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ABSTRACT 

In this thesis we investigate the properties of stochastic processes 

which are used to model a type of breakdown mechanism in thin film capacitors 

subjected to test under high electric fields. The insulating film in the 

capacitor is regarded as a collection of N cells operating independently, 

In every cell a stochastic breakdown mechanism of the same type is under 

way. It proceeds until the first of the cells actually fails and causes 

a breakdown in the insulator as a whole. At such a time the processes in 

other cells either remain unaffected or return to an initial state, depending 

on experimental conditions and properties of the insulating material, and 

the mechanism restarts. Otherwise the only effect of the breakdown is a 

decrease in the number of operating cells. 

In this work we consider those mechanisms for which breakdown in a 

cell may be modelled as the explosion of a birth-death process. When 

analysing a given model, we are interested in the behaviour of the resulting 

observed process of successive breakdowns and its possible dependence on the 

applied voltage, insulator area and other parameters. The key tool used in 

investigating this observed process is Extreme Value Theory. For the case 

when breakdown is caused by the explosion of a pure birth process, we deveiop 

an approach based on saddle point approximation method which simplifies the 

problem considerably in certain situations. This approach is used in two 

important cases. In the sixth chapter we prove a ~auberian theorem whlch 

relates the asymptotic behaviour of a distribution function to that of its 



Laplace transform. This theorem may enable one t o  cope with the s i tua t ion  

when the breakdown mechanism is of a more complicated nature than those 

mentioned above, and par t icu la r ly  when the transform is not regularly 

varying. 

When the capacitor i s  subjected t o  t e s t  under an e l e c t r i c  f i e l d ,  we 

may observe real izat ions  of the  process of successive breakdowns under various 

experimental conditions. These data may be used t o  help iden t i fy  the break- 

down mechanism which is operative i n  a given s i tua t ion  (or ,  a t  l e a s t  t o  r e j ec t  

those mechanisms which are  not consistent with the data).  After the ident i -  

f i ca t ion  has been performed, the  data may also enable one t o  estimate the 

parameters of the model of i n t e r e s t .  These problems of iden t i f ica t ion  of 

the operating breakdown mechanism and estimation of i t s  parameters are  also 

considered i n  the  present work. 



CHAPTER I 

1. INTRODUCTION 

This thesis is devoted to the study of extreme value properties of 

absorption or explosion times in some stochastic processes. We consider 

the sys tem of a large number of similar processes, operating independently. 

As soon as one of the processes reaches some critical state, it dies and 

causes a breakdown in the system. The death of a single process affecrs 

the remaining processes in some prescribed way and they contlnue operating - 
until the following breakdown occurs and so on. In this work Me investlgare 

the statistical properties of the process of successive breakdowns, the 

key tool of investigation being Extreme Value Theory, 

The research was motivated by the physical phenomenon of dielectric 

breakdown in thin film insulators which we describe in some detall so 

that researchers in that field may examine their experimental results in 

the light of Extreme Value Theory. 

Interest in the study of thin film insulators has been grearly stim- 

ulated in recent years because of their numerous applications in lndustry 

and technology, Insulating films play an important role in such fields as 

integrated circuits, copying, display devices, measurement devices etc, 

In all the mentioned fields the reliability of the elements involving thin 

films is of great importance. For example, the failure of the thin fllm 

insulator which is used as an element of memory in a computing de.vice may 

lead to the change of the stored information and to losses connected with it, 



A primary failure mode of today's electronic devices using insulating 

films is known to be dielectric breakdown. This failure mode is due to 

latent defects which occur randomly in the film during fabrication as well 

as to the internal processes taking place in the insulator when it is 

subjected to high fields. The physical processes are today less understood 

in insulators than in standard semiconductors and this is also the case for 

processes causing the breakdown. The explanation of the breakdown mechanism is 

usually a complex physical problem - difficulties arise both for theoretical 
and experimental reasons. 

Breakdown is interpreted in terms of mechanisms such as thermal break- 

down and electronic impact ionization, as well as ion-induced and other 

mechanisms. However, identification of the appropriate one in every concrete 

case still remains a difficult task. Moreover, we cannot expect that a 

given mechanism will be pertinent under different experimental conditions. , 

As is pointed out in Klein (1978), it is possible that several mechanisms 

are operating at the same time and at a given field breakdown arises by 

that mechanism which is fastest; also in a given insulator different 

breakdown mechanisms can be operative in different temperature ranges, 

The breakdowns occurring in thin film insulators at high fields (when 

at least one of the electrodes is a thin metal film) are of very special 

nature - they are typically non-shorting. After a breakdown occurs in 

some place, the region of the point of breakdown evaporates and the insulator 

returns to its normal operating conditions, except that its area becomes smaller. 

