality of lhe fit (Chi-square sta- 

tistic. Kolmogorov-Smimov statistic, etc.). At present. the function can be applied to selected 

members of the list of distributions fmm Appendix A only. 

6. The function STATIST. This function campUtes and prints out the basic statistics (ex. mean. 

range. etc.) associated with a given set of data Its format is STATIST D, where D is either vector 

or matrix containing the data 

If D is a vector, three aimates of the standard deviation are included: the "usual" sample standard 

A 
deviation. a, the standard error of the regression line , s, (this estimator is invariant with respect to 

linear trends pmcnt  in the data), and sd defined in terms of the s ~ ~ m s s i v e  differences, 



clearly. it is roughly invariant ~ 5 t h  respect to "shifting" portions of the data 

If D is a matrix (having. say, r mups and n columns), then every mw is assumed to contain a sample 

of n measuremenu taken at the same moment of time. I n  Ibis case the function u7ill wmpule the 

" p o d "  characteristics of the pooled data (grad mean. median. cur). In addition. it u5ll a t h a t e  the 

within-row standard deviation. 

A 
( ai is the sampk standard deviation corresponding to the i - th mw), aod perlonn a regression 

analysis. As in the previous care. chm estimates of the mw-to-mw standard deviation are available: 

the usual variance compooent estimate se 

( f is the " p o d "  mean), the estimate s~ based on s u m s i \ ?  differences of the sample means and. 

therefore, invariant with respect to possible "shifu" in che process level. 

and sb, based on filtering oul the linear component, sj, - 2 - s2. Clearly; this estimator is invariant 

with respect to linear trends in the process le\rl. 

Example 7.1. Suppose that u r  take a sample of 4 measuremenu per lot and using the sample statistics 

to control the process. Suppose that the lot-to-lot standard deviation is 0.3. the u-ithin-lot standard 

deviation is 0.1, and the "grand" mean ( i t .  the process level) is 0. To simulate samples corresponding 

to 200 lou and then to compute (assumin: normality) the basic slatistics, one can use the statement 

STATIST (200 4 SIMNORM 0 0.3 0.1 ) 



7. l7u function STAmULT. This function wmputes and prints out the basic statistia ( e z  means. 

standard deviations. estimates of the cornlation mauir, e tc)  associated with a given set of 

multivariate observations. Its format k STATMULT D. where D is a mauix with rows corre- 

sponding to values of che multivariate vectors. Note that multivariate normal vectors can be simulated 

by using the function SIMMULT. 

Three estimates of the covariance structure are included: the "usual" method, the estimate based on 

r u m n i v e  difereaccs of the multivariate vectors (so. it k roughly invariant with respect to "shifts" 

in kvek of wme of the variables) and the estimate o b w d  f i r  removing the linear component 

from each variable of the multivariate vector (this estimate is invariant with Rspecl to linear trends 

in wme of che variables). Tbc function implicitly produces global (covariance) matriccs COVAR, 

COVARD and COVARR wrnsponding to these methods as well as the vector MEANS containing 

the multivariate meam (is. column a\rrages). 

8. The function SELECX This function selects a anain sequence of statistics from a given set of 

data for subsequent statistical analysis o r  application of a Cmum-Shewhan scheme. 11s format is 

Y c C D  SELECT D, where D is the raw data (wctor or matrix) and the code CD determines 

what statistic is to be selected ihe result V contains the values of the selected statistic 'Ihe list of 

pc6sible choices of CD oxresponds to sequences that seem to be most likely candidates for analysis 

and/or scheme application; motivated users will f i d  it easy to incorporate additional values of CD. 

rs needed. U CD has several (say. k) componenLr. each one mil l  be used to select an appropriate 

sequence, and the resulting matrix V will consist of k corresponding columns. 

a) D is a vector. If CD-1, then the vector D itself will be selected. If CD-0, the absolute values of 

sumssi\.e differences scaled by 0.5&7~0.8862 will be selected (see (2.4)). i.e. V contains the se- 

quence 0 . S  I  xi+^ - xi I . i - 1, 2. ... . where x, are the elemencs of D (when measurements 

ue taken one a t  a time. these differences can be used to control the lot-lo-lot variability). 

b) D is a mat& In chi case every row is assumed to contain a sample of measurements taken at the 

same moment of time. The selection proceeds as follons: CD-0 takes the sample means of the rows 

md then selects the scaled absolute values of successive differences (like in the case when D is a 



vector); CD-I. 2, 3 or 4 sekcts the sample means (of the mas), sample standard deviations, 

skeuutsws and cunoses of the mws, respectively, other valucs of code anrrspond to sequences 

which may depend on the the versionof the package; the user can T i  this information in the on-line 

documentation 

Ckarly. when CD is a vector. there is a possibility that some of the selected sequences are b a r  

chan others. In order to be able to combine them into a single mauix, we imen an (artificial) zero 

kading element into the s h a r  sequences. 

Example 7.2. Suppose that we take a sample of 4 measurements per lot and using the sample means 

to contml the p r o m s  level. Suppose that the bt-to-lot d a r d  deviation is 03, the within-lot 

standard deviation is 0.1 and the "gnad" w a n  (Le. the pmcess kvel) is 0. Let us simulate samples 

corresponding to 100 lots and apply the symmetric two-sided scheme h -0.4, k -0.05 to the se- 

quence of sample meam (we shall assume that the underlying distribution is normal): 

S c 0 . 4  0.05 0.4 0.05 TWORUN (1 SELECT (100 4 SIMNORM 0 0.3 0.1)) 

9. l7aefuncrion ROUAD. This function is useful when applying a Page's scheme t@ simulated data 

It rounds the input vector (or matrix) up to a specified number of digits after the decimal point For 

example, the statement S c 3 ROUND S will muad the elements of S up to 3 decimal places and 

then re-assign the result to S. 
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Below is the t i i  of distribution functions currently provided with CONTRD. Eveq  function accepts 

a right argument (scalar or vector) onlp, before use@ it, one sbould make sure that the distribution 

parameten are specified correctly by means of the appropriate global variables. To identify the names 

of these variables and their cumnt  values, use the function IDENTLFY. To compute the quantiles 

of a given diktribution, use the fuMtion QUA- To fit a distribution of a given type to sets of 

data, use FlTDF. AII cbm functions arc described in Sec 7. 

Function Name PPnmeten Comment 

DFBETA 

DFBMOM 

DFGAMZ 

DFGAM3 

DFGEOM 

DFHYPGEOM 

DFLGST 

DFLOGNZ 

DFLOGN3 

ALPHA, BETA Beta distribution 

PROB. SAMPLE Biimial with parameters p = PROB and 
n - SAMPLE 

LOCATION. SCALE. Empirical (sample) distribution function 
DATA based on obsenations given by DATA, 

shifted by subsuacting LOCATION and 
scaled by dividing the result by SCALE 

'IHETA Exponential distribution with mean THETA 

LOCATION. SCALE Shifted and scakd Least Exvtme Value 
(double exponential) distribution 

ALPHA, BETA Gamma with parameters ALPHA and BETA 

ALPHA, BETA, Gamma with paramelen ALPHA and BETA 
CENTER shifted so that the resulting mean is 

at CENTER 

PROB Geometric with parameter PROB. The mean 
of this variable is I/PROB and its possible 
values are 1.2, ... 

LOTSIZE, SAMPLE. Hypergeometric with paranleten 
DEFECTS N - LOTSIZE, n - SAMPLE and 

k - DEFECTS 

LOCATION. SCALE Logistic distribution 

MEU. SIGMA Lognormal 

MEU. SIGMA fbrce-paraietric Lognormal with location 
CENTER parameter CENTER 



DFNCF 

DFNCHI 

DEGRNUM DEGRDEN Noneentral F with nonantrality parameter 
NONCNTR NONCNTR 2 0. DEGRNUM degrees of 

freedom of the numerator and DEGRDEN 
degrees of freedom of the denominator. 
NONCNTR - 0 corresponds to the central 
F-distribution 

DEGREES. NONCNTR Noneenual chi square distribution with noo- 
centrality parameter NONCNTR 2 0 and 
DEGREES degrees of freedom. 
NONCNTR-0 corresponds to the cenual 
chi square distribution. 

DFNEGB DEFECTS, PROB Negative binomial (ie. distribution of the 
sum of DEFECTS geometric random 
variables with mean I/PROB) 

DFNORM MEU. SIGMA Normal 

DFPOIS LAMBDA Poisson 

DFPROPB PROB. SAMPLE 

DFPROPA LOTSIZE. SAMPLE, DisViiulioo of the sample proponion of 
DEFECTS defectives *tbout mplacement (ie. of the 

byprgeomelric variable with parameters 
N - LOTSIZE. n - SAMPLE and k - 
DEFECTS. divided by the sample size, n ) 

Distribution of the sampk proponion of 
defectives with replacement (ie. of the ' 

bi imial  random variable uitb parameters 
p - PROB and n - SAMPLE divided by n ) 

DFPROP PROB, SAMPLE 

DFRANG E SIGMA. SAMPLE 

DFS SIGMA. SAMPLE 

Distribution of Ux sample proponion witb 
replacement when the sample size is a Poisson 
random variable witb mean SAMPLE. 
The theoretical proportion is p - PROB 

Dutributioo of the sample range corresponding 
to sample of size SAMPLE taken from a 
normal population with sL deviation SIGMA 

Distribution of the sample standard 
deviation (2.3) corresponding to sample of 
size SAMPLE taken from normal 
population nith s L  deviation SIGhtA. 

