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ABSTRACT

In this thesis we investigate the properties of stochastic processes
which are used to model a type of breakdown mechanism in thin film capacitors
subjected to test under high electric fields. The insulating film in the
capacitor is regarded as a collection of N cells operating independently.

In every cell a stochastic breakdown mechanism of the same type is under

way. It proceeds until the first of the cells actually fails and causes

a breakdown in the insulator as a whole. At such a time the processes in
other cells either remain unaffected or return to an initial state, depending
on experimental conditions and properties of the insulating material, and

the mechanism restarts. Otherwise the only effect of the breakdown is a

decrease in the number of operating cells.

In this work we consider those mechanisms for which breakdown in a
cell may be modelled as the explosion of a birth-death process. When
analysing a given model, we are interested in the beﬁaviour of the resulting
observed process of successive breakdowns and its possible dependence on the
applied voltage, insulator area and other parameters. The key tool used in
investigating this observed process is Extreme Value Theory. For the case
when breakdown is caused by the explosion of a pure birth process, we develop
an approach based on saddle point approximation method which simplifies the
problem considerably in certain situations. This approach is used in two
important cases. In the sixth chapter we prove a Tauberian theorem which

relates the asymptotic behaviour of a distribution function to that of its




Laplace transform. This theorem may enable one to cope with the situation
when the breakdown mechanism is of a more complicated nature than those
mentioned above, and particularly when the transform is not regularly

varying.

When the capacitor is subjected to test under an electric field, we
may observe realizations of the process of successive breakdowns under various
experimental conditions. These data may be used to help identify the break-
down mechanism which is operative in a given situation (or, at least to reject
those mechanisms which are not consistent with the data). After the identi-
fication has been performed, the data may also enable one to estimate the
parameters of the model of interest. These problems of identification of
the operating breakdown mechanism and estimation of its parameters are also

considered in the present work.



CHAPTER I

! 1. INTRODUCTION

This thesis is devoted to the study of extreme value properties of
absorption or explosion times in some stochastic processes. We consider
the sys tem of a large number of similar processes, operating independently.
As soon as one of the processes reaches some critical state, it dies and
causes a breakdown in the system. The deéth of a single process affects
thé remaining processes in some prescribed way and they continue operating
until the following breakdown occurs and so on. In this work we investigate
the statistical properties of the process of successive breakdowns, the

key tool of investigation being Extreme Value Theory,

The research was motivated by the physical phenomenon of dielectric
breakdown in thin film insulators which we describe in some detail so
that researchers in that field may examine their experimental results in

the light of Extreme Value Theory.

Interest in the study of thin film insulators has been greatly stim-
ulated in recent years because of their numerous applications in industry
and technology. Insulating films play an important role in such fields as
integrated circuits, copying, display devices, measurement devices etc.

In all the mentioned fields the reliability of the elements involving thin
films is of great importance. For example, the failure of the thin fiim
insulator which is used as an element of memory in a computing device may

lead to the change of the stored information and to losses connected with it.



A primary failure mode of today's electronic devices using insulating
films is known to be dielectric breakdown. This failure mode is due to
latent defects which occur randomly in the film during fabrication as well
as to the internal processes taking place in the insulator when it is
sdbjected to high fields. The physical processes are today less ﬁnderstood
in insulators than in standard semiconductors and this is also the case for
processes causing the breakdown. The explanation of the breakdown mechanism is
usually a complex physical problem - difficulties arise both for theoretical

and experimental reasons.

Breakdown is interpreted in terms of mechanisms such as thermal break-
down and electronic impact ionization, as well as ion-induced and other
mechanisms. However, identifjcation of the appropriate one in every concrete
case still remains a difficult task. Moreover, we cannot expect that a
given mechanism will be pertinent under different experimental conditions.

As is pointed out in Klein (1978), it is possible that several mechanisms
are operating at the same time and at a given field breakdown arises by
that mechanism which is fastest; also in a given insulator different

breakdown mechanisms can be operative in different temperature ranges.

The breakdowns occurring in thin film insulators at high fields (when
at least one of the electrodes is a thin metal film) are of very special
nature - they are typically non-shorting. After a breakdown occurs in
some place, the region of the point of breakdown evaporates and the insulator
returns to its normal operating conditions, except that its area becomes smaller.

(See paragraph 1.1.1 for more detailed explanation). In most cases this



decrease of area can be neglected. So, we can observe the process of
successive breakdowns using the same sample. We believe that the statis-
tical analysis of the observed realization of the mentioned process may
be useful in identifying the breakdown mechanism which is appropriate in
a specific case (or, at least, such analysis can help to reject the
mechanisms which are not appropriate). The observed data may also be

used for estimating the parameters of the model which is believed to be

relevant in the given situation.

In this work we consider a number of stochastic breakdown mechanisms
based on well known phenomena of impact ionization and trapping (These
are considered today as the most probable factors explaining the breakdown
phenomena at usual working temperatures. However, the method of investi-
gation may be applied to other breakdown models as well). For most of the
considered models we derive the statistical properties of the process of
successive breakdowns and consider the problems of estimation for the

parameters of the model.

1.1 The breakdown phenomenon

In this section we describe in detail the breakdown phenomena and the

data which is at our disposal.

i IS 10 Descrigtion

Let us consider the following electrical circuit:
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Here B is the battery, R is a resistor-regulator, K is the capacitor,
C,A and D are respectively the cathode electrode material, the anode
electrode material and the insulating material (thin film in our specific
case) .

A sample used in one of the typical experiments is shown in Fig. 1.1.1.
The voltage between the electrodes (which determines the external field
applied ) can be regulated by means of the resistor. When the field becomes
greater than some prescribed critical value, a current runaway may occur
at a certain point in the insulator (like a short circuit). This leads to
a local rise of temperature and evaporation of the insulating material and
electrode materials in the region of the current runaway (and to self

liquidation of this point). This phenomenon is called a non-shorting



(or self-healing) breakdown. As a result of such a breakdown a hole remains
in the capacitor and after the field is removed we have a capacitor which is

equivalent to a new one.

When a new capacitor is subjected to test by field, breakdown may occur
at relatively low voltages. This happens because of the presence of so
called "weak spots" - defects in the structure of the insulating film which
occur in the fabrication process. But after these spots are removed by
non-shorting breakdowns the process of breakdowns usually develops in such
a way that breakdowns have nc obvious tendency toc form clusters both in the
area and time. The rate of breakdowns tends to increase when increasing

the applied voltage.

The described process of breakdowns is sometimes interrupted by the
occurrence of so called propagating breakdowns. Such breakdowns are
accompanied by a series of single hole breakdowns occuring at adjacent
sites or even by the appearance of an arc between the pit of the initial
single hole breakdown and the metal of the counter-electrode. Though
propagating breakdown is non-shorting, it causes evaporation over a large
area - and this loss cannot be neglected after the capacitor returns to

its normal operating conditions. (See also O'Dwyer (1973, p. 280)).

Since propagating breakdowns may be prevented by the properly chosen
protective resistor which is connected in series to the tested capacitor

to prevent high discharge currents, we exclude them from further consideration.

There is one more kind of breakdown, called shorting. After such a
breakdown occurs, there remains a permanent conducting channel in the

insulator which destroys the capacitor as a whole.
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1.1.1 A typical specimen (From de Wit et al (1976)).

1.1.2 Breakdowns in the capacitor with thin film insulating material.

(From Klein (1971)).



In Fig. 1.1.2 we can see the part of a capacitor subjected to a high

r
field after the occurénce of several breakdowns.

1.1.2 Data available

The data available are several sets of successive times between break-
downs for various insulating materials, for different voltages applied and
for different insulator thicknesses. Also, several experimental graphs,
representing the dependence of the critical breakdown field on the film
thickness, the dependence of the rate of breakdown on the voltage, and
the dependence of the rate on the film thickness are available. At our
disposal also are data reflecting the percentage of insulator surface
destroyed against time (for different voltages applied). Numerous
experimental data are found in the papers devoted to the study of break-
down phenomena in such widely used insulating materials as silicon dioxide,

oxide of aluminium, silicon nitride etc. (See the References).

Typical set of successive interbreakdown times is represented in

Fig. 1.1.3.

v
T hr——jﬁﬂ!e width '
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t

Fig. 1.1.3. A Typical Set of Successive Interbreakdown Times.
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Most of experiments with thin film capacitors are performed by subjecting
the sample to constant voltage, as described before. Such experiments are
called step voltage tests. However, of great importance is information
obtained by ramp voltage tests in which a sample is subjected to voltage
increasing linearly in time. After a breakdown occurs and voltage drops
to zero, it keeps increasing at a constant rate until the following breakdown

and so on.

Another possibility is to subject the sample to stressing by constant
current. However, shorting breakdowns typically occur in such tests and

therefore they are rarely used.

Data, obtained in ramp voltage tests and constant current tests are

also available.

1.2 Some physical models of breakdown

In this section we review shortly the main principles (and connected
models) which are used today to explain the breakdown phenomena in thin
film insulating materials. Two classes of mechanisms which are generally
used are the thermal and electrical mechanisms. First of all we explain
the principles of the thermal breakdown in dielectrics. To describe the
electrical models of breakdown we need first to represent (at least
qualitatively) the energetic structure of the thin film capacitors and the
principles of conduction in insulating films. We shzll do it in two separate

sections,
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1.2.1 The model of thermal breakdown

A thermal breakdown in the thin film capacitor is caused by the
instability which arises when the Joule heat, generated by the current
flow cannot be conducted (quickly enough) to the surrounding space.

When such a situation is present, an unbalanced rise in temperature leads
to irreversible changes in the insulating material and breakdown in one

of the hottest points.

I1f the only significant process of the energy loss in the capacitor
is thermal conduction to surroundings (anbther possible process is, for
example, light emission), the insulator is given by region D in the three-
dimensional space and field is applied through the electrodes of the
capacitor at time t=0, the temperature T(x,y,z;t) in the point
(x,y,z) e D at time t satisfies the partial differential equation of
the second order (See O'Dwyer (1973, p. 10)).

(1s2.1) € il o div(k grad T) + on :

ot
where C is the specific heat per unit volume, « and o are the thermal and
electrical conductivity respectively, F(x,y,z) is the field and grad T is

the space gradient of the temperature.

We can see that (1.2.1) is just an equation of energetic balance at the
point (x,y,z) : the rate of gain in energy at the point is equal to the rate
of gain due to thermal interchange with the neighboring points plus the
rate of gain from the field. If we are given the appropriate initial and

boundary conditions, the equation (1.2.1) may be solved (at least numerically)



resulting in the temperature as a function of time and coordinates. To
solve (1,2.1) analytically is possible only for the simplest boundary
conditions since O ﬁsually depends strongly on temperature (it may depend
on field as well) and k is also temperature dependent. However, we do not
need the full solution. As it is pointed out by O'Dwyer (1973, p. 10),
failure of the dielectric depends on the temperature of its hottest part,
so only the numerical solution in this part is needed. The position of
this part can sometimes be read just from initial and boundary conditions.
Several solutions of (1.2.1) for the case that constant voltage is applied
at time t=0 are shown schematically in Fig., 1.2.1. What can be said in
general about the (hottest part) solution in this case is that there exists
a critical voltage V* for which the temperature of the hottest part
asymptotically approaches some critical temperature T*., Then if the
applied voltage is V > V*, the temperature reaches any level in finite
time; otherwise it asymptotically approaches a level T < T, If we

know what temperature causes breakdown, it is possible then to calculate
for which voltages the breakdown may occur and what will be the life time

of the insulator (See O'Dwyer (1973, Section 1.3 and Chapter 6)).

Finally, let us note that almost all insulators should undergo
thermal breakdown at a sufficiently high temperature, since the electrical
conductivity 1s usually an exponentially increasing function of the
temperature and the thermal conductivity is usually a decreasing function

of the temperature (See O'Dwyer (1973, Section 9.2)).

However, it often occurs that the applied field cannot raise the

temperature significantly (it certainly remains below the temperature,
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causing thermal breakdown) and nevertheless a breakdown occurs in the insu-
lating material. In these situations it is generally one of the electrical

breakdown mechanisms that is operative.

ottest part dielectric

(i)

Temperature of |

Time

Fig. 1, 2, 1, Solution of the eguation (1, 2, 1) in the hottest

region for the cases V LV* (i), Vv = Vv* (ii), Vv > v* (iii)
and V >> V* (iv). (From O'Dwyer (1973) ).

1.2.2 Energetic structure of thin film capacitor

As it is known from the band theory of solids (See Rose, Sheppard and
Wulff (1966, Chapter 1)), the electrons in a crystal may have only
prescribed energy levels which form the valence band and the conduction
band (high energy band). To move free in the crystal, the electron must
have an energy which is greater than the '"bottom' of the conduction band.
The two bands may overlap (like in the case of metals) and then the free

charge carriers (which ensure current as soon as voltage is applied) are
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always present. In the case of dielectrics,however, the conduction band
is empty and there exists a gap Eg between the ''top" of the valence band
and the '"bottom' of the conduction band. The crystal is usually called
a dielectric if Eg > 2ev (electron-volts) and a semiconductor if

Eg > 2ev , The interband energy levels form a so called forbidden band.

This energetic picture is appropriate only when speaking about pure
and defect-free non-metals. When inpurities or mechanical defects are
present, additicnal energy levels may be present in what is normally
the forbidden band. These levels are localizéd in the small regions,
called '"trapping centers'" (or traps). When these additional (they are
also called extrinsic) levels are close to the '"'top" of ihe valence band,
they may be easily occupied by (thermally or otherwise) excited electrons.
The positive charge which remains then in the valenceband is called a hole.
The movement of the hole in tﬁe valence band (which is caused by movement
of electrons in this band) is completely analogous to the movement of
electrons in the conduction band. The movement of holes proceeds in
accordance with a diffusion process (assisted by an external field when

it 1is present).

It is well known, that the electrons in the conduction band of metals
are distributed (in respect to energy) in accordance with Fermi's distri-
bution law., The energy of the highest filled state in the conduction band
at OK (Kelvin's scale) is called a Fermi Level (and denoted by EF). This
distribution only slightly depends on temperature and only a relatively
small proporticn of the electrons occupy the levels higher than EF at
high temperature (the last fact explains why the metals remain intact at

high temperatures).
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When constant field F is applied to the thin film capacitor, its
energetic structure may be understood from Fig. 1.2.2. The Fermi Levels
of the cathode and anode are denoted by EFl and EF2 respectively. Ev and
E. are the "top" of the valence band‘and the '"bottom' of the conduction
band. ET is one of the trap levels. The slope is proportional to the
applied field F. It is clear from the plot, what must be the minimal
energy of an electron in a given point of the insulator which enables
its free movement. We see that an electron must overcome the potential
barrier AE before it enters the insulator. Similarly, it must overcome
the barrier AET before it is able to get free from the trap. An electron

may overcome the potential barrier in two ways:

a) it can gain additional energy greater or equal to the height
of the barrier. Then thermal emission or photoemission from
the cathode into the insulator occurs dependent on the source
of energy.

b) it can penetrate the barrier by tunneling (which is a purely

quantomechanical effect).

Actually, when the electron enters the insulator it leads to the
appearance of the local '"image' positive charge which distorts the field
in the relevant region and lowers the potential barrier. A similar effect
takes place when electron leaves the trap. This phenomena is called
Schottky's effect (See O'Dwyer (1973, Chapter 3)). If this effect 1is
taken into account, the energetic diagram of the capacitor corresponds
to the dotted line in Fig. 1.2.2, We can see, that the potential barrier

at the cathode is reduced by an amount AES (which is known to be proportional
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Fig. 1.2.2 Energetic structure of thin film capacitor, subjected to

constant field.
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to the square root of the applied field). The lowering of the barrier when

leaving the trap is known to be equal to 2 x AES.

Analogous considerations can be made concerning the injection of
holes at the anode, their movement and trapping. In the following section

we breefly describe the mechanisms of conduction in thin film capacitors.

1.2.3 Principles of conduction

In this paragraph we describe the process of current conduction in
thin film insulators. We shall assume that the main charge carriers are
electrons. The situations in which both electrons and holes play a

significant role in charge conduction are much more complicated and rare.

Consider a capacitor which is subjected to high field F. The electrons
which produce the current in the insulator are injected into its conducticn
band mainly by two processes - Fowler-Nordheim (tunelling) emission and
Schottky (thermal)-emission. There is one more process which may be
significant when a high degree of impurity is present and field is not
too high - the so called hopping process (See O'Dwyer (1973, p. 71)).

This process is usually neglected when studying the breakdown properties
of thin film insulators. If the temperature of the cathode is T, the

injected current densities are (Schottky barrier lowering is taken into

account)
. 2 AE - BYF
(1.2.2) Jitiarmn) = AT exp{- — }
kT
: . ol D
(1.2.3) euner = CF” exp {-=1
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where A, B, C, D are constants depending on physical properties of the
cathode and insulator (their exact expressions may be found in Klein
(1972, p. 617)), k is the Boltzmann constant and AE is the height of
the potential barrier at the cathode when no field is present (See
Fig. 1.2.2). Usually one of these injection mechanisms is dominant
and the second is neglected. The thermal emission is dominant at high
temperatures and not too high fields applied. The tunelling emission
usually is dominant when high fields are app}ied even at device -
operating temperatures. Note that the appropriate current (given

by (1.2.3)) does not depend on temperature.

However, the current in the insulator is not determined by injected
current only and the following factors should also be considered.

a) Density of trapping centers and the depth of the potential

barrier, associated with them. Trapped electrons weaken the

field in the cathode region and therefore decrease the current

injection. Trapped holes act analogously and enhance the cathode

field.,

b) The occurrence of ionization affects the current by producing

additional charge carriers in the insulator. Drift (diffusion)

of the products of ionization and recombination processes have

influence on the current too.