(See paragraph 1.1.1 for more detailed explanation). In most cases this 



. 
decrease of area can be neglected. So, we can observe the process of 

successive breakdowns using the same sample. We believe that the statis- 

tical analysis of the observed realization of the mentioned process may 

be useful in identifying the breakdown mechanism which is appropriate in 

a specific case (or, at least, such analysis can help to reject the 

mechanisms which are not appropriate). The observed data may also be 

used for estimating the parameters of the model which is believed to be 

relevant in the given situation. 

In this work we consider a number of'stochastic breakdown mechanisms 

. based on well known phenomena of impact ionization and trapping (These 

are considered today as the most probable factors explaining the breakdown 

phenomena at usual working temperatures. However, the method of investi- 

gation may be applied to other breakdown models as well). For most of the 

considered models we derive the statistical properties of the process of 

si~ccessive breakdowns and consider the problems of estimation for the 

parameters of the model. 

1.1 The breakdown phenomenon 

In this section we describe in detail the breakdown phenomena and the 

data which is at our disposal. 

1.1.1 Description 

Let us consider the following electrical circuit: 



Here B is the battery, R is a resistor-regulator, K is the capacitor, 

C,A and D are respectively the cathode electrode material, the anode 

electrode material and the insulating material (thin film in our speclfic 

case). 

A sample used in one of the typical experiments is shown in Fig, 1.1,l 

The voltage between the electrodes (which determines the external fleld 

applied) can be regulated by means of the resistor. When the field becomes 

greater than some prescribed critical value, a current runaway may occur 

at a certain point in the insulator (like a short circuit). This leads to 

a local rise of temperature and evaporation of the insulating materlal and 

electrode materials in the region of the current runaway (and to self 

liquidation of this point). This phenomenon is called a non-shortlng 



(or self-healing) breakdown. As a result of such a breakdown a hole remains 

in the capacitor and after the field is removed we have a capacitor whlch is 

equivalent to a new one. 

When a new capacitor is subjected to test by field, breakdown may occur 

at relatively low voltages. This happens because of the presence of so 

called "weak spots" - defects in the structure of the insulating film whlch 
occur in the fabrication process. But after these spots are removed by 

non-shorting breakdowns the process of breakdowns usually develops in such 

a way that breakdowns have nc obvious tendency to form clusters both in the 

4 area and time. The rate of breakdowns tends to increase when increasing 

the applied voltage. 

The described process of breakdowns is sometimes interrupted by the 

occurrence of so called propagating breakdowns. Such breakdowns are 

accompanied by a series of single hole breakdowns occuring at adjacent 

sites or even by the appearance of an arc between the pit of the lnltlal 

single hole breakdown and the metal of the counter-electrode. Though 

propagating breakdown is non-shorting, it causes evaporation over a large 

area - and this loss cannot be neglected after the capacitor returns to 
its normal operating conditions. (See also OtDwyer (1973, p. 280)). 

Since propagating breakdowns may be prevented by the properly chosen 

protective resistor which is connected in series to the tested capacitor 

to prevent high discharge currents, we exclude rhem from further conslderatlon. 

There is one more kind of breakdown, called shorting. After such a 

breakdown occurs, there remains a permanent conducting channel in the 

insulator which destroys the capacitor as a whole. 
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CQOSS SECTION 

Fig. 1.1.1 A t y? ica l  specimen (From de W i t  e t  a1 (1976)).  

Fig. 1.1.2 Breakdowns i n  t h e  capaci tor  with t h i n  f i lm  i n s u l a t i n g  ma te r i a l .  . 
(From Klein (1971)). 



In Fig..l.l.2 we can see the part of a capacitor subjected to a high 

field after the occuznce of several breakdowns. 

1.1.2 Data available 

The data available are several sets of successive times between break- 

downs for various insulating materials, for different voltages applied and 

for different insulator thicknesses. Also, several experimental graphs, 

representing the dependence of the critical.breakdown field on the film 

thickness, the dependence of the rate of breakdown on the voltage, and 
4 

the dependence of the rate on the film thickness are available. At our 

disposal also are data reflecting the percentage of insulator surface 
e 

destroyed against time (for different voltages applied). Numerous 

experimental data are found in the papers devoted to the study of break- 

down phenomena in such widely used insulating materials as silicon dioxide, 

oxide of aluminium, silicon nitride etc. (See the References). 

Typical set of successive interbreakdown times is represented in 

Fig. 1.1.3. 

Fig. 1.1.3. A Typical Set of Successive Interbreakdown Times. 



Most of experiments with thin film capacitors are performed by subjecting 

the sample to constant voltage, as described before. Such experiments are 

called step voltage tests. However, of great importance is information 

obtained by ramp voltage tests in which a sample is subjected to voltage 

increasing linearly in time. After a breakdown occurs and voltage drops 

to zero, it keeps increasing at a constant rate until the following breakdown 

and so on. 