DEGREES Student's diutribution 

LBOUND. UBOUND Uniform 

SCALE. SHAPE Weibull with parameters SCALE. SHAPE 

SCALE. SHAPE. Three-parametric Weibull with parameters 
CENTER SCALE, SHAPE and location parameter 

CENTER 



DFXBAR MEU. SIGMA 
SAMPLE 

Distribution of the sample mean 
corresponding to sample of size SAMPLE 
taken from a nonnal population with 
mean MEU and st. deviation SIGMA 

The last two functions compute the df. of the Mahalanobii distance between the mulrivariate normal 
sample mean and some l i e d  point (ex. a n m i d  of the target region). pg. The panmeer MAHAL 
represen& the Mahalanobii distance A (with respect to the covariance mauix) betapeen the popu- 
lation mean aod po (see (8.6)). DEGREES is the dimension of the multi19riale obsenation and 
SAMPLE is the sample size. 

DFMAHAL hUHAL, DEGREES. Distribution of the Mahalanobii dislance 
SAMPLE with respect to a "lrue" covariance 

matrix 

DFHOTEL M A W  DEGREES. Distribution of the Mahalanobii d i i ram 
SAMPLE with respect to an esimaled covariance 

niatrix, S. The function F ( ~ X / S M I P L E  ) 
c6rrespoods to a Hocelling's . 
p -  distribution. 



Appendix B. Examples 

Example B.1 (Cumulative s - chart). Consider the situation described in Example 2.1. Let the ob- 

A A 
send pr- of (witbin sample) standard deviations be a]. 02. ... (see (23)). Suppose that for 

every lot I .  the measuremenu ();.I. y,. ... yh ) can be viewed ps independent mali t ions of a 

normal random variable with certain mean and standard deviation a. Let us assume that the sample 

site k fued (n - 4). m d  that because of the mgular quipment maintenance operations the planning 

" horizon" does not extend beyond 200 6arnpIes; in pa~ticulat, if UIC process k on-target. the proba- 

biity of not getting a false signal within 200 samples should be at  kpst 0.99. Under these assump- 

tions, we would like to fmd a Cusum-Sheu%art scheme for eontrolling a 9 t h  the best possible 

outof-target performance. 

To design a &me satisfying these criteria we use (be special function CUSUMS: 

The obscrvationr are distributed u S with SIGYA-2 SAMPLE- 
Stepl: Saarch for R satisfyin8 Prob.(R.L.W200)4).99 
Stepl -pl+tc; H-3.51342. Prob.(R.L.>200)=0.990356 
halysis of upper Curus scheme with pdrameters H.K- 3.51%2 2.76395 
The level of discretization is 30 
The chuying parameter name is SIC% 

SIG?U ARL SDRL 
2.0 20411.4 20408.7 
4.0 4.6 2.9 

Enter the values of H. K. HWST. and CD for further analysis (or 0 to uit): 
3.4 2.8 0 12 

Inter additional valuer of SIGMA for which the analysis is to be performed: 
2.5 3 3.5 

Inter tbc valuer of R for which Prob.(R.L. W R) is to be q u t c d :  
5 10 ZOO 

Loalpis of upper Cluus scheme with parameters tl,K- 3.4 2.8 
The level of discretization is 30 
The obrsrvations are distributed as S with SAUPLE4 
The chqinz parameter name is SlGM 

SIGW ARL SDRL 5 10 200 
2.0 20529.0 20526.5 .99985 .99961 .99040 
2.5 141.0 137.9 .98160 .94776 .23902 
3.0 18.1 15.4 .83412 .60713 .00000 

Enter the va1u.s of R. K, HEADST. and CD for further malyris (or 0 to exit): 
0 



As we can see, the ARL comsponding to a-4 is 4.6. Oae could roughly predict this value without 

A 
going into computations by noting that every observation contributes about E ( a )  - k - o/c(n) - k 

to the upper Page's scheme. Therefore. 

ARL c h 
a/c(n) - k ' 

which in our case (h - 3.4, k - 2.8, c(4) - 1.09, s - 4 )  results in 4.5. Clearly, such approximation 

is appropriate only for off-target situations in which the mean of the observations substantially ex- 

ceeds the rrferrnce value. T ~ K  formula (B.1) neglects the effect of reflection of the Page's scheme 

at  0 ,  which tends to overestimate the +On the other band, in many C ~ K M  this tendency is more 

than compensated by the fact that the amount of overshoot of the Page's scbeme over h at the mo- 

ment of signal is wt taken into xwuot. In other words, the degne of accuracy of (B.1) is typically 

Mcleu, nevenhekn, formulas of Ihis type may serve as a yardstick for the purpose of rough assess- 

ment of the ARL curve in off-carget region, choice of the initial approximation for h to be used in 

the design procedure, etc. 

FiaUy, k t  us mention aaotberapproximation. related to analysis of on-taqef situations. Suppose that 

we would like to evaluate the quantile of order y of the RL distribution, ie.  lo find q satisfying 

Prob.(RL > q )  - y. S i c e  the on-target RL usually has a distribution somewhat similar to exponen- 

tial. one can approximate q by 

q % -ARL x logy. (B.2) 

This approximation can be rough. especially for high values of y. For example, for y - 0.99961 and 

ARG20529 ,  it results in q E 8. while the above output indicates that the quantile comsponding to 

0-2 is q-10. However. it usually produces a good initial "guess" that can be subsequently refined; 

morco\.er. it is of use in cases where no analytic analysis of the RL k possible, and one has no choice 

but to use simulation (see Example B.7). 



h p l e  B3 Consider once more the situation desnibed in Example 2.1. Under the assumption that 

tbe m p k  (subgroup) size is n 4 and che standard deviation of a single measurement is a - 3. let 

us examine the pctfonnance of (be two-sided Page's scheme with parameters 

(h+-9 .  k + - 3 .  s&-2, h - - 5 .  k - -2 .  q- I ) ~ e d & c h i s e n m p l e w i t h m p c t t o t h e  

the following \mlua of tbe proms kvel: - 6.3.1.0, -2.4. 

50 petform tbe analysis. we use the function TTHOXPLR: 

' S I N  W L E '  ASSIGN J 4 
'MU' SFXXPIR (6. 3, 1. 0. (-2). (-4)) 
0 SET 2 1  
9 J s 2 NOW= ' ~ A R '  . 

Analysis of the two-sided h u m  achae v i tb  pr-tmn: 
R+.K+ (+r 9 3 .nd H-.K- - 5 2 
The 1-1. of  d i scre t iu t ion  are W.D- = 30 17 
The obsersetionr era distributed u X - b u  with SIN-3 WUll 
l l a  changing p e r w t e r  n.n is KEU 
The values o f  the baedstrrrs ere 2 1 

M U  P(W) ARL SDRL 
6 '1.000 2 .9  .9 
J 1.000 67.5 61.8 



Example BJ: Spin dryers are used as one of the steps in the production of integrated circuit cbips 

from semi-conductor wafers. Typically. the process steps are followed by r h e s  with deionized. fil- 

tered water. After the rinsing, the water k removed by placing the d e t a  into the spin dryer 

(centrifugal device), that spins the water off che wafers (md accelerates evaporation by using dry 

rdtercd gas). 

P~riodically, test wafers arc run through the rime and drying cycle md  the panicles on tbe wafer that 

arc l-er than a specifiid diameter are counlcd The recorded counts serve as a basis for the decision 

to clean md r e v s t  the spin dryer. Under normal conditiom, the kvel of the proass 

I 0,. q, ... ) of tbe recorded counts does not exceed 6. Levels of the process exceeding 12 are 

associated with a high rate of defective production - situations & which the process of counted con- 

taminating particles rcacbes chis level should be detected as soon as possible. On the other band. 

since cleaning and re-testing represent 80 expensive and tedious procedure. we are interested in a 

cusum control scheme for which the probability of a false signal within 100 tests is w t  more than 

0.01, and. at the same time, the sensitivity with respect to the kvels of the process exceeding 12 is 

as high as possible. 

On tbe basis of theoretical considerations, there is reason to believe that (during a certain initial pe- 

riod of time) tbe counts o, ) form a sequence of iid Poisson random variables with parameter A .  

To perform the design and analysis of sucb cumulative c - chart. we cw the function CUSUMC: 

'Ibe obaenations are Poisson with r a n  IUIBDA-6 
Step]: Search for H satisfying Prob.(R.L.>100)=0.99 
Upper bound of the search has been reached. Repeat the search with 

-re precise estimate of the signal level .  The las t  approximation: 
HZ4.55 Level of Discr . e6  Prob.(R.L.>100)=0.47 

Unfortunately, our first attempt fails. The output indicates that the sought value of h is st~bstantially 

higher than 4.55. So, let us introduce the initial point of search ho - 10 and (to save CPU tinie) use 

the interval of discretization 6 - 0.2. 



6 12 10 0.2 CUSVnC 100 0.99 
The ohsarvations arc Poisson with mean IWBDA=6 
Stepl: SsarcS for R satisfyinl Proh.(R.L.>l00)=0.99 
Stcpl co~mlete; 8=10.9. Proh.(R.L.>100)=0.9897 
Analysis of upper Cusum scheme with parameters ASK- 10.9 8.6 
The level of dircretiration is 55 
The changing parameter n w  is M B D A  

LMBDA ARL SDRL 
6 9458.8 9455.9 
12 4.0 1.0 

Enter the values of R. K, QADST. and CD for funhar analysis (or 0 to uit): 
10.9 8.6 0 123 

Enter additional valuas of IWBM for uhicb the analysis is to be perfomd: 
8 10 

Enter the values of R for which Prob.(R.L. w R) is to b. computed: 
5 10 100 

Enter the Shdart's Limit: 
18.5 

Analysis of uppcr Ctuum s c b w  wish paramten A,K= 10.9 8.6 
h e  level of discretizstion is 55 
The observations i r e  Poisson 
h e  changing parameter name is M B D A  
The scheme is supplemented by the Shevhart limit 18.5 

LMBDA ARL SDRL 5 10 100 
6 8685.1 8682.4 .99967 .99910 .98880 

Enter the valuer of 8 ,  K, QADST. and CD for further analysis (or 0 to exit): 

The above output suggests that the scheme l~ = 10.9, k - 8.6 assures about the best possible xmi-  

tivity (ARL-12) with respect to A - 12 particles/waler. In order to improve semitivity with respect 

to very high le\vek of contamination, we supplemented the scheme by a Shewhart Emir, c - 18.5. 