¢) The scattering effect of the crystallic lattice and mobility

of charge carriers in the insulator.
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When a particular case is considered, we determine the current injection
type, decide what factors must be taken into consideration and then solve the
appropriate equations obtaining the quantitative characteristics of the system.
For example, characteristics of breakdown may be obtained by analysing the
dependence of current density on time, field applied, thickness of the

insulator and other relevant factors.

1.2.4 Non-thermal models of breakdown

In this paragraph we review some typical non-thermal models which are
widely used to explain the breakdown phenomena in various substances. This

review by no means claims to be complete.

We begin from the models in which the phenomena of impact ionization
plais a major role. A certain type of carriers (usually electrons) are
injected from an appropriate electrode and ionize the atoms of the
insulating material by impact. The second type of carriers do not take
a significant part in current conduction because their mobility is usually
low (in fact, they are deep trapped). However, they affect the current by
distorting the field in the region ofthe injecting electrode. (This situation
is thought to be relevant in the case of wide interband gap insulators.

(See Klein (1978, p. 225)). For narrow interband gap dielectrics and
semiconductors both types of carriers may play a significant direct role

in current injection and ionization processes). Under these circumstances
different mechanisms of instability (and breakdown) apply. In the case when
electrons are the dominant charge carriers breakdown is caused by positive

feedback effect as described in Klein and Solomon (1977). At high fields
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electronic impact ionization occurs which leaves positive holes behind drifting
slowly towards the cathode. The holes enhance the field at the cathode, increase
the charge carrier emission and lead to an increase in impact ionization. The
effect of this process can be opposed by processes such as removal of holes

from the insulator by drift and recombination. Drift and recombination can
balﬁnce the effect of impact ionization below a critical average field F*,

but above F* current runaway arises after times t* which decrease quasi-

exponentially when increasing the average field F.

The energetic diagram of the described phenomena is shown in Fig. 1.2.3.
Note, that an electron can ionize only if its energy is greater than the

bottom of conductivity zone by at least Eg.

Several models of breakdown are based on this scheme dependent on the
hole removal mechanism. The first analysis is due to O'Dwyer (1969), who
assumed that the dominant hole removal mechanism is drift (such assumption
leads to so called ionization-drift (ID) model). In this work the author
presents only a numerical method for finding F* and t*. Closed (though
approximate) expressions for these values were given by Kashat and Klein
(1977). The approximate nature of their approach is caused by the
assumption that the trapped positive charge is distributed uniformly in
the insulator. In fact this space charge is distributed exponentially in

respect to thickness (See Fig. 1.2.4).

The ID models are subdivided into twc classes (dependent of the
mobility of holes and ionization rate per unit length in the given situation) -
the Small Ionization and Large Ionization ID models. The difference between

these models is that in the first the injected electrons ionize by impact



Fig. 1.2.3 An energetic diagram of events which occur in‘the beginning stages of
breakdown in silicon dioxide. 1. corresponds to a neutral atom which
turns a hole after collision occurs; 2. is a hole which turns to
neutral atom after recombination occurs. (From DiStefano and

Shat -kes (1977)).
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Fig. 1.2.4 Schematic cross section of insulator flanked by electrodes.

(From Klein and Solomon (1976)).
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only occasionally while in the second one they produce small avalanches
(clusters of trapped holes appearing as a result of ionization produced by

a single injected high energy electron). The exact criteria for application
of the first or second ID model and the expressions for the critical average
field F* and time to breakdown t* may be found in the work of Kashat and

Klein (1977).

In the case that hole mobility is extremely small, hole removal proceeds
mainly by recombination and the IR (ionizatign-recombination) model 1s
operative. This model was treated first by DiStefano and Shatzkes (1975)
to explain the breakdown phenomena in silicon dioxide thin films. In
their approach current was emitted at the cathode by Fowler-Nordheim
tunelling (a boundary condition), and stochastic Poisson model of ionization
was used. After finding the equilibrium state space charge distribution
and the form of energetic diagram, they calculate the critical voltage at
which instability occurs. The questions concerning time to runaway were

not, however, discussed.

The closed expressions for F* and t* (IR model) were obtained by Klein
and Solomon (1976). To do that, the authors formulated and analysed the

set of four basic relations

. 2 B
(1.2.4) j = AFc exp(- ?:)
(1.2.5) gy 1

9x £ €
(o]
(1.2.6) R .1 (q- op)

it q
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(1.,2.7) a4 =0 exp(.. .li)
2 F

The assumption that the insulator is planar has been made (See
Fig. 1.2.4). Equation (1.2.4) shows that Fowler-Nordheim emission is
supposed to be the dominant current injection mechanism (Fc is the cathode
field). The Poisson equation (1.2.5) relates the spatial distortion of
field to the trapped positive charge density p. Here q is the charge of
the electron, € is the absolute permittivity of the free space and
€ - the relative permittivity of the insulating material. (1.2.6) is the
rate equation which means that the rate of positive charge accumulation in
a given point is equal to rate of its generation minus the rate of recombi-
nation in this point. ¢ is the recombination cross section and o is the
ionization rate per unit length; its dependence of F is postulated by
equation (1.2.7) (Motivation of such assumption may be found in O'Dwyer
(1973, p. 220)). A,B and H are appropriate constants. We note that
similar approach was used to obtain the characteristics of the ID model 1in

the above mentioned works on this subject.

By reviewing the known properties of silicon dioxide, Solomon (1977)
comes to the conclusion that IR is a most probable mechanism of breakdown
in this dielectric., It is also thought to be operative in some alkali

halides.

The mentioned models enable one to obtain (analytically or numerically)
the main deterministic characteristics of breakdown - F* and t*. However,
the common experimental situation is that breakdowns show stochastic

behaviour in time and often occur at fields which are lower than the
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calculated critical field. This kind of behaviour is usually ascribed
to fluctuations caused by discreteness of the electronic charge. The
effect of fluctuations was studied in the ''succession of avalanches"
model, proposed by Klein (1972) for investigating the Large Ionization

ID case. In this model electrons, injected from the cathode, produce
avalanches by impact ionization, leaving clusters of low mobility holes
in the insulator. The vast majority of the avalanche charges drift out
of the insulator without further effect. There is however a chance

that another electron is injected into the ciuster before it leaves the
insulator. A second avalanche arises.which locally enhances the cathode
field and greatly increases the probability of injection of an additional
electron into the cluster and so on. When a series of several avalanches
occurs at one spot, a current runaway (and breakdown) is observed. In
Kadary and Klein (1980) this model is shown to explain the breakdown in

anodically grown tantalum pentoxide films.

A purely stochastic model of breakdown was proposed by Solomon, Klein
and Albert (1976) to explain the fluctuations, arising when thin insulator
is subject to test by constant and linearly increasing field. The authors
postulate that under a constant field breakdowns form a Poisson process
with rate which depends exponentially on the applied field. The experi-
mental results for constant and linearly rising fields were in good
agreement with those predicted by the model for insulators such as
aluminium and hafnium oxides. The relation between mean times to break-
down in both types of tests, predicted by the model, was also supported

by observations. A similar model (in which the linear form of dependence
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between area of insulator and rate of breakdown under a constant field was
an additional assumption) was used to explain the breakdown in aluminium

oxide by deWit, Wijenberg and Crevecoeur (1976).

Another important class of models arise when breakdown phenomena 1is
related directly to the ionic movement in the insulator. In one of such
models, proposed by Ridley (1975) to explain breakdown in silicon dioxide
- films, an existence of small protrusions in the cathode material is
postulated. The magnitude of such protrusions is assumed to be of order
100:\° Since the magnitude of protrusions‘is considerable compared with
film thickness (it is usually of order 10003), the field is much stronger
in the region of the protrusion. The Fowler-Nordheim injection produces
then a high current density (and, consequently, high degree of ionization)

in the relevant filamentary region.

The ionization process is accelerated by the rise of temperature in
this region (which is caused by high current density). The produced
electrons are swept out while the positive ions drift slowly to the
cathode, enhance the field there and in this way lead to a positive feed-
back process. A breakdown then occurs because of thermal instability in
the appropriate region (provided that the applied average field is greater
than some critical value F*). The closed expression for F* was not, how-
ever, given and this model was criticized by Klein (1978) on the basis
of the fact that this ion-induced model hardly predicts the observable

dependence of F* on temperature and lack of significant dependence of F*

on electrode material in silicon dioxide. (See Klein (1978, p. 225)).
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There are also non-thermal variants of ion-induced breakdown mechanism.
In such models field is enhanced because of positive ions which form small
protrusions when undergoing recombination at the cathode and result in a
decrease of the insulator thickness in the protrusion region. A positive
feedback occurs which leads to breakdown. Such a mechanism is thought to

o
be probable in ultrathin (of order 100A) insulating films.

In the models considered before the assumption is that insulators
are subject to a constant voltage. E. Harari (1977) performed a series
of tests in which ultrathin (8102) insulator§ were stressed by constant
current (and voltage is merely adjusted to meet this condition). The
author asserts that defects appear in the insulating layer as soon as
field is initially applied. These defects act as deep trapping centers
for electrons, which are disposed mainly in the cathode region. The
electrons trapped in this region decrease the cathode field, so voltage
must be increased to maintain the current. The process of defect creation
by injected current proceeds at a uniform rate and so the applied average
field increases. A breakdown occurs as soon as it becomes large enough
to break the molecular bonds in the insulating material. The author
does not attempt to construct an appropriate mathematical model - he only
points out that this qualitative model is supported by the observations.
He also indicates that there is no evidence of impact ionization in this
case (such evidence is usually provided by luminescence caused by

recombination).

Finally, we note that the trapping centers for electrons play an

important role in most recent theories explaining the behaviour of the
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dielectric strength of aluminium dioxide films subjected to step and ramped
voltage tests. These theories are motivated by the experimental evidence
that after a constant voltage is applied, the current density at first
(usually sharpely) decreases and then increases in time. The initial
decrease of current density occurs because the injected electrons fill

in the traps, decrease the cathode field, and subsequently the injected
current; the further increase of current density is due to impact
ionization and hole trapping processes which proceed in parallel (N. Klein,

1981, private communication).

More information on the breakdown mechanisms may be found in Klein
(1978) and O'Dwyer (1973). An extensive list of references concerning
breakdown phenomena in thin film insulators is given in.the biblio-

graphical survey by Agarwal (1974).

1.3 Statistical questions

In this section we consider the role of statistician in analysing

breakdown phenomena.

Suppose that we want to know whether a specific mechanism causes
breakdown in a given dielectric. The first statistical question arises
immediately: how to design the experiment. To what conditions must the
capacitor be subjected in order to make it clear of weak spots? What is
the appropriate criteria to distinguish between the initial ''weak spot"
breakdowns and those reflecting the intrinsic properties of the given
insulator? Should we apply a step voltage test, a ramped voltage test

or a stressing by a constant current to the capacitor after it is clear
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of weak spots? Should we remove the field for a constant time after a

breakdown occurs?

After the capacitor is cleared and an appropriate test is applied,
we obtain a realization of the process of breakdowns. The second statis-
tical question is: what process of breakdowns is predicted by the model
of interest and does the observed realization contradict significantly
this prediction? What changes in the process of breakdowns are predicted
by the model when varying its parameters and-do the observed processes
(corresponding to agpropriately changed experimental conditions) support

the prediction?

Suppose we find that the model is supported by data in a certain range
of experimental conditions. The third statistical question is: how to use
the data to obtain estimators (and perhaps confidence intervals) for the
parameters of the model? There are cases that some of the parameters may
be estimated using a purely physical argument and they should be compared

with statistical estimators.
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CHAPTER II

2. A CLASS OF STOCHASTIC MODELS

In this chapter we describe several stochastic models of the breakdown
phenomena in thin film insulators. Let us suppose that the surface of the
insulator is divided into N equal cells. Under a sufficiently high electric
field the current in each cell may lead to the ionization of atoms of the
insulating material, creating a positive charge which is trapped in the
insulator. This charge enhances the field and hence the current in the
cell, and so increases the chance of further ionization. Charge accumu-
lation processes procced in all the cells simultaneously and as soon as
the charge accumulated in a cell reaches some critical value this cell
explodes causing breakdown in the insulator as a whole. Our basic
assumption is that the charge accumulation process in a given cell has
no influence on the charge accumulation processes in other cells. A
breakdown in the insulator reduces the external field to zero and some
time elapses before it reaches its nominal value. It is known that
this has some effect on the charge accumulated in other cells (it tends
to decrease because of the internal c;zsmb forces acting in each cell).

.In some cases this effect can be neglected (i.e. explosion of cell has

no influence on other cells). These cases lead to non-regenerative

models. The regenerative models are connected with the cases that after
a breakdown occurs in some cell, all the other cells lose their accumu-
lated charge and the charge accumulation processes start again in non-

exploded cells. For these models the times of successive breakdowns form

a renewal process.
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In finite models the critical value of the charge accumulated in a
cell is finite. In infinite models a cell explodes when the charge,

accumulated in this cell reaches infinity.

In subsequent sections we describe in detail several stochastic

models of the breakdown phenomena.

2.1 Pure birth and birth-death models

In this class of models the initial charée at time t=0 is assumed
to be zero in every cell. (This assumption is not so restricting as it
seems; actually '"zero'" is a prescribed physical level). The charge
accumulation in a cell proceeds in accordance with a birth-death proﬁess
with "birth" rates {Ko,l',...} and "death' rates {ul,uz,ou.}o In the
case that all the "death'" rates are equal to zero, the charge accumulation
process in a cell is a pure birth procesé.

We consider the following models:

a) Finite models. For this class of models the charge accumulated

in a cell may take on the values {0,1,...,M-1}. We say that a cell is in
state j e {0,1,...,M-1} if the accumulated charge in this cell is equal
to j. The insulator consists of N cells, operating independently, and as
soon as the charge accumulated in one of the cells reaches M the cell
explodes and a breakdown is observed. We consider also the possibility
that a breakdown in a cell occurs D units of time after the charge accumu-

lated in this cell reaches M(D is a non-negative constant).

In the regenerative case all the cells are in state 0 at t=0 and the



31

charge accumulation processes start simultaneously in all N cells of the
insulator. After one of the cells reaches the state M and breakdown occurs,
this cell disappears, (N-1) remaining cells return to the state 0 and the
process of charge accumulation starts again. Since the number of the cells
N is expected to be large (N is of order 1010) the effect of decreasing the
number of cells as a result of breakdown is neglected and we may suppose
that the N cells restart after a breakdown occurs. In this model the
process of successive breakdowns is a renewal process, If Ei(i =1,2,...,N)
is the time to explosion of the iEh- cell (when considering that cell in
isolation and supposing that it.is in state 0 at t=0) then 51,52,,°J,EN

are independent and identically distributed random variables and the

interbreakdown time T (the interevent time of the renewal process) is

(2.1.3) T = min(El,Ez,...,SN)

The random variable Ei is distributed as the first passage time from the

state 0 to M of the birth - death process with "birth' and ''death' rates

{Ai, i=0,1,...,M-1} and {ui, i=1,2,...,M-1} respectively.

In the non-regenerative case all the cells are in state 0 at t=0, the

process of charge accumulation starts simultaneously in all N cells and a
cell explodes as soon as it reaches the state M, as in the previous case.
However, an explosion of a cell does not affect the charge accumulation
processes in other cells. Therefore the process of breakdowns in this
case is a sequence {E(l)’E(Z)""} , where E(i) is the iEh- term in

the ordered sequence of times to breakdown in the individual cells.
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b) Infinite models. For this class of models the charge, accumulated

in a given cell takes on the values {0,1,...} . The charge accumulation
process in a cell is transient and reaches infinity in finite time with
probability one. This happens when {Ai}, the rates of ionization in a
cell are large and cannot be balanced by the rates {ui} of the opposing
process (which may be recombination or drift). In certain cases the
effect of this opposing process may be neglected altogether and then the

process of charge accumulation in a cell becomes a pure birth process.

In the regenerative case all the cells are in state 0 at t=0, the

processes of charge accumulation starts simultaneously in all N cells

and all the cells return to the state 0 immediately after a breakdown.

In the non-regenerative case unlike the regenerative case, breakdown

has no influence on the charge accumulation processes in the non-exploded

cells.

If we suspect that the process of breakdowns corresponds to a non-
regenerative model, the experiment should be carried out in a special
manner. At first we apply a critical field to the insulator in order to
destroy the '"weak spots'. Then we should drop the field altogether for
some time (in order to remove the trapped charge). Then we apply a fixed

field again and register the moments of the successive breakdowns.

2.2 The quasi-stationary model

In this paragraph we consider the following model of the breakdown
phenomena. . Charge accumulation in each of N cells proceeds in accordance

with a birth-death process. A cell explodes (and causes a breakdown) D
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units of time after it reaches a critical state M. Explosion of a cell does
not affect charge accumulation processes in other cells. Let us suppose that
D=0 i.e, that the cell explodes immediately after the charge reaches the
level M. The final conclusions concerning this model (See Section 4.1)

can be easily re-formulated for positive values of D.

2.2.1 The charge accumulation process

We consider the process of charge accumulation in a single cell.
Suppose that at time t=0 the cell is in state i (0 < i <M). Denote by
Pij(t) the probability that the cell is in the state j at time t
(0 < j <M). The charge accumulation process is a birth-death process
with a finite number of states (0,1,2,...,M), M being an absorbing state
(as soon as a cell reaches M, it explodes and remains in this state forever).
From the general theory of Markov chains (See Cox and Miller (1965)) it 1is
known that the matrix of transition probabilities {Pij(t)},

(0 <i,j < M-1) satisfies the equations

(2.2.1) PY(t)

AP(t) (backward equations)

(2.2.2) PY(t)

P(t)A (forward equations)

with the initial conditions

(2.2.3) P(O) =1



and has the following properties:

(2.2.4) Pij(t) >0
M-1
(2.2.5) I
j=o0
(2.2.6) P(t+s) = P(t)P(s)

Pij(t) <1 for every i

34

(Chapman-Kolmogoroff conditions are

semigroup property of P(t) as a

matrix operator).

