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Abstract

In recent years, Cumulative Sum (Cusum) control schemes (charts) bave become increasingly popu-
lar in industrial quality control as means for monitoring the quality of manufactured products. This
popularity is based on the fact that performance of Cusum schemes is proven to be statistically su-
perior to their classical counterparts - Shewhart schemes ( X -charts, p-charts, etc.) in the sense that
with the same degree of protection against false alarms, they bave a much better sensitivity with re-
spect to out-of-control situations. One of the most attractive properties of a Cusum control scheme
is its "designability”. In otber words, once the “"good" and "bad" levels of the process as well as
corresponding sensitivity requirements are specified, one can come up with a Cusum scheme (and
delermine the relevant sampling intensity) o meet these requirements. This property of Cusum
schemes is especially important in situations where data is collected and/or processed automatically
and in situations where several parameters are controlled simultaneously. In the present work we
discuss some simple methods for design of one-sided and two-sided Cusum-Shewhart schemes. We
introduce the package CONTRD for design, analysis and running of Cusum-Shewbart schemes and
give examples of its application.
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distribution function
independent and identically distributed
random variable
standard deviation
Cumulative Sum
Run Length
Average Run Length
Standard Deviation of the Run Length
probability that the signal is triggered by the upper scheme
Time elapsed before an out-of-control Signal is triggered
Sampling Intensity
Average Time elapsed before an out-of-control Signal is triggered

the i-th component of vector T




1. Introduction. Control schemes and characterization of their performance

Let x;, x5, ... be a sequence of observations related to a certain process. The observation x; may

represent, for example

e sample percentage of defective chips in the # produced lot;

e total number of defects found in the # produced wafer;

® sample mean of 4 diameters of ball bearings chosen at random during the " production period;

® sample standard deviation of 10 simultaneous measurements (corresponding to various lo-

cations) of polyethylene film thickness taken during the i#* sampling period;
e  waiting time of the # customer in the queue;

e  discrepancy between the actual amount of product shipped in the #% month and that predicted

by a given model,

and so on - for purposes of our discussion the nature of incoming observations is immaterial. In most
practical situations we would like our observations to behave in a certain way, ex. to fall as close as
possible to some target value, to stay below some prescribed limit, etc. Failure of the observations
to comply with this desired behavior is considered as an out-of-control situation; we would like to

detect such behavior as early as possible.

In order to monitor sequences of observations we use control schemes. A control scheme is a set of
criteria in order to test, at any given moment of time whether the process generating the observations
is under control. Clearly, many different control schemes can be associated with the same sequence
of observations; some of the better known include Shewhart schemes, Moving Average schemes of
various types, etc. In order to compare different types of schemes we need to introduce some criterion
of performance of a control scheme. The most important one is represented by the Run Length (RL)
of a scheme. If the input observations correspond to on-target situation, we would like the RL to be

as long as possible; otherwise, it should be as short as possible. Since the RL is a random variable, the



actual comparison between control schemes is usually based on some of its characteristics, such as

Average Run Length (ARL), Median or some other quantile of the Run Length, etc.

For example, let us assume that the observations are independent, identically distributed (iid) and
normal with mean p and s.d. o = 1. The target level of the process is g =0. Let us draw an ARL curve
as a function of the process level u for a Shewhart scheme (signal is triggered if a single observation

falls above 3) and for an (unspecified) Cusum scheme (Fig. 1.1).
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Fig. 1.1. Comparison between Cusum and Shewhart schemes.

Thus, if the process is on target, both schemes have roughly the same degree of protection against
false alarms (ARL = 740). However, as the process level shifts, the Cusum scheme becomes much
more sensitive. For example, for p = 1 we have ARL(Cusum) = 10 while ARL(Shewhart)= 45.
Another interesting question is as follows: if we took n observations at a time and applied a Shewhart
scheme to their sample means, how large should n be to assure the same sensitivity at u =1 as our
Cusum scheme? One can show that to achieve that we need to take n = 3; a direct conclusion is that

in some situations by using a Cusum scheme instead of a Shewhart one can reduce the sampling in-




tensity by a factor of 3 and still keep the same "resolution” between "good" and "bad" levels of the

process.!

In the present work we consider a Cusum - Shewhart class of control schemes. These schemes assure
about the best possible sensitivity for a given level of protection against false alarms, and, in addition,
possess certain desirable features listed, for example, in Yashchin (1985a, p. 378). First of all, Cusum
- Shewhart schemes are "analyzable". In other words, it is possible to examine, by analytic means,
the RL behavior of a scheme for any given stochastic pattern of incoming (iid) observations; ap-
proximate results for some non-iid cases are also available (ex. see Bagshaw and Johnson (1974,
1975)). Another important quality is "designability”. Indeed, once the "good" and "bad" levels of
the process as well as corresponding sensitivity requir;mcms are specified, one can, in a relatively
straightforward w:ay. design a Cusum - Shewhart scheme and determine the relevant sampling inten-
sity to meet these requirements (see Woodall (1985 a, b), Yashchin (19852)). Since analysis of this
type of schemes is associated with an extensive computational effort, including matrix analysis, both
problems of analysis and design are hardly treatable unless an appropriate software package is avail-
able. In the present work we introduce such package (CONTRD, previously called DARCS) and give
several examples of its application. A separate package CONTRP for plotting of Cusum-Shewhart

schemes is presently under testing and will be described in a forthcoming report.

Analysis of the RL and careful design of control schemes are ‘cspecially important in situations where
measurements are taken and processed automatically and/or where several parameters are controlled
simultaneously. In such situations frequent out-of-control signals associated with pracrically non-
important changes in process parameters may cause frequent unjustified corrective actions and/or
eventually ruin the discipline of the operator; on the other hand, failure to detect a truly out-of-

control situation rapidly may result in a substantial amount of poor-quality product.

~ Formally, one can define the "resolution™ of a control scheme, for example, as ratio between the ARL's corresponding
to acceptable ("good”) and unacceptable ("bad") levels of the process (these levels are determined on the basis of
practical and/or economical considerations). In situations where the sampling interval is not a fixed number, it is natural
to characierize the performance of a scheme in terms of the Time to Signal (TS) instead of the Run Length: in such cases
one can define the resolution as a ratio between the ATS's (Average Time to Signal) corresponding to "goodf" and "bad"
levels of the process.



For example, consider the following situation related to the production of surface-mounted printed
circuit boards. Assume that a board has 400 pads each containing a certain amount of solder paste
deposited by squeezing it through a mask. Before mounting the components onto the board and re-
flowing the solder, the volumes of solder paste on each pad are measured by an optical scanner. If the
measurements corresponding to some pad show an erratic behavior (which may be caused, for ex-
ample, by a partially clogged slot in the mask), an out-of control signal is triggered. It is clear that use
of a 3-sigma Shewhart scheme to control the subsequent volumes on a pad would result, on the av-
erage, in one false out-of-control signal per board! (Indeed, Fig. 1.1 implies that the on-target ARL
for a two-sided Shewhart scheme is approximately 740/2=370). So, if we wanted the probability of
a false alarm within an 8-hour shift not to excee_d 5%, we should have undergone the appropriate
design and analysis procedure. The final control schel;le would probably represent some kind of a

compromise between the desired sensitivity and degree of protection against false alarms.

This example makes it clear that one cannot blindly apply standard control schemes considered in
some Quality Control textbooks to situations involving simultaneous control of several parameters.
Yet, such situations are rather common in modern industry, and it is not unusual to see thousands of
sequences monitored simultaneously. To summarize, any control scheme associated with automatic data
processing and/or simultaneous control of several parameters should be thoroughly analyzed before it can
be recommended for use. The analysis should involve identification of various possible joint distrib-
utions of observations and investigation of the corresponding run length distributions. Its ultimate aim
is to assure that the run length of the scheme under consideration is sufficiently long if the changes

in process parameters are not practically important and sufficiently short if they are.

In the context of modern process control, another property of a control scheme becomes crucial,
namely, its capability to incorporate new information immediately upon its arrival, and update itself
accordingly. This criterion corresponds to one of the weakest points of Shewhart control schemes,
which are typically associated with first subgrouping observations into samples and only then updat-
ing the scheme. Clearly, in situations where observations (measurements) are not "naturally"

grouped, but rather arrive one at a time, such artificial subgrouping leads to waste of time and loss



of resolution power of the scheme; it is not inherently tied to the problem of control itself. One of
the main reasons for creating artificial samples when running Shewhart schemes is related to concern
that individual observations may have other than normal distribution; by using sample averages one

could bring the scheme characteristics closer to those predicted by the normal model.?

As the reader will see from the next section, in the case of Cusum - Shewhart schemes the process
of cumulative summation itself brings us (by virtue of the Central Limit Theory) into the normal do-
main, eliminating any necessity for artificial grouping. In general, every scheme considered in the
present work is based on the principle of immediate utilization of incoming information; the term
"sample size" will typically refer to a groufa of observations (measurements) ?rﬁﬁng into the control

system at the same moment of time.

In practical applications, it is not always clear what actions should be taken as a result of an out-of-
control signal. The strictest one calls for an immediate stopping of the production process until the
situation is clarified and the problems (if any) dealt with. Another possibility would be to increase
the sampling intensity and/or switch to a tighter mode of operation which, in turn, could lead to either
more drastic actions or return to the normal operating mode, del;ending on subsequent behaviour of
the process. In situations related to automated control (ex. robot control) one could try to estimate
the current level of the process of observations and introduce a correction by means of a feedback
loop. Clearly, many other actions could be suggested; the actual choice will always depend primarily
on the specific nature of the situation. Unfortunately, the scope of the present work does not enable
us to discuss in detail the questions related to actions following an out-of-control signal as well as
many other important aspects of the Cusum technique; the reader will undoubtedly find useful the
monographs by van Dobben de Bruyn (1968) and Woodward, R. and Goldsmith (1964), Bissell

(1969) and guide by the British Standards Institution (1980-1983).

We believe that because of their excellent statistical properties, "designability"”, easy visual interpre-

tation and other important features, Cusum-Shewhart control schemes will become a dominant tool

= Other reasons for not updating the schemes immediately may be related to cost of information processing of even some
statistical considerations (see Example B.6, Appendix B).



for on-line process control in the coming years. Our hope is that engineers working in the area of
quality control will find the package CONTRD a helpful and easy to use tool for design, analysis and

running of this type of control schemes.

2. Cusum and Cusum - Shewhart control schemes. Page’s and V-mask graphical representations of a
Cusum - Shewhart scheme

In this section we give a short reminder on application of some typical Cusum-Shewhart schemes to
our sequence of observations xj, x;, ... . As we shall see, these schemes can be used in one of two

modes: Page’s mode and a V-mask mode. We start by introducing the upper Page’s scheme.

(i) Upper Page’s scheme

Let us suppose that we are primarily concerned about the possibility that the process might shift up
towards an unacceptable level (typical example - monitoring sample proportions of defectives in
successive lots). Upper Page’s schemes represent a type of Cusum control schemes that can be used
to detect the presence of such conditions. The scheme is defined in terms of three parameters:
h* > O (signal level), k+ (reference value) and 0 < sg < A+ (headstart). It is applied as follows:

a) Start from sg and compute the sequence of cumulative sums:

stmmax {5t 4+ (—k*), 0}, i=1, 2, ... (2.1)

b) If N+ is the first index i for which s;* > A+, trigger an out-of-control signal at time N*.

Note that N+ represents the RL of the scheme. If an additional signal criterion is introduced, namely
c) If a single observation x; satisfies x; > ¢, trigger the out-of-control signal at the moment i,

the procedure is called an upper Page’s scheme with parameters (h+, k*, si) supplemented by
Shewhart’s limit ¢+.? Here and in what follows we refer to such (supplemented) Page's schemes as

Cusum-Shewhart control schemes.

» It is clear that in order 1o affect the performance of the control scheme the Shewhart's limit must satisly
ct < ht 4 k*. Also, if ¢* < k*, then an out of control signal can be triggered only if the Shewhart's lu'mt has been
violaled i.e. we obtain a pure Shewhart scheme with upper control limit c*.



Let us clarify the roles of the parameters in a Cusum-Shewhart scheme. The reference value &+ is
usually chosen to be close to the midpoint between the acceptable and unacceptable levels of the
process, as shown in Fig. 2.1. Thus, it acts as an "anchor" keeping the scheme from drifting in on-
target situations. On the other hand, if the process level is unacceptable, the successive differences
(x; — k*) become typically positive, they accumulate in (2.1) causing the scheme to eventually

"float up" and signal.

The signal level Akt characterizes the degree of accumulation of information allowed in the control
scheme. If A+ =0, we do not allow any accumulation of evidence against the on-target hypothesis
and are prepared to signal on the basis of a single observation - in other words our Cusum scheme

turns into a pure Shewhart scheme with upper control limit k+.

The headstart s§ implements the Fast Initial Response feature, i.e. it provides an instrument for
detecting initially present out-of-control conditions earlier than similar conditions occurring later.
The rationale for using a headstart is as follows: if the process is on target, the Page’s scheme will be
(most likely) brought to zero by the reference value, so that in this case the expected effect of the
headstart is minimal; otherwisc. however, the out-of-control will be triggered much sooner (ex. see
Lucas and Crossier (1982)). Finally, supplementing the scheme by a Shewhart's limit improves the
sensitivity of the scheme with respect to substantial increases in the process level - in other words, it
removes some of the "inertia" of a Cusum scheme when facing a sharp change of the process (ex. see
Lucas (1982)). There are also cases in which Shewhart’s limits are introduced because of some special

features of the associated production process or other considerations.

Note that schemes based on only two parameters, signal level and reference value, are frequently

found quite satisfactory for practical purposes.

(ii) Lower and two-sided Page’s schemes

Now assume that we are primarily concerned about the possibility that the process might shift down
to some unacceptable lower level (typical example - monitoring successive inter-failure times of an

electronic device). A natural way to monitor such sequences is to apply an upper Page’s scheme with



parameters h— 20, k=, 0<sy <h— and ¢~ to the sequence of "reflected" observations,

- Xy, =X, -... Such procedure defines a lower Page’s scheme:
S".—-max {:‘-—_l-l-(—x,-—k-), 0}, i= I. 2. ese g (2.2)

signal if 57 > h~. In accordance with our recommendations regarding choice of the reference value,
( — k— ) should be chosen close to the "midway" between the acceptable and (lower) unacceptable
process level (Fig. 2.1). Analogously, if the lower scheme is supplemented by a Shewhart limit, an
immediate out-of-control signal should be triggered if ( — x; ) > ¢~. Note that if the target level of

our sequence is 0, the reference values (and Shewhart limits, if present) of both upper and lower

schemes will be positive.
"bad“ "good" “bad“
Recommended Recommended

value of (—k7) value of k+

Fig. 2.1. Choice of the reference values.

In situations where we would like to detect rapidly both types of shift of process from its target level,
it makes sense to run both schemes simultaneously and to trigger an out-of-control signal as soon as
one of the one-sided schemes signals. This procedure will be called a two-sided Page’s scheme with
parameters (h*, k+, sg, h—, k=, s5), possibly supplemented by Shewhart’s limits (¢=, ¢*). It is
clear that we must always have ( — ¢~) < c*. Moreover, Fig. 2.1. indicates that for all "reasonable"
two-sided schemes ( — k~) < k*; in what follows, we shall always assume that this condition is

satisfied.

To illustrate the use of Page’s schemes, let us consider the following example.




Example 2.1 In the oxidation process of silicon wafers, we are interested in keeping the difference
between the actual mean thickness of the grown SiO, layer and its target value (we denote this dif-
ference by A) as close to zero as possible. In order to achieve that, we take n measurements of film
thickness per lot and test for presence of significant systematic deviation between the actual mean
thickness and the target value. Let the measurements corresponding to the i lot be y;;, yp, ... Fin
(denote their average by j; ) and let us base our control scheme on the sequence xy, x,, ... ,where

x; is the difference between y; and the target value.

The consequences of systematic deviations between the actual mean thickness and its target level
depend not only on the magnitude but also on the sign of the deviation. So, we would like to guard
ourselves against situations in which A is more tﬁan 6A or less than ( —4A). Let us apply the two-
sided Page’s scheme with parameters (A* =9, k* =3, 5§ =2, k= =5, k= =2, 55 = 1) to the
sequence of observations x;, x,, ... presented in Table 2.1. The resulting chart is given by Fig. 2.3,
a), and the values of the one-sided schemes correspond to columns 3 and 4 of the mentioned table.

The out-of-control signal is triggered by the upper scheme at time i = 40.

In the situation described in the above example, one would usually try to control not only the mean
(level) of the sequence, but also o, the variability within each sample. This can be done by means of

a Cumulative g- chart, where o is the sample standard deviation:

A 1 < =2 ;
o= \/ L > oy=5P . i=1 2 ... (2.3)
n-—1:
Jj=1
We do not have a particular "target" value for the sequence o T 32, ... ; instead, we have a "target"

region, namely, we want the underlying "true" standard deviation o to lie within the interval
0<o< 2A. On the other hand, we would like to detect as quickly as possible the situation in which
o> 4A. Letus apply the scheme { & = SA k =3A, = 1A } to our sequence 3,, 32. ... . Inthe
last two columns of Table 2.1 we give the observed realization of this sequence and the corresponding

values of the Page’s scheme, s5;,5, ... .4

‘ Note that for both considered schemes the reference values were chosen about the midway between "good and "bad"
levels of the process.



Finally, in situations of this type there usually are other sources of variability of interest, for example
wafer-to-wafer variability within a lot, lot-to-lot variability, etc. These components of variability
should be controlled separately by using appropriate sequences of estimators. It is natural to choose
the corresponding target regions so as to maintain the total varigbility (which is a primary factor that
determines the process escape rate) sufficiently small. In general, it is also a good practice to maintain

a separate chart for controlling the total variability.

To illustrate the above point, let us assume that the underlying mean of the population corresponding
to the i-th sample is itself a random variable with mean 0 and standard deviation g;. If the within-
sample variability o is small compared to o and generally behaves in a stable way, an appropriate
procedure for controlling the lot-to-lot variability could be based on the sequence
di= 057 | X5,1—% |, i=1,2,....Indeed, it is well known that the expected level of this se-

quence is

2
: / 1 1
Ed) =%/ ai + ‘cn_ = o,{1 + E—_(a/a,,)2 - o (a/ob)‘ + --- }-; (2.4)

thus, for situations of interest its relative bias is rather small. For example, if n=5 and
o/0y < 0.5, itdoes notexceed 0.52/(2 x 5) = 0.025. In situations where o is not sufficiently small
and, consequently, plays a significant role in determining the level of our sequence, an alternative
approach is needed; detailed analysis of such situations, however, falls beyond the scope of the

present work.

(iii) An alternative approach: V-mask scheme

In this subsection we consider an alternative way of applying a Page’s schemes to a sequence of ob-
servations - V-mask schemes. For purposes of control, both types of schemes are completely equiv-

alent; the difference is only in the graphical representation.