Could these results be independently verified. say, by using simulation? In the off-target case this is 

not difficult to do: 

5 m 1 
6 SET -1 
&l0.9 8.6 18.5 ONERUN (2000 SIHPOIS 12) 
STATIST L E W  

Numher of observations: 509 Hean: 3.93 Hedian: 4 
Hinimum: 1 H u h m :  13 Range: 12 
Estimates of Stand. deviation: 5-1.93 SDE1.87 SRr1.93 
Pegrerrion slope: 0.00088 Skavness: 1.38 Kurtosis: 3.27 

In the on-target situation, however, the simulation niay beconle very expensive. Indeed, one would 

need to generate ahout 9000 Poisson variables in order to obtain a single out-of-conirol signal! 



Clearly, che number of obsen~tions needed in order to get a good estimate of tbe ARL and other 

relevant quantities could well ntn into millions. This example shows that in che problem of analysb 

of control schemes analytic methods can produce results which cannot be obtained by simulation 

There is. however, anotber way of verifying the results by using simulation, which is outlined in the 

Now let us suppose that the process operates for a long time at the level A - 6 particles/waler, and - 
then i s  level sbiics to 12 pmicles/wafer. What can we say about the distribution of the Residual Run 

. Length? To answer chis question, we can invoke the steady state analysis (see Appendix D) right from 

CUSUMC and continue its run as follows: 

. 
Enter t h e  values of 8 .  K. EM)=. m d  CD fo r  fur ther  analysis (or 0 t o  ax i t ) :  

10.9, 8.6. (-1) 

Analysis of upper Cnsm scheme with parmeters  H.K = 10.9 8.6 
The l eve l  of d i sc re t i za t ion  is  55 
The observations a re  Poisson 
The changing par-ter name is LAMBDA 
The headstar t  i s  out of rmge;  steady s t a t e  analysis assumed 
The scheme is supplemented by the  Shewhart l imi t  18.5 

Enter t h e  values of A. K. W S I .  and CD for fur ther  analysis (or 0 t o  ex i t ) :  
0 

As we can see, the outlwl; of sensitivity is somewhat better in terms of the Residual RL This is 

clearly related to tbe fact that the scheme niay have a non-zero value (headstart) at the nlolnent the 

shift occurs. 



Enmple B.4 (Analysis of a scheme on the basis of an empirical distribution). In ow previous dii- 

cussion we alww-ys assumed that our observations come fmm some known family of distribution 

functions. Under chi assumption, control of the p r o c ~ s  becomes essentially control of a n a i n  

"crucial" parameters of the family (ex normal mean). However, it omrn quite frequently that the 

only thing we know about the process is data (comspodmg to "good" and/or "had" states of the 

process). and we would not like to commit ourselves to any particular family of distributions. In such 

situations one can lue the empirical (or sample) diitribution function instead of the unknown dis- 

tribution for purposes of design and analysisB 

To  illustrate this approach let us lint assume that rbe observations come from a normal family with 

standard deviation 1 and examine the performance of a scheme h - 3, k - 1 with respect to the 

process levels p - 0.5. 1. 1.5 and 2: 

2 SET 10 20 50 - . - . . . -. . . 
'SIGM' ASSIGN 1 
'KEU' SFlXPLR 0 0.5 1 1.5 2 
(3 1) O ~ L R  'DFNORH' 

Analysis of upper Cvaum scheme with parameters H.K = 3 1 
The level  of d iscre t iza t ion is 30 
The observations a r e  normal with SIGM=l 
The changing parameter name is mu 

K E  AP.L SDRL 10 20 50 
0 1958.0 1955.6 .99589 .99081 .97572 

0.5 117.5 116.4 .93773 .85926 .66098 
1.0 17.4 14.2 .60252 .29662 .03529 
1.5 6.6 3.8 .I2799 .OD800 .00000 
2.0 3.7 1.7 .DO464 .OOOOO .OOOOO 

Now let as generate a set of 10000 standard nonllal observations and assume that this is the data at 

hand. Suppose that we knowv that the typical ways of our process going out of control are related to 

shift and/or scaling of the appropriate on-Iarget diitribution Thus, let us try to shift our data by 

0.5.1.1.5 and 2 and exanline the performance of the above scheme with respect to the corresponding 

empirical distributions: 

Wir, tlpe of oppmaclt lends to lo-c~llcd "bootstnp" cnintatcs of tLc chnncteristicr of the Run Lcnptk For more in- 
rorm~lion about this lecllniquc Sce Eimn (198 1). 

61 



'DATA' ASSIGN (ioooo SIX NOR^ o 1) 
'SCALE' ASSIGN 1 
'IDCATION' SElXPLR 0 0.5 1 1.5 2 

(3 1) ONEXPLR 'DFEHTIR' 

Analysis o f  upper C u s u  s s h w  with p a r w t e r s  B.R = 3 1 
The l eve l  of  discretization is 30 
The obrtrv. come from empirical d . f .  with SCALD1 
me changinl parameter nume i s  LOCATION 

As one could expect, the results an fairly close to those obtained under the normal assumption. By 

varying the second parameter of the empirical distribution. SCALE, we could examine (he effect of 

varying the standard deviation of the underlying wrmal'proceu. 

Of course, on the basis of our data, we wuld f i t  estimate the standard deviation, then assume 

normality and, fially. analyze the scheme under the (fitted) normal model. However, the resulting 

characteristics of the Run Length would depend strongly on validity of the assumption of normality. 

The main moral of this example is, of course, that assumptions of this type can be completely un- 

necessary, especially in situations where substantial amount of data is available -one can simply use 

the empirical distribution. 

There is. bowever, another important application of chis technique. Indeed, the functions of 

CONTRD enable us to mathematically analyze any disttibuiion of incoming (iid) observations for 

which we are able to provide an appropriate APL function (DFNORM. DFPOIS. etc.). Howe\-er, in 

some cases it may be not easy to write such a function. In such cases analysis cao still be performed 

by using the above technique, provided one can efficiently generate the underlying sequences of ob- 

servations. Consider, for example, the situation in which one is trying to monitor the wafer-to-\valet 

variability within successive lots. Suppose that r wafers are selected at random froni each lot. then 

n measurements are taken front each wafer. and a variance component type esimate of the aafer-to- 

wafer variance 02 is computed by using (7.3). Thii estimator is distributed as a non-negative pan of 



where a is the within-wafer standard deviation aod V[rl corresponds to a chi - square randon1 vari- 

able with i degrees of freedom divided by i (the variables V, and 15 a n  independent). 

Writing an APL function to emciently compute the distribution function of the above estimator may 

pm\e to be a tedious task On the other band, it can be easily simulated; the analysis a n  then be 

performed on the basis of the resulting empirical distribution. 



Example B S  (Controlling the mean of a Weibull population). Consider a line for serial production 

of certain elecvonic devices. Every 10 minutes a device is picked fmm the conveyor and subjected 

to an accelerated life test 'lhe resulting sequence of life times serves as a basis for assessing the 

quality of tbe process. Statistical data analysis indicates that the life time of the device is typically 

distributed as a Weibull r.v. with a relatively stable shape parameter c -4. The variability in life times 

(and. of course. tbe process quality) depends primarily on the scale parameter, a. 

If the level (mean) of the sequeaceexceeds 1.5 min. the proccs quality is satisfactory; under tbese 

conditions we are definitely interested in pmtection against false alarms. If, however, the level faUs 

to 0.5 min, we would liLe to detect it as won as possible; in such a case we still can afford to be law 
I 

by a half an hour or so. Thus, let us uy to r i d  ari appropriate Cusum control scheme based on the 

sequence of recorded life times. We start by noting that it makes sense to choose the midpoint k --I 

as a reference value of 0111. (louver) control scheme. S i c c  the mean of the Weibull population is 

a T(c-' + I), the values of a comspondiig to the mean life of 1.5.1 and 0.5 are 1.7.1.1 and 0.6, 

respectively. So, let us finda scheme for which the off-target ARL is 3 (given our sampling intensity. 

this cornsponds to ATS = 30 min): 

'SIUPE SCALE' ASSIGN 4 0 .6  
'SCALE' SETWLR 1.7 1.1 0 .6  
0 SETFIND 3 
(3.  ( -1) )  ONEXPLRDL ' D ~ T I B ~ '  

The observations are Ueibull with SIUPE=4 SCALEc0.6 
Stepl:  Search for H sat i s fy ing -3 
Stepl complete; H-1.10625. 1LRk2.9836 
Analysis o f  l w e r  Cusvm scheme with parameters H , K  = 1.10625 -1 
The level  o f  discretization is 30 
The changing parameter name i s  SCALE 

This. our "brutal" approach resulIs in a scheme with a seeniingly reasonable resolution. Can it be 

substantially improved? To  answer this question, we should recall that under the Weibull assumption. 

sum of the c -th powers of tbe obsen;ltions is a sufficient statistics for n and. therefore. one can ex- 

pect that a more p u ~ e r f u l  convol procedure (when c is known) can be based on the c -th powers 

of the recorded life times. It is easy to see that c -th power of a Weibull obsen-ation is dktributed 



exponentially with mean nC. Since (1.7,0.9,0.6)' - 8.3521,0.6561, 0.1296, we can use the func- 

tion CUSUMT as follows: 