Another possibility is to subject the sample to stressing by constant 

current. However, shorting breakdowns typically occur in such tests and 

therefore they are rarely used. 

Data, obtained in ramp voltage tests and constant current tests are 

also available. 

1.2 Some physical models of breakdown 

In this section we review shortly the main principles (and connected 

models) whlch are used today to explain the breakdown phenomena in thin 

film insulating materials. Two classes of mechanisms which are generally 

used are the thermal and electrical mechanisms, First of all we explain 

the principles of the thermal breakdown in dielectrics. To descrlbe the 

electrical models of breakdown we need first to represent (at least 

qualitatively) the energetic structure of the thin film capacitors and the 

principles of conduction in insulating films. We shzll do it in two separate 

sections. 



1.2.1 The model of thermal breakdown 

A thermal breakdown in the thin film capacitor is caused by the 

instability which arises when the Joule heat, generated by the current 

flow cannot be conducted (quickly enough) to the surrounding space. 

When such a situation is present, an unbalanced rise in temperature leads 

to irreversible changes in the insulating material and breakdown in one 

of the hottest points. 

If the only significant process of the energy loss in the capacitor 

is thermal conduction to surroundings (another possible process is, for 

example, light emission), the insulator is given by reglon D in the three- 

dimensional space and field is applied through the electrodes of the 

capacitor at time t=O, the temperature T(x,y,z;t) in the polnt 

(x,y,z) e D at time t satisfies the partial differential equation of 

the second order (See OIDwyer (1973, p. 10)). 

(1-2.1) 
aT 2 

C - = div(~ grad T) + OF , 
at 

where C is the specific heat per unit volume, ic and o are the thermal and 

electrical conductivity respectively, F(x,y,z) is the field and grad T is 

the space gradient of the temperature. 

We can see that (1.2.1) is just an equation of energetic balance at the 

point (x,y,z) : the rate of gain in energy at the point is equal to the rate 

of gain due to thermal interchange with the neighboring polnts plus the 

rate of gain from the field. If we are given the appropriate inltial and 

L boundary conditions, the equation (1.2.1) may be solved (at least numerically) 



resulting in the temperature as a function of time and coordinates. To 

solve (1.2.1) analytically is possible only for the simplest boundary 

conditions since u usually depends strongly on temperature (it may depend 

on field as well) and K is also temperature dependent, However, we do not 

need the full solution. As it is pointed out by OtDwyer (1973, p, lo), 

failure of the dielectric depends on the temperature of its hottest part, 

so only the numerical solution in this part is needed. The position of 

this part can sometimes be read just from initial and boundary conditions. 

Several solutions of (1.2.1) for the case that constant voltage is applied 

at time t=O are shown schematically in Fig. 1.2.1. What can be said in 

general about the (hottest part) solution in this case is that there exists 

a critical voltage V* for which the temperature of the hottest part 

asymptotically approaches some critical temperature T*. Then if the 

applied voltage is V > V*, the temperature reaches any level in finite 

tlme; otherwise it asymptotically approaches a level T < Tw, If we 

know what temperature causes breakdown, it is possible then to calculate 

for which voltages the breakdown may occur and what will be the life time 

of the insulator (See OIDwyer (1973, Section 1.3 and Chapter 611, 

Finally, let us note that almost all insulators should undergo 

thermal breakdown at a sufficiently high temperature, since the electrical 

conductivity is usually an exponentially increasing function of the 

temperature and the thermal conductivity is usually a decreasing function 

of the temperature (See OIDwye? (1973, Sectlon 9.2)). 

However, it often occurs that the applied field cannot raise the 

temperature significantly (it certainly remains below the temperature, 



< 

causing thermal breakdown) and nevertheless a breakdown occurs in the insu- 

lating material. In these situations it is generally one of the electrical 

breakdown mechanisms that is operative. 

- 
Time 

Fig. 1, 2, 1, Solution of the equation (1, 2, 1) in the hottest 

region for the cases V < V* (i), V =. V* (ii) , V > V* (iii) 
and V >> V* (iv). (From O'hyyer (1973) ! . 

1.2.2 Energetic structure of thin film capacitor 

As it is known from the band theory of solids (See Rose, Sheppard and 

Wulff (1966, Chapter I)), the electrons in a crystal may have only 

prescribed energy levels which form the valence band and the conduction 

band (high energy band). To move free in the crystal, the electron must 

have an energy which is greater than the "bottom" of the conduction band. 