The matrix A (which is called in the literature the "infinitesimal

generator" has the form

-A A 0 0
(o] 0
(2.2.7) A= | O 0 Mo - (Ag*u5)
0 0
0 0
1

0 0
0 0
0 O
13 0

0 My2

- Oy_pHy-2)

HM-1

AN-?.

- (A1 M-
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All the rates Ai’ My involved in A are supposed to be strictly positive.

The solution of the above equations (2.2.1,2) is unique (since the number
of states is finite) and having solved it the probabilities of absorption
at time t (PiM(t)) can be found from

M

I P(t)=1.
j=o

-

We know that as t = = the probabilities Pij(t) converge to the limiting
vector which ascribes probability 1 to stafe M and zero to the other states.
However, if we condition on a cell being '"alive', i.e. not yet being absorbed
in state M, there may be some sense in which we may regard the cell as having

reached a steady state.

Let r, j(t) be the probability that, having initially been in state i,
a cell is in state j at time t given that it has not yet reached absorption.
The probability, H(At), that it will be absorbed in (t, t+At] given that it

is still "alive'" at time t is clearly given by
(2.2.8) H(At) = ri’M_l(t) . AM_lAt +0 (At).

If rj = T j(t) is both independent of i and t, then the vector
3

(ro,rl,cou,rM_l) would correspond to the stationary distribution of the

process conditioned on non-absorption. The last equation would then lead

to a very simple model of the breakdown phenomena in the system of cells-

namely to that of a Poisson process.
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In the following we refer to results which show that the ri,j(t) do
have limits as t - «, the so called quasi-stationary distribution. The
relation ri,j(t) = rj for all t will hold if the initial distribution is
this quasi-stationary distribution. On the other hand, by comparing the
rates at which the ri,j(t) converge to rj with the rate at which the
breakdowns occur in the system, it may be reasonable to assume that this
quasi-stationary regime is attained after an initial period of observation.
In other words, after this initial period, at.the time of a breakdown the
remaining cells are distributed in the states 0 to M-1 according to the

distribution (ro,rl,”,,rM_l)° From this property the Poisson process of

breakdowns will follow.

2.2.2 The quasi-stationary distribution

Let us consider the process of charge accumulation in a single cell.
Denote by r1,j(t) the probability that the cell is in state j at time t
(the initial state was i) given that the cell is not in the absorbing state
M at tlﬁe t. The conditional probabilities ri,j(t) are related to the
transition probabilities Pij(t) by the equations

P..(t) P, . (%)

(2.2.9) 1 (1) = = = L ,  0<i,j<M,
1Py (8) Py (£)#P (E)+.. 4Py o (£)

We ask now the following question: 1is it true that the ri’J(t) approach
(as t = @) a limit depending on the final state j only? These limits, 1f
they exist, might then be identified with the proportions T sTysee:Ty g
of the cells finding themselves in the states {0,1,.,a,ﬁ—1} respectively
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at any moment of time after the steady state have been reached. It is
known (See Darroch and Seneta (1965) and Keilson (1979, p. 90)) that the
answer to this question is affirmative for the general Markov case with

an absorbing set (instead of an absorbing state M). The quasi-stationary
probabilistic vector {ro,rl,.g.} is known to be a left eigenvector of

the infinitesimal matrix (reduced to the set of non-absorbing states)
corresponding to its maximal eigenvalue. The modulus of this eigenvalue
can be shown to be equal to the principal decay rate for the charge accumu-
lation process on the set of non-absorbing states given that the initial

<l -

distribution on this set is a quasi-stationary distribution {ro,r1,=,
In other words, the modulus of this eigenvalue times At gives the main term

of the proportion of the "alive' cells which will die in time At.

In our specific case the process of interest is a birth-death process
with absorbing state M. The problem of finding the maximal eigenvalue of
the infinitesimal matrix A and the corresponding left eigenvector (the
quasi-stationary distribution) is largely simplified by using the set
of potentials ﬂi(i =0,1,...,M-1) attached to the non-absorbing states

and a set of polynomials Qo(x)’Ql(x)”’“’QM—l(x) defined by means of A.

The potentials {no,nl,.,,,ﬁM_l} are defined by
O S
(2.2.10) T, = 1, T ™ for 1 <n < M-1.
ul u2”°un

and the polynomials Qo(x)’Ql(x)’”°°’QM-1(x) - by means of the relation

(See Karlin and McGregor (1957a))

(2.2.11) AQ = -xQ
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with Qo(x) = 1. The explicit form of the relation (2.2.11) 1is

Q,(x) =1
-xQ (x) = -A Q (x) + A Q;(x)

(2.2.11a)  -x Q () = #Q ) -(A;+1;)Q; (x) + A;Q5(x)

“XQy2 (%) = Uy oQy_5(X) - Chy_p7Hy_ ) Qo () Ay Qg (X)

We see that only the last component of this relation does not define a
new polynomial. For the birth-death process with an infinite number of
states the matrix A is infinite and (2.2.1la) for every x defines an
eigenvector {Qo(x),Ql(x),,oo} . These eigenvectors play a role in
constructing {Pij(t]} which is similar to the role of the eigenvectors
of the infinitesimal matrix in constructing {Plj(t)} for Markov processes

with a finite number of states (See Karlin and Taylor (1975, p. 152)).

We also see that (-x) will be an eigenvalue of A with corresponding
eigenvector {Qo(x)’Ql(x)’°’°'QM-1(x)} if and only if the equation for
the last component in (2.2.11) is also satisfied, i.e. if and only if x

is a root of equation

(2.2.12) “xQy_ 1 () =y 1Qua(¥) = Oy gty 1)Qy  (x)

It was proved by Karlin and McGregor (1957a) that this equation has exactly

M roots XysXyseo Xy g and all of them are positive. By their result
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(1957a, p. 494), there exists a positive regular measure Y(x) on
0 <x <=, of total mass one, such that the polynomials {Qo(x)’°"’QM—1(x)}
are orthogonal with respect to this measure:

o 0 for i # j
(2.2.13) / Qi(X)Qj(X)dW(X) =
o

— for i =3

i
For a process with a finite number of states the measure Y will be supported
by the roots XgsXpsooesXy g of (2.2.12) 'only. The probabilities Pij(t)

have the following representation:
(2.2.14) JHOREAY Qi(x)Qj(x)'e-txdw(x), 0<i,j< M-I,
0

This last expression shows that the asymptotic properties of Pij(t) as

t -+ = depend exclusively on the smallest root X, of (2,2.12). It i1s also
known, that X is not a root of any of the polynomials Qi(xJ for

i < M-1 and that X, is always a simple root of (2.2.12) (See Keilson

(1965, p. 417)).

Further, the argumentation of Karlin and McGregor (1957a, Theorem 11)

can be used to show that

P..(t) 7.Q. (x.)
(2.2.15) lim —J s 430

st T TpQy (X,)

the convergence being exponentially fast.
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Now, using (2.2.9) we can prove the following statement.

Statement 2.2.1 The conditional probability r, j(t) tends (as t + =« )

to a positive limit rj which is independent of 1i:

n.Q.(xo)
(2.2.16) lim r, .(t) = =3 =r. (j =0,1,...,M-1),
>0 1,] M-1 J
z WEQR(XO)
=0

and the rate of convergence is exponential.

Using the definition of the polynomials Qi(x) we easily show that
{ro,rl,ﬂzq,rM_T} is a left eigenvector of A, corresponding to the

eigenvalue (-xo), In fact, the left eigenvector, corresponding to

eigenvalue (-xi) (i=0,1,...,M-1) is {rgi),r§i), =:T£i1} ’
where
: m.Q. (x.)
1.j(l] - e (G =0,1,...,M-1)
QEO “QQQ(xi)

(see Appendix F) but only for i=0 is a probability vector obtained.
The stated facts may be used to show (See Darroch and Seneta (1965, p.91))
that this vector has the following characteristic property of a stationary

distribution.
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Statement 2.2.2 If the initial probability distribution is {r ¥

(3 EEd T

and rj(t) is the probability of finding the cell in state j at time t given

that the cell is not in state M at time t then

"
H
-
(a3

v
o

(2.2.17) ri(t) =

Finally, this last statement shows together with (2.2.8) that if

{r

02 Tys e aTy 1} is the initial distribution, the time to absorption

is exponentially distributed with parameter X, (which is equal to

M-1 Tv-1)"

2.2.3 Computational aspects

If M is large the computation of the greatest eigenvalue X, of A
using standard matrix operations may be a tedious and time consuming task.
Fortunately, in the case of birth-death processes the problem is simplified

by the following considerations.

First of all, let us prove some statements about the properties of

the polynomials {Qi(x)} defined by (2.2.11).

Statement 2,2.3 Qi(O) = 1 for' i = 0;);:..,M=1:

Proof The proof follows immediately from the definition of the polynomials

(See 2.2.11).
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Statement 2.2.4 Let us define an additional polynomial QM(x) by adding

an additional relation to the set (2.2.11a). Then

a) Its roots 0 < X, < X <...<xM_1 are the eigenvalues of A taken
with negative sign.

b) There is exactly one root of QM_l(x) between any two successive
roots of QM(XJ,

fod) QM(x) is convex in the interval [O,x0 + €] where € is some positive

number.

Proof a) follows from the definition of the polynomials Qi(x)=
b) can be easily verified by induction.
c) all the roots of QM(x) are known to be distinct
(See Karlin and McGregor (1957a)). Therefore each interval [xj’xj+l]
(j =0,1,...,M-2) contains exactly one zero of Qﬁ(x). Denote this zero
by x}. Further, each interval [x;,x5+1] (j = 0,1,...,M-3) contains exactly
one inflection point of QM(x). The last considerations show that QM(x) is
monotonically decreasing and has no inflection points in the interval
[0,xo+e] where € is some positive number. The convexity of QM(x) just

follows from the fact that Q;(O) >0 for i > 2 (which can be proved by

induction).

Remark. Of course, a statement of this kind holds for any polynomial
) ' (1) (1) (1)
Qi(x) and its roots (0 < X, <X <,..< xi_l)a

The first four polynomials are schematically shown in Fig. 2.2.1.
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Fig. 2.2.1 The first four polynomials from the system {Qi(x)},

The following Statement shows that the polynomialQi(x) is connected
with the distribution of the first passage time Toi from the state 0 to

the state i.

Statement 2.2.5 Denote by ¥oi(s) the Laplace transform of the first

passage time distribution from the state 0 to i.

Then
(2.2.18) ¥ ) w ; i=1,2,.
o Q; (-s)
i
Proof: By making i an absorbing state we obtain
i-1
(2.2.19) P{Toi > t} = E Poj(t) ,
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where poj(t) is the transition probability of a process with absorbing state i,
Now (2.2.18) can be proved using the spectral representation of Poj(t) and

the properties of {Qi(x)}. We shall not enter into details here because
(2,2.18) can be deduced immediately from the fact th;t

%i_l(s) = Q;_,(-5)/Q; (~s) which follows from (4.1.3) of Chapter IV-

(%i_l(s) is the Laplace transform of the first passage time distribution

from the state (i-1) to 1i).

From the fact that

(2.2.20) ET . = L

(See Keilson (1979, p. 61)) and (2.2.18) we obtain
(2:2:21) Q{(OJ =-ET01

The last equality can be used to obtain a left bound for X, the minimal

root of QM(x] (See Fig. 2.2.1),

(2.2.22) X Bt
© < ET
oM

To calculate x_ we proceed as follows. First of all we verify if

QM(l/ETo,M-l) is negative. If so, we obtain

(2:2.23)
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The estimate (2.2.22) enables one to obtain an interval of length

M-1
15 "j which certainly includes the value of (xo)_l,
j=o

(y-1M-1)

A more precise estimate can be obtained using c) of the Statement 2.2.4:

ey 1
[Oyo1™ae) 2 510G —)
1 1 1 j=o J o,M
(2.2.24) [1+QM( )]<x0< + T 1 '
ETo,M ETO,M ETo,M QM(ET ) - Qy( E;————' )
o,M o,M-1

Now the precise value of X, may be obtained quickly using a combination
of Newton-Raphson's method and the method of secants (See G. Korn (1968,

Chapter 20)).

In the case that QM(I/ETo M—l) is positive, we obtain that X is

greater than (1/ET The last value may be used then as a first

o,M-l)‘

approximation when calculating X, by Newton-Raphson's method.

2.3 Relevance of Extreme Value Theory

All the models described before have some common features: the insulator
consists of N cells operating independently; the same process of charge
accumulation is active in all the éells and the first breakdown occurs
after one of the cells reaches a critical state. So, these models work
in accordance with the principle of the weakest link: a chain is destroyed

as soon as the weakest link in it fails.

Let us consider the regéerative models. In this case after each

breakdown the system of cells (insulator as a whole) returns to a fixed
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initial state. Let Tl’ 2,....,Tn be the sample of n successive inter-
breakdown times. These times are independent identically distributed random
variables (assuming n << N) and T = min(El,Ez,,..,EN) where Ei is the
time to explosion of the iEh- cell. To answer the statistical questions

formulated in sec. 1.3. we proceed as follows:

a) We express the distribution of the time to explosion in a single

cell in the terms of the physical parameters of the model.

b) The distribution law of the interbreakdown time T is expressed

using distribution of the time to explosion in a single cell.

¢) To estimate the physical parameters of the model we compare the

data observed (the set of interbreakdown times Tl,

.distribution law of interbreakdown time predicted by the theoretical

T2’°°"Tn) with the

model.

Since the number of cells in the models of breakdown is expected to
be extremely large, problems arise when trying to express the distribution
law of interbreakdown times T in terms of distribution laws of
51,52,J=°,EN0 This problem resembles one of finding the distribution law
for X = (X; + Xy + oo #X)/Ny X,X,,...,Xy being independent and identically
distributed random variables. We know that the last problem is solved using
the Central Limit Theory, which states, that under rather mild conditions
the distribution law of the random variable X (after performing an

appropriate shift and change of scale) is asymptotically standard normal.

If we are interested in the behaviour of the random variable

T = min(g,,...,E) rather than that of Z, analogous results may be obtained



47

using Extreme Value Theory instead of Central Limit Theory. The former theory
states that under general conditions the random variable T (after appropriate
shift and scaling) is distributed in accordance with one of three possible
laws as N tends to infinity. Should this law be identified and N be large,
the problem of finding thé distribution law for T bec;mes just a problem of
finding the appropriate constants of shift and scale (they are called the

"normalizing constants'" in the literature.)

We see that Extreme Value Theory is relevant for dealing with statistical
questions in the case of regenerative models. In the case of non-regenerative
models we start our observations at time t=0 and the times of successive
breakdowns are {E(IJ’E(Z)""} > elements of the ordered sequence of the
times to explosion in various cells. (These times are called "order
statistics" in the literature). The process of breakdowns in the non-
regenerative case is not a renewal process and this complicates the procedure
of the related statistical inference. In practical cases we try to answer
the statistical questions on the basis of a sample of the first n breakdown
times {£,...,E,4v,-.-.,6,.+}. (Note that the distribution of the time of the

(1)*°(2) (n)
first breakdown E(l) is exactly the same as in the regenerative case).
In the analysis of the non-regenerative models we also make use of the Extreme

Value Theory which asserts that the random variables {§ } (shifted

(1),,,3,€(n)
-by an appropriate value and inflated by the same scale parameter) behave as
they would be realizations of one of threepossible well known stochastic
processes. Provided we know which of the three relevant processes 1s
appropriate and provided that N is large, statistical analysis of the model

may be performed by comparing the observed times of successive breakdowns

with the behaviour of breakdown times predicted by the model in consideration.
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2.4 Experimental evidence

In this paragraph we show that the ''weakest link'" models which are
described in the present chapter and are object of our investigation have
broad experimental support. Consider our system of N cells. Suppose
that all the cells are in the same initial state at t=0 and at the same
moment a high field F is applied. Similar processeé start in every cell
and operate independently until the first one explodes. When this happens,
the field drops instantly to zero and all the cells rush towards the initial
state. However, a common situation is that ﬁhe time of the field absence
is so short that the effect of the breakdown on the non exploded cells may
be neglected (we refer to this case as a non-regenerative one). We have
pointed out in section 2.1 that the experiment providing data for testing
the adequacy of such models should be conducted in a special manner. Since
such experiments were not yet conducted, the question about the appropriate-
ness of the non-regenerative models cannot be definitely settled. The
exception is the quasi-stétionary model which does not require special
types of experiments. This model (as we shall see in section 4.1.2)
predicts the process of successive breakdowns to be a homogenious Poisson
process and there are several sets of data at our disposal which support

this prediction (See also Solomon, Klein and Albert (1976)).

Should we artificially preserve the absence of field for a constant
time after a breakdown occurs (and then restore its nominal value), the
non exploded cells would have returned to the initial state and the
regenerative case would be relevant. However, such experiments have not

been conducted, so there is no data which enable us to test the adequacy
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of the regenerative models (such tests could be based on the comparison of
two sample processes of breakdowns: one corresponding to immediate resto-
ration of the field after a breakdown and another - to the delayed resto-
ration). Another way to test the adequacy of the regenerative model is
comparing of the sample process of breakdowns in a single specimen, clear
of "weak spots' (field is restored immediately after a breakdown occurs)
and the times to the first breakdown corresponding to a group of similar

cleared specimen (experiments of such kind have also not been performed).