The observations a re  Exponential with mean 'THETA= 0.1296 
Stepl :  Search fo r  H s a t i s fy ing  ARk3 
s t ep1  complete; H=0.998378, ARl%2.96237 
Analysis of l w e r  CUSU~ scheme with parameters H.X- 0.998378 -0.548399 
The level  of d iscre t iza t ion is 34 
lbc changing pa rmete r  name is T I E T A  

l l E T A  ARL SDRL 
6.3521 7345.9 7343.9 
0.1296 3.0 .6 

h r e r  t h e  values o f  H. K. HEADST. and a) f o r  fur ther  analysis (or 0 t o  exit): 
1 0.55 0 1 

h t e r  addi t ional  valu*r of T E T A  f o r  which the  analysis 2. t o  he performed: 
0.6561 

Analysis o f  l w e r  C o s m  scheme with parameters H.K= 1 -0.55 
The l eve l  of d i sc re t i za t ion  is 30 
The observations a re  Exponential 
The changing parametci namc is  T I E T A  

l H E T A  ARL SDRL 
8.3521 7107.2 7105.2 
0.6561 12.2 9.5 
0.1296 3.0 .6 

Enter t h e  va lu i s  of H. K. HEADST. and CD f o r  further analysis (or 0 t o  ex i t ) :  
0 

The above output sho\\ls that under our conditions. control scheme based on the 4-th powers of the 

Life times urould increase the resolution by about 40%. We musf however. warn the reader not to 

misinterpret this statement Indeed. instead of matching the'sensitivity, let us try to match the on- 

carget performance of the original scheme, ie. design a scheme for which the ARL is 5373.2: 

The observations a re  Exponential with n a n  T E T A -  8.3521 
Stepl:  Search fo r  H sa t i s fy ing ARk5373.2 
Stepl  complete; H-0.968575. ARk5338.39 
Analysis of l w e r  Cusm scheme with parameters H.K= 0.968575 -0.548399 
The level  of d iscre t iza t ion is 33 
The changing parmeter  namc is T I E T A  

T E T A  y(l SDRL 
8.3521 5338.4 5336.5 
0.1296 2.9 .6 

Thus, for a fixed on-target ARL use of the transformed observations reduces the sensitivity from 3 

to 2.9, which could hardly be \*ie\ved as a dramatic irnpro\-enlent. This example sho\vs not only that 

the scheme based on the recorded life times may be not so had after all. but also that one must be 
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prepared to sacdice a lot of protection against false alarms in order to "buy" a relatively small 

amount of sensitivity. The reason for that is related to the fact that, as h increases. the off-target 

ARL grows at  a rougbly lkear rate, while the on-target ARL grows e.aponenlioI&. One should keep 

in mind, however, that reduction of the off- tqet  ARL by as little as 0.1 may sometimes significantly 

reduce tbe rigbt tail of the RL distribution (ie. probability of not catching the change within a sbon 

period of time). Indeed. ARL-1 means that the change in process level will be defhtely detected in 

the f i t  sampling period, ARL-1.1 means that with probability roughly 1096 the change uill not be 

detected immediately. 



Emmplc B.6 In the p r e s s  of galvanic plating, one is interested in monitoring the concentration of 

copper in the bath. In order do so, he takes periodic measurements from a prescribed place in the 

bath The measurements a~ relative with respect to some target concentration; so. when the process 

is on cargef the level p of the wqt~ence of recorded measrtrcmeDu must be 0. On the other haad, if 

the process kvel settles outside the interval (-22). quick corrective action is required; in panicular. 

if p - ? 2. we can still tolerate it for about an hour, provided the& is no deterioration of the process 

variability. Under normal operating conditions, the relati\r measurements arc normally distributed 

with mean p and standard deviation a - 1.2, which incorporates both the measurement error and 

variability in time. 

Our main objective is to determine the sampling intensit)' (S1) necessary for being able to derive a 

Cusum schenle with satisfactory resolution We shall characterize the performance of a scheme in 

terms of its Time to Signal (TS). which corresponds to Run Length divided by the sampling intensity. 

We shall require that for p - 2 and -2 the Average TS (AT'S) - 1 hour (in other words. the ARL for 

p - 2 and -2 must be 5). Fic, we examine the scheme c o ~ e s p n d i i g  to SI - 5 measuremenu/bur. 

We start by designing an upper scheme satisfying A n - 1 ;  subsequent conlbiiing of it with an anal- 

ogous louver scheme yields the symwvic  two-sided scbeme of interesr 

11.2 0 2 C V S W  5 0 I 

The observations are distributed is X-bar with 
EU=2 SIGHA=1.2 SIVIPLE=l 
Stcpl: Search for H satisfying ARL.15 
Step1 cmplete: Hd.24474. ARL4.99342 
Anaiysis bf upper ~usvm scheme with parameters H,K = 4.24474 I 
The level of discretization is 30 
The changing parameter name is UEV 

rav ARL SDRL 
0 1755.6 1752.3 
2 5.0 2.4 

Enter the valucs of H. K.,AEADST. and CO for further analysis (or 0 to exit): 
4.24 1 0  1012 

Enter additional values of HZU for vhich the analysis is to be performed: 
1 

Enter the values of R for which Proh.(R.L. W R) is to ha computed: 
5 10 50 100 

Analysis of the two-sided Cusw scheme vith paramcters: 
H+.K+ = 4.24 1 and H-.K- = 4.24 1 
The levels of discretization are t!+,D- - 30 30 
The observations are distributed as X-bar vith SIG.Url.2 SMPLE=l 
The changing parameter name is lIEU 

E V  P(W) liRL SDRL 5 10 50 100 
0 .SO0 872.0 868.7 -99732 .99176 .94713 .89416 
1 1.000 22.1 18.1 .go845 .70529 .07592 .00466 
2 1.000 5.0 2.4 -32883 .03094 .OOOOO .OOOOO 

Enter the values of A. K. IEKlST. and CD for further malysis (or 0 to exit): 
0 



As one can see, combining the one-sided schemes into a two-sided one does not haw much effect 

on the detection capability. Indeed, if the p- level settles at say. -2. the upper scheme is practi- 

cally idle and the two-sided scheme becomes operationally equivalent to a one-sided (lower) scheme. 

On the other hand, such combining increases the risk of a false alarm; in particular, for our symmetric 

scheme it reduces the ATS by a factor of 2. to 872.0/5 - 174 hours; the probabiity of not having a 

false alarm within 10 hours k 0.94713. 

A sample run corresponding to this scheme is given in Fig. B . 1 . n ~  first 30 observations of this run 

wmspond to the process kvel p-0. the next 30 - to p-2 As we can see, our Cusum scheme signals 

at the observation 36, ie.  -6 (TS- 1.2 hour), as could be expected fmm the design wmiderations. 

For comparison. we also plotted the data and applied :the Shewhart 3-Sigma control limits. In this 

particular run, the Shewhart scheme signals later: -8 (TS-1.6 hour); the comparison treats the 

Shewhart scheme more than fairly. since, as one can w e  from Fig. 1.1.. its A'IS k (740/2)/5 = 74 

hours, which is worse than on-target ATS-174 of the Cusum scheme. 

In the process of assessment whether performance of the derived Page's scheme is satisfactory or not, 

one should take into account, among the other things, the fact that the level of concentration of 

copper is not likely to be the only parameter to be controlled - the control system UW probably 

process concentrations of other chemicals, variability in time, etc. If. say. the system was to control 

15 parameters of the above type, the probability of not havidg a false alarm within 10 hours becomes 

(0.94713)15=0.45. Clearly. one could improve the performance by increasing the sampling intensity. 

For example. raising the intensity to 10 measurements/hour leads to a (symmetric) scheme 

h-9.298, k-1 with on-target ATS of 98000 hours and probability of having no false alann within 

10  hours 0.9999. Another way to improve the resolution would be to take several measurements at 

a time, and base the control procedure for p on the sample averazes: this could reduce the "within- 

bath" ponion of the total variability. As an exercise. we suggest the reader to examine these possi- 

bilities in more detail. 

In conclusion, let us give some remarks related to the principle of immediate utilization of the in- 

coming information mentioned in the Introduction. Suppose that one measurement is taken every 0.1 



hour, and we have an option to me subgroups of size 1 (ie. no subgrouping), 2.5 or 10. For every 

subgrouping policy. let us design a Cusum scheme having an on-target ATS of 98000 hours, and 

wnsider the off-target performance for p - 2 and p - 3. The resulu arc a~ shown in Table B.1." 

Sample - Samples Signal 
size per hour kvel ATS P(TS > 1) P(TS > 2) 

Table B.1. Effect of various subgrouping policies on the resolution power of a two-sided scheme. 
The observations are iid normal with u - 1.2, and both reference values are set to 1. The 
(off-target) ATS and associated probabilities are computed for p - 2 and 3 (in paren- 
theses). Every scheme has an on-mget ATS. of 98000 hours. 

This table indicates that best resolution power (in terms of the ATS) is achieved when no artificial 

subgmuping is used, ie. the scheme is updated 10 times per hour. Such policy is especially of use in 

situations where large deviatioas of the process level from its target value are possible. For example, 

for p - 3 the off-target ATS is 0.53 hours compared to I hour corresponding to the case when a 

subsample of size 10 is taken once per hour, clearly, this may rrprexnt a serious advantage, espe- 

cially in the environment of wnveyor-type manufacturing. where Ibe off-target ATS can be directly 

translated into amount of substandard product 

On tbe other hand, the probability of not catching the same value of p within an hour is smaller when 

Mificial subsampling is used! This phenomena is not difficult to explain: when the scheme is updated 

frequently. shorter values of the TS become possible and the ATS is driven down; however, some of 

the information can be lost along the way. because of the possible regenerations of the underlying 

Page's schemes - therefore. some longer runs also become p~ssible.~' In contrast, schemes based on 

subgrouping tend to have a longer "men~ory" (and therefore are somewhat less likely to overlook a 

long period of persistently poor quality), but are unable to react quickly. The mentioned "menlor)." 