The two bands may overlap (like in the case of metals) and then the free 

charge carriers (which ensure current as soon as voltage is applied) are 



always present. In the case of dielectrics,however, the conduction band 

is empty and there exists a gap E between the "top" of the valence band 
g 

and the "bottom" of the conduction band. The crystal is usually called 

a dielectric if E > 2ev (electron-volts) and a semiconductor if 
g 

E > 2ev . The interband energy levels form a so called forbidden band. 
g 

This energetic picture is appropriate only when speaking about pure 

and defect-free non-metals. When inpurities or mechanical defects are 

present, additicnal energy levels may be present in what is normally 

the forbidden band. These levels are localized in the small regions, 

called "trapping centers" (or traps). When these additional (they are 

also called extrinsic) levels are close to the "top" of the valence band, 

they may be easily occupied by (thermally or otherwise) excited electrons. 

The positive charge which remains then in the valenceband is called a hole. 

The movement of the hole in the valence band (which is caused by movement 

of electrons in this band) is completely analogous to the movement of 

electrons in the conduction band. The movement of holes proceeds in 

accordance with a diffusion process (assisted by an external fleld when 

it is present), 

It is well known, that the electrons in the conductlon band of metals 

are distributed (in respect to energy) in accordance wlth Ferml's dlstrl- 

bution law. The energy of the highest fllled state in the conductlon band 

at OK (Kelvin's scale) is called a Ferml Level (and denoted by EF), Thls 

distribution only slightly depends on temperature and only a relatively 

small proportion of the electrons occupy the levels higher than EF at 

high temperature (the last fact explains why the metals remain intact at 

high temperatures). 



When constant field F is applied to the thin film capacitor, its 

energetic structure may be understood from Fig. 1.2.2. The Fermi Levels 

of the cathode and anode are denoted by EF1 and EF2 respectively. Ey and 

Ec are the "top" of the valence band and the "bottom" of the conduction 

band. E is one of the trap levels. The slope is proportional to the T 

applied field F. It is clear from the plot, what must be the minimal 

energy of an electron in a given point of the insulator which enables 

its free movement. We see that an electron must overcome the potential 

barrier AE before it enters the insulator, Similarly, it must overcome 

the barrier AET before it is able to get free from the trap, An electron 

may overcome the potential barrier in two ways: 

a) it can gain additional energy greater or equal to the height 

of the barrier. Then thermal emission or photoemission from 

the cathode into the insulator occurs dependent on the source 

of energy. 

b) it can penetrate the barrier by tunneling (which is a purely 

quantomechanical effect). 

Actually, when the electron enters the insulator it leads to the 

appearance of the local "image" positlve charge which distorts the field 

in the relevant region and lowers the potential barrler. A slmllar effect 

takes place when electron leaves the trap. This phenomena is called 

Schottky's effect (See O'Dwyer (1973, Chapter 3)). If this effect is 

taken Into account, the energetic diagram of the capacitor corresponds 

to the dotted line in Fig. 1.2.2. We can see, that the potential barrler 

at the cathode is reduced by an amount AEs (which is known to be proportlonal 



Fig. 1.2.2 Energetic structure of thin film capacitor, subjected to 

constant field. 



to the square root of the applied field). The lowering of the barrier when 

leaving the trap is known to be equal to 2 x AES. 

Analogous considerations can be made concerning the injection of 

holes at the anode, their movement and trapping. In the following section 

we breefly describe the mechanisms of conduction in thin film capacitors. 

1.2.3 Principles of conduction 

In this paragraph we describe the pr6cess of current conduction in 

thin film insulators. We shall assume that the main charge carriers are 

electrons. The situations in which both electrons and holes play a 

significant role in charge conduction are much more complicated and rare, 

Consider a capacitor which is subjected to high field F. The electrons 

which produce the current in the insulator are injected into its conduction 

band mainly by two processes - Fowler-Nordheim (tunelling) emission and 
Schottky (thermal) emission. There is one more process which may be 

significant when a high degree of impurity is present and field is not 

too high - the so called hopping process (See OIDwyer (1973, p. 71)). 
This process is usually neglected when studying the breakdown properties 

of thin film insulators. If the temperature of the cathode is T, the 

injected current densities are (Schottky barrier lowering is taken into 

account) : 

2 = AT expf- AE - BG I 
j thermal kT 

2 D 
jtunel = CF exp { -  - I 

F 



where A, B, C, D are constants depending on physical properties of the 

cathode and insulator (their exact expressions may be found in Klein 

(1972, p. 617)), k is the Boltzmann constant and AE is the height of 

the potential barrier at the cathode when no field is present (See 

Fig. 1.2.2). Usually one of these injection mechanisms is dominant 

and the second is neglected. The thermal emission is dominant at high 

temperatures and not too high fields applied. The tunelling emission 

usually is dominant when high fields are applied even at device - 
operating temperatures. Note that the approljriate current (given 

by (12.3)) does not depend on temperature. 