The relevance of the regenerative weagest chain models is supported
by data obtained in ramped voltage tests (See Section 1.1). In these
types of tests after a breakdown obtains and the field drops to zero,
it 1s restored neither immediately nor after a constant delay (as in
previously defined stép voltage tests). Instead of this it rises in time
at a constant rate r (F(t) = rt) until the following breakdown occurs and
so on. (The regenerative case might be thought to be relevant in such
situations because the field is in the vicinity of zero for a relatively
long period of time after a breakdown occurs and the non-exploded cells
have time to return to the initial state). As we shall see in Chapter I1II,
the Extreme Value Theory predicts that in the regenerative cases the inter-
breakdown times are independent random variables, distributed (after an
appropriate linear transformation) identically either in accordance with
Weibull's law or in accordance with Gumbel's law (the appropriate distri-
bution functions are given by formulas (3.1.6-3.1.7) dependent on the
"thickness'" of the left tail of the distribution function of the time to

explosion in a single cell.
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The Weibull, for shape parameter y > 4, and Gumbel extreme value
distributions are typified by long left tails (negative skewness).
Empirical histograms from several ramped voltage experiments also display
this property (together with independence of the successive interbreak-

down times) thus giving support to '"weakest link" breakdown models.

The '"weakest link' breakdown mechanism is also supported by the tests,
performed on a number of similar specimen (free of weak spots) when only the
time to a first breakdown is registered. The times to breakdown in various
specimen behave as they would be realizations:of independent identically

distributed Gumbel or Weibull variates. We consider several examples.

Example 1. In the ramp tests carried out by Osburn and Ormond (1972) on
the S1 - 5102 - Al samples (100 specimens were separately tested) the
voltage was linearly raised until the firstshorting breakdown occurred.
The data consisted of the pairs (VI, VF) where VI is the voltage at which
a first non-shorting breakdown occurred (I means '"initial") and VF is the
voltage at which a first shorting breakdown occurred (F means 'final").
The times to breakdowns of the same type over different samples do not
show any significant dependence. However, the data pairs were highly
positively correlated and had similarly shaped histograms. The histogram
cf the voltages VF is given in Fig. 2.4.1 and chi-square goodness of fit

test shows that both Gumbel's and Weibull's laws represent a good fit.

The authors didn't try to explain the shape of the histogram but they referred
to it as to a typical one and pointed out the inconsistency of the normal fit..

Note that in fact the Fig. 2.4.1 represents the histogram of the times to a

shorting breakdown since voltage is proportional to time (in ramp tests).
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- Example 2. Ultrathin samples of Si - SiO2 - Si (Thickness of the insulator
-]

limited to 30 - 300 A range) were subjected to constant current in the tests

performed by E. Harari (1977). Since in such tests the voltage varies to
provide a constant current (instead of being constant or ramped) self healing
mechanisms cannot be relied upon to neutralize weak spot breakdowns. Therefore
the areas of the insulating oxide were kept very small (so as to minimize the
probability of occurrence of a weak spot in a given sample). The times to a
first breakdown were registered. The typical histogram, based on 100 tested
samples is given by Fig. 2.4.3. As we canisee, the author tries to fit the
normal curve to the observed data. Though the fit in the shown case is

not bad (the P-value of the chi-square test is approximately 0.30) the
negative skew was typical in.fwenty experiments under various conditions

and this shows the normal fit to be inconsistent. Chi-square tests show

that both Gumbel's and Weibull's distribution laws represent a much better
fit to the observed data. For example, the P-value equal to 0.60 oBtains

when fitting the Gumbel's law.

Example 3. In the ramp tests performed by Solomon, Klein and Albert (1976)
on the A1" - A1203 - Au”  sample (A1+ and Au” mean that aluminium and gold
were used as anode and cathode materials respectively) and on the

HE - HfO, - Au~ sample the interbreakdown times revealed an independent
behaviour and the corresponding histograms were fitted by Gumbel's
distribution law (See Fig. 2.4.2. The histogram of voltages to breakdown
is plotted, but it corresponds to the histogram of the interbreakdown

times) .
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The authors explain the appearance of the Gumbel's law by a model in
which the following assumption haS been made: if the field is held constant
and equal to F, the process of breakdowns is a homogeneous Poisson process
with rate (1/t(F)) where

(2.4.1) T(F) = t(o)e FF

(t(o) and B are appropriate constants). The probability that a breakdown

occurs in the interval (t, t+dt) is equal to .

t
(2.4.2) p(t)dt = [T(o)e'Brt]'ldt « exp{ - J [T(o)e'Brx]'ldx} ,
o

so, the distribution function P(t) of the interbreakdown time is

1 ¢ Brx
(2.4.3) P(t) =1 - exp {- (3) /] e Tdx } =
o
=1 - el - g 7751} 5 t20.

The linearly transformed interbreakdown time Y = BrT - In(Brt(o)) has a

distribution function equal to

1
Brt (o)

(2.4.4) Py(y) = 1 - expl }xexp{ - ¢} ; y> -1n(Brt(o)),

~

and, since from the experimental results it follows that Brt(o) =~ 100, Y

is approximately Gumbel.
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A somewhat different model was used to explain the appearance of Gumbel's

law in ramp tests by de Wit, Wienberg and Crevecoeur (1976).

Completely different breakdown mechanisms were used to explain the
situations in the examples 1-3. But, as we can see, Gumbel's or Weibull's
laws fit the histograms of times to breakdown in evéry case, It seems very
possible that these examples reflect the following reality: a) the insulator
consists of a large number of cells; b) the cells are initially in the same
state and the same processes develop in every cell independently when the
field is applied; <c¢) breakdown occurs aftér one of the cells reaches some
prescribed critical state; d) after a breakdown occurs all the system either

returns to the initial state or dies.

Concerning the last example, we could expect that even in the case that
the process of breakdowns in step tests is not a Poisson one because of non -
regenerativity of the situation after a breakdown occurs), the successive
breakdowns in ramp tests will behave as independent identically distributed
(in accordance with Weibull's or Gumbel's law) random variables. Indeed, such
was the situation which occurred in tests, performed by the same authors when
they investigated the dielectric strength of Si - 5102 - Au capacitors (See

Solomon, Klein and Albert (1976)). In these tests the breakdown processes

obtained in step tests even had changes in rate.

Finally, if the process taking place in a single cell when applying step
or ramp tests satisfies certain conditions, the assumptions of the model
(in Example 3) may be just consequences of a more general ''weakest link"

model.
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CHAPTER III

3. EXTREME VALUE THEORY - A SURVEY OF RELEVANT RESULTS

As we pointed out in the previous chapter, Extreme Value Theory is crucial
for dealing with models of the "weakest link' type (as our models are). In this
chapter we formulate the most important (for us) results of this theory in the
way that is convenient for applications in our specific models. These results
will be referred to often in the following cﬁapters. In the Section 3.1 we
formulate the domain of attraction problem for a single extreme variate and
review the main results connected with identification of the domain of
attraction and finding the normalizing constants (the reader may already
have an intuitive explanation of these notions from Section 2.3. In Section
3.2 we reproduce the main results concerning the domain of attraction problem
for the joint extreme variates. These results will play a crucial role in
analysis of the non-regenerative models. At last, in Section 3.3 we consider
the applications of Extreme Value Theory to our models of breakdown phenomena,
described in Chapter II. These applications include tests for consistency of
the specific model of breakdown with observed data, estimation of the appropriate
physical parameters and predicting the types of interdependence between charac-

teristics of the model which is assumed to be operative in a given situation.

3.1 The domain of attraction problem

Let 51’52’"°"£N be independent random variables, identically distributed

with common distribution function F. Denote
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f3,1,1) WN = mnfglsgzs e0 8 3 E}N)
As well, let Xy be the left endpoint of the distribution function F:

(3.1.2) x, = inf {x|F(x) > o}

(of course X, is either finite or equal to (-<)). The distribution function

FN of WN 1s given by

N
(3:1,53) Fy(x) =1 - (1 = F(x)) y X2 X
and tends to 1 as N » »for every x > X However, we can expect that after
an appropriate linear transformation the random variable WN will be asympto-
tically distributed in accordance with some non-degenerate distribution function

G (See Section 2.3).

Definition 3.1.1 A distribution function F belongs to the domain of attraction

of a non-degenerate distribution function G in the sense of minimum when it is

possible to choose two sequences of real numbers {bN} (by > 0 for N = 1,2,...)

and {ay} such that for every x

W..-
(3.1.4) lim p{ NN

N0 bN

< x} = G(x)

The sequences {bN} and {aN} satisfying (3.1.4) are called the sequences of

normalizing constants.
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Identifying the domain of attraction for F and finding the appropriate
normalizing constants are the main problems that Extreme Value Theory deals
with. So, let us state (without proof) several theorems from this theory.
We shall often refer to these theorems throughout the text. Every statement
concerning Extreme Value Theory can be formulated in terms of either maximum
or minimum. Since we use this theory in the sense of minimum, all the
theorems will be formulated in this sense. This means that the asymptotic
behaviour of WN (as N - =) will be connected with the left tail properties

of F.

First of all, let us define the following three classes of functions

=Y,
1 = e-(_x) if x<0
(3.1.5) L1 Y(x) = 3 Yy >0
1 if x>0
4
{ - &% if x>.0
(3.1.6) L2 Y(x) 5 Y > 0
0 1f %<0
RS
(3,1.77 L(x) =1-¢e , -o < x < o,

Let us aiso define a class of regularly varying functions, which play

an important role in Extreme Value Theory.
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Definition 3.1.2 The function F with left endpoint X, is called a regularly

varying function at x° if it satisfies

lim F(tx) _ .Y ) B

Xt-w F(x)  °© if X, =
(3.1.8)

: F(x_+tx)

L . S S | ; o

x¥o F(x°+x) =t if x, is finite

for every t > o and some finite 7Yy . The number Yy is called the exponent of

regular variation for F. In the particular case y = 0, F is called slowly

varyin at x .
yarying o

Remark. Condition (3.1.8) is not as strong as it may appear. It is shown
(See L. De Haan (1970, p.5)) that if the limit on the left hand side of (3.1.8)

exists it must be of the form tY.

It is possible that F does not belong to the domain of attraction of
any non-degenerate function G, but if it does then the normalizing constants
may be chosen in such a way that G coincides with one of the three functions
Ll,Y'LZ,Y'L defined above. Thus, in what follows, G will always denote one of
these functions (except where otherwise stated). It is also known that if F
belongs to the domain of attraction of G then F belongs to the domain of at-
traction of any function G(Bx+a), (B > 0,0 is real) and of no other function
(see Gumbel (1958)). Necessary and sufficient conditions for F to belong to

the domain of attraction of L or L are given by the following theorems.

1,y M2,y
(See Galambos (1978, pp. 49-75) for the proofs.)

Theorem 3.1.1 A d.f. F belongs to the domain of attraction of L, Y (y > 0)
r

if and only if X, = -2 and F varies regularly with exponent (-y) at Xye
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The normalizing constants ay (shift) and bN (scale) can be chosen

as follows:

(3.1.9)

o
1]

sup{t : F(t) < =

=

Theorem 3.1.2 A d.f. F belongs to the domain of attraction of

L2 Y(Y > 0) if and only if its left endpoint X, is finite and F

varies regularly with exponent Yy at X, - The normalizing constants

ay and by can be chosen as
ay = X,
(3.1.10)
by = sup{t : F(x, + t) < %}

Theorem 3.1.3 A d.f. F(t) belongs to the domain of attraction

of L if and only if for every t

: F(x + tr(x)) _ _t
(3.1.11) lim ) = et

X¥+X
: o

where
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X
(3.1.12) r(x) = p‘&j‘f F(y)dy

X

(o]

The normalizing constants ay and bN can be chosen as

}

sup {t : F(t) <

P

aN

(3.1.13)

o
n

N = T3y

Remark (I. Weissman) The expression for bN in (3.1.13) implies that
by = ay-E(E | E<ay).

The last theorem leads to the following corollary (which plays an

important role in applications).

Corollary 3.1.3 Let F be a d.f. with finite left endpoint Xy If F

belongs to the domain of attraction of L with normalizing constants ay

and bN then

Proof: The proof follows directly from the fact that

r(t)

t-X
(o)

- 0 as t > Xo

(See De Haan (1971,p.82)).
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Another characterization of the domain of attraction of

L is given by the following theorem (see De Haan (1971, p. 80)).

Theorem 3.1.4 A d.f. F belongs to the domain of attraction

of L with normalizing constants ay and bN if and only if

> t
(3.1.14) lim N « F(ay + byt) = e

N=-c0

for every t.

From this theorem the followingycorollary is easily deduced

(see De Haan (1971, p. 58)):

Corollary 3.1.4 1If the continuous d.f. F belongs to the domain

of attraction of L, the normalizing constants can be found from

the equations

F(ay) = %
(3.1.15)
Flay + by) = § -

The following theorem provides other possibilities for

the choice of the normalizing constants (see Galambos (1978, p. 61)).
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Theorem 3.1.5 Let F belong to the domain of attraction of G, the

normalizing constants being aN(shift) and bN(scale).
Other sets {aﬁ} and {bﬁ} may also be used as normalizing

constants if and only if

bE a, - ak
(3.1.16) lim = =1; lin ——2X - 9.
Noo ON Nroo N

Let us now define the concept of tail equivalence which is

one of the basic concepts in the present work.

Definition 3.1.3 Assume that functions F(t) and F,(t) have

a comnmon left hand endpoint X, ILf

(3.1.17) lim %i%%) N
t+x° 1

then the functions F(t) and Flft) are called tail equivalent.

The following theorem shows the importance of this concept to

Extreme Value Theory (see Resnick (1971)).
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Theorem 3.1.6 a) If the distribution functions F(t) and Fl(t)

belong to the domain of attraction of G with the same normalizing

constants ay and bN then,

(i) F(t) and Fl(t) have a common léft endpoint x_;
(3.1:18) ©
(ii) F(t) and Fl(t) are tail equivalent.

b) If the distribution functions F(t) and FI(t) satisfy (3.1.18)
and one of them belongs to the domain of attraction of G with the

normalizing constants a,, and b

N then the other one also belongs to

N
the domain of attraction of G with the same normalizing constants

aN and bN’

The next theorem provides a relatively simple way for identify-

ing the domain of attraction of L (see De Haan (1971, p. 110)).

Theorem 3.1.7 Suppose that the d.f. F(t) has a positive measurable

derivative F' in the neighborhood of X,

X
a) If F'(x)*{S F(t)dt}
X
(3.1.19) 2 > as x +> x_,
[F(x)]? 0

then F belongs to the domain of attraction of L.
b) If F' is non-decreasing and F belongs to the domain of attraction

of L, then (3.1.19) holds.

The next theorem states that multiplication of a distribution
function by a regular varying function does not affect its domain

of attraction (see L. De Haan (1971, p. 83)).
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Theorem 3.1.8 Let F1 and F2 be distribution functions with common left

endpoint X, Suppose also that the function

Fy(t)

F,(t)

u(t) =

is regularly varying at X Then Fl belongs to the domain of attraction of G

if and only if Fy belongs to the domain of attraction of G.

In the models describing the breakdown phenomena F(t) is the distribution
function of the time to explosion of a single cell. So Xy the left endpoint
of F will always be finite. Therefore, by the Theorem 3.1.1, F may belong
to the domain of attraction of either L or LZ,Y . L. De Haan (1971, p.100)

gives a unifying approach which enables one to identify the domain of

attraction in this case.

Theorem 3.1.9 Suppose F is a distribution function with finite left endpoint

X, F belongs to the domain of attraction of a non-degenerate d.f. G if and

al

only if for some value of ¢ from (1/2, 1]

(3.1.20) lim g(x) = c
x+xo

where

x vy
F(x){ J [ F(t)dtdy}
X X
(3.,.1.+:21) g(x) = 2 2 for all x > Xy

x 2
{ / F(t)dt }
X

(o]
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If c=1 then G=L. If ¢ <1 then G = L2 y with
]

(3.1.22) v = (1-¢)~t - 2

Remark a) It is known (See De Haan (1971, p.102)) that if the limit c¢ in
(3.1.20) exists, then c e (1/2, 1].

b) Note that g(x) is similar to the left hand side of (3.1.19).
However, the Theorem 3.1.9 does not require the existence of F' in the

neighborhood of X, as Theorem 3.1.7 does.

Finally, in Fig. 3.1.1 the density functions corresponding to L and
L2 y (for several values of Y ) are plotted. We shall see that these
]

densities give the main features of the interbreakdown time distribution

fﬁﬁ‘

for the regenerative models.

Fig. 3.1.1 The density functions corresponding to L and L
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As we see from Theorem 3.1.5 we have a large freedom in choosing the
nermalizing constants so that the convergence in (3.1.4) holds. However,
the rate of convergence may depend essentially on the particular choice of
the sequences {aN} and {bN}. The following theorem (Galambos (1978, p.113))
enables one to estimate the rate of convergence as soon as the normalizing

sequences have been chosen,

Theorem 3.1.10 Let G be one of the possible extreme value distributions (in

the sense of minimum). Let F belong to the domain of attraction of G. For

given sequences {aN} and {bN} (by > 0) we put
(3.1.23) ZN(x) = NF(aN+bNx)

and, for x's for which G(x) < 1,

(3.1.24) pN(f) = zN(x) + In[1-G(x)].

If x is such that G(x) < 1 and if zN(x)/N < 1/2, then

W .-
(3.1.25) |P{ g N < x} - G(x)| f__[l-G(x)][r1 N(x)+r2 N(x)+r1 N(x)r2 N(x)],
N k] ] ] 3
where
220 (x)  2y(x)
(3n1a26) I'l’N(X) = N g 2 . l_q ¥

N
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(3.1.27) r, NOX) = oy (x) |5 3 odex) = .

with q < 1 and s < 1 such that (2/3) - zi(x)/N < q and
(1/3)|QN(x)| < s, respectively.
o
We close this review with a theorem which gives sufficient
conditions for convergence of moments of (WN-aN]/bN to the

corresponding moments of the limiting extremal distribution

(see Pickands III (1968, p. 882)).