Suppose, as previously, that we observe the process x;, x; .... Let us define the cumulative sum

process ¢g, ¢}, ... by



=0, c,.-z‘l(;g;to), iml, 2, . (2.5)
ju=

where £ is some "convenient” constant (ex. target value; as we shall see later, this constant does
not play any role in the control procedure itself, but rather serves for convenience of graphical inter-
pretation only). Further, let us plot the resulting values ¢; against i and construct a mask with pa-
rameters ( A+, k*+, h—, k— ) as shown in Fig. 2.2. Note that if the borizontal line is marked as
baving slope 4 then k* and — k=~ representthe slopes of the lower and upper arms of the mask,
respectively. If our scheme is supplemented by Shewhart limits ( ¢=, ¢*), the mask will be slightly
"parabolized" pear the origin. Now let us apply the V-mask to the cumulative sum as shown in Fig.
2.2, and trigger an out-of-control signal at the first moment the Cusum path fails to fall within the
arms of the V-mask; for one-sided control we apply the appropriate half of the V-mask only. To im-
plement the Fast Initial Response feature, we put two artificial observations (0, — sg) and (0, s3)

onto the chart and trigger a signal also if one of these observations falls outside the mask.

t° + 0,6

t, +o.4

Cumulative Sum

t, 0.2

Sfope. =t,

t,-o0.2

4 1 1 1 1 1 1 t,-o0.4

0 S 10 15 20

Fig. 2.2. The V-mask scheme.




The described procedure is called a V-mask scheme. As we mentioned earlier, it is completely
equivalent to a Page’s scheme in the sense that one of the schemes signals at some moment of time
if and only if the other one does (ex. see Duncan (1974, p.469)). As an example, let us apply a V-
mask scheme to the chart (i, ¢;) associated with observations x;, x,, ... from Table 2.1 (see Fig.

2.3, b)). As one can see, both schemes signal at the same time i = 40.5

The main benefits of the method of Cusum plotting used in the V-mask scheme are related to con-
venience for purposes of graphical data analysis. Indeed, the cumulative sum trajectory represents a
natural instrument for smoothing the data without loss of information in the sense that it enables
immediate restoration of individual observations. Its slo_pe at any moment of time corresponds to the
current level of the process of observations; it can be easily estimated by means of a protractor (slope
guide). The latter can be used either as shown in the bottom right part of Fig. 2.2 or as in Fig. 2.3,b,
where slopes corresponding to rays of the protractor are displayed instead of the values of cumulative
sum. Clearly, these values can be easily restored, since the cusum path always starts at the origin and
the protractor size is known. This type of display is especially convenient for automated data proc-
essing, as the protractor is always located in the same place. In addition, Cusum plot enables imme-
diate evaluation of the average of observations within any given interval of time by connecting the

ends of the Cusum path by the ruler and matching its slope with an appropriate ray of the protractor.

One of the main drawbacks is related to the fact that the Cusum path is not limited to a horizontal
strip of paper (screen) and it can run out of the prescribed margins. There are several ways to over-
come this difficulty (ex. by re-initiating the chart once it runs out of prescribed margins), but all of
them come at the expense of convenience of visual evaluation. An additional drawback is related to
necessity to specify the value of f, in order to ensure approximate horizontality of the "on-target"
Cusum path. In addition, special scaling is required in order to have "reasonable' angles of the V-

mask. In some cases, this requirement represents a nuisance, especially when a standard-grid graph

* Readers familiar with this topic will notice that in statistical literature V-masks are typically defined in terms of so calicd
"leading distances" and angles of the mask arms (ex. se¢ Duncan (1974, p.470)). Our definition has several important
advantages. First, our parameters are invariant with respect to scaling of the axes. In addition, our parameicrs are the
same for both types of Cusum schemcs.
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18 =3.0 0 1 -15.5 4.5 3.5
19 1.0 0 0 ~14.5 20 25
20 4.5 1.5 0 -10.0 1.5 1.0
21 -3.5 0 1.5 ~13.5 25 05
22 =3.0 0 25 -16.5 4.5 20
23 -1.0 0 LS5 -17.5 4.5 3.5
24 4.0 1.0 0 -13.5 3.5 4.0
25 0.5 0 0 -14.0 35 4.5
26 -2.5 0 0.5 -16.5 2.5 4.0
27 4.0 1.0 0 -12.5 20 3.0
28 -2.0 0 0 -14.5 2.0 2.0
29 <3.0 0 1.0 -17.5 25 15
30 -1.5 0 0.5 -19.0 3.0 15
31 4.0 1.0 0 -15.0 3.3 2.0
32 y X 0.5 0 -12.5 4.0 3.0
33 =0.5 0 0 -13.0 1.5 1.5
34 7.0 4.0 0 6.0 2.0 0.5
35 5.0 6.0 0 -1.0 2.0 0
36 4.0 7.0 0 3.0 3.0 0
37 4.5 8.5 0 7.5 2.5 0
38 25 8.0 0 10.0 3.5 0.5
39 25 1.5 0 12.5 2.0 0
40 5.0 9.5 0 125 4.0 1.0

Table 2.1 The observed values of sample means, {x,], corresponding \alucs ls .57} of the scheme
{ht = 9kt =3, 5t =2, h™ = 5, k™ = 2,55 = 1} and {c,} of the "pure” CUSUM (tbe first five

columns); The observed values of the sample standard deviations, { o,]. and the corresponding values
{s;] of the one-sided scheme {A = 5. k = 3, 5o = 1] (tbe last two oolurnns)
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paper is used for plotting. However, our experience shows that none of these drawbacks can be
considered as serious in the context of computerized (esp. interactive) plotting. Page’s scheme is free
of the above drawbacks, but it is less informative since the only information we keep is that required
for control purposes. In what follows, we shall work in terms of Page’s schemes only; however, the

user should bear in mind that all the results can be applied directly to cases in which V-mask is used.

3. The structure of package CONTRD. Typical outputs of the functions for analysis and design

In this section we give a description of APL/APL2 package (workspace) CONTRD for design,
analysis and running of Cusum-Shewhart qontro[ schemes developed recently in the Department of
Mathematical Sciences of Thomas J. Watson Rc;carch. Center (IBM). It represents a substantially
modified and enhanced version of the package DARCS described in Yashchin (1985a). CONTRD
can be loaded either by typing )LOAD CONTRD after entering manually the APL/APL?2 envi-
ronment, or by using an exec CONTRD which is supplied with the workspace. To exit from the
workspace, one should type )OFF. One of the important features is that there is no need to know
APL or to have an APL keyboard in order to use the functions of CONTRD. These functions in-

clude:

e  Special functions CUSUMC, CUSUMP, CUSUMS, CUSUMT and CUSUMX for design and
analysis of Cusum c-charts, p-charts, s-charts, Time-Between-Events (t)-charts and ¥ —

charts, respectively. This set of functions is sufficient for many users of Cusum schemes;

e Distribution functions of some commonly used random variables; every function whose name
starts with letters DF is one of such functions (ex. DFNORM, DFBINOM, etc.). They are used
to specify the nature of incoming observations when analyzing properties of the scheme. A full

list of provided distribution functions can be found in Appendix A.

e Functions for analysis of upper Page’s schemes (ONEAN, ONEVARY, ONEXPLR) and lower

schemes (ONEANL, ONEVARYL, ONEXPLRL);

15




e Functions for design of upper Page’s schemes (ONEFIND, ONEXPLRD) and lower schemes

(ONEFINDL, ONEXPLRDL);

e  Functions for analysis of two-sided Page’s schemes (TWOAN, TWOVARY, TWOXPLR);

e Functions for running one- and two-sided Page’s schemes (ONERUN, ONERUNL,

TWORUN);

e Functions for special purposes (ASSIGN, IDENTIFY, QUIT, RESET, SET, SETI, SETFIND,

SETVARY, SETXPLR);

e  Other functions (primarily for generating various types of random variables and sequences, and

statistical analysis).

The package has a complete internal documentation (functions DESCRIBE and HELP). For exam-

ple, information related to the function CUSUMC can be obtained by typing HELP "CUSUMC". The

function HELP can also be used to obtain information on the general structure of the package, list

of available distributions, list of abbreviatiors, etc.

Consider the functions related to design and/or analysis of one-sided schemes. A function for anal-

ysis usually results in a table including confirmation of scheme parameters as well as the results of

analysis. It typically looks as follows:

Analysis of upper Cusum scheme with parameters

The level of discretization is 30
The observations are normal with SIGMA=1
The changing parameter name is MEU

The scheme is supplemented by the Shewhart limit 3.5

MEU ARL SDRL 5
0.0 1507.3 1505.4 .99760
0.5 111.0 108.2 .97515
1.0 17.:1 14.1 .84008
1.5 6.3 3.9 .4B629

10

.99430
.93225
.59530
.12590

20

.98772
.84995
.29071
.00780

HK=31

50

.96823
.64403
.03376
.00000

As one can see, this output is quite self-explanatory. For example, it says that if the process level is

g =1.5, the corresponding ARL and SDRL (Average and Standard Deviation of the Run L;éngth) are



6.3 and 3.9, respectively; the probability that the Run Length will be greater than 5 is 0.48629, the

probability that it will be greater than 20 is 0.00780, etc.®

For purposes of analysis, we assume that the interval (0, 4 ) is subdivided into d groups having the
same length & (except the group containing 0) and, at each step, the values of the Page’s scheme are
rounded to a center of a corresponding group. We refer to 4 and § as the level and interval of

discretization, respectively. The notion of discretization is discussed in detail in Appendix C.

The output table corresponding to two-sided schemes is analogous. In addition to columns shown .
above, it has a column P(UP) containing the probabilities that the signal is triggered by the upper
scheme. Also, some additional information related to the nature of the two-sided scheme (presence
and power of intrinsic interaction, etc.) may appear. Fo:l' details, see Yashchir; (1985a, pp. 381-384)

or Yashchin (1985b). .

The functions for design of one-sided schemes perform a search for a signal level, kA, for which the
ARL (or specified Quantile of the Run Length) is equal to a specified number. Other parameters of
the scheme are fixed; they are either derived automatically (as in special functions CUSUMC,
CUSUMP, etc.) or specified by the user. Analogously, the initial approximation A for the search
procedure can be chosen automatically (special functions) or should be provided by the user. A typ-
ical output of a design function is as follows:

Search for the value of H satisfying ARL=3.9

The length of interval of discretization is 0.53301

The observations are distributed as X-bar with MEU=110 SIGMA=10 SAMPLE=3

H=15.7238 Level of Discr.=30 ARI~=3.89715

H=16.2568 Level of Discr.=31 ARL=4.00394
The interpolated value of H is 15.738

This output corresponds to Example 5.6 considered later (in this example hy = 12, k= 105). It
shows that the procedure of search for 4 results in an interval. If the design procedure is automatically
followed by an analysis of the resulting scheme, the signal level for which the ARL is closer to the

target value will be chosen. So, since in our case the ARL=3.897 for & = 15.738 is closer to the

* Note that the last displayed table is always stored in the workspace under the name TABLE. So, 10 see som¢ additional
significant digits of the output table, one should type TABLE.
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desired value, 3.9, it will be chosen, by default, for the subsequent automated analysis. Note that this

default mode can be changed (Sec. 5.6).

In cases where choice of the initial approximation, fy has been grossly unsuccessful, the search
procedure may fail. In such cases the last approximation and other related information is displayed;
the user should use this information in order to suggest an alternative initial approximation and repeat

the relevant function.

The information specific to functions for design and analysis of general Cusum-Shewhart schemes

will be provided in Sec. 5.

4. Special functions for design and analysis of commonly used control charts

In this section we consider the special functions for design and analysis of Cusum schemes for several
types of "popular” control situations - control of the mean and standard deviation of a normal pop-
ulation, sample proportion of defectives, and so on. These functions have a unified format and are
very easy to use. We feel that they may satisfy the needs of a substantial proportion of Cusum users.
First, we describe the common features of this group of functions and then provide more specific in-

formation and examples. Several sample runs of special function can be found in Appendix B.

4.1. Some common features

Every function has a right argument, vector R, specifying the requirements of the design procedure,
and a left argument, vector L, containing such information as sample (subgroup) size, acceptable and
non-acceptable levels of the controlled parameter, and standard deviation of a single measurement.

The last two components of L are always optional and will be discussed later.

At the first step (design) the function automatically picks an appropriate reference value, k ,” and

then performs a search for the value of the signal level A for which the on-target ARL (or on-target

e The choice of k is usually based on likelihood ratio considerations, which assures about the best possible resolution
power as well as certain asymptotic optimality properties (ex. see Lorden (1971)). The reader familiar with the theory
of Sequential Probability Ratio Tests (SPRT's) will notice that for situations corresponding to special functions the
structure of SPRT is analogous to that of the Page's scheme. So, the value of K used in the special functions (except
CUSUMS) can be derived directly from the appropriate SPRT. If the distribution of the observations’is similar to

18



quantile of the Run Length) is equal to a prescribed value; this value should be provided in R [1]. If
R [1] represents the quantile, then an additional component, R [2] , is required; this component
should provide the order of the quantile. If the right argument, R, contains a third component, then
R [1] specifies the desireci off-target ARL (in this case R [2] must be set to 0) or the desired off-rarger

quantile.

The initial point Ay used in the procedure of search for 4 is chosen automatically. However,as we
mentioned in the previous section, in some cases this choice is too low compared to the sought value
of k. Insuch cases Step 1 fails and a message appears indicating that the upper bound of search has
been reached. On the basis of (displayed) last approxjmat.ion to h , the user should introduce an
additional (the first optional) component of L, represeriting some larger initial point of search, and
then repeat the function. It is also recommended to use this optional component if a good approxi-
mation to the sought value of # is available - this will save CPU time. The second and last optional
component of L represents either the interval of discretization (for functions dealing with counted
variables - CUSUMC and CUSUMP) or the level of discretization. The default interval of

discretization is 0.1; the default level of discretization is 30.

Once the search procedure for 4 is completed, Step 2 of a special function (interactive analysis) is

initiated by the message:
Enter the values of H, K, HEADST. and CD for further analysis (or 0 to exit):

At this point the user can examine additional properties of the scheme derived at Step 1 (or any other
scheme). Only the first component (signal level, H) must be entered. If the third component falls
between 0 and H, it will be used as a headstart; otherwise, a steady state analysis will be performed

(see Appendix D).2 The code CD enables the user to control the extent of analysis:

CD=1 will prompt the user to introduce additional values of the controlled parameters
to be explored in the analysis;

normal, this sugpests to choose K in the midway between "good"” and "bad" levels of the process, as noted earlier, in
Sec. 2. More material on the analogy between SPRT's and Cusum control schemes can be found, for example, in Khan

(1984).

v In the steady state analysis the on-target distribution is the one corresponding 1o the 1-st row of the output:table. This
row usually corresponds to the acceptable level of the controlied parameter.

19




CD=2 will prompt the user to introduce the values of r for which Prob.(RL > r) will

be computed;
CD=3 will prompt the user to inlrodué:e a Shewhart limit;
CD=0 cancels all the above conditions and returns to the original extent of analysis.

Other values of CD will prompt the user to introduce part (or all) of the above conditions (ex.
CD=12 is equivalent to simultaneous use of CD=1 and CD=2). Some additional possibilities for the

choice of CD are available when using the function CUSUMX; see Sec. 4.6.

4.2. Design of a cumulative ¢ - chart for controlling the mean of a Poisson population. The function
CUsSuUMC

The function CUSUMC designs and analyzes a cumulative c-chart. This scheme is used to control
the mean A of a sequence of Poisson random variables (typical example - monitoring numbers of
defects found in successively produced units). Thus, the observations in this type of scheme are in-

tegers. The format is as follows:
L CUSUMC R

where the right argument R bas a general form-described in Sec. 4.1. The left argument L contains
from two to four components:

L[I] is the acceptable level, Ag;

L[2] is the unacceptable level, A; > Ag;

L [3] (optional) is the initial approximation A, used in the procedure of search for A . Its default
value is 2.95.

L [4] (optional) is the interval of discretization, § (default 0.1).°

The value of k used in the design procedure is

R iy
= lOgAl - lOgAO'

* Note that by specilying the inferval of discretization we are able to climinate the roundoff error (see Appendix C).
However, by doing that we lose the direct control over the leve!/ of discretization. So, schemes with signal level, say,
above 10 will lead 10 a level of discretization of order d=100 and, consequently, to extensive CPU time requirements.
Thereflore, il our preliminary run indicates that high values of A may be required, it is recommended 1o use a longer in-
terval of discretization, say, § = 0.2,0.5 or 1.
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rounded to the nearest multiple of § (ex. see Lucas (1985)).

Example 4.2. Let the acceptable and unacceptable levels of A be Ay = 1.5 and A; = 3.5. We would
like to have a scheme (i.e. to find % ; remember that k is determined automatically) for which the

ARL (for A = 1.5) is 200. So, we can use
1.5 3.5 CUSUMC 200

If our goal were to find a scheme for which Prob.(RL > 20 | A= 1.5) = 0.9, and a good initial

approximation ( kg = 3.7 ) were available, we should have used the statement
1.5 3.5 3.7 CUSUMC 20 0.9

If our goal were to find a scheme for which the ARL (for A = 3.5) is 2.5, we should have used the

statement
1.5 3.5 CUSUMC 2501

A case related to use of CUSUMC is considered in Appendix B (Example B.3).

4.3. Design of a cumulative p - chart for controlling the process proportion of defective units. The
function CUSUMP

The function CUSUMP designs and analyzes a cumulative p-chart. This scheme is used to control
the process proportion of defectives p on the basis of numbers (counts) of defective units found in
successive samples of size n. In general, this type of scheme represents an instrument for controlling
the parameter p of a binomial population. Clearly, the observations in this type of scheme are inte-

gers. The format is as follows:
L CUSUMP R

where the right argument R has a general form described in Sec. 4.1. The left argument L contains
from three to five components:
L[1] is the sample size, n;
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L[2] is the acceptable level, py;
L[3] is the unacceptable level, p; > po;

L [4] (optional) is the initial approximation kg, used in the procedure of search for k. Its default
value is 2.95.

L [5] (optional) is the interval of discretization, & (default 0.1).1°

The value of k used in the design procedure is

P1— Po
k= ,
logp; — logpg

rounded to the nearest multiple of .

Example 4.3. Let the acceptable and unacceptable levels of p be py = 0.01 and p; = 0.04, and let
the sample size be n = 25. We would like to have a scheme (i.e. to find % ; remember that k is de-
termined automatically) for which the ARL (for p = 0.01) is 500. To derive an appropriate scheme,

we can use
25 0.01 0.04 CUSUMP 500

If our goal were to find a scheme for which Prob.(RL > 20 | p = 0.01) = 0.95, and a good initial

approximation ( &y = 3 ) were available, we should have used the statement
25 0.01 0.04 3 CUSUMP 20 0.95

If our goal were to find a scheme for which the ARL (for p = 0.04) is 2.5, we should have used the

statement
25 0.01 0.04 CUSUMP 250 1

Note that CUSUMP can also be used to derive a scheme for monitoring p on the basis of sample
proportions of defectives (instead of counts). If the sample size n is fixed, one should just divide the

derived scheme parameters by n. If the sample size varies, we have no choice but to use the sample

o See the footnote on p. 20.
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proportions; in this case we could set 2 to some "expected" sample size, derive an appropriate
scheme, and then examine its performance with respect to other, fixed as well as random sample sizes

(also see Example 5.7).