" To obtain. say. the warnd entry of this table. note lh31 lhe on-large1 W of the one-sided whcrnc must be 98000 X 

2 x 5 = 9 8 m .  thus. the analpis can be performed by using the statemen12 I 2  0 2 CUSUMX 980000. 

Thc pmbabiliticr or such rum a n  mually bc driven down by supplemcnling a Cusum rcltcmc a-ill~ SLcuhan:s linlils 



is not always a plus, as it introduces inertia into the conml process. Indeed, assume that the process 

level changed after a 1/2 hour period. Then half of che observations used in the next updating of a 

scheme based on subsamples of size 10 are "wone than imlevant". 

In summary, we feel that sampling as frrquently as possible and updating the scheme(s) as soon as 

the new information arrives still represents a good policy, since its minor dran-backs arc typically 

more than compensated by our improved ability to react quickly to large deviations in the process 

lewL 



Concentration of Copper (SI = 5 obser/hour) r Doto 

Cusum (h - ,424 k - 1) 

Page's (h - 4.24 k - 1) 

20 

Sample Number 

Fig. B.1. A sample run corresponding to Example B.6 



Example B.7 Consider the proass of wiring the chips in which we are interested in controlling the 

height of lines connecting the uamistors. Tbe processing is on a lot by lot basis; the control proce- 

dure should be based on 12 measurements correspondiig to three wafers (4 measurements/wafer) 

taken from each lo t  In accordance with specifications. the height of rwry wire should be between 

3 and 5 micron The primary purpoK of the control scheme is to keep the escape rate on this char- 

acteristic as law as possible. Extensive data corresponding to various periods of time during which the 

process operated in a stable and sacisfactory mode brought the engineers to the follou*ing conclusions: 

a)About 50 lots are processed every shifr 

b)The process level should be as close u possible to 4 mic 

c)Most of the process variability is attributed to its lot-&lot component 06. which is typically around 

0.1 mic; levels exceeding 0.2 were never observed under normal operating conditions and could be 

considered as "bad". The within-wafer variability is very stable, at the level of a - 0.05 mic. The 

wafer-to-wafer variability within the lot can be neglected. 

d)The model for the j -th measurement of the i-th lot 

where p is the grand mean (level) of the process, Li is the effect of the lot (nonnal uith mean 0 and 

rd .  ob ). and eii is the "no'ke" (normal with mean 0 and s.d. o ) can be reasonably assumed for the 

purpose of design and analysis of che control schemes of interest 

The above conclusions imply that under satisfactory operating conditions, the total variability is 

around d0.12 + 0.0S2 - 0.1 1 and should not exceed J0.22 + 0.0s2 - 0.21. Therefore, one could 

consider the interval (5 - 3 x 0.21. 3 + 3 x 0.21) as a target region for the grand mean; hou9ever. 

let us be conservative and require protection from false alarnu if p belongs to a shorter internal, (3.8. 

4.2). Further, if p settles at the level above 5 - 3 x 0.11 - 4.67 or below 3 + 3 x 0.11 - 3.33, it 

becomes impossible to eliminate defective product; to protect against unexpected sources of vari- 



ability. ur shall declare p 3.4 and p 2 4.6 as regions for whicb the cumulati\.e x - cban should 

have good detection capability. i.e. "bad" regions (see F i s  B.2)." 

k 1-3.6 

"bad" "good" 
R e a l  d a t a  

3.t Y +.f - 
a 0 0.z 

S h i f t e d  d a t a  / 
S p e c i f i c a t i o n s  

k -0.4 

Fig. B.2. "Good" and "bad" domains for the grand mean. 

Now let us try to design the mentioned X - cbarl for conlroUing p and see nbat resolution can be 

obtained under tbe pment  SI. Our immediate concern is related to sensitivity: in particular, under 

normal operating conditions, we u.ould like assure that the probability of detecting the event p 5 

3.4 or  p 2 4.6 within 2 lo& be at least 0.95. The rd of X under normal conditions is 

J0.12 + 0.052/12 - O.IOlnO.l, which clearly indicates tbat the within-sample variability is not 

likely to affect the perforniance of tbe chan  In order to be able to desisn a synlnietric tnw-sided 

scheme uSthout exiting front the special function CUSUMX. let us shiit tlie measurelnen& by 4. so 

that the target le\.el beconles 0. Clearly, the target region for the shifted data beconles (-0.2, 0.2); 

levels beyond the interval (-0.G. 0.6) correspond to "bad" state of the process (see Fig. 8.2). As 

usttal. we stan by designing an upperschenie, and then spm~netrize it: 

Note that the anal>sb 01 the domain for P is based primarily on the behavior 01 total urbbilily and docs no1 take into 
account the sampling intensity. Indecd. the bttcr docs not determine \-ha u "goal" and "bad" behavior of tle udcr- 
lying p m s .  but whcthcr the inflow n l c  of  inlom!~lion enabks w to nrohr betwccn tl~csc lcvck 



Tbe observations a rc  d is t r ibuted as X-bar with 
KEV10.6 SIGM=O. 1 SMPLE=l 
Stepl:  Search f o r  H sa t i s fy ing Prob.(R.L.>2)=0.05 
Step1 uwplete :  Hs0.174907. Prob.CR.L.>2)=0.0492814 
l lnaiyris  if up& cusum scheme wiih par&ctcrs H.K = 0.174907 0.4 
The level  of d iscre t iza t ion is 30 
The chmgfng parameter name is KEU 

wEU ARL SDRL 
0.2 9403.1 9402.4 
0.6 1.5 .6 

Enter t b e  values of R f o r  which Pmb.(R.L. > R) is to be computed: 
2 5 50 100 

Analysis of t h e  two-sided Cuu. scb-e with parameters: 
H+.K+ = 0.175 0.4 m d  H-.K- = 0.175 0.4 
The levels  of d i sc re t i za t ion  a re  J3t.D- = 30 30 
The observations a r e  d is t r ibuted as  X-bar with SIGliA-O.1 S==l 
The chan&ing parameter n u c  is VEV 

m P m )  ARL mlRL 2 5 50 100 
0 .SO0 .112E09 .I12109 1.00000 1.00000 1.00000 1.00000 

0.4 1.000 8.5 7.0 .a6364 .57031 .00085 .OOOOO 
0.6 1.000 1.5 .6 .04936 .00004 .OOOOO .OOOOO 

Enter t h e  values o f  8 .  K. READST. m d  CD f o r  fur ther  m a l y s i s  (or 0 t o  exi t ) :  
0 

As one can see, under the given sensitivity requirenients. we are also able to achieve a good degree 

of protection against false a l a w ;  for exaniple. the probability of a false alarm during a shift (50 lots) 

does not exceed 0.596. Such good resolution was to be expected, since the width of the intem~ediate 

region. 0.4 (-0.6-0.2) is roughly equal to four standard deviations of an observation (u-liich is in our 

cax X). However, if we lose control over the total variability (esp. its dominant contributor, lot-to- 

lot variability). the resolution pou7cr of the scheme may he severely damaged. For exa~nple, consider - 

the situations corresponding to s.d. of of the saniple means. J-, accepting values 0.1, 

0.15 and 0.2. when the gnnd niean p is at the upper bound of the t a r ~ e l  region. For de~iionstrarion 

purpose. k t  us return to our original (non-shifted) data. Clearly, both signal levels reniain unaffected, 

while the reference values beconie k+ =0.4+4-4.4 and k--0.4-4-3.6, i.e. as sIio\vn in Fig. 2.1. 



'MU S)r18LE' ASSIGN 4.2 1 
. 'SIGM' SETXPLR 0.1  0.15 0.2 

2 SET 2 5 50 100 
(0.175, 4.4.  0.175, (-3.6))  ~ X P L R  ' D ~ u '  

& a l p i s  o f  t h e  two-sided b u m  schema v i t h  parameters: 
H+.K+ = 0.175 4 .4  and H-.K- = 0.175 -3.6 
The levels of  d i sc re t i . a t ion  a r e  L!+,D- - 30 30 
The o b s e r v a t i o n s  a r e  d i s t r i b u t e d  as X-bar v i t h  K ~ w . 2  S&PLE=l 
The changing parameter  name is SIGM 

SIGM P(UP) ARL SDRL 2 5 50 100 
0.10 1.000 9435.8 9435.1 .99981 .99949 .99473 .98946 
0.15 1.000 129.8 129.1 .98628 .96365 .6800* .46167 
0.20 -999 27.9 27.2 -93504 -83795 .I6182 .02603 

By examining the "bad" kvek of p in a similar way. one can see that i n m e  in s.d. also affeccs de- 

tection capability, though to a much lesser extenrY A much more serious is ics effect on the escape 

rate. Indeed. if the total s.d reaches 0.2 at the lime the grand mean is at the kvel p -4.6. ooe could 

expect 2.596 of the wires to fall out of specificatioas; takiig into account that the number of wires 

on a chip is very large. one should not expect high yields on the chip level." 