Theorem 3.1.11 Suppose that F is a d.f. with finite left endpoint

belonging to the domain of attraction of T with normalizing con-
stants {ag} and {by}.
Let m be any real positive number. If for some positive integer

N,E(WN)m is finite then

. W, = a. |=-|m o
lim E N N _ m
N+ ———— = [ (-x) dﬁ’(x),
\ N . ==
(3.1.28) : .
: W, = a,[+|m ®
lim E N N _ m ~
Nos — = [ x dG (x) ,
\ N ) 0
where
: Yy, y 20 . 0, y 20
) =90, y<o0? ) =Y.y, y<o
a
Remark 1. Since ly]m = (y+)m + (y-)m, under the conditions of
Theorem 3.1.11,
Wei = i m @
(3.1.29) lim B[-N— NIW = 7 1x|™ a4 Tx).
N+ N -®
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Remark 2. If the conditions of Theorem .3.1.11 are satisfied with

m a positive integer, we obtain that

N=co

) W a, |m
(3:1.,30) lim E [-N_._li] =/ x® d B(x).
N -

(This relation follows from (3.1.28) and the identity y"=(y")"+(-1)"
™.

3.2 The joint distribution of extreme order statistics

In this section we consider the domain of attraction problem for
the k first sample extremes. The statéd facts will play an important
role in analyzing the non-regenerative models of breakdown phenomenz.

Let El, 52""’EN be independent random variables, identically
distributed with common distribution function F (in the models of
breakdown Ei is the length of life of the iEﬁ cell). Let us suppose
that the left endpoint of F is 0. This assumption simplifies the
expressions and is by no means restrictive as will be seen later. Let
glN’EZN""’gNN be the ordered sequence of the random variables El,...,EN.

Consider the k first sample extremes ElN’EZN""’gkN' It follows
from Extreme Value Theory that the asymptotic joint distribution of
these variables (after being linearly transformed) may be only of cer-
tain specific forms. These forms, as we shall see, depend only on the
domain of attraction of F(t) in the sense of minimum (see Sec. 3.1).

Let us suppose in what follows that F belongs to the domain of
attraction of G in the sense of minimum the normalizing constants being

ay (shift) and bN (scale). From the general theory of extreme values

we know, that G must coincide either with L or with L2 Y (see Theorem

’

3.1.1).
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Moreover, we know (Theorem 3.1.2) that in the case that F belongs

to the domai i : i
main of attraction of Lz, , the shift parameter aNr may

be taken equal to 0. Since from

(3.2.1) lim P{ bfl-’ia} «L, (D)
N_m N IY

it follows that

Ing, . -1n b
(3.2.2) lim P{ _%__“ <t} = L(t),
N-<o Y g

only the case
(3.2.3) G(t) = L(t) = 1 - exp{ -e'} (-w< t < =)

needs to be considered. So, we suppose that (3.2.3) holds.
Let us shift all the variables ElN’£2N’"°"EkN by ay and scale them by qu
The transformed variables are
EIN"2N S e
, =

N kN bN

(3.2.4) m,. =

It can be shown (See Weissman (1975)) that not only MmN tends to a

non-degenerate random variable but also for fixed k

{5.2.5) {mlN’mZN""’mkN} + {ml,mz,...,mk} , as N »
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in distribution. The density of m. is

(3:2.6) ¢i(t) = iil)' exp {-et + it} , -® < t < »,
and the joint density of {ml, My,seees mk} is
tk k
(3.2.7) ¢(t1,t2,...,tk] = exp{-e +i£1ti}, t) €ty € il €ty

The joint density of m, and the spacings Di = m.
(i =1,2,...,k-1) can be shown to be
k-1 -id

(3.2-8) w(tk’dl‘dz,.-.,dk-l) = ¢k(tk) . iglie

i

Thus, the following result holds (see Weissman (1978)):

Theorem 3.2.1 If F belongs to the domain of attraction of L, then

the sequence {ml,mz,...} has the property that for each k
{mk,Dl,Dz,...,Dk_l} are independent and each Di is exponentially

distributed with mean (i) .

a
The converse of this theorem is also true (see Weissman
(1978, Theorem 4)):

Theorem 3.2.2 Suppose that relations (3.2.4)-(3.2.5) define non-

degenerate random variables {ml,...,mk}. 1f my and m,-m, are
independent for some ¢ < k then F belongs to the domain of attraction

of L
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Concerning the mean and the variance of my direct calculations

show that

-

(3.2.9) = Em, =

" x

neoan
\_A.IH

- Cw~ In k (as k is large),

LS

where C = 0.5772 is Euler's constant and

“2 k
(3.2.10) g = Var mk = = = :

Ny
1 j2

g I}

In the case that F belongs to the domain of attraction of L2 y

with scaling constant bN’ using (3.2.2) we obtain that for fixed k

1n ElN-ln bN 1n EkN-ln b

N
(3.2.11) { 7 T T b {mp,eno,mp}

in distribution, as N + «. That means that the first k sample
extremes displayed using the logarithmic scale of data represent
the same asymptotic behavior as the k first extremes in the case

that F belongs to the domain of attraction of L.

3.3 Applications to statistical inference

In this section we suppose that the breakdown phenomena is
explained by one of the models described in Chapter II. Assume that
the model is completely defined after the parameters N, 6,.,06,,...,0

12=94 T

have been fixed. The time to the explosion Ei of the izﬂ cell is

distributed in accordance with d.f. F(t) (which depends on
91,...,9r). Let F belong to the domain of attraction of G in the
sense of minimum, the normalizing sequences being {aN} and {bN}.

We shall show how the parameters of the model may be estimated from

a sample {TI""’Tk} of the first k interbreakdown times.
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4

We know from the previous section that as N + o=,

T,-a in distribution -
k Ny - {xl,...,xk},

where {xl,...,xk} is a non-degenerate random vector related to

the d.f. G. For example, in the case of regenerative models,

X ,Xk are iid random variables, distributed in accordance

1°°°°

with G. In the case of non-regenerative models and G=L

1 X s g kg d = {ml,mz,...,mk}

KL k
(see (3.2.5)). Since in our case N'is large, we suppose that
} - }
(3.3.0) {Tl,...,Tk = {aN - bNXI,...,aN + bka

Suppose that there are just two parameters describing the
model: N and 6. Under the assumption (3.3.0) the estimation
procedure for these parameters is as follows:

a) Obtain analytic expressions aNCB), bN(B) of the normalizing
constants as functions of N and 6.

b) Find estimates ay(8) and b (6) using a sample {Tl,...,T }

k
of interbreakdown times.
c) Equating these estimates to their analytic expressions obtain
the two equations - aN[G) = aNte)
che) hN(B).

The solution of these equations (if it exists) provides the estimators

N and 6.
In the case that there are more than two parameters describing
the model, to estimate all of them we use additional samples, cor-

responding to a variety of experimental conditions (which have a
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known effect on the set of parameters.{N,Bl,...,Br}].

We shall now discuss several estimation procedures for both
regenerative and non-regenerative models.

1. Regenerative models. Suppose that F satisfies the conditions

of Theorem 3.1.11 with m=3, so that the first three moments of the

’ : *
normalized sample minimum may be approximated by those of G. )
(Recall that we know a priori that N is large). Denote

2

(3.3.1) E = fx d G(x), V% = Sx?

d G(x) - E2.
Let Ty ,Ty,. ., Ty be a sample of interbreakdown times. Denote by

T and Sy the mean and standard deviation of this sample.

a) Suppose that there are just two parameters describing the model:
N and 6 (i.e., the underlying d.f. F depends on single parameter

6 as well as the appropriate normalizing constants which will be
denoted by aN(G) and bN(B)). Then, since the first two moments

of (T-aN(G))/bN(B) are approximately equal to those of G, one pair

of estimators N and 6 are obtained by using the method of moments;

i.e., by solving the equations:

]
=

ay(8) + by(8) E =

by(8) V

1]
wn

provided the solution exists.
(Recall that the analytic expressions for aN(B) and bN(B) are known).
Another pair of estimatgsg/%e obtained by using the method of

maximum likelihood: MLE's aN(e) and bN(G) are obtained by using

the fact that (Ti-aN(B))/bN(B), i=1,2,.+.5;k, are i.i.d. randon

*
) We see in the sequel that for the specific class of models

considered inithe present work all the moments of F exist. (see

for example, Karlin (1968, § 3)).
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variables distributed in accordance with G (see Johnson and Kotz
(1970, Ch. 20,21)). Then if the equationms, aN(B) = aN(e), bN(B)=bN(6)

have a solution, it represents the MLE's N and 8.

b) We now discuss the problem of estimating N in the case that
the other parameters (describing the properties of the insulating
material and the experimental conditions)are known.

The point estimator N may be found as a solution of the

equation (based on the method of moments)

(3.3.2) —— = E,

in the case that a solution exists.*)
For obtaining an approximate confidence interval for N
as well as for testing hypothesis concerning N the following
theorem could be applied.
Theorem 3.3.1 VLet WN be a minimum of N i.i.d. random variables
with d.f. F. Let F satisfy the conditions of Theorem 3.1.11 with

m = 3. Let Wél),...,W§k) be a sample of k i.i.d. random variables

having the same distribution as WN. Then for every t

WN - (aN+bNE)
(3.3.3) | P { (5N /7% <t} - 9(t)| ¢ A(N,k) + B(N,k,t),

where WN is the sample mean, ® is the d.f. of the standard normal

s g A

b,V a
1.6 £ N vk NN

(3.3.4) A(N,k) = =—, B(N,k,t) = [¢{— [t-= - B)]}-0(t)],
o3 /T 5 [ -5 b )]}-0 ()]

3
- 2 _ -
M, = EW ,O’N = Var WN,p N = E[WN-LhI :

*) Another possibility is to use the equation byV = St
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Proof: Using the Berry-Esseen Theorem (see Bhattacharya'and Rao

(1976, p. 104)) we obtain

W, -u 1.6p
lP{-ER < x} - o(x)| ¢
oy/ vk cN/k"

for every k and x. Renormalizing W& by using (aN+bNE) and (bNV)

instead of Wy and Oy, respectively, leads to

N

W,-(a,+bE) b,V -a 1.6p,

N™*SNTPN N vk JFNTON N
£} ~ = [t - Hi___._ E)]}]| <

(byV)/7Vk N v by ] 03 -

IA

[p {

for every k and t. After adding and substracting ®(t) within the
the modulus sign we apply the inequality |a-b| 2 |a|-|b| to obtain

(3+3+3) .

The following theorem is related to the behavior of the bound in

(3.3.3) as N-»,

Theorem 3.3.2 Let the assumptions of Theorem 3.3.1 be satisfied and

let A(N,k) and B(N,k,t) be defined by (3.3.4). Then

a) B(N,k,t) — 0, uniformly in t.
N>
3
b) A(N,k) __ 1.6 EIX-El
s’ d

where X is a r.v. distributed in accordance with G.

Proof: To prove a) note that by Theorem 3.1.11,

(3:3.5)

lim o /b = V, lim UN~3y
N-+<o = N+ — b
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Then, by applying Polya's Theorem (see ‘Rao (1965, p. 100)) we

obtain that B(N,k,t,) = 0 as N+», uniformly in t.

To prove b) we note that existence of the limit for (ON/bN)

as N+« implies that ;12 (uN-aN)/bN exists. Thus, e and oy can

also be used as shift and scale normalizing constants and

. W, -u
win o N N o X} = & (BeVx).

N=co -

ON

(See De Haan (1971, Theorem 2.1.2 and Corollary 2.1.3)). So, by

Theorem 3.1.11 and (3.1.29) _
Wo-ny 3 3
(3.3.6)  AN,k) = =2 p| L] o 1.6 5 XE
vk N k.

and b) is proved.

Theorems 3.3.1 and 3.3.2 show that for large k and N the d.f. of the

statistic

- T - (aN+bNE)

(bNV)//E

can be approximated by ¢ and therefore Z may be hopefully used as
a pivotal quantity in order to obtain confidence intervals for N or
to test hypotheses concerning N.
We also can see, that after the normalizing constants are expressed

analytically in terms of N,© .,er, the relations (3.3.5) enable us

100
to express the dependence of the mean and standard deviation of the
interbreakdown time on the parameters of the model. For example, since
the area of insulator, S is proportional to the number of cells N,

(3.3.5) enable us to obtain the form of dependence between the mean

and standard deviation of the interbreakdown time and S.
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2. Non-regenerative models Let Ei, the time to explosion in a single cell,

be distributed in accordance to d.f. F(t) with left endpoint t=0. Suppose,
F belongs to the domain of attraction of L, the normalizing constants being
aN(el,.a,,ﬂr) and bN(el,., ,Br). Suppose we observe the ordered sequence of

g

the first k successive breakdowns & (2)’°°°’E(k)“ Since (See paragraph

(1’
3.2) N is large (the expected order of N is 1010), the joint distribution
of E(l)’““”s(k) is fully determined by the normalizing constants. The

questions related to their estimation are discussed in Weissman (1978).

The confidence intervals for ay and bﬁ (which were obtained in Weissman
(1978) and appear below may be used to construct confidence intervals for
the unknown parameters. Since estimation of the normalizing constants ay
and bN preceeds any other statistical analysis, let us formulate (without

proof) the relevant results (which are due to I. Weissman).

First of all, by (3.2.6), the random variables{& } shifted

(175w
by ay and scaled by bN are distributed as {ml’“°”mk}° So, ay and bN can
be estimated using the times of the first k breakdowns. Since the likelihood

function for the parameters 2y and bN is (by 3.2.7)

S0
b K Bpsas
(3.3.7) L(ay,by) = . . expl -e Ve ( (;] = )}
(bN) i=1 N
and
k-1 k-1
(3.3.8) izl E(i) = (k-l)E(k) - izl 1(%3?1)‘5(1)),
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k-1
by the factorization criteria the pair (E(k)’ z E(i)) represents a set of
i=1

k-1
sufficient statistics for (aN,bN) as well as the pair (E(k)’ X i(g(i+l}-£(i)))'
i=1

~ A

Now, the maximum likelihood estimators ay and bN can be obtained using standard

arguments:
A 1 k-1
i=1
(3.3.10) ay = E(k) - bN In k
Since
A bN k-1 bN(k-l)
(3:3:11) E bN = = ‘.Z (uk - ul) = e
i=1
k-1 1
(3.3.12) E E(k) = ay + bN( 151 T -0,

~ ~

and since ay and bN are functions of the pair of sufficient statistics and

the completeness condition for this pair is satisfied (See Weissman (1978,

Sec. 3)) the minimum variance unbiassed estimators for aN and DN are
5 1 k-1 1 k-1
(3.5.13) by = ¥ 151 Gty * &1 151 1(8541)75(4))
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% n . Bl 1

ou‘4 = =% - =
(3.3.14) =By T B ET-0
For 1 = 1,2,...,k-1 the random variables i(%i+1)—£(i)) are independent

and identically distributed (exponentially with mean bN). Further, by

Theorem (3.2.1), gN and E(k) are independent. Thus, the variances of %

N
A
and a, are
2
b
A |
(3.3.15) Var bN ol s, 3
k-1 2 k-1
N 2} 1 2 T 1
(3.,3.16) Var a.N = bN {m(.f J— - C) + (6— - § —?)}
i=1 i=1 j

The confidence intervals for bN and ay may be also obtained using the

fact that

2(k-l)%N :
(3.3.17) —— v x*2k-1)

N

and that the random variable

T e

E -
N _ c) 73N
(3.3.18) Uy = G S
N

b

N N

is distribution free (See Weissman (1978). In this reference we also find the

percentage points of U -
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Suppose now, that F(t) belongs to the domain of attraction

of L2 Y(t). In this case we consider the transformed sequence
»

(1)}

unbiased estimators for 1/Y and 1n by are

{1ng nﬁ(z),...,lnE(k)} and use (3.2.11). The minimum variance

. G 1 1 k-1 1 k-1

(3.3.19) (=) = iil(lnE(k)-lnE(i)) = = 1{ 1(1n€ ;-1 ;y).
I ~ "i k-1 1

(3.3.20) (1n bN) = lnick) - (?) (iil £ om C)

and the confidence intervals for Y énd by are obtained via (3.3.17)-
(3.3.18). The histogram of logarithmic interbréakdown times

(1ng

-lnE(i)) multiplied by i correspond to the exponential law

(i+1)
with mean 1/Y.

In the case that F(t) belongs to the domain of attraction

of 2 Y(t) and its left endpoint is D > 0 the histogram of logarithmic

shifted interbreakdown times (1ln(£& -D)-1n(& -D)) multiplied by

(i+1) (1)

i corresponds to the exponential law with mean and standard deviation

equal to 1/Y. The estimators for (1/Y) and (1n by) when D is known

are _ ’r 1 k-ll
(3.3.21) (?) = =T izll[ln(g(i+l)-n) = ln(E(i)-D)]
—~~ 'i' k-1 1
(3.3.22) (In by) = 1n(Eyy-D) - (P (I 3 -0
i=1

In the case that D is not known the situation is much more
complicated. Since

In(E,..-D)-1n b In(E,. .-D)-1n b
(3.3.23) { (1) N ..., (k) Nya T PR
1/vy 1/y

}

in distribution as N+, the joint distribution of {E(l)""

for large N is obtained using (3.2.7):
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(3.3.24) L8 cgysr-vs8(yysYs by, D) =
k in(g -D)-1n b k In(E,..-D)-1n b
K o3  py o (k) N]+ (i) N, .
vraxps 5 ARG R Sexp 77 e 7% s
. < D < EpyySee By
L0 otherwise.

We can see that the maximum likelihood method cannot be applied
directly to estimate'{Y,bN,D} simultaneously since the likelihood
function (3.3.24) tends to infinity as D+E[1] and Y is greater than
1. Therefore we shall consider other estimation procedures for

D,y and (1n bN).