4.4. Design of a cumulative s ~ chart for controlling the standard deviation of a normal population. The
function CUSUMS

The function CUSUMS designs and analyzes a cumulative s-chart. This scheme is used to control the
standard deviation o of a normal population on the basis of a sequence of sample standard deviations

3,, 32, ... (see (2.3)) corresponding to successive samples (subgroups) of size n. Cumulative s-

> )
charts represent an alternative for the "classical" s-charts and r-charts (see Duncan(1974, Ch. 21).

Note that in most practical situations the subgroup size 2 does not exceed 5.

The format is as follows:
L CUSUMS R

where the right argument R has a general form described in Sec. 4.1. The left argument L contains

from three to five components:

L[I] is the sample size, n;
L[2] is the acceptable level of variability, og;
L 13] is the unacceptable level, o; > ap;

L [4] (optional)  is the initial approximation k, used in the procedure of search for k. Its default
value is 30,/V2n . i

L [5] (optional)  is the level of discretization, d (default 30).

The value of k used in the design procedure is k = (og + 0)/2¢(n), where
e(n) =v (n—1)/2T((n = 1)/2)/T(n/2);

in particular, for sample size of n = 2, 3, 4, 5, 6, and 7 this constant is 1.25, 1.13, 1.09, 1.06, 1.05

and 1.04, respectively.
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Example 4.4. Let the acceptable and unacceptable levels of 6 be g3 = 0.1 and o, = 0.3, and let the
sample size be n = 4. We would like to have a scheme (i.e. to find & ; remember that k is determined

automatically) for which the ARL (for ¢ = 0.1) is 200. To derive an appropriate scheme, we can use
4 0.1 0.3 CUSUMS 200

If our goal were to find a scheme for which Prob.(RL > 20 | 0 =0.1) = 0.9, and a good initial

approximation ( fg = 0.03 ) were available, we should have used the statement
4 0.1 0.3 0.03 CUSUMS 20 0.9

If our goal were to find a scheme for which the ARL (for o = 0.4) is 1.5, we should have used the

statement
4 0.1 03 CUSUMS 1501

The form of the reference value given above is related to the fact that sample standard deviation 3

represent a biased (downwards) estimator for o; to obtain an unbiased estimator, one would need to
multiply it by ¢(n). Therefore, when using the V-mask version of the cumulative s-chart, the current
level of the sequence as shown by the protractor should also be multiplied by ¢(n) to obtain an un-
biased assessment of ¢. If it is important, for reasons of gréphical data presentation, to base the
control scheme on the sequence of unbiased estimators, one could simply multiply the sample stand-
ard deviations as well as the scheme parameters by c(n). Another way would be, of course, to base
the control procedure on the sequence of sample variances. Though this sequence is less appealing
from the point of view of graphical presentation and, moreover, its members are relatively highly
skewed, it may be preferred in situations of extremely high sampling intensity (ex. control of robots)
where speed of computing values of the scheme may become an important factor.!® Since its use does
not typically lead to improvement in scheme performance, this possibility will not be considered in the

present work.

2 X (logo; — logag)
(1/0g) — (1/op

" The value of K recommended for control scheme based on sample variances is
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One can see that CUSUMS can be used to control internal variability in slightly more general situ-
ations. For example, assume that in situation described in Example 2.1 the measurements related to
a given lot come from three wafers (taken from the middle and both ends of the lot), each corre-
sponding to a set of five measurements. Then, since one can expect that various parts of the lot are
subject to slightly different conditions, it would be natural to estimate the within-wafer standard de-
viation by taking an average of three standard deviations corresponding to different wafers. Since the
number of degrees of freedom for estimating o is 3 x (5-1) = 12, our "pooled" sample standard de-
viation is distributed in the same way as a sample standard deviation corresponding to a sample of size
1241 = I3 taken from a homogenuous population. Thus, a control scheme based on the pooled
standard deviation can be designed by using CUSUMS v;rith n = 13. For a more general formulation

see Yashchin (1984, p.33).

Additional examples illustrating the use of CUSUMS are considered in Examples B.1 and B.7 of

Appendix B.

4.5. Design of a cumulative t - chart for controlling the average time between events of a Poisson
process. Controlling the process proportion of defectives on the basis of "gaps" between successive de-
fective units. The function CUSUMT

The function CUSUMT designs and analyzes a cumulative Time-Between-Event chart, or t-chart.
This type of chart is used to control the mean inter-arrival time 8 of a Poisson process (i.e. to control
the mean 8 of a sequence of iid exponential random variables). They also represent a way of con-
trolling the rate A = 1/6 of a Poisson process (an alternative way would be to count the number of
arrivals in subsequent time intervals of some fixed length and then to use a c-chart). In typical prac-
tical situations we are interested in the Jower control scheme only. Indeed, if our observations rep-
resent, say, times between successive breakdowns in some system, or lengths of life corresponding to
a sequence of tested devices, or inter-arrival times of customers in a queueing system, we are inter-
ested to detect, as soon as possible, situations in which these observations fall systematically below

the expected level.



Another interesting application of this type of schemes is based on the relationship between the
Bernoulli (0-1) process and the Poisson process. Indeed, let us consider a production process for
which every produced item is defective with probability p . If p is small, then the number of units
produced until the next defective one is found has a geometric distribution (which, as we know, rep-
resent a discrete analogue of an exponential distribution). If the intensity of sampling was constant,
then times between consecutive defective units would form a process which can be considered a
Poisson process for most practical purposes. Thus, one could control the process proportion of de-
fectives by means of a t-chart by treating the observations (number of units produced between con-
secutive_ defectives) as approximately exponential random variables. This approximation works very
well for small values of p ; interested reader could verif y that by applying an appropriate function for
analysis of general schemes to a geometric distribution. An alternative way of controlling p would
be to form samples of some fixed size, n, and then to use a cumulative p-chart considered earlier.
If the units are produced and/or inspected one at a time, this way will cause loss in the resolution
power of the scheme - this is one of situations mentioned in the introduction where one should try to

use the information as soon as it arrives rather than "create" samples purely for purposes of control.

It is also worth mentioning that, because of the connection between exponential and Weibull dis-
tributions, the function CUSUMT can also be used to design a scheme for controlling the mean of a
Weibull population (typical application - monitoring the life times of successive devices subjected to

an accelerated life testing procedure); see Example B.5 from Appendix B.

The format of CUSUMT is as follows:

L CUSUMT R

where the right argument R has a general form described in Sec. 4.1. The left argument L contains
from two to four components:

L[1] is the acceptable level of the mean time between events, 6;

L[2] is the unacceptable level, 8, < 6j;

L [3] (optional) is the initial approximation A used in the procedure of search for 4 . Its default
value is 26; A
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L [4] (optional) is the level of discretization, d (default 30).

The value of k used in the design procedure is

608,(log 8y — log 8,)
60— 0 :

Note that the reference value is negative since t-chart corresponds to a Jower control scheme. One
can see that ( — k) is a reciprocal of the reference value used in cumulative c-charts (ex. see Lucas

(1985)).

Example 4.5. Let the acceptable and unacceptable lcve:ls of 6 be 8y = 1000 and 8; = 500. In the
context of controlling the rate of defectives, this means the following. If the average rate of defectives
is one per 1000 produced units (i.e. p = 0.001 ), we consider it quite satisfactory and, under these
conditions, we would like to avoid false alarms; if, however, the average rate becomes one per 500

units, we would like an out-of-control signal to be triggered as soon as possible.

We are interested in a scheme (i.e. in finding an appropriate value of the signal level & ; remember
that k is determined automatically) for which the ARL (for § = 1000) is 200. In other words, if 8
= 1000, we would like the Average Time to Signal (ATS) to be 1000 x 200 = 200000. To derive

an appropriate scheme, we can use
1000 500 CUSUMT 200

If our goal were to find a scheme for which Prob.(RL > 20 | 6 = 1000) = 0.9, and a good initial

approximation ( &, = 2900 ) were available, we should have used the statement
1000 500 2900 CUSUMT 20 0.9

At this point, an important remark is in place. As we saw earlier, the Average Time between Signals
can be explicitly derived from the ARL. This is a direct consequence of Wald's identity (ex. see Feller
(1971)). Unfortunately, this identity cannot be extended to other characteristics of the Run Length

(ex. quantiles). So, Prob.(RL>20| 6= 1000)= 0.9, does not, in general, infpl)' that
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Prob.(TS > 20 x 1000 | 6 = 1000) = 0.9. Such relationship is not more than a (rather useful) ap-
proximation.

Finally, if our goal were to find a scheme for which the ARL (for & = 500) is 2 (in other words, if 8

= 500, we would like the ATS to be 500 x 2 = 1000), we should have used the statement

1000 500 CUSUMT 2 0 1

4.6. Design of a cumulative X - chart for controlling the mean of a normal population. The function
CUSUMX

The function CUSUMX designs and analyzes a cumulative X -chart. This scheme is used to control
the mean g of a normal population on the basis of .samp.le averages corresponding to successive sam-
ples (subgroups of measurements) of size n. Cumulative X -charts represent an alternative for the
"classical" (Shewhart’s) X - charts (ex. see Duncan(1974, Ch. 21). In most practical situations the

subgroup size n used in this type of scheme does not exceed 5.

The format is as follows:

L CUSUMX R

where the right argument R has a general form described in Sec. 4.1. The left argument L contains

from four to six components:

L[I] is the sample size, n;

L[2] is the standard deviation of a single measurement, og;
L[3] is the acceptable level of the mean, pg > 0;

L [4] is the unacceptable level, p; > pg;

L [5] (optional)  is the initial approximation Ay used in the procedure of search for A . Its default
value is 30p/vn, i.e. three standard deviations of an observation (representing
an average of n measurements).

L [6] (optional) s the level of discretization, d (default 30).
The value of k used in the design procedure is k = (pg + p;)/2.
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Note that for this function, additional possibilities of analysis are available in its second step. In par-
ticular, specifying a four-digit CD will lead to analysis of a symmetric two-sided scheme with the given
parameters.’ The last three digits control the extent of analysis as described in Sec. 3.1. For example,
CD = 1012 will prompt the user to introduce additional values of g to be considered as well as values
of rfor which Prob.(RL > r) are to be computed; CD = 1000 will cancel all special conditions and
continue analysis in a two-sided mode, etc. To return to the one-sided mode of analysis, one should

use CD = 0.

Example 4.6. Let the acceptable and unacceptable levels of p be pg= 2.5 and p; = 4.5, and let the
sample (subgroup) size be n = 4 and the standard deviation of a single measurement be o = 1.2.
We would like to design a one-sided scheme (ie. to find % ; remember that k is determined auto-

matically) for which the ARL (for p = 2.5) is 200. To derive an appropriate scheme, we can use
4 1.2 2.5 45 CUSUMX 200

If our goal were to find a scheme for which Prob.(RL > 20 | p=2.5) = 0.9, and a good initial

approximation ( Ay = 0.5 ) were available, we should have used the statement
4 1.2 25 45 0.5 CUSUMX 20 0.9

If our goal were to find a scheme for which the ARL (for u = 4.5) is 1.5, we should have used the

statement
4 1.2 25 45 CUSUMX 1501

Additional examples related to the use of CUSUMX can be found in Examples B.2, B.6 and B.7 of

Appendix B.

& This option should be used only when the target level corresponding to the two-sided scheme is 0.

29



5. Functions for design and analysis of general Cusum - Shewhart schemes

In the previous section our discussion was centered around functions for design and analysis of
schemes appropriate to a rather limited class of situations. All of our special functions deal with
one-sided schemes the only exception being function CUSUMX; but the only two-sided schemes the
latter can handle are symmetric schemes with normally distributed observations. Of course, we could
not write special functions for every situation that might become relevant - so, we created functions
to handle situations in which a general Cusum-Shewhart control scheme is applied to a general pat-
tern of incoming (iid) observations. These functions can be used not only directly, but also as a toolkit
which enables the user to create his own functions for design and analysis of schemes corresponding
to specific situations.!?

In the present section we introduce the class of such functions. We refer to them as general functions
as opposed to the special functions considered in the previous section. As we shall see, all of them
bave a similar format and many other common features. So, we proceed by providing some general

information about this group of functions.

5.1. Some general information. Unified format of the gencral functions. Interactive, EXPLR- and
VARY- modes of analysis

To analyze the RL of a general Page's scheme one needs to specify the scheme parameters as well
as the nature of incoming observations. So, every function for analysis and/or design of a general

one-sided Page’s scheme has the following form:

Y function DFNAME

where function represents the type of design and/or analysis function. The arguments are as follows:

o In fact, the special functions discussed earlier represent an example of using the general functions as a moll.u Of course,
to use the general functions in this way one should be familiar with APL.



DFNAME represents the name of the APL function which returns the value of the d.f. of the
observations F(x) for any given value of x. Typically, one will use one of the

functions provided with the package (see Appendix A).'*

Y is a vector specifying the scheme parameters; it consists of two or three compo-
pents: Y [1] is the signal level, A. Y [2] is the reference value, k. Y [3]is the

Shewhart’s Jimit, ¢ (optional).

Each function for design and/or analysis of one-sided schemes comes in two versions. The first one
is used for purpose of handling upper Page’s schemes. The second plays a similar role when dealing
with lower schemes. The name of the latter function differs from that of the previous one by presence
of an additional letter, L. For example, ONEAN is used for analysis of upper schemes; its counter-

part, ONEANL, performs a similar analysis of lower schemes.

Analogously, every function for analysis of a general two-sided scheme has the following form:
T function DFNAME

where function and DFNAME have the same meaning as in the one-sided situations; the vector of
scheme parameters T can contain four or six components: AT [1] and T [3] are the signal levels,
h+ and h—, respectively. T [2] and T [4] are the reference values, k+ and k—, respectively.

T [5] and T [6] are the Shewhart’s limits, ( — ¢~) and c*, respectively. The last two components
are optional; the choice of signs excludes any possibility of confusion. Indeed, if these components
are present, they must satisfy the inequality T [5] < T [6] ; an immediate out-of-control signal is

triggered if a single observation falls outside the interval ( T [5], T [6] ).

Clearly, this setup is sufficient to perform an interactive analysis of a given Cusum-Shewhart scheme
with respect to a given pattern of incoming observations (functions ONEAN(L) and TWOAN). In

addition to these possibilities, two other modes of analysis are available:

1 If DFNAME is provided by the user, its heading must be of type R - DFNAME X.
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EXPLR -mode (ONEXPLR(L), TWOXPLR) enables one to examine the performance of a fixed
scheme with respect to a family of distribution functions determined by varying
the values of a specified parameter (ex. mean of the normal population. This mode
of analysis requires the user to specify the name of the varying parameter of the

distribution as well as its values by means of the function SETXPLR.

VARY - mode (ONEVARY(L), TWOVARY) enables one to examine the performance of a
family of control schemes determined by varying the values of a specified scheme
parameter (ex. the reference value) with respect to a fixed distribution function
of incoming observations. This mode of analysis requires the user to specify the
varying pa.rametef of the scheme as well as its values by means of the function

SETVARY.

The functions for design of general one-sided schemes perform a search for a signal level 4 for which
the ARL (or some specified quantile of the Run Length) is equal to a prescribed number. This
number as well as some other conditions which determine the type of the search procedure are spec-
ified by the function SETFIND. Other parameters of the scheme (given by Y) are fixed; the first
component of Y is used as an initial approximation kg in the search procedure. The function
ONEFIND(L) performs the search for k& only; the function ONEXPLRD(L) first performs the

search (Step 1), and then performs an EXPLR - mode analysis of the resulting scheme (Step 2).

5.2. Specifying the optional conditions for analysis (headstarts, level of discretization, etc.). The func-
tions SET, SETI and RESET

Before using any of the functions, the user can specify several special conditions. These conditions
correspond to values of selected global variables of the workspace; so, a user familiar with APL could
change these default values directly, or localize them if he wants to use the general functions as a
toolkit. Another way to change the mentioned conditions is by using the functions SET or SETI. The

format of SET is as follows:
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CODE SET VAL

where CODE determines which condition is to be specified and VAL is a value assigned to an ap-

propriate global variable. The function SETI has the same format but, before changing the condition,

it informs the user of its intentions and provides the possibility of aborting the assignment at the last

moment. The meaning of CODE is:

CODE=0

CODE=1

CODE=2

CODE=3

Specifies the headstart(s). If VAL has a single component, it will be used as a
headstart for analysis of any one-sided scheme!® Otherwise, VAL represents a

pair of headstarts that will be used for analysis of any two-sided scheme;!¢

specifies the level of discretization, d which should be provided in VAL. This level

will be used for design and analysis of one-sided as well as two-sided schemes;!?

in this case VAL should contain the values of r for which Prob.(RL > r) is to

be computed;!®

is used for the purpose of steady state analysis only. If VAL=1, the next analyzed

scheme will be considered as an on-target one and the corresponding steady state

= The corresponding global variable is HEADSTART its default value is 0. Note that negative value of headstart will lead
to a steady state analysis (or an error message, where the latter is inappropriate). This type of analysis is available for
one-sided schemes only.

s The corresponding global vector is HEADSTWO (its default value is (0, 0)).

" The corresponding global variables are DISCRONE and DISCRTWO (the default value for both of them is 0). Note that
DISCRTWO will be used as a level of discretization of the scheme with a higher signal level. The level of discretization
of the opposite scheme is chosen in such a way that the lengths of discretization intervals of both schemes be as close

as possible.

L The corresponding global vector is R (in the default mode it is empty).

'
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distribution will be stored. The statement with VAL=0 will cancel this

condition.?

Some additional possibilities are available for the purpose of running the Cusum-Shewhart schemes.
These will be discussed in Sec. 6.1. To restore the default modes of all optional conditions simul-

taneously, one can type RESET.

Next we consider the "general"” functions separately.

5.3. Interactive analysis of one-sided schemes. The function ONEAN

This function is used to analyze (in interactive mode) the ARL, SDRL and the run length distribution

of a one-sided scheme. Use of ONEAN results in -
1. printout of the basic information about the scheme;

2. printout of the complete set of (discretized) headstarts as well as set of corresponding ARL'’s

and SDRL’s;
3. prompting the user to specify values of r for which Prob.(RL > r) are to be computed;

4. prompting the user to specify the headstart (or bounds of the segment containing the headstarts)
for which the above probabilities are to be computed;

5. printout of the table of the computed probabilities; each fow of the table corresponds to a single
headstart;

6. prompting the user to continue the analysis of the run length distribution.

The function ONEANL performs a similar analysis of a lower scheme.

Example 5.3. Suppose that we would like to analyze the run length of a scheme with parameters
h =3, k = 1, the observations { x; } being distributed normally with mean y = 0 and s.d. ¢ = 1. The
function returning the values of a normal d.f. exists in our workspace under the name DFNORM.