However, the current in the insulator is not determined by injected 

current only and the following factors should also be considered. 

a) Density of trapping centers and the depth of the potential 

barrier, associated with them. Trapped electrons weaken the 

field in the cathode region and therefore decrease the current 

injection. Trapped holes act analogously and enhance the cathode 

field. 

b) The occurrence of ionization affects the current by producing 

additional charge carriers in the insulator. Drift (diffusion) 

of the products of ionization and recombinztion processes have 

influence on the current too. 

c) The scattering effect of the crystallic lattice and mobility 

of charge carriers in the insulator. 



When a particular case is considered, we determine the current injection 

type, decide what factors must be taken into consideration and then solve the 

appropriate equations obtaining the quantitative characteristics of the system. 

For example, characteristics of breakdown may be obtained by analysing the 

dependence of current density on time, field applied, thickness of the 

insulator and other relevant factors. 

1.2.4 Non-thermal models of breakdown 

In this paragraph we review some typical non-thermal models which are 

widely used to explain the breakdown phenomena in various substances. This 

review by no means claims to be complete. 

We begin from the models in which the phenomena of impact ionization 

plays a major role. A certain type of carriers (usually electrons) are 

injected from an appropriate electrode and ionize the atoms of the 

insulating material by impact. The second type of carriers do not take 

a significant part in current conduction because their mobility is usually 

low (in fact, they are deep trapped). However, they affect the current by 

distorting the field in the region ofthe injecting electrode. (This situation 

is thought to be relevant in the case of wide interband gap insulators. 

(See Klein (1978, p. 225)). For narrow interband gap dielectrics and 

semiconductors both types of carriers may play a significant direct role 

in current injection and ionization processes). Under these circumstances 

different mechanisms of instability (and breakdown) apply. In the case when 

electrons are the dominant charge carriers breakdown is caused by positive 

feedback effect as described in Klein and Solomon (1977). At high fields 



electronic impact ionization occurs which leaves positive holes behind drifting 

slowly towards the cathode. The holes enhance the field at the cathode, increase 

the charge carrier emission and lead to an increase in impact ionization. The 

effect of this process can be opposed by processes such as removal of holes 

from the insulator by drift and recombination. Drift and recombination can 

balance the effect of impact ionization below a critical average field F*, 

but above F* current runaway arises after times t* which decrease quasi- 

exponentially when increasing the average field F. 

The energetic diagram of the described phenomena is shown in Flg. 1.2.3. 

Note, that an electron can ionize only if its energy is greater than the 

bottom of conductivity zone by at least Eg. 

Several models of breakdown are based on this scheme dependent on the 

hole removal mechanism. The first analysis is due to OIDwyer (1969), who 

assumed that the dominant hole removal mechanism is drift (such assumption 

leads to so called ionization-drift (ID) model), In this work the author 

presents only a numerical method for finding F* and t*. Closed (though 

approximate) expressions for these values were given by Kashat and Kleln 

(1977). The approximate nature of their approach is caused by the 

assumption that the trapped positive charge is distributed uniformly in 

the insulator. In fact this space charge is distributed exponentially in 

respect to thickness (See Fig. 1.2.4). 

The ID models are subdivided into two classes (dependent of the 

mobility of holes and ionization rate per unit length in the given sltuatlon) - 

the Small Ionization and Large Ionization ID models. The difference between 

these models is that in the first the injected electrons ionize by Impact 



Fig. 1.2.3 An energetic diagram of events which occur in the beginning stages of . 
breakdown in silicon dioxide. 1. corresponds to a neutral atom which 

tuns a hole after collision occurs; 2. is a hole which turns to 

neutral atom after recombination occurs. (From DiStefano and 

Shat .kes (1977)). 

Fig. 1.2.4 Schematic cross section of insulator flanked by electrodes. . 
(From Klein and Solomon (1976)). 



only occasionally while in the second one they produce small avalanches 

(clusters of trapped holes appearing as a result of ionization produced by 

a single injected high energy electron). The exact criteria for application 

of the first or second ID model and the expressions for the critical average 

field F* and time to breakdown t* may be found in the work of Kashat and 

Klein (1977). 

In the case that hole mobility is extremely small, hole removal proceeds 

mainly by recombination and the IR (ionization-recombination) model 1s 

operative. This model was treated first by DiStefano and Shatzkes (1975) 

to explain the breakdown phenomena in silicon dioxide thin film. In 

their approach current was emitted at the cathode by Fowler-Nordheim 

tunelling (a boundary condition), and stochastic Poisson model of ionization 

was used. After finding the equilibrium state space charge distribution 

and the form of energetic diagram, they calculate the critical voltage at 

which instability occurs. The questions concerning time to runaway were 

not, however, discussed. 