Next let us uy to design a scheme for contro3ing the lot-to-lot variability. S i  the s.d of is pri- 

marily related to a*. the sequence { di J as defied in Sec. 2 is appropriate for this purpose. Unfor- 

tunately, the successive members of this seqlrnce are correlated (positively), therefore, we bave no 

choice but to use simulation in order to assess the properties of a scheme. Let us choose the reference 

value k-0.15 (i.e. in the middle between 0.1 and 0.2) and uy to l i d  h for which the off-target ARL 

is about 10. u-hich would, hopefully, lead to a high probability of detecting the presence of excessive 

lot-to-lot variability within one shift In accordance with formula of type (B.1). the off-target ARL 

can be roughly approximated to be h/(0.2-0.15); therefore, we can starc by examining the on-target 

performance of a scheme corresponding to the signal level h-0.5: 

This a n  be easily a p h i d  by the lac1 that under lhc off-target conditions the RL b determined primarily by the rate 
of drift 01 the Pagc's scheme touards lhc signal lcwl. ic. by the excess 01 the p m s s  level o w r  ihc rrfcrrncc v~luc: on 
the olher hand. under the on-tarpel mnditiom the RL b strongly aflcctcd by thc tail propcnics of l l ~ c  underlying dir- 
tniucjcn and.mwqucntly. by i u  rA and probabiiiks of largc deviations (also see problems 0.1 and 0.41. 

" It is not difrcult to d e h r  a lormula lor p m n t  01 &leakc chips undcr the model (8.31. k one may expect, the )*Id 
depends not iurl on lhs total %ariabiiity. bul also on i u  individual componenls: clcarly. m r  yields camspond to situ- 
ations in which the within-uafcr mrtability b a dminant cmnponcnl, 



5 SET 1 
6 SET -1 - --- - 
S-0.5 0.15 ONERUN (0 SELECT 20000 SIUNORH 0 0.101) 
STATIST LENGMS 

Number of observations: 35 Uean: 561 Median: 348 
Uinimum: 65 Waxhum: 1811 Range: 1746 
Estimates of Stand. deviation: S=502 SW98 6-93 
Regression slope: 12.4 Skewmess: 1.02 Kurtosis: -0.24 

Since only 35 out-of-control signals were observed during this run, the study needs to be repeated 

several times in order to obtain an assessment of better quality." On the basis of the above output. 

we could expect the ARL to be around 600, and, by (B.2). the probability of no false alarm within a 

shift to be around exp( -50/600) - 0.92. Analogously, we can examine the off-target perfonnaoce 

of our scheme: 

5 SET 1 
6 SF7 -1 - --- - 
S-0.5 0.15 ONERUN (0 SELECT 10000 SIMJDRn 0 0.200s) 
STATIST mGMS 

Number of observations: 1015 Uean: 9.8 Uedian: 8 
Uinimum: 1 M a x i m u m :  67 Range: 66 
Es t imates  of Stand. deviation: -7.6 S 5 7 . 2  SM7.6 
Regression slope: -0.0007 Skewness: 1.92 Kurtosis: 6.07 

This simulation study shows that the off-target ARL and SDRL are about 10 and 7.5, respectively. 

S i  relati\.ely many (1015) signals were observed, we can also obtain a good assessment of the RL 

distribution (one could we the function DFEMPlR for this purpose). In particular, the probabilities 

that the RL will exceed 20 and 50 were estimated to be 0.09 and 0.001. respectively. 

The fact that the resolution of our scheme is much poorer than that of an - scheme considered 

earlier may or may be not a matter of concern Indeed, the practical (or economical) consequences 

of a false alarm produced by an X - chart may be completely different from those caused by 

W e n  the numbcr 01 outol-mntml signals 1)pinlly obscnrd in a single lrhnulalcd run b very small. negkcling the last 
pan 01 the Cwum m j c c t o v  (lor rhidi no sip31 a% lriz~ercdl. or dircparding simulations that produced no sismals. 
k r  kad to serious underestimation 01 the R L  I1 no hcadstara arc wi one &uld rrdurr the bhr bs addinr the rc- 
mainder to the l int N n  k n p h  o k n r d  in the nest simul~lian. 



schemes monitoring lot-to-lot variability. within-lot variability or other parameters - since states of 

various panmeten are frequently associated ~ 4 t h  different sets of tools, different operators, etc. m e  

same, of course, can be said with respect to sensiti\'ic)-. 

Finally. let us comider the problenl of monitoring the \vithii-lot variability. We know that under 

normal conditions. a should not exceed 0.05; therefore, any value greater than 0.05. say, 0.0501. 

co.111d be considered as "bad". Hou.e\.er. our sampling inteasity does not enable us to resolve between 

levels so close one to another. Siqce the sd.  of is 

one could expect to be able to detect relatirely quickly an increase in a by about 0.02. Thus, let us 

declare a 5 0.06 as a target region for a, and a 2 0.08 as a "bad" region Now ure shall try to design 

a scheme lor which the probability of a false alarnl (\r.ben 0-0.06) within a shift (50 lots) does not 

exceed 0.01: 

The observations are  d is t r ibuted  as S with SIG.U=O.06 SAMPLE-12 
Stepl:  Search fo r  H sa t i s fy ing Prob.(R.L.>50)=0.99 
Stepl  complete; H-0.0616966, Prob.(R.L.>50)=0.990405 
Analysis of upper Cusun s c h u e  with parameters H,b = 0.0617 0.0684 
The level  of  d i r c re t i r a t ion  is 30 
The changing parMetcr name is SIGM 

SIrnlA ARL SDRL 
0.06 1771.0 1766.4 
0.08 7.0 3.8 

Enter t he  values of H .  K. HEISST. and CD for  fur ther  analysis  (or 0 t o  u i t ) :  
0.06 0.07 0 12 

Enter addi t ional  values of SIGM for  which the  analysis  is t o  be performed: 
0.05 

Enter the values of R fo r  which Prob.(R.L. > R) is t o  be computed: 
2 5 so 100 

h a l y s i s  of  upper Cusm scheme with parameters H.I: = 0.06 0.07 
The level  of  d iscre t iza t ion  is 30 
The observations are d is t r ibuted  a s  S with SA,LE=l2 
The changing parameter name is SIGMA 

SIGHA ARL SDRL 2 5 50 100 
0.05 .941E09 .911E09 1.00000 1.00000 1.00000 1.00000 
0.06 10142.0 10138.0 .99999 .99982 ,99542 .99052 
0.08 7.8 4.6 .96090 .63028 .00002 .OOOOO 

Enter t he  values of 8. K. HEADST. and CD for  fur ther  analysis  (or 0 t o  ex i t ) :  
0 



The above output indicates that u5ch the desimd degree of protection against false alarms. we also 

have a bask for hope that should a significant increase in a. take place somewhere during a shift, it 

will be detected by its end. Note that these conclusions depend on the validity of our assumption that 

wafer-to-wafer variability within a lot can be ignored. If it can't, one should base the control scheme 

for a on the avenge of (three) sample standard deviations corresponding to different wafen of the 

lot. As mentioned in the end of Sec. 4.4.. this is equivalent to reduction of the sample size from 12 

(0 1+3 x (4-1)-10. 

A simulated sample run of the p r a r n  is shorn in Fig. B.3. The " t ~ e "  parameters comspondiing 

to the four successive sets of 20 lots arc (p - 4.0, ob - 0.1, a - 0.05). (p - 4.0, 6b - 0.2, 

o - 0.05 ), (p - 4.0, ab - 0.1, a - 0.08) and ( p  = 4.6. a* = 0.1. a - 0.05). respectively. One of the 

charts corresponds to the total variability. a1 + 02. It is based on the sequence of unbiased estimaton 

{I?, i -  1.2, ... 1, where 

We wed this chart for the purpose of graphical data presentation only (i.e. we do not apply any 

control scheme to it). 

As a fmal remark. we note chat it is not difficult to evaluate the performance of a combined X - s - 
chart, since. under the normal assumptions. the sequences of observations these schemes are based 

upon are independent. For example, for p - 4.2 and o - 0.06, the probability of no false alarm within 

50 lots k 0.99473 x 0.99542 - 0.99017. There is no simple way to compute the ARL of the com- 

bined scheme exactly. Hou.ever, in many cases the harmonic mean of the ARCS can serve as a good 

approximation; in our case it gives ARL E [(1/9435.8) + (1/10142.0)]-' z. 4900. 
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&ample B.8 (Control of tbc multivariate mrmal mean). Up to tbii point. uv considered the problem 

of controlling a singk protest pmmeter. Even in cases a h r e  several panmeters controlkd si- 

mulrPaeously. u r  designed and d y z e d  the individual control schemes as if tbc sequences of obser- 

vations the control is baud upon were independent Iadeed, there uc many dntltiom in which lhis 

a n  be reasonably mum& For example. it k well known that under the normal mumptioa. tbc se- 

qwnces of sample means md ruod.rd &viatiom uc iadepndenr This imwdhtely implies ihat 

perlomume of a cumdative X - s - dun can be easily assessed on the basik of ibc individual com- 

ponenu. As an wldilional example. consider once more tbc situation rebated to production of 

curfaceslouoted boa& menlioned in the Iauoduchm if a typical oulofsolltrol condition of the 

pravss is a w e d  by a random clot or panick do=-ing one of ibe slols, the mumplion that control 

chzns comqmndiug to olher slots remain unaffected kbud ly  unreasonable; therefore, assessment 

of tbe prlormancc of an ensemble of chvls an probably k based on analysis of individual ones and 

However, in many cases the s q w m  Mferent control ubemes uc based upon a a o o t  be consid- 

ered as W p n d e n L  For example, if in the production pmcess of ball bearings one tries to monitor 

cimulramously tbe diameters uxi weighs of the balk, tk dependency of the associated sequences 

follou% merely from geometric considerations. In s i t u a h  of this type, the individual control cbanr 

uc not Uely to produce the full resolution power in tenns of the wctor of punmtters. since the 

underlying correlation structure is not &en into account Moreover, the individual cbanr are usually 

able to detect. relati\rly quickly. changes of the multiwiace mean in the directions of axes, but may 

ba\r a poor sensitivity uith mpci lo changes of similar magnitude along some other directions. 