Before using this function, we must set its global variables MEU and SIGMA to be equal to g and

L The corresponding global variable is ONTARGET (deflault 0). The steady state distribution is stored in the global vector
STEADY (see Yashchin (1984) for more details). §
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o, respectively. This can be done either by using two separate APL assignment statements or by
using our function ASSIGN as shown in the example below. Thus, the interactive analysis is initiated

by executing the statements

'MEU SIGMA* ASSIGN 0 1

(3 1) ONEAN 'DFNORM'

5.4. Analyzing a set of one-sided schemes with respect to a fixed distribution of incoming observations.
The function ONEVARY

The function ONEVARY performs, in non-iteractive mode, the analysis of a sequence of upper
schemes (depending on a single varying parameter) corresponding to a given fixed d.f. of the obser-

vations. The function ONEVARYL performs a similar analysis of a sequence of lower schemes.

'

Execution of ONEVARY results in analysis of the scheme with parameters given by Y and, in addi-
tion, of a sequence of schemes corresponding to values of a varying parameter of the scheme. Before
using ONEVARY one should specify this parameter and provide its values. This is done by executing
the function CODE SETVARY VAL. The left argument, CODE, should be 1, 2 or 3 if the varying
parameter of the scheme is &, k or ¢, respectively. The right argument, VAL, should provide a list
of values of the varying parameter. If CODE is 0, the varying ﬁaramcter is the headstart; in this case
VAL should provide the bounds of a segment containing headstarts for which the analysis is to be

performed.

The optional conditions (level of discretization, headstart, etc.) are set as described in Sec. 5.1.

Example 5.4. Suppose that we would like to analyze the run length of a scheme & = 6, k = 1 sup-
plemented by Shewhart’s limit ¢ = 5.5,and, in addition, of schemes with 4 = 6.1, 6.2, 6.5 with respect
to a sequence of iid Weibull observations with shape 1 and scale 2 (i.e. exponential observations with

mean 2). We would like the output table to include the probabilities Prob.(RL > r) for r= 5, 10

and 20 (optional condition). So, we use the following statements:
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2 SET 51020
1 SETVARY 6.1 6.2 6.5
'SHAPE SCALE’ ASSIGN 1 2

(6 1 5.5) ONEVARY °’DFWEIB2’

Note that DFWEIB2 is our APL function computing the values of the distribution function of a

two-parametric Weibull random variables; SHAPE and SCALE are its global parameters.?

5.5. Analyzing a fixed one-sided scheme with respect to a family of distributions of incoming observa-
tions. The function ONEXPLR '

The function ONEXPLR performs the analysis of a one-sided Page’s scheme with all three (or four,
if the scheme is supplemented by Shewhart's limit) parameters fixed for a set of several d.f."s of the
observations corresponding to different values of a specified parameter. This parameter usually cor-
responds to one of the global variables of the function DFNAME. The function ONEXPLRL per-

forms a similar analysis of a lower scheme.

Before using ONEXPLR, one should specify the name of the changing parameter of the distribution
function as well as its values. This is done by executing the statement NAME SETXPLR VAL where
NAME is a (character) vector containing the name of the chénging parameter of the distribution and
VAL is a vector containing its values. In addition one can specify some optional conditions (level of

discretization, headstart, etc.) as described in Sec. 5.1.2

Example 5.5. Suppose that we would like to analyze the performance of a scheme h = 295, k=9
and ¢ = 18.5 with respect to sequences of (iid) Poisson random variables with means 6.5, 8.5 and
11.5. Let the headstart of the scheme be s5 = 10 (optional condition). To perform the analysis, we

execute the following statements:

» Also note, that one could use the APL statement R «— 5 10 20 instead of our first statement.
= If, before using ONEXPLR, onc executes the statements 3 SET 1and 0 SET (-1) (sec Sec. 5.2), the steady state

analysis will be envoked. In this analysis, the distribution corresponding to the first component of VAL will be treated
as on-target distribution of observations. :
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0 SET 10
'LAMBDA’ SETXPLR 6.5 8.5 11.5

(29.5 9 18.5) ONEXPLR °'DFPOIS’

5.6. Design of a one-sided scheme. The function ONEFIND

The function ONEFIND performs an automated search for the signal level & (upper scheme), satis-
fying one of the two conditions:
a)ARL=g or

(5.1)
b) Prob.(RL > g) =7,

where g and vy are specified by the user. All the other parameters of the scheme (provided in the left
argument, vector Y) remain fixed. The initial point of search, Ay, should be provided in the first
component of Y. The function ONEFINDL performs a similar search for a signal level of a lower

scheme.

Before using ONEFIND one should specify the conditions needed to perform a search for an appro-
priate value of the signal level, h. This is done by executing the statement MODE SETFIND FIX,
where MODE determines the type of the search procedure. MODE should be 0 if A, provided by
Y [1] may be a very rough estimate of the sought value of #; it is useful to set MODE to 1 if Ay is
close to the sought value and needs some refining only. The first component of the right argument,
FIX, should contain the value of g; if g represents the quantile (i.e. the user wants the condition of
type l;) to be satisfied), then FIX must have a second component, providing the order of the quantile,

v. If g represents the ARL, no second component is required.

If the search for A was successful, the lower and upper approximations for k will be printed out to-
gether with the corresponding values of ARL (if the user wanted the condition a) to be satisfied) or
Prob.(RL > q) if he wanted the condition b) to be satisfied; the corresponding levels of discretization

will also be printed out. A typical output of ONEFIND is as shown in the second table of Sec. 3.
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In the case that search for # fails, only information related to the last approximation examined by the
search procedure as well as some diagnostics will be provided. This information can be used to sug-

gest an alternative initial point of search and repeat the function.?

Note that ONEFIND will try to preserve the current level of discretization. Therefore, the precision
of the search can be controlled by means of the function SET. The default level of discretization, 30,
usually leads to quite satisfactory results. When MODE = 1, the function will always preserve the
length of interval of discretization, computed on the basis of current level of discretization and A (see
(C.1), Appendix C). This mode is especially useful for dealing with schemes based on counts, where

proper choice of the interval may eliminate roundoff errors usually caused by discretization.

Example 5.6. Let the observations correspond to the sequence of normal means corresponding to
subgroups of size n = 3. Let the mean and standard deviation of a single measurement be p = 110
and ¢ = 10. Let the reference value be k& = 105. Under these conditions, if one is interested in
finding a value of h for which the ARL is 3.9, he could achieve it by executing the following state-

ments:

'"MEU SIGMA SAMPLE’ ASSIGN 110103
0 SETFIND 3.9

(12 105) ONEFIND 'DFXBAR’

(which leads to A& = 15.7; ex. see Duncan (1974, p.476)). Our initial approximation for the search
procedure is hy = 12. Note that DFXBAR is the function computing the d.f. of sample mean; MEU,

SIGMA and SAMPLE are its global parameters.

If, under the stated conditions, we wanted to find A satisfying Prob.(RL > 3) = 0.95, the sequence

would be the same except the second statement which becomes 0 SETFIND 3 0.95.

= In some cases failure of ONEFIND is related 1o non-existense of the value of A having the desired pmpgrt) This is
indicated by an appropriatle message. )
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5.7. Design and analysis of a one-sided scheme. The function ONEXPLRD

The function ONEXPLRD can be viewed as a combination of the functions ONEFIND (Step1) and
ONEXPLR (Step2). In its second stage, the function ONEXPLRD performs (as ONEXPLR does)
the analysis of a scheme with all three (or four, if the scheme is supplemented by a Shewhart limit)
parameters fixed for a set of several distribution functions of the observations corresponding to dif -
ferent values of a specified parameter (which usually corresponds to one of the global variables of the
function DFNAME). However, before performing the analysis, the function determines (Step1) the
value of the signal level h satisfying one of the two conditions (5.1), where g and y are specified by
the user, exactly as in ONEFIND. Other parameters of the scheme (provided in the left argument,
Y) remain fixed. As in ONEFIND, the initial pdint of search, hy, should be provided in the first
component of Y. The value of k& found in the first stage is subsequently used (in Step2) as a signal

level of the control scheme.
The function ONEXPLRDL performs a similar analysis for a lower scheme.

Before using ONEXPLRD one should specify the conditions needed to perform a search for A. This
is done by executing the statement MODE 'SiE.TFIND FIX, where MODE and FIX have the same
meaning as in ONEFIND. The only exception is that now MODE may have a second (optional)
component, MODE [2] , playing the following role. The procedure of search for & (Step 1) results
in an interval (see second output table, Sec. 3). The value of MODE [2] determines which of its
bounds will be selected as an approximation to A. If MODE [2] = -1, the lower bound will be se-
lected. If MODE [2] = 1, the upper one will be selected. If MODE [2] = 0, (or if this component is
absent), the bound for which the value of g is closer to the desired value will be selected. If

MODE [2] = 2, the interpolated value will be selected.

One should also specify the name of the changing parameter of the distribution function as well as its
values. As in ONEXPLR, this is done by executing the statement NAME SETXPLR VAL where
NAME is a (character) vector containing the name of the changing parameter and VAL is a vector

containing its values.

In addition, one can specify some optional conditions as described in Sec. 5.1.
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Example 5.7. Consider the situation described in Duncan (1974, p.478). We would like to design a
cumulative p-chart satisfying the following conditions: ARL( p = 0.04) = 7.5and ARL( p = 0.01)
= 500. Let us choose the reference value to be k = 0.025 (midway between the good and bad
quality). What remains to be determined are the values of the signal level & and the sample size n.
First, we specify that we would like the value of A to satisfy ARL(p=0.04) = 7.5. Since for any given
sample size this value will be determined automatically (in the first stage of ONEXPLRD), we only

need to find, by trial and error, the appropriate sample size, n. We start by trying n = 10...

"PROB SAMPLE’ ASSIGN 0.04 10
0 SETFIND 7.5 _ 1
'PROB’ SETXPLR 0.010.02 0.03 0.04

(0.1 0.025) ONEXPLRD °'DFPROPB’

This sequence will use 0.1 as an initial approximation for /4 , determine # so that the ARL=7.5 and
apply the resulting scheme to sequences of observations corresponding to p = 0.01, ..., 0.04. The
function DFPROPB computes the d.f. of the sample proportion; SAMPLE and PROB are its global
parameters. The reader may verify, that in order to achieve the desired resolution between "good"

and "bad" quality, we need to use samples of size n = 24.

One can argue that the special function CUSUMP is more appropriate for dealing with situations of

this type; in particular, we could initiate the analysis corresponding to n = 10 by using the statement:
10 0.01 0.04 CUSUMP 750 1

This approach has an advantage that it automatically selects the level of discretization and & so as
to eliminate roundoff errors. On the other hand, the latter scheme is based on the sequence of counrs
of defectives, and therefore cannot be r;:commended in cases where sample size varies from sample
to sample; in such cases one should use the sequence of sample proportions of defectives. After de-
riving a scheme appropriate for a certain "most likely" sample size n, one can use the function
ONEXPLR to examine its properties with respect to any other (fixed) sample size. It is worth men-

tioning that the case of random sample size can also be considered. In particular, the’ function
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DFPROP corresponds to distribution of sample proportion under the assumption that the sample size

is a Poisson distributed random variable with mean SAMPLE.

5.8. Interactive analysis of two-sided schemes. The function TWOAN

The function TWOAN is used for interactive analysis of the ARL, SDRL and the run length distrib-
ution of two-sided Cusum-Shewhart schemes. In addition, it enables one to examine (interactively)

the probability that the signal will be triggered by the upper scheme, P(UP).
Use of TWOAN results in -
1. printout of the basic information about the two-sided scheme;

2. printout of the complete set of (discretized) headstarts as well as set of corresponding ARL’s

and SDRL’s for the upper and lower schemes separately;

3. prompting the user to specify the headstarts for which the ARL, SDRL and P(UP) are to be

computed. The results for each pair of headstarts are returned immediately.

4. prompting the user to specify the headstarts and the values of r for which Prob.(RL > r) are

to be computed. The results for each pair of headstarts are returned immediately.
5. prompting the user to continue the analysis of the run length distribution.

The user has a possibility to switch from step (4) to (3) and vice versa (or to exit from the function)

by specifying a pair of headstarts which falls out of range.

As an example, suppose that we would like to analyze the run length of a scheme with parameters
ht*t =4, kt =1, h— =4.5, k— = 1.5, the observations { x; } being distributed normally with mean
p =0 and standard deviation ¢ = 1. Let the scheme be supplemented by the Shewhart’s limits
¢~ =3, ¢t =35, ie.x;<—=3orx;> 3.5 should trigger an immediate out-of-control signal. Then

the statements needed to initiate the interactive analysis are as follows:

'MEU SIGMA' ASSIGN 0 1

(4, 1, 4.5, 1.5, (-3), 3.5) TWOAN 'DFNORM’
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5.9. Analyzing a set of two-sided schemes with respect to a fixed distribution of incoming obsenv4tions.
The function TWOVARY

The function TWOVARY performs the analysis of a sequence of schemes (depending on a single
varying parameter or a pair of varying scheme parameters) corresponding to a given fixed d.f. of the

observations.

Before using TWOVARY, the user should specify the varying parameter of the scheme ana provide
its values. As in the function ONEVARY, this is done by executing the function CODE SETVARY
VAL. The left argument, CODE, should contain 1, 2, 3, 4, 5 or 6 if the varying parameter of the
scheme is h+, k+, h—, k—, ¢— orc*, respectively.? The right argument, VAL, should provide a
list of values of the varying parameter. If CODE=0, the varying parameters are headstarts; in this
case VAL should provide the pairs of headstarts for which the analysis is to be performed. If CODE
is 11, 22 or 33, the varying parameters are pairs ( A+, A~ ), ( k*, k= ),or( —c-, ¢*), respec-

tively. In this case VAL should provide the relevant pairs of the scheme parameters.

In addition, one can specify some optional conditions as described in Sec. 5.1.

Example 5.9. To analyze the performance of a scheme A+ =3, kt =1, h— = 2.7, k— =0.9,
supplemented by the Shewhart limits ¢~ =3.5, ¢* =3.5 and, in addition, of schemes with
k* = 1.1, 1.2, 1.5 with respect to a sequeiice of iid normal observations with mean 0 and standard

deviation 2, one can execute the following statements:

'MEU SIGMA' ASSIGN 0 2
2 SETVARY 1.1 1.2 1.5

(3,1,2.7,0.9, (-3.5), 3.5) TWOVARY 'DFNORM’

Loy Note that CODE corresponds to sequential order of the component of T being varied.
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5.10. Analyzing a fixed two-sided scheme with respect to a family of distributions of incoming observa-
tions. The function TWOXPLR

The function TWOXPLR performs, in a non-interactive mode, the analysis of a two-sided scheme
with all the parameters fixed for a set of several d.f.’s of the observations corresponding to different
values of a specified parameter. It plays the same role as ONEXPLR does in the analysis of one-sided

schemes.

Before using TWOXPLR one should specify the name of the changing parameter of the distribution
function as well as its values by executing the statement NAME SETXPLR VAL, where, as usual,
NAME is a (character) vector containing the name of the changing parameter and VAL is a vector
containing its values; '

In addition, one can specify some optional conditions as described in Sec. 5.1.

Example 5.10. Suppose that we would like to analyze the performance of a scheme
ht =3, kt =1, h~ =3, k— =1, supplemented by the Shewhart limits ¢~ = 3.5, ¢t = 3.5,

with respect to sequences of sample means corresponding to samples of size 4 from the normal
population with s.d. =2 and means 0, 0.1, 0.5, 1. In addition to the usual analysis, we would also like
to compute Prob.(RL >r) for r=15, 10 and 100 (optional condition). To perform the analysis, we

can use the following statements:

2 SET 510 100
'SIGMA SAMPLE’ ASSIGN 2 4
'MEU’" SETXPLR 00.1051

(3,1,3,1,(-3.5),3.5) TWOXPLR 'DFXBAR’

6.Running the Cusum-Shewhart schemes

So far, our discussion was primarily related to design and analysis of Cusum-Shewhart control
schemes by using appropriate functions of CONTRD. However, this package could hardly be con-

sidered as complete unless it also provided functions for applying Cusum-Shewhart schemes to se-
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quences of observations. Such functions could be used not only for real time monitoring of data, but
also for purposes of retrospective data analysis, diagnostics, forecasting and graphical data analysis.
In addition, they would enable one to study (by simulation) the performance of control sﬁhemes with
respect to other than iid patterns of incoming data.?* Thus, we complete this work by introducing the
functions ONERUN and TWORUN for running the control schemes. The reader will see that the
syntax of these functions is similar to that of functions for analysis we have introduced earlier - the
only difference is that the right argument specifies the data rather than the distribution function of

the observations.

6.1. The function ONERUN for running one-sided schémes

The function ONERUN is used to apply a one-sided Cusum-Shewhart scheme to a particular set of

data. Its format is as follows:
S <Y ONERUN DATA

where DATA is the name of the vector containing the observations { x; } and Y is the vector con-
taining parameters of the scheme (defined as in Sec. 5.1). The output vector S contains the computed
values of the (upper) Page’s scheme.® The function ONERUNL plays a similar role in running lower

Page’s schemes.

Use of ONERUN also results in a global matrix OUTCONTR containing information about the de-
tected out-of-control observations.2¢ Each row of this matrix corresponds to a single out-of-control

observation and its seven elements contain the following information:

1. the sequential order of the out-of-control observation;

2 Clearly, the iid patterns can also be studied by simulation. However, it can be performed much more efficiently by ap-
plying a technique based on the use of empirical distributions (see Example B.4, Appendix B).

» Instead of the APL assignment operator, <— , onc can usc the familiar function ASSIGN as follows:
'S ASSIGN (Y ONERUN DATA)

e Here and in what follows this term is used instead of a more precise "observations corresponding 1o the qui-of-control
state of the process”
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2.  the out-of-control code which is 1 if the signal level k has been exceeded, 2 if the Shewhart’s

limit ¢ has been exceeded and 3 if both these criteria have been violated;
3. the corresponding value of the Page’s scheme;
4. the corresponding value of the last observation;
5. the number of observations in the last positive portion of the Page’s scheme;
6. the sample average of these observations;
7. the sample range of these observations.

By using the function LENGTHS one can create a vector containing the successive run lengths. For
examble. the statement STATIST LENGTHS will perform a statistical analysis of the run lengths

corresponding to the first column of OUTCONTR.

Before using ONERUN, one could specify optional conditions by executing the familiar function
CODE SET VAL. As usual, CODE=0 is used to specify the headstart of the scheme (see Sec. 5.2).

Other possible values of CODE are as follows:

CODE=5 if VAL=1, the scheme will run in a "quiet" mode. If VAL=0, then information
about the scheme as well as out-of-control observations (matrix OUTCONTR)
will be displayed; in addition, the user will have a possibility to display (interac-
tively) any portion of the data together with associated values of the Page’s
scheme as well as some basic statistics related to this portion (sample mean,

standard deviation, range, etc. ).%7

CODE=6 the values of upper and/or lower schemes will be re-set to zero after each obser-

vation the sequential number of which is a component of VAL. If VAL < 0, the

n The corresponding global variable is INTERACT (its default value is 0).
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scheme(s) will be re-set to 0 (if VAL=-1) or to headstart (if VAL=-2) after each

detected out-of-control observation. f VAL =0, no re-setting will take place.?