Estimating D Since (E(l)'D)/bN is distributed in accordance

. & .
with QZ,Y and bN + 0 as N © we take E(l) as an estimator of

D: D = E(l)‘ The mean and standard deviation of D satisfy

~

ED

D + bN F(% + 1) D as N + o |

(3.3.25) 2 1
o 2, ’ 1, * >
bN{r(Y 1) [r(Y 1] } 0 as N .

Q
>
I

The problem of finding confidence bounds for D was considered
by I. Weissman (see Weissman (198la, 1981b)). The first paper
deals with the case of known shape parameter Y, the second one

(unpublished) - with the case of unknown Y.

'Estimating Y When D is known, we can estimate Yy by means of
(3.3.21). When D is unknown we use E(l) instead of D in (3.3.21)

and obtain the estimator

A k-1
(3.3.27) 1/y = E%i z i[ln(5(1+1)‘5(1))'ln(g(i)'gtl))]'

i=2
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A
Let us ‘investigate the mean and the variance of 1/Yy.

N
First of all, note that the distribution of 1/y depends on Yy

only since

A\ 1 k-1
(3.;.28) 1/y = 3 ;

n e

. E(i+1)-D 5(1)“D g(i)-D Z(IJ'D]
i{ln - - 1n - }
2 bN bN bN bN

and (by 3.3.23) the joint distribution g of Y, = 2(1) ...,Yk=—£%l——

bN 5 N
depends on Yy only:
K. % ¥
vy exp{(y-1) T 1n y;-y,}, 0 < y;<...5y,
g(Y]_rYz:"':Yk) = i=]1 ;
. 0 otherwise.

The estimator (3.3.27) is, of course, biased since

#~~ distr. 1 k-1
« (3..3.29) 1/y = k=2 iEZ i|ln Yi+1-1n Yi +
' k-1 Y Y
1 : 1 1
* Y2 .Z i ln(l-Y‘ )-ln(I-?T) .
i=2 i+l 1

3

the mean of the first term is 1/Y and the mean of the second one
(representing the bias) is positive. To investigate the magnitude
of the bias we first note the fact that the random variables

(1n ¥i+1—1n Yi) are independent and distributed exponentially with
mean (iY)-l. Thus, the Laplace transform, H(s) of the density

function h(t) of (1n Y.1+ -1n Y{) is given by

1
2 1 A(i)
a - my _ m
ﬁSaS.SO) h(s) mzl mY+s mzl BY+S
aﬁd
i . -myt
;s All)e , t >0
m
m=1

(3.3.30a) h(t)=

0, _ otherwise,
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where
(3.3.31) A L XEHEDT ety
o m - m-)'-m;! Y m’
Next we obtain that
Y i ..
(3.3.32) E In (1-g—) = = AlDer 1n(1-e™)e ™Y gt -
) q m
i+l m=1 0
AN —_—
= I A [7(n 2) (1=2)"" " "dz
m
m=1
(Here we used the substitution l-e °=z). The integral in the

summand is known (see Gradsteyn and Ryzhik (1965, p. 538)):

(3.3.5%) i(1nz)(1-z)m7‘1dz =-'E%“ [c +w(1+my)] ,

where | is the so-called psi-function (the log-derivative of the
gamma function) and C is Euler's constant (C ~ 0.577). Since
R(o) = 1, we have

1
(3.3.34) I == = 1,

Furthermore,

Y | i A(i)
(3.3.35) E In (l-g——)= -C - I $Y Y(lemy), (i=1,2,...).
i+l m=1

Since Aii_1)= Aii}-(m/i)Aéi),

i . |

z Al y(1emy)
=1

A
-

| ¥q b TP
(3.3.36) E{i[ln(l-g—)-1n(1-g)]} =
L

i+l m

Thus;, by (3.3.29)

(3.3.37) E(i/y) = & - - kil ; A1) yc1emy) =
Y ¥Y(k-2)5_ 5 p=1 ™
k-1 k-1 .
1 1 m-1 i
5 = o« e I ym(-1) Y(l+my) I (I
Yo ov(k-2) 5 . i=max(m,2) "
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k-1 . o
Finally, the identity I (;) = ($+1) implies that
i=m
7 k-1
1 1 m-1 k
(3.3.38) E(1/v) = i o mElm(-l) w(1+mY)[(m+1)“Sny¢] )

where 8m,1=1 if m=1 and 0 otherwise.

The sum, representing the bias in (3.3.38) possesses some interest-
{%g properties from an analytical point of view, which, however,
will not be discussed here. We only note that expanding Y (l+my)
about the point 1 up to two terms,using the fact that ¥'(1l)= -C

And the two identities

e m-1, K
a) I m(-1) (msg)-1 =0, k 22
m=1
(3.3.39) ‘
k-1 k
B) & al-u? i, 01 = -2, k3 3%,
m=1

we obtain that
AN 2

(3.3.40) By _ By , orydy, v » 0.
1/vy k-2

Thus, the relative bias is small for small values of ¥y.

When y is large, so is the bias, as the following argument

l

shows. We know (see Gradsteyn and Ryzhik (1965, p.943)) that

(3.3.41) y(l+my) = .;W + Y(my) =
s 2 o i Fo-tmy 1-t-e " 4 =
= E-Y- nth) + e {-—T E t =
9 t(l-e )
1 1
- %7 +In(my) - o=+ OGz), v > =

*) This identity can be easily provei by induction.

**)(3.3.39a) can be found in Gradsteyn and Ryzhik (1965, p.3).
(3.3.39b) is easily proven by induction as well as the identity
(3.3.41a) which appears later in the text.
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(see Appendix C). Thus, by (3.3.39a) rand identity

k-1 m-1k

(3.3.41a) milc-l) (poy)-1 = k-2, k 2 2,

PN ) 1 1
(3.3.42) E(1/y) - 1/y = C(k) - 7o ¥ O=), v » =,

Y

where

j k-1 m K

C(k) = =2 22 m(-1) (lnm) (IIH'I).
m=

(see Table 3.3.1 for values of C(k)).
Consequently, if it is known a-priori that y takes on large

values, the estimator

~ N
(3.3.43) 1/y = 2(1/y - C(k))
N )
is less biased than 1/y (but has a greater variance). In effect,

if it is known a-priori that y > 1, the likelihood function

(3.3.24)\is bounded and the MLE of (D,y,ln bN) may be obtained
by an ordinary procedure of solving the equations obtained by
the standard procedure of setting the partial derivatives of L

with respect to D, y and (1ln bN) to zero. (If these equations have

Table 3.3.1: The values of C(k)

k  C(k) k  C(k) k  CC(k) k  C(k) k  C(k)

1 — 9 0.709 17 0.530 25 0.454 33 0.409
2 — 10 0.674 18 0.518 26 0.447 34  0.404
3 1.386 11 0.644 19 0.506 27 0.440 35  0.400
4 1.125 12 0.618 20 0.496 28 0.434 36 0.396
5 0.976 13 0.596 21  0.486 29 0.429 37  0.392
6 0.878 14 0.577 22 0.477 30 0.423 38 0.388
7  0.807 15 0.560 23 0.469 31 0.418 39  0.385
8 0.753 16 0.544 24 0.461 32 0.413 40  0.381

no solution in the region 0 < D < 5(1), vy 2 1, we should maximize,
the likelihood function in this region by other means or look for
another approach). We will not discuss, however, the properties

of estimators produced by this procedure.
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N
To obtain the variance of 1/y, let us denote the first term
in the right hand side of (3.3.29) by A and the second one by B.

By Theorem 3.2.1, Var A = [y2(k-2)] ). Since for i < j

Y
(3.3.44) 0> E[(1n Y, -1n Y,) - 1n(1 - $D)]>
j
¥y
> E[(1n ¥iq=10 %) « 1n(1 - == )] =
* * i+l L//

= /xln(l-e ®)eivy.e™TXdx > -
(o]

(see (3.3.33)) and

Ty i
(3.3.45) 1n(1 - &— )-1n(l - )
¥, S
i+l

[(;%) G ) } ,

b i+l

L
1
= |
I . 8
=

the dominated convergence principle (see ‘Feller (1971, p. 111)) may

be applied to obtain that for i < j

Y Y
1 1
(3.3.46) Cij-Cov{[lnYi+1—1nYi],[1n(1-7;+1) " ln(l-?;)]} =
® h (@ j-1Y n j Y n
1 : | n T T
£ = Cov{[lnY, .-1nY.], (&= ) | M (= ) -1 (= ) |}
n=1 " i+l * Yi+1 r=1 Yr+1 r=1 Yr+1
r#i T#i
Furthermore, by (3.3.23) and Theorem 3.2.1, b/
Tl R 9 R Y| - coviciny, -1nv,), Gk )™
(3.3.47) C..=.L = « E| T (o - (3= - Cov{(lnY. ,-1nY.), (= =
1) p=1? r=1 Yr+1  r=1 Yrsl e L a1
T#L T#i i
g | i-1 . J o r (= -nx-iyx
= L = 0=t o T =t & rys Y¥iydx-
n=1® r=10*TY r=10FTY o n+iy
T#i TEL I
o j
== 3 s M oo
n=1 ijy (n+iy) r=1
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Thus, since Cij=0 for 1 > j,

; k-1 k-1 = j
(3.3.48) Cov(A,B)= - S5——— & 1§ —— T X <o
 (k-2)° i=2 j=i n=1""1Y poM*TY

Next we obtain Var B. At first,

Y i,
(3.3.49) e;  =E In(1-g& )= 1 a(1) Fin2z @-2)™"14; -
; m
i+l m=1 o
-
2 mw i 1 2
c? v milA“E ) o o= [2c yemy) ¢ w3 emy) - v (Lemy)]

(see (3.3.32), Gradsteyn and Ryzhik (1965, p. 541) and (3.3.34)).
Then, by expanding 1n(1-Y1/Yi+1) and using the dominated con-

vergence principle, we obtain:

£ LT I T O 5 T Yy
(3.3:50) ei i+1=E IDCI-T )ln(l-Y— ==L x E [T— ) ln(l-Y—)
g i+l i n=1 i+l i

. =p =il o g Aéi-l)? inti-a" e DRI 4t o
0

© . i-1 A(l-IJ
i m
m=1 DY

u

[C +¢(1+n+my)]
and

Y1 Yl 2
(3.3.51) bii= E ln(l-Y;+1)-1n(1-?;} =ei+1+ei'zei,i+1'

Next, for i < j,

| Y L L %3
(3.3.52) bij= E{ ln(l-?f )-ln(l-?f) ln(l-TT )-ln(l-?f] } =
i+l i j+l j

Y Y. ][ Y, n ¥ ]
1 1 1 1 1 n
= E{[ln(l-?;;l)—ln(l—TT) [(77) =g )} -

- Y Y Y, - . (Y,

=z L E{[ln(l-—l Yelfifleoi) | (o2 I® reillydly. el )“]}=
n Y. y Y.

= i+l b j+1
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® 1 j-1 " . i Aéi)
=n£1H . m E%;? 1-%%7; -z nemy [C +¢(1+n+my)] *

r=i+l m=1
g 3-8 Aél'l)
* n+iy mil n+my [C +w(1+n+m7)] ’

Finally, transforming the last expression with the Help ot (5. 5.30)

we obtain

2 i ali)

(3.3.53) Var B = —L1—t {k§1 i%b.. + lki 17 |- 1 =B gllnenyy «
(k-2)% i=2 A1l Y5e2 nui| m=1PtRY

gy if1 Aéi'l) k-1 3
+ I — Y(l+n+my) z s £
m=1 "*TY i j=i+l r=i+1"*TY

k-1
-1  m(-1)

m=1

m-1
m

2
p(1emy) (5, -%m’l)] }

N
and as soon as k is given, Var 1/y may be calculated as a function

of vy by means of the formula

2N I
(3.3.54) Var 1/ = v 2Cov(A,B) + Var B
Y°(k-2)

with (3.3.48) and (3.3.53) expressing the last two terms. When k is
large, the numerical calculations of the above formulae become time-
consuming and need to be planned and performed carefully (in particular
sums Eontaining A;i) must be treated delicately since some terms may
reach large values). There are several ways to obtain an upper

bound for Var(f7;) by simpler calculations, (for example, using a

finite upper limit instead of « when summing n in (3.3.48) and

(3.3.50), applying the inequality e,

. e.
i,i+l

) in (3.3.51), apply-

ing H¥lder's inequality etc.) However, we have not investigated
these, or other, possibilities in detail, and so have no exact infor-
mation on the behavior of the variance or, indeed, the bias. Thus,

to investigate these factors further, we constructed a double pre-
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cision FORTRAN program and computed them numerically for particular
values of y and k (see Appendix J, Table J.1). The calculations
show that for moderate values of k (k < 30) the estimator (f?;)
has‘good properties only when 1/y is greater than 0.5. For example,
when 1/y=8 and k=6 the bias of f?; is 0.102, the st#ndard deviation
is 3.955 and YMSE is 3.954. Should D be known, the estimator
(3.3.21) would produce an unbiased estimate with YMSE = 1/(y/k-1)=

= 3.577.

Estimating (ln b,). A natural estimator for (ln bN) can be obtained

from (3.3.22) with D replaced by 5(1):

AN A k-1 1
. b, =1 - -1 = -C) =
(3.3.56) 1n N n(E(k) 5(1)) /Y(izl 3 )
QLBLE Y, A k-1,
= 1n bN+1“Yk+1“(1‘T;) -1/vy (‘il T -C)
s

Clearly, the distribution of (1ln bN-ln bN) depends only on
vy (a fact which enables the construction of confidence bounds for

In by and ") in the case that y is known). By (3.2.9), (3.3.35)

and (3.3.37)

A\ k-1 ALkl
(3.3.57) E(1n by)=ln by -C - I 8

A\ k-1 1
m

Y(l+my) ‘{E(l/Y)'I/T (z T -C)

1 =y i=1

so that the estimator (3.3.56) is negatively biased. The bias can

be investigated for small and large values of y by the methods we
N

used before, when investigating the bias of 1/y. Note only, that

~
perhaps it is better to use the estimator 1/y (see (3.3.43)) instead

*) Confidence bounds for D may be obtained from the relation:
AN : Y -~ k-1
1n(g(k)-n)_1n bN dlétr-ln(l-?i) + 1/y( Z % -C) (see Weissman

i=1

(1981a) for another approach).




81b

of f?; in (3.3.56) when it is known a-priori that y is large. (As
we have already pointed out, in this case ;he MLE estimators for
the parameters may be found by an ordinary procedure of maximizing
the likelihood function. However, even in this case our estimators
may be used as first approximation in the maximation procedure.
To calculate Var(fgﬁgN) we use the independence of 1n Yk
on the other terms in the right hand side of (3.3.56). To find
Cov[ln(l-Yl/Yk), f?;]we expand 1n(1-Y,/Y,) and calculate
Cov[ln(l-YllYk),A] and Cov[ln(l-Yl/Yk),B] separately,using the same

method as in (3.3.46) and (3.3.52). We obtain

(3.3.58) v,=Cov(A,-I =(37) ) = - I I =
1 n=1" Yk y(k-2) {=2 nal PYLY 4.1 BFTY
@ ¥4
(3.3.59) v,=Cov(B, -% 2 () =
b1 () 2
n=1 k
k-1 o b é Y Y s
=-rls D i & E In(l-g= )-In(l-g) | = (= )™ ¢ irdyny
i=2 n=1 i+l i i+l k
Y1
- E(B) + E In (1- )
k
. 4 (1)
k-1 = k-1 i A
1 < 1 ry m
=-—— L 1 I =( T )| - Y(l+n+my)+
k=2322 n=1" r=i+1"*7Y L=1“+mY
£ §=1 Aél_l)
Yoty I ey Sismem)| e
m=1
AN k-1 Algk-l) :
+ |E(1/y) - 1/y||C + £ —— ¢(1l+my)| ;
m=1 Y
k-1
where for i = k - 1 we define T as 1. We have also (by 3.2.10)
r=1i+1
2 k-1
1 T 1
(3.3.60) wu, = Var(ln Y,) = =, (=— - L =)
1 k 2 % 2, 2
Y i=1 3
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and (by (3.3.49))

0o 0 k=1 ALk-1) 2
(3.3.61) u2=Var n(l*q) = ek -|C + I _mT— Y (1l+my)
: m=1
PN
Thus, the final expression for Var (ln bN) is
-\ k-1, 2 AN k-1 1
(3.3.62) Var (1n by) = u1+u2+(i£1 ?--C) Var(1l/y) —zciil 5 -C) (vy+v,)

AN AN
Finally, we note that 1/y and 1n bN are highly correlated and

1 A~

AN AN k-1 4
7 -C) Var(1l/y)

(3.3.63) Cov (1/y, 1n bN) 5 Vgt¥y = (

i=1

T

This covariance is likely to be negative - we expect that

ln(l-Yl/Yk) is close to zero for large values of k so that Vi+Y,
A~ |
is small compared to Var(l/y).
™

Calculated values of the bias and standard deviation of 1n bN

for some values of k and y can be found in Table J.2 of Appendix
. ey AN

J. The correlation coefficient between 1/y and 1n bN is also

tabulated (see Table J.3).
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CHAPTER IV

4. FINITE CHARGE BREAKDOWN MODELS

In this chapter we consider a class of models described in Chapter II
namely, finite charge breakdown models. The process of charge accumulation
in a given cell is a birth-death process with absorbing state M, "birth"
rates {Ao’ll””"’AM—l} and "death'" rates ful’UZ”"’uM—l}’ As soon as the
charge accumulated in one of the cells reaches M, current runaway (breakdown)
occurs in this cell after some prescribed time D. In section 4.1 we solve
the domain of attraction problem for F(t), the d.f. of the time to explosion

of a single cell, and find the normalizing constants. In sections 4.2-4.3

we consider the regenerative and non-regenerative models separately.

4.1 Domain of attraction

In this section we consider two models. In the first model we assume
that the initial charge atcumulated in every cell at time t=0 is zero. In
the second model the initial charge at t=0 is distributed in accordance

with the quasi-stationary distribution (See Sec. 2.2).