The closed expressions for F* and t* (IR model) were obtained by Klein 

and Solomon (1976). To do that, the authors formulated and analysed the 

set of four basic relations 



The assumption that the insulator is planar has been made (See 

Fig. 1.2.4). Equation (1.2.4) shows that Fowler-Nordheim emission is 

supposed to be the dominant current injection mechanism (Fc is the cathode 

field). The Poisson equation (1.2.5) relates the spatial distortion of 

field to the trapped positive charge density p. Here q is the charge of 

the electron, E~ is the absolute permittivity of the free space and 

E - the relative permittivity of the insuiating material. (1.2.6) is the 

rate equation which means that the rate of positive charge accumulation in 
e 

a given point is equal to rate of its generation minus the rate of recombi- 

. nation in this point. o is the recombination cross section and a is the 

ionization rate per unit length; its dependence of F is postulated by 

equation (1.2.7) (Motivation of such assumption may be found in O'Dwyer 

(1973, p. 220)). A,B and H are appropriate constants. We note that 

similar approach was used to obtain the characteristics of the ID model in 

the above mentioned works on this subject. 

By reviewing the known properties of silicon dioxide, Solomon (1977) 

comes to the conclusion that IR is a most probable mechanism of breakdown 

in this dielectric. It is also thought to be operative in some alkali 

halides. 

The mentioned models enable one to obtain (analytically or numerically) 

the maln deterministic characteristics of breakdown - F* and t*, However, 
the common experimental situation is that breakdowns show stochastic 

. behaviour in time and often occur at fields which are lower than the 



calculated critical field. This kind of behaviour is usually ascribed 

to fluctuations caused by discreteness of the electronic charge. The 

effect of fluctuations was studied in the "succession of avalanches" 

model, proposed by Klein (1972) for investigating the Large Ionization 

ID case. In this model electrons, injected from the cathode, produce 

avalanches by impact ionization, leaving clusters of low mobillty holes 

in the insulator. The vast majority of the avalanche charges drlft out 

of the insulator without further effect. There is however a chance 

that another electron is injected into the cluster before it leaves the 

insulator. A second avalanche arises which locally enhances the cathode 

field and greatly increases the probability of injection of an additional 

electron into the cluster and so on. When a series of several avalanches 

occurs at one spot, a current runaway (and breakdown) is observed. In 

Kadary and Klein (1980) this model is shown to explain the breakdown in 

anodically grown tantalum pentoxide films. 

A purely stochastic model of breakdown was proposed by Solomon, Klein 

and Albert (1976) to explain the fluctuations, arising when thin insulator 

is subject to test by constant and linearly increasing field. The authors 

postulate that under a constant field breakdowns form a Poisson process 

with rate which depends exponentially on the applied field. The experi- 

mental results for constant and linearly rising fields were in good 

agreement with those predicted by the model for insulators such as 

aluminium and hafnium oxides. The relation between mean tlmes to break- 

down in both types of tests, predicted by the model, was also supported 

by observations. A similar model (in which the linear form of dependence 



. 
between area of insulator and rate of breakdown under a constant field was 

an additional assumption) was used to explain the breakdown in aluminium 

oxide bydewit, Wijenberg and Crevecaeur (1976). 

Another important class of models arise when breakdown phenomena is 

related directly to the ionic movement in the insulator. In one of such 

models, proposed by Ridley (1975) to explain breakdown in silicon dioxide 

films, an existence of small protrusions in the cathode material is 

postulated. The magnitude of such protrusions is assumed to be of order 
0 

100A. Since the magnitude of protrusions is considerable compared with 
0 

film thickness (it is usually of order 1000A), the field is much stronger 

in the region of the protrusion. The Fowler-Nordheim injection produces 

then a high current density (and, consequently, high degree of ionization) 

in the relevant filamentary region. 

The ionization process is accelerated by the rise of temperature in 

this region (which is caused by high current density). The produced 

electrons are swept out while the positive ions drift slowly to the 

cathode, enhance the field there and in this way lead to a positive feed- 

back process. A breakdown then occurs because of thermal instability in . 
the appropriate region (provided that the applied average field is greater 

than some critical value F*). The closed expression for F* was not, how- 

ever, given and this model was criticized by Klein (1978) on the basis 

of the fact that this ion-induced model hardly predicts the observable 

dependence of F* on temperature and lack of significant dependence of 

on electrode material in silicon dioxide. (See Klein (1978, pa 225)). 



There are also non-thermal variants of ion-induced breakdown mechanism. 

In such models field is enhanced because of positive ions which form small 

protrusions when undergoing recombination at the cathode and result in a 

decrease of the insulator thickness in the protrusion region. A positive 

feedback occurs which leads to breakdown. Such a mechanism is thought to 
0 

be probable in ultrathin (of order 100A) insulating films. 