We remind that typing RESET will restore the default mode of all optional conditions.

Example 6.1. The sequence of statements

0 SET 1.5
6 SET -2
S « (6.5, (-1), (-4.5)) ONERUNL (1000 SIMWEIB 2 4)

will result in values of a lower Cusum-Shewhart scheme with parameters A=6.5, k=-1 (supple-
mented by the Shewhart limit c=-4.5, i.c. a single observation below 4.5 triggers an immediate sig-
nal), corresponding to a simulated sequence of 1000 Weibull observations with Shape 2 and Scale 4.

The scheme is automatically re-set to its headstart (1.5) after each out-of-control observation.

6.2. The function TWORUN for running two-sided schemes

This function is used to apply a two-sided Cusum-Shewhart scheme to a given set of data. Its format

is as follows:

S« T TWORUN DATA

where DATA is the name of the vector containing the observations { x;} and T is the vector con-
taining parameters of the scheme (defined as in Sec. 5.1). The output matrix S contains the computed

values of the upper (first row) and lower (second row) Page’s schemes.

Use of TWORUN also results in a global matrix OUTCONTR that has the same format as one cre-
ated by ONERUN except that the out-of-control code can also have values -1, -2 or -3. Negative
values of the out-of-control code have the same meaning as their positive counterparts (see 6.1) but

are related to signals triggered by the lower scheme.

22 The corresponding global vector is RESTORE (its default value is 0).
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The optional conditions one can use before applying TWORUN, as well as use of the function

LENGTHS are analogous to those described in the previous subsection.

Example 6.2. The sequence of statements

5 SET 1
6 SET -1
S« (313 1) TWORUN (1000 SIMNORM 0.1 1.4)

STATIST LENGTHS

will result in values of a symmetric two-sided Cusum-Shewhart scheme with parameters
ht = h~ =3 and k* = k— = 1, corresponding to a siﬁulatei:l sequence of 1000 normal observa-
tions with mean 0.1 and standard deviation 1.4. The scheme is automatically re-set to O after each
out-of-control observation. The first statement leads to automatic mode of execution. The last state-

ment performs a statistical analysis of the resulting run lengths.

7. Other functions

1. The function QUIT . This function is used to “escape" from situations corresponding to an error
discovered by APL in the middle of execution. We tried to build CONTRD in such a way that such
situations would never occur (so, we hope that QUIT will remain the only function of the package
that is never used). However, if they do, please type QUIT to return to the original conditions™ and

notify the author.

e A wtcﬁon: for simulating n:.mdom wariables. The package includes a set of functions for simulating
types of random variables typically encountered in practical applications. Every function whose name
starts with letters. SIM is one of such functions (ex. SIMBINOM, SIMNORM, etc.). A function of this
type has a left argument, L, representing the quantity of variables to be generated and a right argu-

ment, R, characterizing the parameters of the distribution. For example 20 SIMNORM 2 0.3 will

- Warning: if such an error occurs during execution of an EXPLR - type function, the global (varying) parameter of the
currently used d.f. may have a different value (after quitting) than that assigned before the execution of the function.
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generate 20 normal random variables with mean 2 and standard deviation 0.3. Other possibilities are
listed in Appendix E. Note that the function SIMNORM can also generate a matrix of normal vari-

ables with a specified "grand" mean, row-to-row variability and within-row variability.

3. The function IDENTIFY . This function is used to identify the names of global parameters of a
given distribution function as well as their current values. The syntax is IDENTIFY DFNAME,
where DFNAME is the name of APL function which returns the values of the d.f. of observations
(see p. 29 and Appendix A). For example, IDENTIFY 'DFNORM’ will identify the parameters of

the normal distribution

4. The function QUANTILE . This function computes a set of quantiles corresponding to a given
distribution. For example, 0.05 0.5 0.95 QUANTILE 'DFNORM’ will compute the quantiles of
order 0.05, 0.5 and 0.95 corresponding to a normal distribution (with parameters given by global
variables MEU and SIGMA). The function can be applied to distributions listed in Appendix A as

well as to those written by the user.

5. The function FITDF . This function fits a specified distribution to a given set of data. For example,
if D is a vector containing the data, the statement D FITDF 'DFNORM’ will estimate the parame-
ters of the normal distribution and display information related to quality of the fit (Chi-square sta-
tistic, Kolmogorov-Smirnov statistic, etc.). At present, u_)e function can be applied to selected

members of the list of distributions from Appendix A only.

6. The function STATIST. This function computes and prints out the basic statistics (ex. mean,
range, etc.) associated with a given set of data. Its format is STATIST D, where D is either vector

or matrix containing the data.

If D is a vector, three esimates of the standard deviation are included: the "usual” sample standard
deviation, o, the standard error of the regression line , 5, (this estimator is invariant with respect to

linear trends present in the data), and s, defined in terms of the successive differences,

-1
2 1 - 2
Sd - m':El (.\.“-_._‘ -— X") i . (7-1)
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clearly, it is roughly invariant with respect to "shifting" portions of the data.

If D is a matrix (baving, say, rrows and n columns), then every row is assumed to contain a sample
of n measurements taken at the same moment of time. In this case the function will compute the
"grand" characteristics of the pooled data (grand mean, median, etc.). In addition, it will estimate the

within-row standard deviation,

s? iE". (1.2)
r =1 .

( 3,- is the sample standard deviation corresponding to the i - th row), and perform a regression
analysis. As in the previous case, three estimates of the row-to-row standard deviation are available:

the usual variance component estimate s,

2
2 s
Sb - -r—-":zl (.X ) - -n—)+ (7.3)

( X is the "grand" mean), the estimate s, based on successive differences of the sample means and,

therefore, invariant with respect to possible "shifts" in the process level,

l=]

2
"Ed ( 2(r E (‘?H-l f) - —)+' (74)

and s,, based on filtering out the linear component, sZ, = s2 — s2. Clearly, this estimator is invariant

with respect to linear trends in the process level.

Example 7.1. Suppose that we take a sample of 4 measurements per lot and using the sample statistics
to control the process. Suppose that the lot-to-lot standard deviation is 0.3, the within-lot standard
deviation is 0.1, and the "grand" mean (i.e. the process level) is 0. To simulate samples corresponding
to 200 lots and then to compute (assuming normality) the basic statistics, one can use the statement

STATIST (200 4 SIMNORM 00.3 0.1)
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7. The function STATMULT. This function computes and prints out the basic statistics (ex. means,
standard deviations, estimates of the correlation matrix, etc.) associated with a given set of
multivariate observations. Its format is STATMULT D, where D is a matrix with rows corre-
sponding to values of the multivariate vectors. Note that multivariate normal vectors can be simulated

by using the function SIMMULT.

Three estimates of the covariance structure are included: the "usual" method, the estimate based on
successive differences of the multivariate vectors (so, it is roughly invariant with respect to "shifts"
in levels of some of the variables) and the estimate obtained after removing the linear component
from each variable of the multivariate vector (this estimate is invariant with respect to linear trends
in some of the variables). The function implicitly pro&uoes global (covariance) matrices COVAR,
COVARD and COVARR corresponding to these methods as well as the vector MEANS oom.?ining

the multivariate means (i.e. column averages).

8. The function SELECT. This function selects a certain sequence of statistics from a given set of
data for subsequent statistical analysis or application of a Cusum-Shewhart scheme. Its format is
V-. CD SELECT D, where D is the raw data (vector or matrix) and the code CD determines
what statistic is to be selected. The result V contains the values of the selected statistic. The list of
possible choices of CD corresponds to sequences that seem to be most likely candidates for analysis
and/or scheme application; motivated users will find it easy to incorporate additional values of CD,
as needed. If CD has several (say, k) components, each one will be used to select an appropriate

sequence, and the resulting matrix V will consist of k corresponding columns.

a) D is a vector. If CD=1, then the vector D itself will be selected. 1If CD=0, the absolute values of
successive differences scaled by 0.5V =0.8862 will be selected (see (2.4)), i.e. V contains the se-
quence 0.5vV7 | x; ;—x; |, i=1,2, ..., where x; are the elements of D (when measurements

are taken one at a time, these differences can be used to control the lot-to-lot variability).

b) D is a matrix. In this case every row is assumed to contain a sample of measurements taken at the
same moment of time. The selection proceeds as follows: CD=0 takes the sample means of the rows

and then selects the scaled absolute values of successive differences (like in the case when D is a
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vector); CD=1, 2, 3 or 4 selects the sample means (of the rows), sample standard deviations,
skewnesses and curtoses of the rows, respectively; other values of code correspond to sequences
which may depend on the the version of the package; the user can find this information in the on-line

documentation.

Clearly, when CD is a vector, there is a possibility that some of the selected sequences are shorter
than others. In order to be able to combine them into a single matrix, we insert an (artificial) zero

leading element into the shorter sequences.

Example 7.2. Suppose that we take a sample of 4 measurements per lot and using the sample means
to control the process level. Suppose that the lot-to-lot standard deviation is 0.3, the within-lot
standard deviation is 0.1 and the "grand" mean (ie. the process level) is 0. Let us simulate samples
corresponding to 100 lots and apply the symmetric two-sided scheme A =0.4, k =0.05 to the se-

quence of sample means (we shall assume that the underlying distribution is normal):

S «0.4 0.05 0.4 0.05 TWORUN (1 SELECT (100 4 SIMNORM 0 0.3 0.1))

9. The function RQUND. This function is useful when applying a Page’s scheme tc simulated data.
It rounds the input vector (or matrix) up to a specified number of digits after the decimal point. For
example, the statement § <=3 ROUND § will round the elements of S up to 3 decimal places and

then re-assign the result to S.
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Appendix A. List of available distribution functions.

Below is the list of distribution functions currently provided witb CONTRD. Every function accepts

a right argument (scalar or vector) only; before using it, one should make sure that the distribution

parameters are specified correctly by means of the appropriate global variables. To identify the names

of these variables and their current values, use the function IDENTIFY. To compute the quantiles

of a given distribution, use the function QUANTILE. To fit a distribution of a given type to sets of

data, use FITDF. All three functions are described in Sec. 7.

Function Name Parameters Comment
DFBETA ALPHA, BETA Beta distribution
DFBINOM PROB, SAMPLE Binomial with parameters p = PROB and
n=SAMPLE
DFEMPIR LOCATION, SCALE, | Empirical (sample) distribution function
DATA based on observations given by DATA,
shifted by substracting LOCATION and
scaled by dividing the result by SCALE
DFEXP THETA Exponential distribution with mean THETA
DFEXTREME LOCATION, SCALE Shifted and scaled Least Extreme Value
(double exponential) distribution
DFGAM2 ALPHA, BETA Gamma with parameters ALPHA and BETA
DFGAMS3 ALPHA, BETA, Gamma with parameters ALPHA and BETA
CENTER shifted so that the resulting mean is
at CENTER
DFGEOM PROB Geometric with parameter PROB. The mean
of this variable is 1/PROB and its possible
values are 1,2,...
DFHYPGEOM LOTSIZE, SAMPLE, Hypergeometric with parameters
DEFECTS N = LOTSIZE, n = SAMPLE and
k = DEFECTS
DFLGST LOCATION, SCALE Logistic distribution
DFLOGN2 MEU, SIGMA Lognormal
DFLOGN3 MEU, SIGMA Three-parametric Lognormal with location
CENTER parameter CENTER
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DFNCF

DFNCHI

DFNEGB

DFNORM

DFPOIS

DFPROPA

DFPROPB

DFPROP

DFRANGE

DFS

DFSTUD
DFUNIF
DFWEIB2

DFWEIB3

DEGRNUM DEGRDEN
NONCNTR

DEGREES, NONCNTR

DEFECTS, PROB

MEU, SIGMA
LAMBDA

LOTSIZE, SAMPLE,
DEFECTS

PROB, SAMPLE

PROB, SAMPLE

SIGMA, SAMPLE

SIGMA, SAMPLE

DEGREES
LBOUND, UBOUND
SCALE, SHAPE

SCALE, SHAPE,
CENTER

Non-central F with non-centrality parameter
NONCNTR 2 0, DEGRNUM degrees of
freedom of the numerator and DEGRDEN
degrees of freedom of the denominator.
NONCNTR = 0 corresponds to the central
F-distribution

Non-central chi square distribution with non-
centrality parameter NONCNTIR 2 0 and
DEGREES degrees of freedom.
NONCNTR=0 corresponds to the central

chi square distribution.

Negative binomial (i.e. distribution of the
sum of DEFECTS geometric random
variables with mean 1/PROB)

Normal
Poisson

Distribution of the sample proportion of
defectives without replacement (i.e. of the
hypergeometric variable with parameters
N = LOTSIZE, n= SAMPLE and k =
DEFECTS, divided by the sample size, n )

Distribution of the sample proportion of
defectives with replacement (i.e. of the
binomial random variable with parameters
p=PROB and n = SAMPLE divided by n)

Distribution of the sample proportion with
replacement when the sample size is a Poisson
random variable with mean SAMPLE.

The theoretical proportion is p = PROB

Distribution of the sample range corresponding
to sample of size SAMPLE taken from a
normal population with st. deviation SIGMA
Distribution of the sample standard
deviation (2.3) corresponding to sample of
size SAMPLE taken from normal
population with st. deviation SIGMA.
Student’s distribution

Uniform

Weibull with parameters SCALE, SHAPE
Three-parametric Weibull with parameters

SCALE, SHAPE and location parameter
CENTER ot
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DFXBAR MEU, SIGMA Distribution of the sample mean
SAMPLE corresponding to sample of size SAMPLE
taken from a normal population with
mean MEU and st. deviation SIGMA.

The last two functions compute the d.f. of the Mahalanobis distance between the mulrivariate normal
sample mean and some fixed point (ex. centroid of the target region), pg. The parameter MAHAL
represents the Mahalanobis distance A (with respect to the covariance matrix) between the popu-
lation mean and g, (see (B.6)). DEGREES is the dimension of the multivariate observation and
SAMPLE is the sample size.

DFMAHAL MAHAL, DEGREES, Distribution of the Mahalanobis distance
SAMPLE with respect to a "true" covariance
matrix.
DFHOTEL MAHAL, DEGREES, Distribution of the Mahalanobis distance
SAMPLE with respect to an esimated covariance

matrix, S. The function F (V x/SAMPLE )
corresponds to a Hotelling’s
T2 - distribution.



Appendix B. Examples

Example B.1 (Cumulative s - chart). Consider the situation described in Example 2.1. Let the ob-
served process of (within sample) standard deviations be o 1 32. ... (see (2.3)). Suppose that for
every lot i, the measurements { );;, ¥p. -.- Vi } can be viewed as independent realizations of a
normal random variable with certain mean and standard deviation o. Let us assume that the sample
size is fixed (n = 4), and that because of the regular equipment maintenance operations the planning
"horizon" does not extend beyond 200 samples; in particular, if the process is on-target, the proba-
bility of not getting a false signal within 200 samples should be at least 0.99. Under these assump-
tions, we would like to find a Cusum-Shewhart_ scheme for controlling o with the best possible

out-of-target performance.

To design a scheme satisfying these criteria we use the special function CUSUMS:

4 2 &4 CUSUMS 200 0.99

The observations are distributed as § with SIGMA=2 SAMPLE=4

Stepl: Search for H satisfying Prob.(R.L.>200)=0.99

Stepl complete; H=3.51342, Prob.(R.L.>200)=0.990356

Analysis of upper Cusum scheme with parameters H,K= 3.51342 2.76395
The level of discretization is 30

The changing parameter name is SIGMA

SIGHA ARL SDRL
2.0 20411.4 20408.7
4.0 4.6 2.9

Enter the values of H, K, HEADST. and CD for further analysis (or 0 to exit):
3.4 2.8 0 12

Enter additional values of SIGMA for which the analysis is to be performed:
2.5 33,5 '

Enter the values of R for which Prob.(R.L. > R) is to be computed:
5 10 200

Analysis of upper Cusum scheme with parameters H,K= 3.4 2.8
The level of discretization is 30

The observations are distributed as § with SAMPLE=4

The changing parameter name is SIGMA

SIGMA ARL SDRL 5 10 200
2.0 20529.0 20526.5 .99985 .99961 .99040
2.5 141.0 137.9 .98160 .94776 .23902

3.0 18.1 15.4 .83412 .60713 .00000
3.5 7.4 5.4 .5458B0 .21099 .00000
4.0 4.6 2.9 .28578 .04685 .00000

Enter the values of H, K, HEADST. and CD for further analysis (or 0 to exit):
° .
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As we can see, the ARL corresponding to o=4 is 4.6. One could roughly predict this value without
going into computations by noting that every observation contributes about }:(3 )=k=oa/c(n) -k
to the upper Page’s scheme. Therefore,

h

ARL N

(B.1)

which in our case (h = 3.4,k = 2.8, ¢(4) = 1.09, 0 = 4) results in 4.5. Clearly, such approximation
is appropriate only for off-target situations in which the mean of the observations substantially ex-
ceeds the reference value. The formula (B.1) neglects the effect of reflection of the Page’s scheme
at 0, which tends to overestimate the ARL. On the other hand, in many cases this tendency is more
than compensated by the fact that the amount of ox'ersl;oot of the Page’s scheme over 4 at the mo-
ment of signal is not taken into account. In other words, the degree of accuracy of (B.1) is typically
unclear; nevertheless, formulas of this type may serve as a yardstick for the purpose of rough assess-
ment of the ARL curve in off-target region, choice of the initial approximation for 4 to be used in
the design procedure, etc.

Finally, let us mention another approximation, related to analysis of on-target situations. Suppose that
we would like to evaluate the quantile of order y of the RL distribution, i.e. to find ¢ satisfying
Prob.(RL > g) = y. Since the on-target RL usually has a distribution somewhat similar to exponen-

tial, one can approximate g by

q = —ARL x logy. (B.2)

This approximation can be rough, especially for high values of y. For example, for y = 0.99961 and
ARL=20529, it results in g = 8, while the above output indicates that the quantile corresponding to
o=2 is g=10. However, it usually produces a good initial "guess" that can be subsequently refined;
moreover, it is of use in cases where no analytic analysis of the RL is possible, and one bas no choice

but to use simulation (see Example B.7).
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Example B.2 Consider once more the situation described in Example 2.1. Under the assumption that
the sample (subgroup) size is n = 4 and the standard deviation of a single measurement is o = 3, let
us examine the performance of the two-sided Page's scheme with parameters

(h* =9, kt =3, s =2, h~ =5, k= =2, 55 = 1) considered in this example with respect to the
the following values of the process level: g = 6,3, 1,0, -2, 4.