4.1.1 Zero initial chargg

In this model the initial charge of a single cell is zero and F(t) is
just a d.f. of the first passage time from 0 to M. To solve the domain of

attraction problem we must investigate the left tail properties of F(t).
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Let us denote the first passage time from O to M by T, the first passage
time from the state i to i+l (i = 0,1,2,...,M-1) by Ti’ the corresponding
densities by f(t), fo(t),f (t),...,fM_l(t) and their Laplace transforms

B 28,2 (8,8, (8) s n i By (80

By the strong Markov property, To’T1’°°°’TM-1 are independent random

variables and

(4.1.1) Ti=T_ + T, *,0.% T

As functions ¥o(s),,.,,¥M_1(s) satisfy (See Keilson (1965, p.407))

UL, o+ AL 1l ‘ A
(4.1.2) Ee) =—2—2 (2 ¥ ) - —— 1

C+A
ul 1

(4.1.3) ¥ (s) = A ,  i=1,2,...,M-1

where }‘o(s) = Aof()\o*s)
Since
¥s) =¥ (s) » F(s) ot By [ (S)

and



84

A,
(4.1.4) ?i(sjms_l gs g »m

%(s) has at infinity the following asymptotic form

-M
(4.1.5) ¥(s) VAN cen Ay S , sow,

(See Keilson (1964) and Rosenlund (1977)).

We see that }(s) varies regularly at infinity, so we can apply one of
the Tauberian theorems (See Feller (1971, p. 445)) and conclude that F(t)
varies regularly at t=0. The asymptotic expression for F(t) as t + 0 is

M
: o
(4.1.6) F(t) ~ kokl siava AM-l TR

We see that the ''death' rates M, are not represented at all in this
asymptotic expression. This means that from the point of view of extreme value
theory, the finite birth-death model is equivalent to the finite pure birth
model with the same ''birth'" rates. We can explain intuitively the absence
of "death'" rates in (4.1.6) as follows: The probability of reaching state
M in a short time t with a "death" occurring at some state are negligibly small

compared to the probability of reaching state M in time t by 'birth'" only.

Now let us solve the domain of attraction problem and find the normalizing
constants. By Theorem 3.1.2 F(t) belongs to the domain of attraction of
L2 M (Weibull distribution function ) defined by (3.1.6). The normalizing

constant bN may be found from the equation (due to tail equivalence)
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tM

(4.1.7) Aoll s kM—l _— =

1
.

=
Z |+

If we suppose the delay D is present, the normalizing constant ay is

equal to D. So, the normalizing constants are

ay = D

(4.1.8)

1 M! 1/M.
I b s v !
01" *"M-1 :

4.1.2 Quasi-stationary case

In this model the initial charge at t=0 in a single cell is distributed
on the set {0,1,...,M-1} in accordance with the quasi-stationary distribution
(See Sec. 2.2). The cell explodes as soon as the accumulated charge reaches M
and its explosion does not affect the other cells. In the case that the cell
explodes with delay D after it reaches state M, the initial distribution is
not a quasi-stationary one (since there is a proportion of cells which are
in state M). However the process of breakdowns in this case differs from that
corresponding to D=0 by a shift in time only. Therefore only the case D=0

needs to be considered.

We have seen from Section 2.2, that if a single cell is "alive" at

t=0, the d.f. F., of the time to explosion T in this cell is

T

-xot
(4.1.9) FT(t) =1-e 5 t>0
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(where (-xoj is the maximal eigenvalue of the infinitesimal matrix A). So,
Fr belongs to the domain of attraction of L, 1 (the standard exponential
2

distribution), the normalizing constants being

= 9
(4.1.10)
1
Bl
N on

Thus, in the quasi-stationary case the process of breakdowns is just a

Poisson process with the rate A = (xON),

4.2 Regenerative case

As we saw in Section 4.1, in the regenerative case (i.e. in the case
that all the cells lose the accumulated charge after a breakdown occurs)
F(t) belongs to the domain of attraction of LZ,M with normalizing constants
given by (4.1.8). So, this model predicts interbreakdown times to come
from the three parameter Weibull distribution (these parameters can be
estimated using a sample of interbreakdown times). Since the moments of
L are given by

2,M

= M
(4.2.1) wo= £ e e dx = I‘(% ‘1),
0

denoting the interbreakdown time by T we obtain the following expressions for

its mean and standard deviation:
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(4.2.2) ET=aN+bNu1=-.D+ [-I%}.-X.T_M.!._r]l/M. I‘(;‘T+ 1)
01"’ ""M-1
2. /2 1 L 1/M 2 2.1 /2
(4.2.3) Op = bN(hz-Ul) = [N" IETITTTX;?I ] . [P(ﬁ'+ 1)-T (ﬁ'+ )]

The last formulae show that if the model is valid, we expect the following

relations between the sample mean T and the sample standard deviation St

as functions of the area of insulator S :

(4.2.4) T=k, + ks~

(4.2.5) s = k57K

where k, kl’k2’k3 are appropriate positive constants with k = 1/M for some

positive integer M.

4.3 Non-regenerative case

In this section we consider the methods for estimation of the parameters
in the case of non-regenerative models. We consider separately the zero

initial charge model and the quasi-stationary model.



88

4,3.1 Zero initial chargg

In this case F(t), the d.f. of the time to explosion of a single cell,
belongs to the domain of attraction of LZ,M (See Sec. 4.1.1) with normalizing
constants given by (4.1.8). Suppose that M is known and E(IJ’E(Z)"“”g(k)
is the sequence of first k breakdown times. Then the estimator b for D is
the solution of

1 T
(4.,3.1) ﬁ= m E 1[1n(5(1+1)-D) - 111(5(1)-]3)]

and the estimator for (N - Aokl"'AM—l) can be found by solving
1 ~ 1 k-1 1
(4:.3+2) ﬁ-{ln(M!) - ln(N-kokl...AM_l)} = ln(E(k)—D) - ﬁ(izl - C)

(See paragraph 3.3). If the birth rates {AO,... } are not known, to

’kM—l
estimate N we need an additional sample. This sample must be drawn from

another experiment in which the product {Aoll..,k } is changed by a

M-1
known value.

Supposing that M is unknown, the estimator 6 can be taken equal to
E(l) (in accordance with the estimating procedure given in the end of
Sec. 3). Then the estimators for M and (N - kokl’“'AM-l) are obtained
from

¥ = . 1 nl - -1
(4.3.3) = int{min{1, = I 1[1“(5(i+1)'£(1)) - 1n(gm-£m)]}}

i=2

and (4.3.2) with M replaced by M (int(x) is the integral part of x).
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4,3.2 Quasi-stationary case

In this case the process of breakdowns is a homogeneous Poisson process
with the rate A = (on). So, if X 5Xy5 000Xy aTE the observed interbreak-

down times, the product (on) may be estimated by

N\
(4.3.4) (on) =

I =
”~<

i

To estimate Xy and N separately we need an a&ditional sample, corresponding
to other experimental conditions or some theoretical value of X, Note, that
just changing of the area of the insulator and observing the process of
breakdowns gives us no extra information about N and X, separately. The
computation of X, via the "birth'" and ''death'" rates may be carried out

using the technique of Sec. 2.2.3.
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CHAPTER V

5. INFINITE CHARGE BREAKDOWN MODELS - PURE BIRTH CASE

In this chapter we suppose that charge accumulation in a cell proceeds
in accordance with a pure birth process. The cell explodes (i.e. current
runaway in the cell occurs) as the accumulated charge reaches infinity.
There are N cells operating independently and the initial charge in every

cell is zero.

Let us denote by Ei the time to explosion in the i-gl cell. We see, that

51,,,J,5N are independent and Ei is an infinite sum of independent
exponential random variables with parameters Ao,Al,,,, - In the literature
distribution functions of such kind of sums are sometimes called escalator
functions (See Chung (1967) and Kingman (1972)). It is known by the

theorem of Feller-Lundberg (See Bharucha-Reid (1960, p. 81)) that Ei

is a finite random variable if and only if

=]

(5.1)

i 1

! <
A et
J=0 ]

and this is supposed to hold in what follows,

Let us denote the distribution function of ﬁi by F{(t). In order
to cope with both regenerative and non-regenerative types of models we
must solve the domzin of attraction problem for F(t) and to find the
appropriate normalizing constants. To do this we first explore the left

tail properties of F(t).
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In Section 5.1 we consider the domain of attraction problem
for F(t) in the sense of minimum. In Section 5.2 we find the
appropriate normalizing constants for two important classes of
charge accumulation processes. In Section 5.3 the statistical

‘applications of the results are considered.

5.1 Domain of attraction

The Laplace-Stieltjes transform f(s) of F(t) is given by

-st

(5.1.1) F(s) = T e dF(t) = 1 (X%%‘)’ Re s > 0.
0 .O_JS

J=
Since t=0 is the left endpoint of F and for s>0, x?1

f(s) i (x-1)s e 5
= I (1+ Y > (%=1) T —
F(sx) j=0 j j=0 Xj+s s ’

T(s) is not a regularly varying function as s=»., Then the Tauberian
theorem (see Feller (1971, p. 445)) asserts that F(t) cannot be
a regularly varying function as t + 0. So, the Theorem 3.1.1 leads
to the conclusion that only two possibilities remain:

a) F belongs to the domain of attraction of L.

b) F does not belong to any domain of attraction.

We shall see that a) obtains by determining the main term of
the asymptotic expansion for F(t) as t + 0. This term, by Theorem
3.1.6 may be used to identify the domain of attraction and to find

the normalizing sequences {aN} and {bN} as well.
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First of all, in Paragraph 5.1.1 we obtain the exact form of F(t)
as a limit of a sequence of exponential polynomials. Then we use this
form in Paragraph 5.1.2 to obtain the asymptotic representation of
F(t) when Xj = (j+1)2, j =0,1,... .  This relatively simple case is
solved using the theory of Jakobi's 6 - function and the asymptotic
form of F(t) attained enables one to get a feeling for the possible left
tail behaviour of the distribution function F corresponding to power
charge accumulation rates (Aj = a(j+1)u;a > 1). The last fact makes

the power rates case simpler,

Further, in Paragraph 5.1.3 we consider the general pure birth model
of charge accumulation, We extend the results of Hirschman and Widder
(1955) to obtain the representation of F(t) and its indefinite integrals
as t ¥+ 0. Then we solve the domain of attraction problem and obtain
equations for finding the appropriate normalizing constants. Since
these equations are too complicated to give closed expressions for the
normalizing constants, in Paragraph 5.1.4 we develop an alternative
approach based on the use of Euler's summation method and saddle point
methods for finding asymptotic expansions. This approach will be
applied in Section 5.2 to find the closed expressions for the norma-
lizing constants {aN} and {bN} in the cases of power and geometrical

charge accumulation rates.

5.1.1 Exact form of the distribution function F(t)

First of all, from the form (5.1.1) for the Laplace-Stieltjes

transform of F(t) we see that the derivatives F[n)(t) exist for every
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integer n and F(t) vanishes at zero together with all its deriva-

tives of finite order, i.e.
(5.1.3) F(0) = 0, F'(0) = 0,...,F™ (o) = o,...

This follows by observing that for every integer k

k-1 ®
= SAj Aj
(5.1.4) S AOLIE - R, s I X

j=0 j=k

Let us now assume (in the present subsection only) that Ai; #)j
for i # j and denote by Fn(t] the distribution function corres-
ponding to the sum of (n+l) exponential random variables with

rates Ao, Al,...,A Let us denote by fn(t) the density function

n°

of Fn(t) and by E;(s) - the Laplace transform of fn(t). We know

that )
~ n n A,(n)
- LS B i S
(5.1:5) fn(s) n (Aj+s) _E Xyes
j=o0 j=o
where Aj(n) is given by
n Ax =1
(5.1.6) Ac(n) = A5 M (1 - ey
i#j
n
Since (by 5.1.5)) I Aj(n)/kj = 1 for every n, integrating the
5 j=o
inversion of fn{s) from 0 to t we obtain
n A.(m) ..
(5.1.7) Fo(t) =1 - I “JXJT"““’ Ajt
j=o

Thus, the exact expression for F(t) is given by

n A.(n) SiEt
(5.1.8) F(t) = 1 -1lim I —%— e ™%, t > 0.
n+® j=o0 J
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Let us now consider two special cases.
Case a) Let
s 2
(5.1.9) Ay o= (G+1)T 5§ =0,1,2,.
Then (5.1.8) leads to
@ L 32,

1 + 2 = (-1)J e ™) , t > 0,

(5.1.10) F(t) = j=1
0 » £ 20

(see Karlin (1968, p. 349) for details). The last expression shows
that F(t) is a special form of Jakabi's fourth theta-function (see
Appendix A).

Case b) In this case

(5 L.

Formu

(5.1.

where

(ot

with

(5.1.

(see

11) Aj =bAd, A>1,b>0,j=0,1,2,....

la (5.1.8) takes on the following form:

® “Hid
1 = E Bje bk t, t > 0,
12) F(t) = j=o
0 « £ 20
j i =1
jm S LU & R S s 3> 0,
13) By = 1=l
M gy 5 =0
M i )3
14) M= T (-
|i=1 A

Karlin (1968, p. 350)) for details. It is shown there that
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(S.1.18) f(t) =

Since bX fBj'b'AJ|< @, we can integrate term by term in (5.1.15).
j=0 '

This leads to (5.1.12)).

We see that representation (5.1.8) of F(t) is in general
too complicated to be used for solving the domain of attraction
problem and we shall look for another approach. Nevertheless,
we are able to cope with the first case using some properties

of theta-functions. This will be done in the following section.




96

5.1.2 Quadratic rates

In this paragraph we shall find the asymptotic representation
of F(t) in the case lj = (j+1)2, j = 0,1,2,... » 1In the preyious
paragraph we found the expression (5.1.10) for F(t) in this case.

From this expression we see that

(5.1.16) F(t) = 0,(0]7) ,

where t is taken to be v = it/m. (see Appendix A). But, using

(A.12) we obtain:

—1/2

(5:1.17) F(t) & (0[

[

2 2
z/i'e-n /4t e-21r It . o6 /t
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Thus, we see that as t + 0 |,
T —w2/4t
(5.1.18) F(t) v 2/—-£-e

The last asymptotic expression enables us to identify the domain of attraction
of F(t) (F(t) belongs to the domain of attraction of L(t)) and to find the
normalizing constants. This will be done in Section 5.2. Meanwhile

let us note that the factor 1/vt in (5.1.18) is a regularly varying one.

This factor does not affect the domain of attraction (See Theorem 3.1.8)

and, as we shall see later, it does not affect the normalizing scale constant.
So it seems quite possible that in the general case of power charge accumu-
lation rates (Aj = a(j+1)a,a >1,a>0, j =0,1,2,,.. ) (F(t) will be of the

form
(5.1.19) Fie) voat’e™®t | ¢4

where o, B, Y and 8 are constants. We shall see later that this is indeed

the form of F(t) in this case.

Let us note that we can obtain the representation (5.1.18) using the

Laplace-Stieltjes transform ?(s) of F(t)

: 3 .
(5.1.20) ¥s)= s e @R = 1 S— =
o] k=1 k™ +s

= sP(i/s)T(-iv¥s).
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The last equality is obtained using the fact that

1 Cz o
= ze“? 1 (1 +

I(z) k=1

z, =-z/k

(5.1.21) f)e s

where C is Euler's constant (C ~ 0.577).

Since T'(l1 - ivs) = (-i/s)T(-ivYs) and

(5.1.22) T(z)T(l-z) = L

sin w2z

we obtain the following form for %[5):

(5.1.23) ¥(s) = TS . _2n/s -

sin(mivs) eﬂ/?_e-v/g

= Zn/Eé-ﬂ/g[l . o 2WE  odnYE ¢4 ]

Now, if we invert termwise (5.1.23) we obtain the expansion
(5.1.17). Such termwise inversion can be justified by applying
Theorem 30.1 (see Doetsch (1974, p. 193)). The last expression
shows that one way to handle the case of genefal rates (Ao,kl,...)
would be by trying to represent ?(s) by means of a convergent (or

asymptotic, for large :) series and then to invert term by term.

5.1.3 General Approach

In this paragraph we shall consider the domain of attraction
problem for distriﬁution functions F whose Laplace-Stieltjes
transform is given by 5.1.1. The behavior of f(t) as t + 0
was considered by Hirschman and Widder (1955) when investigating
f(t) as a kernel of a convolution transform. Their results are

presented in the following form (Theorem 3.1, Ch. V):
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Denoting for r > 0

-]

(5.1.24) A(r) = L (J\.ﬂ-)'1 :
j=o J
(5.1.25) o(r) = (I (Aj+r)l)l/2 -
j=o
: TA(T)
(5.1.26) A(x) = ) ’
g(r)

the nEll derivative of f(t) satisfies:

(5.1.27) fMoam) vt A as row
v2m
for n = 0,1,2,... . (f(o)(t) = f(t)). We could use this result to first

obtain the asymptotic estimate of f(t) as t + 0 and then, by integrating
this asymptotic relation, obtain the representation of F(t) as t + 0,
Instead of doing so we show that (5.1.27) remains true for n negative

where we interpret f('n)(t) via

t
(5.1.28) ™ ey 2 s ™D nax ; n=1,2,...
(o]
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Lemma 5.1.3 Let n be a positive integer. Then

(5.1.29) M oE) v L r A as 1w .
i
Proof: The proof is a modified version of Hirschman and Widder's proof.