In the models considered before the assumption is that insulators 

are subject to a constant voltage. El Harari (1977) performed a series 

of tests in which ultrathin (Si02) insulators were stressed by constant 

current (and voltage is merely adjusted to meet this condition). The 

author asserts that defects appear in the insulating layer as soon as 

field is initially appli,ed. These defects act as deep trapping centers 

for electrons, which are disposed mainly in the cathode region. The 

electrons trapped in this region decrease the cathode field, so voltage 

must be increased to maintain the current. The process of defect creation 

by injected current proceeds at a uniform rate and so the applied average 

field increases. A breakdown occurs as soon as it becomes large enough 

to break the molecular bonds in the insulating material. The author 

does not attempt to construct an appropriate mathematical model - he only 
points out that this qualitative model is supported by the observations, 

He also indicates that there is no evidence of impact ionization in this 

case (such ev,idence is usually provided by luminescence caused by 

recombination). 

Finally, we note that the trapping centers for electrons play an 

important role in most recent theories explaining the behaviour of the 



dielectric strength of aluminium dioxide films subjected to step and ramped 

voltage tests. These theories are motivated by the experimental evidence 

that after a constant voltage is applied, the current density at first 

(usually sharpely) decreases and then increases in time. The initial 

decrease of current density occurs because the injected electrons fill 

in the traps, decrease the cathode field, and subsequently the injected 

current; the further increase of current density is due to impact 

ionization and hole trapping processes which proceed in parallel (No Klein, 

1981, private communication). 

. More information on the breakdown mechanisms may be found in Klein 

(1978) and O'Dwyer (1973). An extensive list of references concerning 

breakdown phenomena in thin film insulators is given in-the biblio- 

graphical survey by Agarwal (1974). 

1.3 Statistical questions 

In this section we consider the role of statistician in analysing 

breakdown phenomena. 

Suppose that we want to know whether a specific mechanism causes 

breakdown in a given dielectric. The first statistical question arises 

immediately: how to design the experiment. To what conditions must the 

capacitor be subjected in order to make it clear of weak spots? What is 

the appropriate criteria to distinguish between the initial "weak spot" 

breakdowns and those reflecting the intrinsic properties of the given 

insulator? Should we apply a step voltage test, a ramped voltage test . 
or a stressing by a constant current to the capacitor after it is clear 



of weak spots? Should we remove the field for a constant time after a 

breakdown occurs? 

After the capacitor is cleared and an appropriate test is applied, 

we obtain a realization of the process of breakdowns. The second statis- 

tical question is: what process of breakdowns is predicted by the model 

of interest and does the observed realization contradict significantly 

this prediction? What changes in the process of breakdowns are predicted 

by the model when varying its parameters and do the observed processes 

(corresponding to appropriately changed exper'imental conditions) support 

the prediction? 

Suppose we find that the model is supported by data in a certain range 

of experimental conditions. The third statistical question is: how to use 

the data to obtain estimators (and perhaps confidence intervals) for the 

parameters of the model? There are cases that some of the parameters may 

be estimated using a purely physical argument and they should be compared 

with statistical estimators. 



CHAPTER I1 

2. A CLASS OF STOCHASTIC MODELS 

In this chapter we describe several stochastic models of the breakdown 

phenomena in thin film insulators. Let us suppose that the surface of the 

insulator is divided into N equal cells. Under a sufficiently high electric 

field the current in each cell may lead to the ionization of atoms of the 

insulating material, creating a positive charge which is trapped in the 

insulator. This charge enhances the field and hence the current in the 

cell, and so increases the chance of further ionization. Charge accumu- 

lation processes procced in all the cells simultaneously and as soon as 

the charge accumulated in a cell reaches some critical value this cell 

explodes causing breakdown in the insulator as a whole. Our basic 

assumption is that the charge accumulation process in a given cell has 

no influence on the charge accumulation processes in other cells. A 

breakdown in the insulator reduces the external field to zero and some 

time elapses before it reaches its nominal value. It is known that 

this has some effect on the charge accumulated in other cells (it tends 

? to decrease because of the internal co omb forces acting in each cell). 

.In some cases this effect can be neglected (i.e. explosion of cell has 

no influence on other cells). These cases lead to non-regenerative 

models. The - regenerative models are connected with the cases that after 
a breakdown occurs in some cell, all the other cells lose their accumu- 

lated charge and the charge accumulation processes start again in non- 

exploded cells. For these models the times of successive breakdowns form 

a renewal process. . 



In finite models the critical value of the charge accumulated in a 

cell is finite. In infinite models a cell explodes when the charge, 

accumulated in this cell reaches infinity. 

In subsequent sections we describe in detail several stochastic 

models of the breakdown phenomena. 

2.1 Pure birth and birth-death models 

In this class of models the initial charge at time t=O is assumed 

to be zero in every cell. (This assumption is not so restricting as it 

seems; actually "zero" is a prescribed physical level). The charge 

accumulation in a cell proceeds in accordance with a birth-death process 

with %birth" rates {X , X i , .  . .I and "death" rates {ul ,u2,. . . ). In the 
0 

case that all the "death" rates are equal to zero, the charge accumulation 

process in a cell is a pure birth process. 