Tp perform the analysis, we use the function TWOXPLR:

‘SIGMA SAMPLE' ASSIGN 3 4

‘MEU' SETXPLR (6, 3, 1, 0, (-2), (=4))
0 SET 21 ' :

9352 TWOXPLR ‘'DFXBAR'

Analysis of the two-sided Cusum scheme with parameters:

F+ K+=9 3 and K-, K- =5 2

The levels of discretization are D+,D- = 30 17

The observations are distributed as X-bar with SIGMA=3 SAMPLE=S
The changing parameter name is MEU

The values of the headstarts are 2 1

MEU P(UP) ARL SDRL
6 1.000 2.9 %

3 1.000 47.5 L1.8

1  .102 .4BLEO7 .4BLEO7

0 .000 39719.5 39722.0
=2 .000 19.1 16.5
=4 .000 2.8 1.2
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Example B.3: Spin dryers are used as one of the steps in the production of integrated circuit chips
from semi-conductor wafers. Typically, the process steps are followed by m with deionized, fil-
tered water. After the rinsing, the water is removed by placing the wafers into the spin dryer
(centrifugal device), that spins the water off the wafers (and accelerates evaporation by using dry

filtered gas).

Periodically, test wafers are run through the rinse and drying cycle and the particles on the wafer that
are larger than a specified diameter are counted. The recorded counts serve as a basis for the decision
to clean and re-test the spin dryer. Under normal conditions, the level of the process
{0}, 05, ... } of the recorded counts does not exceed 6. Levels of the process exceeding 12 are
associated with a high rate of defective pmductfon — situations in which the process of counted con-
taminating particles reaches this level should be detected as soon as possible. On the otber hand,
since cleaning and re-testing represent an expensive and tedious procedure, we are interested in a
cusum control scheme for which the probability of a false signal within 100 tests is not more than
0.01, and, at the same time, the sensitivity with respect to the levels of the process exceeding 12 is
as high as possible.

On the basis of theoretical considerations, there is reason to believe that (during a certain initial pe-

riod of time) the counts { o; } form a sequence of iid Poissqn random variables with parameter A .

To perform the design and analysis of such cumulative ¢ - chart, we use the function CUSUMC:

6 12 CUSUMC 100 0.99

The observations are Poisson with mean LAMBDA=6

Stepl: Search for H satisfying Prob.(R.L.>100)=0.99

Upper bound of the search has been reached. Repeat the search with
a more precise estimate of the signal level. The last approximation:
H=4.55 Level of Discr.=46 Prob.(R.L.>100)=0.47

Unfortunately, our first attempt fails. The output indicates that the sought value of 4 is substantially
higher than 4.55. So, let us introduce the initial point of search Ay = 10 and (to save CPU time) use

the interval of discretization § = 0.2.
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6 12 10 0.2 CUSUMC 100 0.99
The observations are Poisson with mean LAMBDA=6
Stepl: Search for H satisfying Prob.(R.L.>100)=0.99
Stepl complete; H=10.9, Prob.(R.L.>100)=0.9897
Analysis of upper Cusum scheme with parameters H,K= 10.9 8.6
The level of discretization is 55
The changing parameter nmame is LAMBDA

LAMBDA ARL SDRL
6 945B.8 9455.9
12 4.0 1.8

Enter the values of H, K, HEADST. and CD for further analysis (or 0 to exit):
10.9 8.6 0 123
Enter additional values of LAMBDA for which the analysis is to be performed:

8 10

Enter the values of R for which Prob.(R.L. > R) is to be computed:
5 10 100

Enter the Shewhart's Limit:
18.5

Analysis of upper Cusum scheme with plrmtcrs H,K= 10.9 8.6
The level of discretization is 55

The observations are Poisson

The changing parameter name is LAMBDA

The scheme is supplemented by the Shewhart limit 18.5

LAMBDA ARL SDRL 5 10 100
6 B8685.1 8682.4 .99967 .99910 .98880

8 54.5 50.3 .96458 .8B249 .14739

10 8.1 5.0 .63735 .23663 .00000

12 4.0 1.9 .17021 .00654 .00000

Enter the values of H, K, HEADST. and CD for further analysis (or 0 to exit):

The above output suggests that the scheme h = 10.9, k = 8.6 assures about the best possible sensi-
tivity (ARL=12) with respect to A = 12 particles/wafer. In order to improve sensitivity with respect
to very high levels of contamination, we supplemented the scheme by a Shewbart Limit, ¢ = 18.5.

Could these results be independently verified, say, by using simulation? In the off-target case this is

not difficult to do:

5 SET 1

6 SET -1

5«-10.9 8.6 18.5 ONERUN (2000 SIMPOIS 12)
STATIST LENGTHS

Number of observations: 509 Mean: 3.93 Median: 4
Minimum: 1 Maximum: 13 Range: 12

Estimates of Stand. deviation: §=1.93 SD=1.87 SR=1.93
Regression slope: 0.00088 Skewness: 1.38 Kurtosis: 3.27

In the on-target situation, however, the simulation may become very expensive. Indeed, one would

need to generate about 9000 Poisson variables in order to obtain a single out-of-control signal!
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Clearly, the number of observations needed in order to get a good estimate of the ARL and other
relevant quantities could well run into millions. This example shows that in the problem of analysis
of control schemes analytic methods can produce results which cannot be obtained by simulation.

There is, however, another way of verifying the results by using simulation, which is outlined in the
Exawmple B.4.

Now let us suppose that the process operates for a long time at the level A = 6 particles/wafer, and
then its level shifts to 12 particles/wafer. What can we say about the distribution of the Residual Run
Length? To answer this question, we can invoke the steady state analysis (see Appendix D) right from

CUSUMC and continue its run as follows:

[ ]
Enter the values of H, K, HEADST. and CD for further analysis (or 0 to exit):
10.9, 8.6, (-1)

Analysis of upper Cusum scheme with parameters H,K = 10.9 8.6
The level of discretization is 55

The observations are Poisson

The changing parameter name is LAMBDA

The headstart is out of range; steady state analysis assumed
The scheme is supplemented by the Shewhart limit 18.5

LAMBDA ARL SDRL 5 10 100
6 B682.9 B8682.3 .99943 .99885 .98855

8 54.1 50.3 .95950 .B7667 .14638

7.9 5.0 .62233 .22985 .00000

12 3.9 1.8 .16271 .00621 .00000

Enter the values of H, K, HEADST. and CD for further analysis (or 0 to exit):
0

As we can see, the outlool: of sensitivity is somewhat better in terms of the Residual RL. This is

clearly related to the fact that the scheme may have a non-zero value (beadstart) at the moment the

shift occurs.




Example B.4 (Analysis of a scheme on the basis of an empirical distribution). In our previous dis-
cussion we always assumed that our observations come from some known family of distribution
functions. Under this assumption, control of the process becomes essentially control of certain
“crucial” parameters of the family (ex. normal mean). However, it occurs quite frequently that the
only thing we know about the process is data (corresponding to "good" and/or "bad" states of the
process), and we would not like to commit ourselves to any particular family of distributions. In such

situations one can use the empirical (or sample) distribution function instead of the unknown dis-

tribution for purposes of design and analysis.®

To illustrate this approach let us first assume that the observations come from a normal family with
standard deviation 1 and examine the performance of a scheme A = 3, k = 1 with respect to the

process levels p = 0.5, 1, 1.5 and 2:

2 SET 10 20 50

'SIGMA' ASSIGN 1

'MEU' SETXPLR 0 0.5 1 1.5 2
(3 1) ONEXPLR 'DFNORM'

Analysis of upper Cusum scheme with parameters H,K = 3 1
The level of discretization is 30

The cobservations are normal with SIGMA=1

The changing parameter name is MEU

MEU ARL SDRL 10 20 50
0 1958.0 1955.6 .99589 .99081 .97572
5 117.5 114.4 .93773 .85926 .66098

.0 17.4 14.2 .60252 .29662 .03529
5 6.4 3.8 .12799 .00800 .00000
0 3.7 1.7 .00464 .00000 .00000

N == O

Now let us generate a set of 10000 standard normal observations and assume that this is the data at
hand. Suppose that we know that the typical ways of our process going out of control are related to
shift and/or scaling of the appropriate on-target distribution. Thus, let us try to shift our data by
0.5, 1, 1.5 and 2 and examine the performance of the above scheme with respect to the corresponding

empirical distributions:

» This type of approach leads to so-called "bootstrap” estimates of the characteristics of the Run Length. For more in-
formation about this technique see Efron (1951).
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‘DATA' ASSIGN (10000 SIMNORH 0 1)

'SCALE' ASSIGN 1

*LOCATION' SETXPLR 0 0.5 1 1.5 2
(3 1) ONEXPLR 'DFEMPIR’

Analysis of upper Cusum scheme with parameters H,K =31
The level of discretization is 30

The observ. come from empirical d.f. with SCALE=1

The changing parameter name is LOCATION

LOCATION ARL SDRL 10 20 50
1725.1 1722.9 .99523 .98947 .97239
0.5 113.4 110.3 .93571 .B5463 .65106
16.9 13.8 .59335 .28559 .03175
3.8 .12173 .00711 .00000
1.7 .00418 .00000 .00000

o

6.3
3.7

As one could expect, the results are fairly close to those obtained under the normal assumption. By
varying the second parameter of the empirical distribution, SCALE, we could examine the effect of

varying the standard deviation of the underlying normal process.

Of course, on the basis of our data, we could first estimate the standard deviation, then assume
pormality and, finally, analyze the scheme under the (fitted) normal model. However, the resulting
characteristics of the Run Length would depend strongly on validity of the assumption of normality.
The main moral of this example is, of course, that assumptions of this type can be completely un-
necessary, especially in situations where substantial amount of data is available - one can simply use

the empirical distribution.

There is, however, another important application of this technique. Indeed, the functions of
CONTRD enable us to mathematically analyze any distribution of incoming (iid) observations for
which we are able to provide an appropriate APL function (DFNORM, DFPOIS, etc.). However, in
some cases it may be pot easy to write such a function. In such cases analysis can still be performed
by using the above technique, provided one can efficiently generate the underlying sequences of ob-
servations. Consider, for example, the situation in which one is trying to monitor the wafer-to-wafer
variability within successive lots. Suppose that r wafers are selected at random from each lot, then

n measurements are taken from each wafer, and a variance component type esimate of the wafer-to-

wafer variance of is computed by using (7.3). This estimator is distributed as a non-negative part of
2. 2 2
Vilr= 1] x (o} + 0°/n) — V5lr(n = 1)] x o“/n,
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where o is the within-wafer standard deviation and V [i] corresponds to a chi - square random vari-

able with idegrees of freedom divided by i (the variables V] and ¥V, are independent).

Writing an APL function to efficiently compute the distribution function of the above estimator may
prove to be a tedious task. On the other hand, it can be easily simulated; the analysis can then be

performed on the basis of the resulting eﬁtpirical distribution.
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Example B.5 (Controlling the mean of a Weibull population). Consider a line for serial production
of certain electronic devices. Every 10 minutes a device is picked from the conveyor and subjected
to an accelerated life test. The resulting sequence of life times serves as a basis for assessing the
quality of the process. Statistical data analysis indicates that the life time of the device is typically
distributed as a Weibull r.v. with a relatively stable shape parameter ¢ =4. The variability in life times

(and, of course, the process quality) depends primarily on the scale parameter, a.

If the level (mean) of the sequence exceeds 1.5 min, the process quality is satisfactory; under these
conditions we are definitely interested in protection against false alarms. If, however, the level falls
to 0.5 min, we would like to detect it as soon as possible; in such a case we sti‘ll can afford to be late
by a half an hour or so. Thus, let us try to find an appr;apriate Cusum control scheme based on the
sequence of recorded life times. We start by noting that it makes sense to choose the midpoint k =-1
as a reference value of our (lower) control scheme. Since the mean of the Weibull population is
aT(c—! + 1), the values of a corresponding to the mean life of 1.5, 1 and 0.5 are 1.7, 1.1 and 0.6,
respectively. So, let us find a scheme for which the off-target ARL is 3 (given our sampling intensity,

this corresponds to ATS = 30 min):

'SHAPE SCALE' ASSIGN & 0.6
'SCALE' SETXPLR 1.7 1.1 0.6
0 SETFIND 3
(3, (-1)) ONEXPLRDL 'DFWEIB2'
The observations are Weibull with SHAPE=4 SCALE=0.6
Stepl: Search for H satisfying ARL=3
Stepl complete; H=1.10625, ARL=2.9836
Analysis of lower Cusum scheme with parameters H,K = 1.10625 -1
The level of discretization is 30
The changing parameter name is SCALE
SCALE ARL SDRL
1.7 5373.2 5370.9

1.1 25.1 20.4
0.6 3.0 .6

Thus, our "brutal" approach results in a- scheme with a seemingly reasonable resolution. Can it be
substantially improved? To answer this question, we should recall that under the Weibull assumption,
| sum of the ¢ -th powers of the observations is a sufficient statistics for a and, therefore, one can ex-
pect that a more powerful control procedure (when ¢ is known) can be based on the ¢ -th powers

of the recorded life times. It is easy to see that ¢ -th power of a Weibull observation is distributed

64



exponentially with mean «f. Since (1.7, 0.9, 0.6)* = 8.3521, 0.6561, 0.1296, we can use the func-

tion CUSUMT as follows:

8.3521 0.1296 CUSUMT 3 0 1

The observations are Exponential with mean THETA= 0. 1296

Stepl: Search for H satisfying ARL=3

Stepl complete; H=0.998378, ARL=2.96237

Analysis of lower Cusum scheme with parameters H.R- 0.998378 -0.548399
The level of discretization is 34

The changing parameter name is THETA

THETA ARL SDRL
B8.3521 7345.9 7343.9
0.1296 3.0 .6

Enter the values of H, K, HEADST. and CD for further analysis (or 0 to exit):

10.5501
Enter additional values of THETA for which the analysis is to be performed:

0.6561

Analysis of lower Cusum scheme with parameters H,K= 1 -0.55
The level of discretization is 30

The observations are Exponential

The changing parameter name is THETA

THETA ARL SDRL
8.3521 7107.2 7105.2
0.6561 12.2 9.5
0.1296 3.0 .6

Enter the values of H, K, HEADST. and CD for further analysis (or 0 to exit):
0

The above output shows that under our conditions, control scheme based on the 4-th powers of the
life times would increase the resolution by about 409. We must, however, warn the reader not to
misinterpret this statement. Indeed, instead of matching the sensitivity, let us try to match the on-

target performance of the original scheme, i.e. design a scheme for which the ARL is 5373.2:

8.3521 0.1296 CUSUMT 5373.2

The observations are Exponential with mean THETA= 8.3521

Stepl: Search for H satisfying ARL=5373.2

Stepl complete; H=0.968575, ARL=5338.39

Analysis of lower Cusum scheme with parameters H,K= 0.968575 -0.548399
The level of discretization is 33

The changing parameter name is THETA

THETA ARL SDRL
8.3521 5338.4 5336.5
0.1296 2:9 .6

Thus, for a fixed on-target ARL, use of the transformed observations reduces the sensitivity from 3
to 2.9, which could hardly be viewed as a dramatic improvement. This example shows not only that

the scheme based on the recorded life times may be not so bad after all, but also that one must be
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prepared to sacrifice a lot of protection against false alarms in order to "buy" a relatively small
amount of sensitivity. The reason for that is related to the fact that, as 4 increases, the off-target
ARL grows at a roughly linear rate, while the on-target ARL grows exponentially. One should keep
in mind, however, that reduction of the off-target ARL by as little as 0.1 majr sometimes significantly
reduce the right tail of the RL distribution (i.e. probability of not catching the change within a short
period of time). Indeed, ARL=1 means that the change in process level will be definitely detected in
the first sampling period; ARL=1.1 means that with probability roughly 109 the change will not be

detected immediately.
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Example B.6 In the process of galvanic plating, one is interested in monitoring the concentration of
copper in the bath. In order do so, he takes periodic measurements from a prescribed place in the
bath. The measurements are relative with respect to some target concentration; so, when the process

is on target, the level u of the sequence of recorded measurements must be 0. On the other hand, if

the process level settles outside the interval (-2,2), quick corrective action is required; in particular,

if p = F 2, we can still tolerate it for about an hour, provided there is no deterioration of the process
variability. Under normal operating conditions, the relative measurements are normally distributed
with mean g and standard deviation ¢ = 1.2, which incorporates both the measurement error and
variability in time.

Our main objective is to determine the sampling intensity (SI) necessary for being able to derive a
Cusum scheme with satisfactory resolution. We shall characterize the perforrpance of a scheme in
terms of its Time to Signal (TS), which corresponds to Run Lcng-lh divided by the sampling intensity.
We shall require that for p = 2 and -2 the Average TS (ATS) = 1 bour (in other words, the ARL for
g = 2 and -2 must be 5). First, we examine the scheme corresponding to SI = 5 measurements/hour.
We start by designing an upper scheme satisfying ATS=1; subsequent combining of it with an anal-

ogous lower scheme yields the symmetric two-sided scheme of interest.

11.202 CUSUMX 501

The observations are distributed as X-bar with

MEU=2 SIGMA=1.2 SAMPLE=1

Stepl: Search for H satisfying ARL=5

Stepl complete; H=4.24474, ARL=4.99342

Analysis of upper Cusum scheme with parameters H,K = &.24474 1
The level of discretization is 30

The changing parameter name is MEU

MEU ARL SDRL
0 1755.6 1752.3
2 5.0 2.4

Enter the values of H, K, HEADST. and CD for further analysis (or 0 to exit):
4.24 1 0 1012

Enter additional values of MEU for which the analysis is to be performed:
1

Enter the values of R for which Prob.(R.L. > R) is to be computed:
5 10 50 100

Analysis of the two-sided Cusum scheme with parsmeters:

H+,K+ = 4.24 1 and H-,K- = 4.24 1

The levels of discretization are D+,D- = 30 30

The observations are distributed as X-bar with SIGMA=1.2 SAMPLE=1
The changing parameter name is MEU

MEU P(UP) ARL SDRL 5 10 S0 100
0 .500 B872.0 B868.7 .99732 .99176 .94713 .B9416
1 1.000 22.1 18.1 .90845 .70529 .07592 .00466
2 1.000 5.0 2.4 .32883 .03094 .00000 .00000

Enter the values of H, K, HEADST. and CD for further analysis (or 0 to exit):
0
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As ope can see, combining the one-sided schemes into a two-sided one does not have much effect
on the detection capability. Indeed, if the process level settles at say, -2, the upper scheme is practi-
cally idle and the two-sided scheme becomes operationally equivalent to a one-sided (lower) scheme.
On the other band, such combining increases the risk of a false alarm; in particular, for our symmetric
scheme it reduces the ATS by a factor of 2, to 872.0/5 = 174 hours; the probability of not having a

false alarm within 10 hours is 0.94713.

A sample run corresponding to this scheme is given in Fig. B.1. The first 30 observations of this run
correspond to the process level p=0, the next 30 - to u=2. As we can see, our Cusum scheme signals
at the observation 36, i.e. RL=6 (TS=1.2 hour), as could be expected from the design considerations.
For comparison, we also plotted the data and applied the Shewhart 3-Sigma control limits. In this
particular run, the Shewhart scheme signals later: RL=8 (TS=1.6 hour); the comparison treats the
Shewhart scheme more than fairly, since, as one can see from Fig. 1.1., its ATS is (740/2)/5 = 74

hours, which is worse than on-target ATS=174 of the Cusum scheme.