First of all, let us note that F(t) vanishes at zero together with all its
derivatives. Further, since all the poles of ?(s) are in the left half-
plane, applying the inversion formula (See Doetch (1974)) we obtain

T+iw

(5.1.30) ey =« L f 5P M¥(s)ds, = > 0.
2L r-ie

After a change of variable s = r-p/o(r), we have

Tu_-n i«
5.1.31) £ =L £ T 5 1B ep[- Pg¥e - 2 ap.
2mi o(r) -ie ro(r) a(r) a(r)

But we may easily verify that

?(r - —E-—J o 1
(5.1.32) AN -1 £ RO R O S, o
?(r) j=o0 U(r](kj+r)
_ ep)\(r)/o(r)[gr(?)]-l ’
where
. o(r) (X.+1)
(5.1.33) E(p) = I {[1 - —E——1e B LT
j=o o(r)(Aj+r)
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If we set u = A(r) in (5.1.31), we obtain
(5.1.34) £l ener)) = rA )T

where A(r) is defined by (5.1.26) and

joo
{5+1.35) I = L7 -2 ]'"[Er(p)]'ldp-
2mi -ie ro(r)
Now, let us show that
& 2/2
(5.1.36) lim E_(p) = e P

-0

for all p, uniformly for p in any compact set.
First of all let us note that

»

2
(5.1.37) lin[1-peP*P 72 < 20p(3,  |p| <172,

where the main branch of logarithm is taken.
The proof of this inequality can be found in Titchmarsh (1939, p. 246).

So, since by definition of o(r)

2 o
(5.1.38) L=% E [—E— 1,
: j=0 U(r)(?tjﬂ‘)
we obtain
2/2 = 13 2| 13
(5.1.39) |in[E_(p)eP “]| <2 I P < S

j=o0 d(r)(kj+r)l ~ ro(r)
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Then, since
(5.1.40) ro(r) +® as r +

(5.1.36) follows immediately from (5.1.39).
The equality (5.1.36) was used in the above mentioned Theorem 3.1 to
/2

prove that I tends to (ZW)'I as r -+ »,

Let us prove that the same is true in our case. Take a > 0 and write

I as
T
1 -ai ai i
(5.1.41) P { 57 + 7 + [}
2mi -joo -ai ai

Taking € > 0 we then have

5.1.42) |1_- o V3 <lq s BameE inl e -
T 2m a ro(r)

s it i-n | 2
|5 {1 - 177+ [EL(it)] " -exp(-t /2) }dt|+
-a ra(r)

+2f exp(—t2/2)dt+|f[1 L ]'“[Er(it)]'ldt|}
a a ro(r)

Now,

2 2 £
(5.1.43) |E_(-it) |© = |Er(it)[ = I {1+ =3 =
X i=0 [0(r) (A +r]
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o0 (=]

1+t2 Z 1 +%t4 z [_1—"']2{2 1 1 } +wos

j=o [0(x) (A;+m)]° jo G(n)(y+1)  meo [0(r) (A31)]1% B Oyer)*

where all the remaining terms are positive. Let us denote

Vv :
(5.1.44) A= dnf(d ,A,,..0)

Then, by (5.1.40), it is possible to choose R > 0 such that
N ) y
(5.1.45) 1 - [o(@®)(XA + 1)] > /2 for x> R,

Therefore, using the definition of o(r), we have as r > R,

(5.1.46) B (-it)[% > 1+ %+

hrl'l-—l

So,
(5.1.47) | £+ —22 1P E_(2i)] tae] <
a ro () &
<5 s om0 e 2 v Loy ¢
a

Ll t2 + %t4)-1/2 dt < me/7. whenever a > al(s)
a

and also
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=]
(5.1.48) 2 J exp(-tz/Z) dt < me/2 whenever a > az(e)
a

Denoting a(e) = max[al(s), az(e)] we obtain from (5.1.36) that

a(e) it -n -1 2
(5.1.49) | J {1 - —/—] [E.(it)]™" - exp(-t /2)}dt| < me/2 for >R, (€)
-a(e) ro (1)

and therefore, as r > max(R,Rl(e))

-1/2

(5.1.50) |Ir - (2m | <€

This completes the proof.
We are now in a position to solve the domain of attraction problem
and to provide some indirect information concerning the nature of the

normalizing sequences {a,} and {bN},

Theorem 5.1.3 F belongs to the domain of attraction of L, the sequence

of normalizing constants {aN} and {bN} being determined by

bN =

le—'

(5.1.51) N

ay =Alry)

where Ty is the root of the equation

£S5:1+52) —_—
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Proof: Let A-l(t) be the inverse function of A(r). By Lemma 5.1.3

T
f(t) « J F(x)dx

(5.1.53) 4 >1, ast+0,
2
[F(t)]

and, by the theorem of R. von Mises (See Theorem 3.1.7)

F belongs to the domain of attraction of L. Since

T
J F(x)dx
(5.1.54) 2 " i , as t+0 ,
F(t) ATT(t)

by Theorem 3.1.3 and Theorem 3.1.5 the normalizing constants can be found

from the equations

M)
=N
V2T A (aN)
{(5:1.55)
1
b. =
L'N A-l(aN)
After we set 1, = A_l(aN), the theorem is proved.

Concerning the numerical aspects of the problem, we note, that in connection

with equation (5.1.52) if we set
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F(t) = exp(-X(t)), t > 0
then from (5.1.29)
(5.1.56) X'(A(r)) Vv -r, b

But we know that if two positive functions f and g satisfy the

conditions
T T
lim / f(x)dx = lim / g(x)dx = =
T+® o r+® o
and
(5.1.56a) lim = ; = c (0 $ c ¢ =)
ro 8 '
then T
S f(x)dx
lim o =
T+® T .
J g(x)dx
)

(see De Haan (1971, p. 12) for a proof of this statement). It is

also known that if (5.1.56a) holds with 0 < ¢ < @ then the integrals

/ f(x)dx and [ g(x)dx either both converge or both diverge.
o 0

Thus after multiplying both sides of (5.1.56) by A'(r) and
integrating them from 0 to r we obtain

T *
2(A(r)) v =S xA'(x)dx = -rA(r) -1ln ?(r), T+ )
0

Since the normalizing constant ay can also be found from the equation

(5:1:57) x(t) = 1n N,

Ty can be approximated by the root of the equation
N

(5.1.58) -rA(r) -1n f(r) = 1In N

Thls root may be used as a first approximation when solving (5.1.52) by
some iterative procedure. However, it would clearly be desirable to have
an expliclt way of computing the constants, at least for some specific

cases. Such a method is developed in the following paragraph,

*) Here we identify f(r) with X' (r)X'(A(r)) and g(r) with (-r)A'(r).
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5.1.4 An alternative approach

The method described in the previous section is general in that it
deals with any sequence {Aj} of rates satisfying (5.1). However, the
determination of the sequences {ay} and {by} is not explicit and so we seek
an alternative approach which might be applied successfully for given forms
of the dependence of Aj on j. This approach may also be useful when dealing
with infinite convolutions of non-exponential densities. The method is

based on:

a) finding a representation of %(s) for large s using summation

methods.

b) finding, by saddle point methods, the main term of the asymptotic

expansion of F(t) as t + 0.
c¢) finding the normalizing constants from this main term.

This approach has more chance of producing simple expressions for the
normalizing constants since the main term often has a fairly simple form.
Concerning the representation of f(s) for large s the idea 1s as follows.

We know that

<o

A
(5.1.59) -1n ?(s) = - L In( X—%;D
j

j=o

Now let us suppose for simplicity that {Aj} form a monotonically
increasing sequence and let us denote by A(u) a continuous function that

satisfies

(5.1.60) A(J) = A,
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Then the function (-1n %(s)) can be represented by

(5.1.61) “in ¥(s) = - £ an (Mg - L gy —
o Al(u)+s

(See Fig. 5.1.4). The left hand side is the total area

L AW)
Aw)*S
Fig. 5.1.4
7
7
e
/ 4 Y v r
0 i 2 3 ¢ s 6 % & L

under the ''stairs'', the first term of the right hand side 1is the shaded area,
the second term is the sum of the areas of the non-shaded triangles and R(s)
is the remainder. The expansion (5.1.61) may be continued in accordance
with Euler's summation formula (See Appendix B), but in many cases already
(5.1.61) will be adequate for our purposes (depending on the behaviour of

R(s) for large s).
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For step b) we use (5.1.61) and obtain the integral representation
of the invefse for F(t). Using the saddle point method we obtain the
asymptotic representation of F(t) as t + 0 using this integral representa-
tion for F(t). The first term of this representation contains all the

information needed to find the normalizing sequence (See Theorem 3.1.6). = :

In the following section we apply this alternative approach for the
cases of power and geometric charge accumulation rates. The latter is of
particular interest for the breakdown model since electric field calcu-
lations indicate that the current through a cell increases geometrically

as a function of the number of charge units in that cell.

5.2 Normalizing constants

In this section we apply the alternative approach developed in the
paragraph 5.1.4 to solve the domain of attraction problem for two specific
cases and to find the normalizing constants. In the first case the purer
birth process of charge accumulation in a single cell has birth rates of
the type Aj = a(J‘l)OL (power charge accumulation rates) and in the

second one - of the type Aj = bl (geometric charge accumulations rates).

Let us consider these cases separately.

5.2.1 Power charge accumulation rates

In this paragraph we shall consider the case

A = aG+D* ;3 j=0,1,...,a>1 ,
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using the alternative approach. We shall compare the results with

those obtained by using the general approach.

1. Asymptotic Behavior of the Distribution Function

By applying Euler's summation method (see Appéndix B) we obtain

d P > 1
(5.2.1) -3 [ £()] = & — - % "
j=o0 aj +s
du 1 1
= + = + R(s5) - = =
6 antes °8 s
1

Tra-l/u S; - 1- 1_ -

asin(m/a) s (s)

The full asymptotic expansion of I (l
j=0 aj +s

) can be found in Hirschman

and Widder (1955, p. 118). There it is shown that R(s) + a 5(—a)/52
is 0(1/53) as s+ . (5 is the Riemann zeta-function (see Titchmarsh
(1964, p. 152)). So, by integrating (5.2.1) from 1 to s we obtain

_wa-IAL

sin(r/a)

sl/u . ln s + 0(%)}.

(5.2.2) £(s) = k expl :

To find the constant i we use Euler's summation method and obtain
the asymptotic expression for 1n %(s) (see (B.6)-(B.8) of Appendix
B). By comparing this expression with (5.2.2) we find that

o % 1 1

(5.2.3) k = 2= 1in exp{s;~f(2w-1) ¢ —38 dw}
B a4 2! o i=1(w+i) [a(w+i)® +s]

Since the series in the integrand converges uniformly over w & [0,1],
it can be integrated term by term (see Titchmarsh (1964, Section 1.71)).

Therefore
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) a
k = == lim exp {%
a s+ i

(2w-1)s dw

(w+i)[a(w+i)a+s1

O =

nm™8g

1

Passing to the limit termwise (see Appendix I for justification)

we obtain that

o 1
_e...... exp{%. X (_ZW——'I) dW} =

(5.2.4) k - . (w+i)

]

e a
— exp{3
a i

[ - (2141)1n(1+%)]}
1

" et8

There is no need to calculate the sum, it is sufficient to see
that the sum exists and the exponent in (5.2.4) depends on a only.
Since for (a=2,a=1) the quadratic case obtains for which we have

k=2m (see (5.1.23)), by substituting (a=2,a=1) into (5.2.4) we

obtain
> . 1 2w
(5.2.5) exp { T [2-(2i+D1)1In(1+3)]} =5
i=1 e
and the constant i is equal to
- a/2 o
(5.2.6) k= (3 .= (2m)®/2 . o712
/a
e a

Thus, the distribution function F(t) is given by:




112

d+ie 1/a

n
(5.2.7) F(t) = _5_. e c(s) - 5-1/2 e—TS +sSt ds,
2mi  d-ie
where
na'l/a
(5.2.8) T®————— ; d>0, 1n ¢(s) = 0(1/s) as s +» ,
sin(m/a)

The formula (5.2.7) is obtained using the inversion formula for the Laplace-

Stieltjes transform (See Doetsch (1974)).. In (5.2.7) the appropriate branch

1/a 1/a

of s is that for which s is real and positive when s is positive. Now

we must find an appropriate transform bringing the integral to the form

suitable for saddle point analysis (See Appendix C). Let us try to make

Y

a substitution s = zt'. Then the exponent in the integral becomes

1/a ty/a Y+1

-TS + st = -TZ + zt

To factorize the exponent let us chose Y satisfying Yy/a =Yy + 1

i.e. let us take Y to be

o

Y=—

l-a

Ot/(l-ooi

So, after performing the substitution s = zt n (5.2.3) we
obtain :
: 1
v d(t)+i= —— ———
(5.2.9) F(t) = —E—-t a/2(1-a) J c(ztl - O")z-l/zexp{tl - OL(—Tzl/a+z)}dz,

2mi d(t)-i=

where d(t) > 0 and d(t) * 0 as t > 0. We see that s - as t + 0 since

a >1.
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Now the asymptotic expansion of F(t) as t + 0 can be obtained by using
the saddle point method (which is also known in the literature as "method
of steepest descent'" (See Murray (1974, p. 40-50)).

If we set

h(z) = -Tzl/a + z,

the saddle point is found from the equation _
T
(5.2.10) h'(z) = - = +1=0

and,therefore, the only saddle point is

L
_ o l-a
(5.2.11) Z, = (?0
which 1s a point on the real axis.
,_ o/l-0) ) .
Note that though (o/T) does not generally possess a unique value in the
z-plane, only one of its values (lying on the real axis) satisfies (5.2.10)

because of the particular choice of branch.

Since by (5.2.8) «c¢(s) =1 + 0(1l/s) as s + =, c(s) will not affect
the leading term of the expansion. To proceed further we must deform the
path of integration in such a way that it passes through the saddle point
and coincides in a neighborhood of the saddle point with the curve

Im h(z) = 0. Since

(5.2.12) h'(z,) = (1 - é) (%)a/@-1)> 0,
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zg is a simple zero of h'(z) and there are two lines satisfying Im h(z) = 0
and passing through the point Zye One of them is, of course, the real line
but it is not suitable for our purposes since (by (5.2.12)) Re[h(z)] has a
minimum along this direction, not a maximum. So we need to find the second

one. Denoting its parametric equation by

(5.2.13) 2(t) = p(t)e’t , with o(0) = 2, -m<t<m,

the equation Im h(z) = 0 becomes
1/0 . .
(5.2.14) -t[p(t)] sin(t/a) + p(t)sin t = 0 ,

so the second curve has in polar coordinates the following form:

Q

(5.2.15) p(t) = [ Isin(t/a) ]a'—l_ , -T<t<T,

sin t

We can verify immediately that p'(0) = 0. This means that the curve (5.2.15)
forms an angle of m/2 with the real axis. It is known that along this second
curve Re[h(z)] has a maximum, so it is the appropriate new integration path
(See Fig. 5.2.1). Doing so and applying the saddle point method we obtain

1

: n L = _
(5.2.16) F(t) v —— « 2¢%/2(1-0) 5, 1-a ]1/2|h"(zo)|'l/zzo'l/zexp[tl‘“h(zoyz_”]
2mi

as t + 0, or
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(5.2.17) F(t) ~ z%(E:lgl/zt-l/Zexp{cl_a)(%Daﬂl—a)t(l/(l-ah

A e S I
2T

It is easy to verify that this form coincides with (5.1.18) when o = 2,
As well, we see that (5.2.17) has indeed the form predicted in (5.1.19).

Imz A |
clic

|
[
!
L

) %o Rez

r -
I
I
!
I

Fig. 5.2.1 Choice of a new integration path.

2., Finding the normalizing constants

Now we may find the appropriate normalizing constants since they are
known to coincide with those of the main term given by (5.2.17). (See

Theorem 3.1.6). We prove the following
)
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Lemma 5.2.1 If the distribution function F satisfies the relation
Y -1/tB
(5.2.18) F(t) v t'e

for B > 0, then F belongs to the domain of attraction of L, the normalizing

constants being

bN =-é(1n N)Y~ (B+1)/8 (scale constant)
(5.2.19)
ay = (In N)'l/ﬁ » L.1n(ln N) (shift constant)
1
‘32(1n N)(B+ )/B
Proof: The proof is straightforward. It is enough to show that

: 1
(5.2.20)  lim N(byt + aN)Y exp{- ————=1} = exp(t)
N (bNt+aN)
for every t > 0.
Instead of verifying (5.2.20) directly, we show, how the form (5.2.19)

of bN and ay is obtained. Let us denote

(5.2.21) F.(t) = exp(- =) , t>0.
1 tB
We see that Fl is a proper distribution function belonging to the domain
of attraction of L. The normalizing constants gN and %ﬁ are found from the

equations (3.1.15). Solving these equations we obtain, that
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= (1n ()" Y/8

ZPB

(5.2.22)

= (in N-1)"YB_(1n Ny1/B m-é- (1n Ny B*/8

o
I

as N » o,

Since F(t) differs from Fl(t) by a factor, varying regularly as t 4 0, we
guess and assume that the scale parameter bN is the same for F(t) and Fl(t)

and the normalizing constants ay and‘bN corresponding to F have the form

o’
|}

(5.2.23)

ay = (n N8 4 oy,N,8).

We can show (See Appendix E for details) that (5.2.20) 1is satisfied

when § satisfies the equation

(5.2.24) 8«9« (In NfB*IV/B _ L n(in N)

that is, when

- Yy In(In N)

(5.2.25) 8(y,N,R) (
Bz(ln N)Bﬂ)’S

This completes the proof.

We see that (5.2.20) is true also if N tends to infinity as a continuous

variable. Therefore if
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(5.2.26) F,y(t) KF(at), t + 0

then F2 belongs to the domain of attraction of L, the normalizing constants

Z; and EE being

— — DNk
(5.2.27) L T,
a a
So, if
Y -m/tB
(5.2.28) F,(t) v kt'e , t+¥0 ; k>0, m>0 |,

then the normalizing constants of Fz(t) are

1/8
= m a
Nka/S

2|
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