To improw the pourer. one a n  suppkment tbe battery of individual cham by an additional one, in- 

tended to control come ton of "dittance" betmen tbc current multivariate mean of tbe population. 

vector p. uxi the anvo id  of the m e t  region. 6 OM of possible choices is tbc -1led 

Mahalanobii dir- with m p e a  to come poriti\r defiite mnvix I: 



Tbe mavix Z detcrmiDes cbe mlathr imp8a of dexiatlon of@ from & don8  the diffemnt directions 

on tbc henmlled panmeter A, Lc che "aut mucrurc". If. for example. re consider che domains 

A S I and A 2: 2 as "good" and "bad". respectively. the co~poDdinp  do- in t c m  of the 

population mean k as sboum in Fig. B.4. 

Fig B.4. "Good" and "bad" domains for tbe bitmiate mean. 

It is natural to base tbe control procedure for A upon cbe ceqaence of sample Mahalanobii diicaoces 

(mil, defiied by means of 

uvlxre X, k the i-tb sample a\rrage of a group (sample) of n mul~isuriu~e measuremenu.% 

To design an appropriate scbenie. we need to be able to conipllte the dislribudon of mi for \ x i o ~ s  

multiwiate disvibuliom of inleresL Unfonunacely, this is un~ally difficult to do; ewm in cases wlxre 

the readings follow 8 multirarialc norninl distribution. the coniputations arc very inwvl\.ed. lo any 

#I k mn dirncuh to ace t b t  -*a 2 k a diaponal mat* ihe 31ahabnabi dirunor I- into a "mri~hmd" ~ u l i d i i n  
dirvncc bcturcn the point of interest and m 



aw. in tbe present ufslon of the package we a m o t  suggest UI e f f i i n t  d u m t i v c  to simulation 

when dealing wich tbe genenl case.* 

There is, bou.e\rr. one relati\rly simple cru uMcb frequenlly krb to satisfactory results. Namely. 

asume &at the obscn-aciom a m e  fmm a p - dimemiod m d  population. .ad X used & (8.6) 

k wching eke but che underlying w~arilace mavir Sucb dad  use of X as botb the population pa- 

nmeter and part of tbe "cost swuc~ure'' &urmined by (8.6) m y ,  & row ass, be arguable: indeed 

the practical corsequc~cer of shifu in p dong differtat d i m  need mr, in general, k relaced to 

tbe wwxiana nnrcctue. Howctrr. in many aw h k anyway very bud (or impossibk) to specify 

X to be used in (8.6). Moreover. even If the opparice k mn, one auld sml T i  that the @ins io re- 

wlution power mul&q fmm the ou of a p-specif& acre - vonb tbe - painful design 
-. 

procedure. So, k t  us consider the problem of eontrolling A & T i  in terms of the rradedyiig 

covariance m a t h  in more detail T u n  crres will k mudded 

8) T k LDom and generally bebaves in a s u b k  way. 

la thir case tbe d i b u t i o n  of m is cksely mlaud to nonancnl  chi-square disuibution and is pres- 

ent in che workspace under tbe name DFMAHAL Before osing tbii function, one rhould set icr 

global panmeters MAHAL. DEGREES and SAMPLE to A, p uxl n. rrspcti\rly. As an example. 

k t  us design r &me corresponding to a biwiate normal distribution .ad sample size 5. Suppose 

Ihat A < 0.5 and A 5 1.5 are "good" and *bad" regions mpktively. To find an appropriate ref- 

erence value. we must have wme estimate of che ecnVll tendency (prefenbly mean or median) of the 

sample Mahalanobii d isuna,  (B.7). cornspanding to A - 0.5 md A - 1.5. Once tbese estimates 

uc a\ailable, the reference value cm be cbmen wmeu.bere in tk midway. The simpkst u-y to ob- 

Iain tben~ is by using simulation; in ppnicular. tbe suternent STATIST (1000 SMMAHAL 0.5 2 5 )  

estimates tbe median corresponding to A-0.5 to be about 0.7. Similarly. tbe median corresponding 

to A- 1.5 cm be estimated to be about 1.5." Tbemfore. om may ex* chat r &me with the ref- 

- For nomu1 p~puhtiorn .bllULliOn StYdieS muld be pcrlomd by ming Ihc funeliom SIYMIJLT. 



ercnce value k - (0.7+1.5)/2 -1.1 will provide about the best possible resolution. Noup let us uy 

to design a scheme for which the ARL corresponding to A-0.5 is 1000: 

'MHAL' SERPLR 0 0.5 1 1.5 
0 s m 1 N D  1000 
'MHAL DEGREES MIIPLE' ASSIGN 0.5 2 5 
2 SET 5 10 
2 1.1 ONW[PWID ' D m '  

The observ. represent Habal. distance (Sips known) with 
MVILW.5 DEGREE-2 SAKPLEIS 
Stepl: Search for H satisfying -1000 
step1 cwpl.te; P1.08741.--42.8 
Analysis of upper Cur- scheme uitb parmeters H,K = 1.08741 1.1 
The level of discretization is 30 
The changing par8met.r mame is UAUL 

Now let us assume that our b i i a t e  distribution cornsponds to a pair of independent normal \mi- 

ables with 0-1, and the centroid of the target region is at the origin. T b e a  once the E~~clidian dis- 

tance between rbe process n~ean and the origin becomes 1.5 (in any direction), the above chart \viU 

trigger an outsf-control signal after about 3.1 samples. In particular, consider change of this magni- 

tude in the north-east direction (the corresponding point is p - (1.06. 1.06)). and examine what 

umuld bappen if we tried to control the bivariate mean by me& of two univariate two-sided X - 
charts. For each chart the "good" region is -0.5 s p L: 0.5, and the "bad" region is I p I 2 1.5. 

suggesting the reference value of 1. Further. let us design a scheme for which the on-target ARL is 

'IEU SIGU SAKPLE' ASSIGN 0.5 1 5 
'HEU' SETXPLR 0 0.5 1.06 1.5 
0 SETFIND 1000 

Ihe observations are distributed as K-bar with 
HElM.5 SIGM=l SAtPLE=S 
Ste~l: Search for A satisfyin8 ARUllrlOOO 

complete; A-1.05125. ~~Ir949.7 
Analysis of upper -sum scheme with parameters H.K = 1.05125 1 
The level of discretization is 30 
Ihe cbanging parameter name is HEU 

!EU ARL SDRL 5 . I0 
0 .345E06 .345E06 .99999 .99997 

0.5 949.7 948.0 .99596 .99073 
1.06 9.3 7.1 .63545 .91269 
1.5 2.8 1.4 . U 3 2  .00053 



(clearly, this also reflects the performance of a two-sided scheme, except the latter has a two times 

shorter ARL when p - 0). One can see that when the change in mean is along one of the axes, the 

combination of the uni\m.ate charts has a somewhat better sensitivity than a chart based on the 

Mahalanobii (in our case Euclidian) distance from the origin; however, it is much slower in detecting 

a change of similar magnitude along the north-east direction. Indeed, the probability that such a 

change will not be detected uilhio 5 samples is (0.635452 = 0.40). while for the chart based on 

Euclidean distances this probability is only 0.06413. Tbi example illmuaces the point that if it is 

important to detect changes of similar magnitude along various nowaxial directions, om cannot rely 

on uni\ariate schemes only to do the job - be should use an additional chart for monitoring appro- 

priately def ied "distances" between the observations and irg. 

b) Z is unknown 

In this case. we are still able to control A. though we do not have a f w d  matrix Z to be used in (B.7). 

Instead of this mauix. it ueould be natural to use the sample covariance mauix. Si, 

where xii is the j -th vector of the i-th sample. The distribution of the Mahalanobis distance defined 

in the described way depends on the underlying Z only via the parameter u e  are vying to control. 

in particular. n x m2 corresponds to Hotelling's - distribution (which represents a slightly 

modified version of the non-central F -distribution, we Anderson (1984. p. 163))." The price we 

pay for not using the "true" covariance matrix is directly related to the fact that an inverse of a ran- 

dom matrix, used in (B.7) instead of Z inflates the variability of the sequence (mi). Indeed. in the 

situation discussed earlier. it is not difficult to see that one needs a sample of 12 instead of 5 to 

The me of T= - nal in ia  in Shcm'han - I)pc mntml cham n well known and documcnlcd (ex. we lackon (1959) or 
Woodall and licube (19851: the Lttcr murk a h  conuinr an cxtcnrivc k t  01 refcrcnccs on this subjcctl. In Ihc present 
murk. m r  illustnte the uw of this statistics in a Curum-Sherltan settins As onc could expect. this pwedurc is mucl~ 
mom porcrlul than its Sheu'han counterpan. 



achieve the sanie resolution po\vcr. if he uses Mahalanobii distances uith respect to an estimated 

covariance ma& 

0 SmIND 1000 
'W' SrrXPLR 0 0.5 1 1.5 
'W DEGREES SIV(PLE' ASSIGN 0.5 2 12 
2 1 .1  ONEXPLRD 'DFHCITEL' 

me observ. represent Hahal. distance (Sigma unknown) uith 
M U l ~ 0 . 5  DEGREES=2 SIV(PLE=l2 
Stepl:  Search for H sa t i s fy ins  ARTFlOOO 
step1 wmplcte; H=1.39. ~ ~ 5 ~ 9 8 7 . 3  
Analysis of upper Curum scheme u i t h  parameters H,K = 1.39 1 .1  
The level of discretization is 30 
The changing parameter name is UAIUL 

W ARL SDRL 5 10 
0 26860.9 26860.3 .99982 .99963 

0 .5  987.3 986.2 .99551 .99047 
1 .0  12.6 9.7 .76886 .06905 
1.5 3 .0  1 .3  .01631 .00018 

Note chat the function DFHOTEL used in the above run has exactly the same parameters as 

DFMAHAL we used earlier. Use of the same reference value ( k- 1.1) wassuggested by a simulation 

run of the type described earlier with the only difference that the function SIMHOTEL war used in- 

stead of SIh4hlAHAL 



Appcndii C. Diietization of Cumm - Shewhrt schcmes 

For purposes of analysis of the run length distribution, we diicretize the one-sided Page's schemes 

as shown in Fig.C.1. 