In the process of assessment whether performance of the derived Page’s scheme is satisfactory or not,
one should take into account, among the other things, the fact that the level of concentration of
copper is not likely to be the only parameter to be controlled - the control system will probably
process concentrations of other chemicals, variability in time, etc. If, say, the system was to control
15 parameters of the above type, the probability of not having a false alarm within 10 hours becomes
(0.94713)15=0.45. Clearly, one could improve the performance by increasing the sampling intensity.
For example, raising the intensity to 10 measurements/hour leads to a (symmetric) scheme

h=9.298, k=1 with on-target ATS of 98000 hours and probability of having no false alarm within
10 hours 0.9999. Another way to improve the resolution would be to take several measurements at
a time, and base the control procedure for p on the sample averages; this could reduce the "within-
bath" portion of the total variability. As an exercise, we suggest the reader to examine these possi-

bilities in more detail.

In conclusion, let us give some remarks related to the principle of immediate utilization of the in-

coming information mentioned in the Introduction. Suppose that one measurement is taken every 0.1
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bour, and we have an option to use subgroups of size 1 (i.e. no subgrouping), 2, 5 or 10. For every
subgrouping policy, let us design a Cusum scheme having an on-target ATS of 98000 hours, and

consider the off-target performance for g = 2 and p = 3. The results are as shown in Table B.1.3

Sample Samples Signal

size per hour level ATS P(TS> 1) P(TS > 2)
1 10 9.30 1.00 (0.53) 0.38 (0.0018) 0.013 (0)
2 5 4.38 1.02 (0.55) 0.35(0.0013) 0.011(0)
5 2 1.56 1.10 (0.60) 0.28 (0.0006) 0.009 (0)
10 1 0.68 1.20 (1.00) 0.20 (0.0003) 0.006 (0)

Table B.1. Effect of various subgrouping policies on the resolution power of a two-sided scheme.
The observations are iid normal with ¢ = 1.2, and both reference values are set to 1. The
(off-target) ATS and associated probabilities are computed for g = 2 and 3 (in paren-
theses). Every scheme has an on-target ATS of 98000 hours.

This table indicates that best resolution power (in terms of the ATS) is achieved when no artificial
subgrouping is used, i.e. the scheme is updated 10 times per hour. Such policy is especially of use in
situations where large deviations of the process level from its target value are possible. For example,
for p = 3 the off-target ATS is 0.53 hours compared to 1 hour corresponding to the case when a
subsample of size 10 is taken once per hour; clearly, this may represent a serious advantage, espe-
cially in the environment of conveyor-type manufacturing, where the off-target ATS can be directly

translated into amount of substandard product.

On the other hand, the probability of not catching the same value of g within an hour is smaller when
artificial subsampling is used! This phenomena is not difficult to explain: when the scheme is updated
frequently, shorter values of the TS become possible and the ATS is driven down; however, some of
the information can be lost along the way, because of the possible regenerations of the underlying
Page’s schemes - therefore, some longer runs also become possible.?? In contrast, schemes based on
subgrouping tend to have a longer "memory" (and therefore are somewhat less likely to overlook a

long period of persistently poor quality), but are unable to react quickly. The mentioned "memory"

o To obtain, say, the second entry of this table, note that the on-target ARL of the one-sided scheme must be 98000 X
2 X 5 = 980000; thus, the analysis can be performed by using the statement 2 1.2 0 2 CUSUMX 980000.

L The probabilities of such runs can usually be driven down by supplementing a2 Cusum scheme with Shewhart’s limits.
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is not always a plus, as it introduces inertia into the control process. Indeed, assume that the process
level changed after a 1/2 hour period. Then half of the observations used in the next updating of a

scheme based on subsamples of size 10 are "worse than irrelevant”.

In summary, we feel that sampling as frequently as possible and updating the scheme(s) as soon as
the new information arrives still represents a good policy, since its minor drawbacks are typically
more than compensated by our improved ability to react quickly to large deviations in the process

level.
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Fig. B.1. A sample run corresponding to Example B.6.
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Example B.7 Consider the process of wiring the chips in which we are interested in controlling the
beight of lines connecting the transistors. The processing is on a lot by lot basis; the control proce-
dure should be based on 12 measurements corresponding to three wafers (4 measurements/wafer)
taken from each lot. In accordance with specifications, the height of ewery wire should be between
3 and 5 micron. The primary purpose of the control scheme is to keep the escape rate on this char-
acteristic as low as possible. Extensive data corresponding to various periods of time during which the

process operated in a stable and satisfactory mode brought the engineers to the following conclusions:
a)About 50 lots are processed every shift.
b)The process level should be as close as possible to 4 mic.

c)Most of the process variability is attributed to its lot-to-lot component o, which is typically around
0.1 mic; levels exceeding 0.2 were never observed under normal operating conditions and could be
considered as "bad". The within-wafer variability is very stable, at the level of ¢ = 0.05 mic. The

wafer-to-wafer variability within the lot can be neglected.

d)The model for the j-th measurement of the i-th lot

)’U-jl+L"+8"j. j- l. 2, - 12. (3.3)

where y is the grand mean (level) of the process, L; is the effect of the lot (normal with mean 0 and
s.d. 0),and ¢ is the "noise" (normal with mean 0 and s.d. ¢ ) can be reasonably assumed for the

purpose of design and analysis of the control schemes of interest.

The above conclusions imply that under satisfactory operating conditions, the total variability is
.around \/m = (.11 and should not exceed \/m = 6.2]. Therefore, one could
consider the interval (5 -3 x 0.21, 3 + 3 x 0.21) as a target region for the grand mean; however,
let us be conservative and require protection from false alarms if p belongs to a shorter interval, (3.8,
4.2). Further, if g settles at the level above 5-3 x 0.11 = 4.67 orbelow 3 + 3 x 0.11 = 3.33, it

becomes impossible to eliminate defective product; to protect against unexpected sources of vari-
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ability, we shall declare u < 3.4 and g > 4.6 as regions for which the cumulative X - chart should

bave good detection capability, i.e. "bad" regions (see Fig. B.2).2

k =-3.6 k =4.4
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Real data
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Fig. B.2. "Good" and "bad" domains for the grand mean.

Now let us try to design the mentioned X - chart for controlling u and see what resolution can be
obtained under the present SI. Our immediate concern is related to sensitivity: in particular, under
normal operating conditions, we would like to assure that the probability of detecting the event p <

3.4 or p> 4.6 within 2 lots be at least 0.95. The s.d. of X under normal conditions is

v 0.12 + 0.052/12 = 0.101=0.1, which clearly indicates that the within-sample variability is not
likely to affect the performance of the chart. In order to be able to design a symmetric two-sided
scheme without exiting from the special function CUSUMX, let us shift the measurements by 4, so
that the target level becomes 0. Clearly, the target rcgi?n for the shifted data becomes (-0.2, 0.2);
levels beyond the interval (-0.6, 0.6) correspond to "bad" state of the process (see Fig. B.2). As

usual, we start by designing an upper scheme, and then symmetrize it:

al Note that the analysis of the domain for g is based primarily on the behavior of total variability and does not take into
account the sampling intensity. Indecd, the laticr does not determine what is "good" and "bad" behavior of the under-
lying process, but whether the inflow rate of infornmation enables us 1o resolve between these levels.
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10.10.20.6 CUSUMX 2 0.05 1

The observations are distributed as X-bar with

MEU=0.6 SIGHMA=0.1 SAMPLE=]

Stepl: Search for H satisfying Prob.(R.L.>2)=0.05

Stepl complete; H=0.174907, Prob.(R.L.>2)=0.0492814

Analysis of upper Cusum scheme with parameters H,K = 0.174907 0.4
The level of discretization is 30

The changing parameter name is MEU

MEU ARL SDRL
0.2 9403.1 9402.4
0.6 1.5 .6

Enter the values of H, K, HEADST. and CD for further analysis (or 0 to exit):
0.175 0.4 0 1012

Enter additional values of MEU for which the analysis is to be performed:
0 0.4

Enter the values of R for which Prob.(R.L. > R) is to be computed:
2 5 50 100

Analysis of the two-sided Cusum scheme with parameters:

H+,K+ = 0.175 0.4 and H-,K- = 0.175 0.4

The levels of discretization are D+,D- = 30 30

The observations are distributed as X-bar with SIGMA=0.1 SAMPLE=1
The changing parameter name is MEU )

MEU P(UP) ARL SDRL 2 5 50 100

.500 .112E09 .112E09 1.00000 1.00000 1.00000 1.00000
1.000 9435.8 9435.1 .99981 .99949 .99473 .98948
1.000 8.5 7.0 .86364 .57031 .00085 .00000
1.000 1.5 .6 .04936 .00004 .00000 .00000

=N-K-]
aPFrNO

Enter the values of H, K, HEADST. and CD for further analysis (or 0 to exit):
0

As one can see, under the given sensitivity requirements, we are also able to achieve a good degree
of protection against false alarms; for example, the probability of a false alarm during a shift (50 lots)
does not exceed 0.5%. Such good resolution was to be expected, since the width of the intermediate
region, 0.4 (=0.6-0.2) is roughly equal to four standard deviations of an observation (which is in our
case X). However, if we lose control over the total variability (esp. its dominant contributor, lot-to-
lot variabilit_yl. the resolution power of the scheme may be severely damaged. For example, consider
the situations corresponding to s.d. of of the sample means, v/ of + 02/12, accepting values 0.1,
0.15 and 0.2, when the grand mean p is at the upper bound of the target region. For demonstration
purpose, let us return to our original (non-shifted) data. Clearly, both signal levels remain unaffected,

while the reference values become k+ =0.4+4=4.4 and k~=0.4-4=-3.6, i.e. as shown in Fig. 2.1.
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:nzu SAMPLE" ASSIGN 4.2 1
- "SIGMA' SETXPLR 0.1 0.15 0.2
2 SET 2 5 50 100

(0.175, 4.4, 0.175, (-3.6)) TWOXPLR 'DFXBAR'

Analysis of the two-sided Cusum scheme with pa
amet :
H+,K+ = 0.175 4.4 and H-,K- = 0.175 -3.6 i
Ee ];vels of discretization are D+,D- = 30 30
e observations are distributed as X-bar with HMEU=4.2 S
The changing parameter name is SIGMA MIPLESL

SIGHA P(UP) ARL SDRL 2 5 50 100
0.10 1.000 9435.8 9435.1 .99981 .99949 .99473 .98948
0.15 1.000 129.8 129.1 .98628 .96365 .68004 46167
0.20 .999 27.9 27.2 .93504 .83795 .16182 .02603

By examining the "bad" levels of  in a similar way, one can see that increase in s.d. also affects de-
tection capability, though to a much lesser extent.3 A m;nch more serious is its effect on the escape
rate. Indeed, if the total s.d. reaches 0.2 at the time the grand mean is at the level p =4.6, one could
expect 2.5% of the wires to fall out of specifications; taking into account that the number of wires

on a chip is very large, one should not expect high yields on the chip level.?

Next let us try to design a scheme for controlling the lot-to-lot variability. Since the s.d. of X is pri-
marily related to o, the sequence { d; } as defined in Sec. 2 is appropriate for this purpose. Unfor-
tunately, the successive mémbers of this sequence are correlated (positively), therefore, we have no
choice but to use simulation in order to assess the properties of a scheme. Let us choose the reference
value k=0.15 (i.e. in the middle between 0.1 and 0.2) and try lo find A for which the off-target ARL
is about 10, which would, hopefully, lead to a high probability of detecting the presence of excessive
lot-to-lot variability within one shift. In accordance with formula of type (B.1), the off-target ARL
can be roughly approximated to be //(0.2-0.15); therefore, we can start by examining the on-target

performance of a scheme corresponding to the signal level A=0.5:

i This can be easily explained by the fact that under the off-target conditions the RL is determined primarily by the rate
of drift of the Page’s scheme towards the signal level, i.e. by the excess of the process level over the reference value: on
the other hand, under the on-target conditions the RL is strongly affected by the tail properties of the underlying dis-
tribution and, consequently, by its s.d. and probabilities of large deviations (also see problems B.1 and B.4).

o It is not difficult to derive a formula for percent of defective chips under the model (B.3). As onc may expect, the yicld

depends not just on the total variability, but also on its individual components; clearly, poor yields correspond to situ-
ations in which the within-wafer variability is 2 dominant component.
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5 SET 1

6 SET -1

S--0.5 0.15 ONERUN (0 SELECT 20000 SIMNORM O 0.101)
STATIST LENGTHS

Number of observations: 35 Mean: 561 Median: 348
Minimum: 65 HMaximum: 1811 Range: 1746

Estimates of Stand. deviation: $=502 SD=498 BR=493
Regression slope: 12.4 Skewness: 1.02 Kurtosis: -0.24

Since only 35 out-of-control signals were observed during this run, the study needs to be repeated
several times in order to obtain an assessment of better quality.* On the basis of the above output,
we could expect the ARL to be around 600, and, by (B.2), the probability of no false alarm within a

shift to be around exp( —50/600) = 0.92. Analoéously, we can examine the off-target performance

of our scheme: -
5 SET 1
6 SET -1
S«e=0.5 0.15 ONERUN (0 SELECT 10000 SIMNORM O 0.2005)
STATIST LENGTHS
Number of cobservations: 1015 Mean: 9.8 Median: 8

Minimum: 1 Maximum: 67 Range: 66
Estimates of Stand. deviation: §=7.6 SD=7.2 SR=7.6
Regression slope: =0.0007 Skewness: 1.92 [Kurtosis: 6.07

This simulation study shows that the off-target ARL and SDRL are about 10 and 7.5, respectively.
Since relatively many (1015) signals were observed, we can also obtain a good assessment of the RL
distribution (one could use the function DFEMPIR for this purpose). In particular, the probabilities

that the RL will exceed 20 and 50 were estimated to be 0.09 and 0.001, respectively.

The fact that the resolution of our scheme is much poorer than that of an X — scheme considered
earlier may or may be not a matter of concern. Indeed, the practical (or economical) consequences

of a false alarm produced by an X — chart may be completely different from those caused by

o When the number of out-of-control signals typically observed in a single simulated run is very small, neglecting the last
part of the Cusum trajectory (for which no signal was triggered), or disregarding simulations that produced no signals,
may lead to serious underestimation of the RL. If no headsiarts are used, one could reduce the bias by adding the re-
mainder to the first run length observed in the next simulation. :
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schemes monitoring lot-to-lot variability, within-lot variability or other parameters - since states of
various parameters are frequently associated with different sets of tools, different operators, etc. The

same, of course, can be said with respect to sensitivity.

Finally, let us consider the problem of monitoring the within-lot variability. We know that under
normal conditions, ¢ should not exceed 0.05; therefore, any value greater than 0.05, say, 0.0501,
could be considered as "bad". However, our sampling intensity does not enable us to resolve between

- A -
levels so close one to another. Since the s.d. of o is

5.d.6) =aV 1 =[] 2 =o(1 = 1.02372) = 0.21q, (B.4)

one could expect to be able to detect relatively quickly an increase in ¢ by about 0.02. Thus, let us
declare ¢ < 0.06 as a target region for o, and ¢ > 0.08 as a ""bad” region. Now we shall try to design
a scheme for which the probability of a false alarm (when ¢=0.06) within a shift (50 lots) does not

exceed 0.01:

12 0.06 0.08 CUSUMS 50 0.99

The observations are distributed as S with SIGMA=0.06 SAMPLE=12
Stepl: Search for H satisfying Prob.(R.L.>50)=0.99

Stepl complete; H=0.0616966, Prob.(R.L.>50)=0.990405

Analysis of upper Cusum scheme with parameters H,K = 0.0617 0.0684
The level of discretization is 30

The changing parameter name is SIGMA

SIGMA ARL SDRL
0.06 4771.0 4766.4
0.08 7.0 3.8

Enter the values of H, K, HEADST. and CD for further analysis (or 0 to exit):
0.06 0.07 0 12

Enter additional values of SIGHA for which the analysis is to be performed:
0.05

Enter the values of R for which Prob.(R.L. > R) is to be computed:
25 50 100

Analysis of upper Cusum scheme with parameters H,K = 0.06 0.07
The level of discretization is 30

The observations are distributed as S with SAMPLE=12

The changing parameter name is SIGMA

SIGHMA ARL SDRL 2 5 50 100
0.05 .941E09 .941E09 1.00000 1.00000 1.00000 1.00000
0.06 10142.0 10138.0 .99999 .99982 .99542 .99052
0.08 7.8 4.6 .96090 .63028 .00002 .00000

Enter the values of H, K, HEADST. and CD for further analysis (or 0 to exit):
0 A
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The above output indicates that with the desired degree of protection against false alarms, we also
have a basis for hope that should a significant increase in o. take place somewhere during a shift, it
will be detected by its end. Note that these conclusions depend on the validity of our assumption that
wafer-to-wafer variability within a lot can be ignored. If it can't, one should base the control scheme
for o on the average of (three) sample standard deviations corresponding to different wafers of the
lot. As mentioned in the end of Sec. 4.4., this is equivalent to reduction of the sample size from 12

to 143 x (4-1)=10.

A simulated sample run of the process is shown in Fig. B.3. The "true" parameters corresponding
to the four successive sets of 20 lots are (p = 4.0, 0, = 0.1, ¢ = 0.05), (4 = 4.0, g5, = 0.2,
o= 0.05),(np=4.0,05 = 0.1, 0 = 0.08) and (p = 4.6, t’_rb = (.1, o = 0.05), respectively. One of the
charts corresponds to the total variability, of + o2. It is based on the sequence of unbiased estimators
{2 i=1,2, ...}, where

, (=16} +3%)

Lo o :
;‘?-?(x,.ﬁ—x,.) + = . (B.5)

We used this chart for the purpose of graphical data presentation only (i.e. we do not apply any

control scheme to it).

As a final remark, we note that it is not difficult to evaluate the performance of a combined X — s -
chart, since, under the normal assumptions, the sequences of observations these schemes are based
upon are independent. For example, for p = 4.2 and o = 0.06, the probability of no false alarm within
50 lots is 0.99473 x 0.99542 = 0.99017. There is no simple way to compute the ARL of the com-
bined scheme exactly. However, in many cases the harmonic mean of the ARL’s can serve as a good

approximation; in our case it gives ARL = [(1/9435.8) + (1/10142.0)]-! = 4900.
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Example B.8 (Control of the multivariate pormal mean). Up to this point, we considered the problem
of controlling a single process parameter. Even in cases where several parameters are controlled si-
mulaneously, we designed and analyzed l.be individual control schemes as if the sequences of obser-
vations the control is based upon were independent. Indeed, there are many situations in which this
can be reasonably assumed. For example, it;is well known that under the normal assumption, the se-
quences of sample means and standard deviations are independent. This immediately implies that
performance of a cumulative X — s - chart can be easily assessed on the basis of the individual com-
ponents. As an additional example, cons:ider once more the situation related to production of
surface-mounted boards mentioned in the Iﬁu;oducﬁom If a typical out-of-control condition of the
process is caused by a random clot or particle clogging one of the slots, the assumption that control
charts corresponding to other slots remain upaffected is.'hardly unreasonable; therefore, assessment
of the performance of an ensemble of charl.sun probably be based on analysis of individual ones and

independence assumption.

However, in many cases the sequences different control schemes are based upon cannot be consid-
ered as independent For example, if in the production process of ball bearings one tries to monitor
simultaneously the diameters and weights of the balls, the dependency of the associated sequences
follows merely from geometric oomiderationfs. In situations of this type, the individual control charts
are not likely to produce the full rl:solution_ power in terms of the vector of parameters, since the
underlying correlation structure is not taken into account. Moﬁover. the individual charts are usually
able to detect, relatively quickly, changes of the multivariate mean in the directions of axes, but may
bave a poor sensitivity with respect to cbmg;es of similar magnitude along some otber directions.

To improve the power, one can supplement the battery of individual charts by an additional ope, in-
tended to control some sort of "distance” between the current multivariate mean of the population,
vector g, and the centroid of the target irv.-git.'.n'x. #o- One of possible choices is the so-called

Mahalanobis distance with respect to some positive definite matrix X:

A (b= ) = = ) (B.6)
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The matrix X determines the relative impact of deviation of g from pg along the diffefem directions
on the controlled parameter A, ie. the "cost structure”. If, for example, we consider the domains
A<1and A2 2 as "good"” and "bad", respectively, the corresponding domains in terms of the

population mean g is as shown in Fig. B.4.

Fig. B.4. "Good" and "bad" domains for the bivariate mean.

It is natural to base the control procedure for A upon the sequence of sample Mahalanobis distances

{m,}, defined by means of

mf-\/(!.--#o)’?:"(?;—no) , i=1,2, .., (B.7)

where X; is the i-th sample average of a group (sample) of n multivariate measurements.

To design an appropriate scheme, we need to be able to compute the distribution of m; for various
multivariate distributions of interest. Unfortunately, this is usually difficult to do; even in cases where

the readings follow a multivariate normal distribution, the computations are very involved. In any

.= It is mot difficult 1o see that when = is 3 diaponal matrix, the Mahalanobis distance turns into 3 “weighted” Euclidian
distance between the point of interest and po. )
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case, in the present version of the package we cannot suggest an efficient alternative to simulation

whep dealing with the general case.®

There is, bowever, one relatively simple case which frequently Jeads to satisfactory results. Namely,
assume that the observations come from a p - dimensional normal population, and X na;ed in (B.6)
is nothing else but the underlying covariance matrix. Such dual use of £ as both the population pa-
rameter and part of the “cost structure” determined by (B.6) may, in some cases, be arguable: indeed,
the practical consequences of shifts in g along different directions need not, in general, be related to
the covariance structure. However, in many cases it is anyway very bard (or impossible) to specify
Z to be used in (B.6). Moreover, even if the opposite is true, one could still find that the gains in re-
solution power resulting from the use of a ﬁm-speciﬁed 2’ were pot worth the more painful design
procedure. So, let us consider the problem of controlling A defined in terms of the underlying

covariance matrix in more detail Two cases will be considered:
a) Z is known and geperally behaves in a stable way.

In this case the distribution of m is closely related to non-central chi-square distribution and is pres-
ent in the workspace under the name DFMAHAIL. Before using this function, one should set its
global parameters MAHAL, DEGREES and SAMPLE to A, p and n, respectively. As an example,
Jet us design a scheme comresponding to a bivariate normal distribution and sample size 5. Suppose
that A < 0.5and A > 1.5 are "good" and "bad" regions, respectively. To find an appropriate ref-
erence value, we must have some estimate of the central tendency (preferably mean or median) of the
sample Mahalanobis distance, (B.7), coresponding to A = 0.5 and A = 1.5. Once these estimates
are available, the reference value can be chosen somewbere in the midway. The simplest way to ob-
tain them is by using simulation; in particular, the statement STATIST (1000 SIMMAHAL 0.52 5)
estimates the median corresponding to A=0.5 to be about 0.7. Similarly, the median corresponding

10 A= 1.5 can be estimated to be about 1.5.% Therefore, one may expect that a scheme with the ref-

= For normal populations simulation studies could be performed by using the function SIMMULT.

= As 2n alternative, one could use the function QUANTILE 10 evaluate the median. However, simulation provides some
additional information of interest (ex. the mean).
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- erence value k = (0.7+1.5)/2 =1.1 will provide about the best possible resolution. Now let us try

to design a scheme for which the ARL corresponding to A=0.5 is 1000:

'MAHAL' SETXPLR 0 0.5 1 1.5

0 SETFIND 1000

'MAHAL DEGREES SAMPLE' ASSIGN 0.5 2 §
2 SET 5 10

2 1.1 ONEXPLRD 'DFMAHAL'

The observ. represent Mahal. distance (Sigma known) with
MAHAL=0.5 DEGREES=2 SAMPLE=S

Stepl: Search for H satisfying ARL=1000

Stepl complete; H=1.08741, ARL=942.8

Analysis of upper Cusum scheme with parameters H,K = 1.08741 1.1
The level of discretization is 30

The changing parameter name is MAHAL

MAHAL ARL  SDRL 57 10
0 59051.0 59049.7 .99993 .99984
.5  942.8 940.8 .99625 .99098
.0 13.6 11.1 .76718 .49094
5 3.1 1.5 .06413 .00108

ol -]

Now let us assume that our bivariate distribution corresponds to a pair of independent normal vari-
ables with o=1, and the centroid of the target region is at the origin. Then, once the Euclidian dis-
tance between the process mean and the origin becomes 1.5 (in any direction), the above chart will
trizger an out-of-control signal aﬁer about 3.1 samples. In particular, consider change of this magni-
tude in the north-east direction (the corresponding point is g = (1.06, 1.06)), and examine what
would bhappen if we tried to control the bivariate mean by means of two univariate two-sided X -
charts. For each chart the "good" regionis —0.5 < ¢ < 0.5, and the "bad" regionis | p | 2 1.5,

suggesting the reference value of 1. Further, let us design a scheme for which the on-target ARL is

1000:

'MEU SIGMA SAMPLE' ASSIGN 0.5 1 5
'MEU' SETXPLR 0 0.5 1.06 1.5

0 SETFIND 1000

3 1 ONEXPLRD ‘DFXBAR'

The observations are distributed as X-bar with

MEU=0.5 SIGHMA=1 SAMPLE=5

Stepl: Search for H satisfying ARL=1000

Stepl complete; H=1.05125, ARL=949.7

Analysis of upper Cusum scheme with parameters H,K = 1.05125 1
The level of discretization is 30

The changing parameter name is MEU

MEU ARL SDRL 5 . 10

0 .345E06 .345E06 .99999 .99997
0.5  949.7 948.0 .99596 .99073
1.06 9.3 7.1 .63545 .31269
1.5 2.8 1.4 .04432 .00053
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(clearly, this also reflects the performance of a two-sided scheme, except the latter bas a two times
shorter ARL when p = 0). One can see that when the change in mean is along one of the axes, the
combination of the univariate charts has a somewhat better sensitivity than a chart based on the
Mahalanobis (in our case Euclidian) distance from the origin; however, it is much slower in detecting
a change of similar magnitude along the north-east direction. Indeed, the probability that such a
change will not be detected within 5 samples is (0.635452 = 0.40), while for the chart based on
Euclidean distances this probability is only 0.06413. This example illustrates the point that if it is
important to detect changes of similar magnitude along various non-axial directions, one cannot rely
on univariate schemes only to do the job - be should use an additional chart for monitoring appro-

priately defined "distances" between the observations and p,.
b) Z is unknown

In this case, we are still able to control A, though we do not have a fixed matrix Z to be used in (B.7).

Instead of this matrix, it would be natural to use the sample covariance matrix, S;,

1
n-—1

2 (x;— X)) (x;— Y.—)T. (B.8)
J=1

Sm

where x;;is the j-th vector of the i-thsample. The distribution of the Mahalanobis distance defined
in the described way depends on the underlying Z only via the parameter we are trying to control,
A; in particular, n x m2 corresponds to Hotelling;s T2 - distribution (which represents a slightly
modified version of the non-central F - distribution, see Anderson (1984, p. 163)).%° The price we
pay for not using the "true" covariance matrix is directly related to the fact that an inverse of a ran-
dom matrix, used in (B.7) instead of Z inflates the variability of the sequence {m;}. Indeed, in the

situation discussed earlier, it is not difficult to see that one needs a sample of 12 instead of 5 to

-~ The use of T - statistics in Shewhart - type control charts is well known and documented (ex. sec Jackson (1959) or
Woodall and Ncube (1985): the laticr work also contains an extensive list of references on this subject). In the present
work, we illustrate the use of this statistics in a2 Cusum-Shewhart setting. As one could expect, this procedure is much
more powerf{ul than its Shewhart counterpart.
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covariance matrix:

0 SETFIND 1000
'MAHAL' SETXPLR 0 0.5 1 1.5

'MAHAL DEGREES SAMPLE' ASSIGN 0.5 2 12

2 1.1 ONEXPLRD 'DFHOTEL'

The observ. represent Hahal. distance (Sigma unknown) with

MAHAL=0.5 DEGREES=2 SAMPLE=12
Stepl: Search for H satisfying ARL=1000
Stepl complete; H=1.39, ARL=987.3

Analysis of upper Cusum scheme with parameters

The level of discretization is 30
The changing parameter name is MAHAL

H,K=1.39 1.1

MAHAL ARL SDRL 5 10
0 26860.9 26860.3 .99982 .99963

0.5 987.3 986.2 .99551 .99047
1.0 12.6 9.7 .76886 - .46905
1.5 .00018

3.0 1.3 .04631

achieve the same resolution power, if he uses Mahalanobis distances with respect to an estimated

Note that the function DFHOTEL used in the above run has exactly the same parameters as

DFMAHAL we used earlier. Use of the same reference value ( k=1.1) was suggested by a simulation

run of the type described earlier with the only difference that the function SIMHOTEL was used in-

stead of SIMMAHAL.
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Appendix C. Discretization of Cusum - Shewhart schemes

For purposes of analysis of the run length distribution, we discretize the one-sided Page’s schemes

as shown in Fig.C.1.

Values of the Page’s scheme

0 & 25 h
S —& & — & & —& S-S
i :
0 § 28§ 3§ 45 55 65 75 85 9§ Signal

Corresponding values of the discretized scheme

Fig. C.1. Discretization of the values of one-sided Cusum scheme.

In other words, the values of sy, 55, ... , will be rounded to the center of a corresponding group.
The number of groups will be termed the kkl of discretization of the scheme and denoted by d; for
example, in the case represented by Fig. C.1, the level of discretization is d = 10. The length of an
interval corresponding to a single group, &, will be called the discrerization interval; is is always related

to the level of discretization by means of the formula

§=h/(d-0.5). - (C.1)

Thus, the centers of the groups are at points 0, &, 28, ..., (d—1)§ and h = (6/2) + (center of
the last group). Such a method of discretization usually gives approximations of good quality and is
recommended in many sources (ex. Brook and Evans (1972)). It is clear that by using high levels of
discretization, we can approximate the characteristics of the Run Length distribution to any degree
of accuracy. But how high is high? We performed extensive studies which indicate that levels of
discretization of order d=30 are satisfactory for most practical purposes. The reason for that is re-
lated to the fact that we discretize the stares of the Page’s schemes but nor the observations them-
selves. Thus, relatively low sensitivity with respect to level of discretization is explained by

compensation of roundoff errors when computing subsequent values of the scheme. As an example,
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let us apply the scheme ( A= 3, k=1, 55 =0 ) to five sequences of normal observations corre-
sponding to p=0,0.5 and 1 and o = 1. Table C.1 contains the values of ARL as well as lower
and upper 5% quantiles of the run length distribution (in parentheses) corresponding to levels of
discretization ranging from 10 to 100. It indicates that levels of discretization as low as 10 enable one
to roughly assess the properties of the run length distribution. Moreover, discretization does not
represent something unnatural, since it is automatically assumed in any procedure involving roundoff

to a certain number of digits after the decimal point.

d p= 0 0.5 1

10 1918(100, 5741) 117(8, 343) 17(3, 45)
30 1958(102, 5860) 117(9, 345) 17(3, 45)
100 1962(102, 5873) 118(9, 345) 17(3, 45)

Table C.1. Effect of the level of discretization on ARL and 5% quantiles (in parenthesis) corre-
sponding to the scheme (h = 3, k = 1, 55 = 0) The observations are iid normal with
o = 1. The entries are rounded to the nearest integer.

The case in which the observations x;, x5, ... are integers is of special interest because of its reje-
vance to the problems of controlling the pmccs§ proportion of defectives (cumulative p-charts), the
number of defects per produced unit (cumulative c-charts), etc. In this case a proper choice of the
interval (or level) of discretization and scheme parameters can eliminate the roundoff error alto-
getber. Indeed, let us pick the interval of discretization § =0.1 and require that the reference value
be some multiple of § and the signal level be chosen in accordance with (C.1). Then the Page’s
scheme becomes "naturally” discretized and can be analyzed exactly. Of course, we are limited in
our choice of the reference values; however in most practical situations it is not a serious limitation.
Moreover, if needed, we can always take a shorter discretization interval and have additional possi-
bilities for the choice of k . The price for doing that is related to an increase in the level of

discretization, which in turn determines the size of the Markov transition matrix used in the analysis.

In general, we would not recommend the user of CONTRD to use levels of discretization above 100

on a regular basis - it will just waste CPU time.
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Appendix D. Steady state analysis of Cusum - Shewhart schemes

‘When analyzing the behaviour of a control scheme with respect to out-of-control state of the process
generating observations, we usually assume that the deviation of the process from on-target condi-
tions occur at time i = 0; this is also tacitly assumed when we talk about the Run Length. Under the
above assumption, we are primarily concerned about the speed of detecting the presence of out-of-

control conditions by using various control schemes.

Clearly, this approach may lead to a pessimistic estimate of detection speed in the "real life" situ-
ations. Indeed, we typically assume that the scheme is at 0 (worst case) at the onset of out-of-control
conditions. However, in practice there is a possibility that at this moment the scheme has some "na-
tural” headstart and, therefore, will signal earlier. Th;.ls, one may be interested in analysis of the
Residual Run Length corresponding to an assumption that deviations of the process from the target
conditions occur after a substantial period of time, during which the process operated in on-target

mode characterized by some distribution function of the observations, say F.

Steady state analysis is rclaicd to behaviour of Residual Run Length. It starts with an assumption that
process is in control (i.e. the observations comc from the distribution F), and then computes the
probabilities of various values of the (discretized) control scheme after a "very long" period of time
given that no out-of-control signals were nor triggered during this period of time. The resulting steady
state distribution (which is sometimes called "quasi - slationéry" distribution in the literature) pro-
vides the weighting factors that are applied to a set of ARL’s (or other run length characteristics)

corresponding to appropriate headstarts.

It is clear that questions related to behaviour of the Residual Run Length remain of interest also in
cases where headstarts are used; in fact, it is not difficult to see that results of the steady state analysis
do not depend on the beadstart(s). In CONTRD this type of analysis is currently available for one-

sided schemes only; it is invoked by specifying a negative headstart.

More information about the steady state analysis can be found in Yashchin (1984 and 1985a).
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Appendix E. List of functions for generating random variables

Every function for simulating a set of (independent and identically distributed) random variables has

a left argument, L, representing the quantity of variables to be generated and a right argument, R,

characterizing the parameters of the distribution. For example 20 SIMBINOM 50 0.3 will generate

20 binomial random variables with parameters n=50 p=0.3. Other possibilities are as follows:

Function Name Parameters Comment
SIMARMA Rll]=p R[2] = 0o Autoregressive Moving Average (ARMA)
R[3]=p R[4]=q with parameters (p, q), level g and st. dev. o.
R[S, ... 44p] = 7 v and @ are the coefficients of the AR and MA
R[5+4p, ... 44+p+q] = 8 parts, respectively. ARIMA process can also
be generated (the second left component L[2],
if present, corresponds to parameter d).
SIMBETA R[1]=a R[2]=8 Beta with parameters a and 8
SIMBINOM R[l]= n R[2]= p Binomial with parameters n and p
SIMGAMA R[1]]=a R[2] =B Gamma with parameters « and 8
SIMGEOM R[1]= p Geometric with parameter p. The mean of this
variable is p—! and its possible values are
1,2,...
SIMLOGN R[1]]=u R[2] =0 Lognormal with parameters g and o
SIMMULT 20 SIMMULT "MNS COVAR’ will genérate 20 multivariate normal
vectors (rows). Vector MNS and matrix COVAR must be set to
contain the set of means and covariance matrix, respectively.
SIMNCHI R[1]= d R[2] = A Non-central chi-square with 4 degrees of
freedom and non-centrality parameter A > 0
SIMNEGB R[1]= k R[2]= p Negative binomial (sum of k geometric
random variables with mean p—!. The
possible values of the variable are k, k+1, ...
SIMNORM 20 SIMNORM 0.1 2 will generate 20 normal variables with mean 0.1 and

stand. deviation 2.

20 4 SIMNORM 0.1 0.5 2 will generate a matrix having 20 rows. Each row
represents a sample of 4 normal variables with mean 0.14+0.5 Y ( Yis an
independent standard normal variable) and standard deviation 2. Thus,

0.1 is the grand mean, 0.5 is the between-rows standard deviation and 2

is the within-row standard deviation



SIMHYPGEOM

SIMPOIS

SIMPROP

SIMUNIF

SIMWEIB

R[1]= N R[2] = k
R[3] = n

R[1]= A
R(1]=A
R(2] = p
R[1] = Lower bound
R[2] = Upper bound

R[1] = Shape
R[2] = Scale

Hypergeometric with lot size N, number of
defectives in the lot k and the sample size n

Poisson with mean A

Proportion of defectives corresponding to

to random (Poisson with mean A ) sample size
and probability of a defective unit p

Uniform distribution

Weibull random variable; if Shape=1, the

the simulated variable is exponential with
mean Scale.

The last two functions compute the d.f. of the Mahalanobis distance between the mulrivariate normal
sample mean and some fixed point (ex. centroid of the target region), pg. The parameter A represents
the Mahalanobis distance (with respect to the covariancé matrix) between the population mean and
#o (see (B.6)). p is the dimension of the multivariate observation and n is the sample size.

SIMMAHAL

SIMHOTEL

R[1] = A
R[2] = p
R[3]= n

R[1] =X
R[2] = p
R[3] = n

Distribution of the Mahalanobis distance
with respect to a "true" covariance
matrix.

Distribution of the Mahalanobis distance
with respect to an esimated covariance
matrix, S. Squared variables multiplied
by n corresponds to a Hotelling’s

T2 - distribution.
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