Values of the Page's scheme 

Comspondiig values of the diiretized scheme 

Fig. C.1. Discretization of the values of one-sided Cusum scheme. 

Jn other words. the values of 6, sl, ... . will be rounded to the center of a corresponding group. 

The number of g roup  wiU be termed the level of d~cmtization of the scheme and denoted by d; for 

example, in the case represented by Fig. C.1, the level of discretization is d - 10. The length of an 

interval corresponding to a single group, 6, will be called the dumtization interbul; is is always related 

to the level of discretization by m e w  of the formula 

Thus, the centers of the groups are at points 0. 6. 26, ... . (d -116 and h = (6/2) + (center of 

the last group). Such a method of discretization usually gives approximations of good quality and is 

recommended in many sources (ex Brook and Evans (1972)). It is clear that by using high levels of 

discretization, we can approximate the characteristics of the Run Length distribution to any degree 

of accuracy. But bow high is high? We performed extensive studies which indicate that levels of 

discretization of order d=30 are satisfactory for most practical purposes. The reason for that is re- 

lated to the fact that are discretize the sfares of tbe Page's schemes but not the observations theni- 

selves. Thus. relatively low sensitivity with respect to level of discretization is explained by 

compensation of roundoff errors when computing subsequent values of the scheme. As an example. 



k t  us apply tbe scheme ( h - 3. k - 1. so - 0 ) to five sequences of normal observations come- 

spondiig to p - 0.0.5 and 1 and s - I . Table C1 conlains the values of ARL as well as lou,er 

and upper 596 quantiles of the run length diivibution (in parentheses) comsponding to levels of 

discretization ranging from 10 to 100. i t  indicates that l e ~ l s  of discretization as low as 10 enable one 

to roughly assess the properties of the run length diitribution. Moreover, discretization does not 

represent somethiig umatural, since it is automatically assumed in any procedure involving roundoff 

to a certain number of digits after the decimal point 

d P -  0 0.5 1 

Table C.1. Effect of the level of dismtization on ARL and 5% quantiles (in parenthesis) wrre- 
sponding to the scheme (h - 3, k - 1, - 0) The observations are iid normal with 
a - 1. The entries are rounded to the nearest integer. 

The caw in which the observations x,, xz. ... are integers is of special interest because of its rek- 

vance to the problems of w n v o l l i  the proass proportion of defectives (cumulative p-chm).  the 

number of defects per produced unit (cumulative c-charu), etc. In this case a proper choice of the 

interval (or level) of d i i t i z a t i o n  and Scheme parameters &I elinlinate the roundoff error alto- 

gether. Indeed, let us pick the interval of diicrelization 6 -0.1 and require that the reference value 

be some multiple of 6 and the signal level be chosen in accordance with (C.1). Then the Page's 

scheme bewmes "naturally" discretized and can be analyzed exactly. Of course, we are limited in 

our choice of the reference values; houeemr in most practical situations it is not a serious limitation. 

Moreover, if needed, we can always take a shorter discretization interval and have additional possi- 

bilities for the choice of k . The price for doing that is related to an increase in the level of 

discretization, which in turn determines the size of the Markov transition matrix used in the analysis. 

In general, we would not recommend the user of CONTRD to use levels of discretization above 100 

on a regular basis - it will just waste CPU time. 



Appendk D. Steady state analysis of Curom - Sheahart schemes 

When analyzing the beha\iour of a control scheme with mpect to out-of-mntrol state of the process 

generating observations. we usually assume that the deviation of the p r o a n  from on-target condi- 

tions occur at time i - 0; this is also tacitly assumed when we talk about the Run Length. Under the 

above assumption, we are primarily concerned about the speed of detecting the presence of out-of- 

control conditions by using various control schemes. 

Clearly, this approach may lead to a pessimistic estimate of detection speed in the "real life" situ- 

ations. Meed. we typically assume that the scheme is at  0 (worst case) at the omet of out-ofsonuol 

conditions. Hou~ever, in practice there is a possibility that at this moment the scheme has some "na- 

tural" beadstart and, therefore. will signal earlier. Thus, one may be interested in analysis of the 

Residual Run Lmgth corresponding to an assumption that deviations of the process from the target 

conditions ormr after a substantial period of time. during which the process operated in on-target 

mode characterized by some distribution function of the observations, say F. 

Steady state analysis is related to behatiour of Residual Run Length. It starts with an assumption that 

process is in cmuol  (i.e. the observations come fmm the distribution F), and then computes'the 

probabiities of various values of the (diretized) control scheme after a "very long" period of time 

giwn that no out-ofsontrol signals were not triggered during this period of time. The resulting steady 

state distribution (which is sometimes called "quasi - stationary" distribution in the literature) pro- 

vides the weighting factors that are applied to a set of ARL's (or other NU length characteristics) 

comspondiig to appropriate headstarts. 

It is clear that questions related to behaviour of the Residual Run Length remain of interest also in 

cases where headstarts are used: in facL it is not difficult to see that results of the steady state analysis 

do not depend on the headstan(s). In C O W  this type of analysis is currently available for one- 

sided schemes only; it is invoked by specifying a negative headstan 

More information about the steady state analysis can be found in Yashchin (1984 and 1985a). 



Appendix E U5I of fundons for generatlog random varhbles 

Every function for simulating a set of (independent and identically distributed) random variables has 

a left argument. L representing the quantity of variables to be generated and a right argumenr R, 

chamdcming the parameters of tbe distribution For example 20 SIMBMOM 50 0.3 wiU generate 

20 b i m i a l  random variabks with parameters n-SO p-03. Other possibilities arr as follous: 

Function Name Porawters Comment 

SIMARMA NU-P N21-a  Autoregressive Moving Average (ARMA) 
R[31 - P R[41- q with parameters (p, q), kvel p and SL dev. a. 
N5. ". 4+pI - r r and 0 rut the coefficients of the AR and MA 
R[5+p. ... 4+p+q] - 0 pans, respectively. ARIMA process can also 

be generated (the wmnd k f t  mmponent Y2]. 
if presenr corresponds to parameter d). 

SIMBETA R[11 - a R P I -  8 Betawithparametersa andB 

SIMBlNOM Nil= n N21- P Binomial with parameters n and p 

SIMGAMA N11- a N21- 8 Gamma with panmeters a and 8 

SIMGEOM a 1 1  - P Geometric with parameter p. The mean of chis 
variable is p-' and its possible values are 
1.2, ... 

SIMLOGN N11-p  R[21-a Lognormal with panmeters p and a 

SIMMULT 20 SIMMULT 'MNS COVAR' will 20 multi\wiate normal 
vectors (mu%). Vector MNS and mauix COVAR must be set to 
contain the set of means and covariance matrix, respectively. 

SIMNCHI R[1] - d R[2] - A Non-central chi-square with d degrees of 
freedom and nonanuali ty parameter h 2 0 

SIMNEGB R[11 - k R[21- P Negative binomial (sum of k geomeuic 
d o m  variables with mean p-1. The 
possible values of the variable are k. k+l.  ... 

SIMNORM 20 SIMNORM 0.1 2 will generate 20 normal variables nith mean 0.1 and 
stand. deviation 2. 

20 4 SIMNORM 0.1 0.5 2 will generate a matrix having 20 m n z  Each mur 
represents a sample of 4 nonnal variables with mean 0.1+0.5 Y ( Y is an 
independent standard normal variable) and standard deviation 2. Thus. 
0.1 is the grand mean, 0.5 ic the betaeen-rous standard deviation and 2 
is the uithin-row standard deviation 



SIMHYPGEOM R[1] - N R[Z] - k Hypergeometric with lot size N, number of 
R[3] - n defectives in the lot k and tbe sample size n 

SIMPOlS Nu- Poisson with mean A 

SIMPROP R[1]- A Proponion of defectives corresponding to 

R[21= P to random (Poisson with mean A ) sample size 
and probability of a defective unit p 

SIMUNF N11= Lower bound Uniform distribution 
N21 = Upper bound 

SlMWEIB NI] - Shape 
N21- Scale 

Weibull d o m  variable; if Shape-], the 
the simulated variable is exponential with 
mean Scale. 

The last two functions compute the df. of tbe Mahalawbib diimec between the rnulrivariate normal 
sample w a n  and some Tied point (ex. antmid of the target region), plo Tbe paramelcr A mpmenu 
the Mahalambis distance (with mpct to the w v a r i d  mauix) betwen the population mean and 
&, (see (B.6)). p is the dimemion of the multivariate objervation and n is the sample size. 

SIMHOTEL R[l] - A 
N21= P 
N31- n 

Distribution of the Mahalaoobis distance 
with respect to a "uue" covariance 
mauix. 

Distribution of tht Mahalambis distance 
uith respect to an esimated covariance 
matrix. S. Squared variables multiplied 
by n cornsponds to a Hotelling's 
71 - distribution. 
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