We consider the following models: 

a) Finite models. For this class of models the charge accumulated 

in a cell may take on the values {0,1., , . ,~-l}. We say that a cell is in 
state j e {O,l,. . . ,M-1) if the accumulated charge in this cell is equal 
to j. The insulator consists of N cells, operating independently, and as 

soon as the charge accumulated in one of the cells reaches M the cell 

explodes and a breakdown is observed. We consider also the possibility 

that a breakdown in a cell occurs D units of time after the charge accumu- 

lated in this cell reaches M(D is a non-negative constant). 

In the regenerative case all the cells are in state 0 at t=O and the 



charge accumulation processes start simultaneously in all N cells of the 

insulator. After one of the cells reaches the state M and breakdown occurs, 

this cell disappears, (N-1) remaining cells return to the state 0 and the 

process of charge accumulation starts again. Since the number of the cells 

10 N is expected to be large (N is of order 10 ) the effect of decreasing the 

number of cells as a result of breakdown is neglected and we may suppose 

that the N cells restart after a breakdown occurs. In this model the 

process of successive breakdowns is a renewal process. If Ei(i = 1,2,~00,N) 

th is the time to explosion of the i- cell'(when considering that cell in 

isolation and supposing that it is in state 0 at t=O) then E1,E2,.",SN 

are independent and identically distributed random variables and the 

. interbreakdown time T (the interevent time of the renewal process) is 

. 
The random variable Ei is distributed as the first passage time from the 

state 0 to M of the birth - death process with "birth" and "death" rates 
{Xi, i = 0 1  1 and {ui, i = 1 2 . .  1 respectively. 

In the non-regenerative case all the cells are in state 0 at t=O, the 

process of charge accumulation starts simultaneously in all N cells and a 

cell explodes as soon as it reaches the state M, as in the previous case. 

However, an explosion of a cell does not affect the charge accumulation 

processes in other cells. Therefore the process of breakdowns in this 

case is a sequence E 1 2  , where SCi) is the i- th term in 

- the ordered sequence of times to breakdown in the individual cells. 



b) Infinite models. For this class of models the charge, accumulated 

in a given cell takes on the values {0,1,. . .'s . The charge accumulation 

process in a cell is transient and reaches infinity in finite time with 

probability one. This happens when { X . ) ,  the rates of ionization in a 
1 

cell are large and cannot be balanced by the rates {ui's of the opposing 

process (which may be recombination or drift). In certain cases the 

effect of this opposing process may be neglected altogether and then the 

process of charge accumulation in a cell becomes a pure birth process, 

In the regenerative case all the cells are in state 0 at t=O, the 

processes of charge accumulation starts simultaneously in all N cells 

and all the cells return to the state 0 immediately after a breakdown. 

In the non-regenerative case 'unlike the regenerative case, breakdown 

has no influence on the charge accumulation processes in the non-exploded 

cells. 

If we suspect that the process of breakdowns corresponds to a non- 

regenerative model, the experiment should be carried out in a speclal 

manner. At first we apply a critical field to the insulator in order to 

destroy the "weak spots". Then we should drop the field altogether for 

some time (in order to remove the trapped charge). Then we apply a fixed 

field again and register the moments of the successive breakdowns, 

2.2 The quasi-stationary model 

In this paragraph we consider the following model of the breakdown 

phenomena.. Charge accumulation in each of N cells proceeds in accordance 

with a birth-death process. A cell explodes (and causes a breakdown) D 



. 
units of time after it reaches a critical state M. Explosion of a cell does 

not affect charge accumulation processes in other cells. Let us suppose that 

D=O i.e. that the cell explodes immediately after the charge reaches the 

level M. The final conclusions concerning this model (See Section 4.1) 

can be easily re-formulated for positive values of D. 

2.2.1 The charge accumulation process 

We consider the process of charge accumulation in a single cell. 

Suppose that at time t=O the cell is in state i (0 5 i < M). Denote by 

P..(t) the probability that the cell is in the state j at time t 
11 

(0 < j < M). The charge accumulation process is a birth-death process - - 
with a finite number of states (0,1,2, .... M), M being an absorbing state 

(as soon as a cell reaches M, it explodes and remains in this state forever). 

From the general theory of Markov chains (See Cox and Miller (1965)) it is 

known that the matrix of transition probabilities {P. . (t) 1, 
11 

(0 5 i, j - < M-1) satisfies the equations 

(2.2.1) P' (t) = AP(t) (backward equations) 

(2.2.2) PI (t) = P (t)A (forward equations) 

with the initial conditions 



and has the following properties: 

C P. . (t) < 1 for every i 
j =o 11 

(2.2.6) P (t+s) = P (t) P (s) (Chapman-Kolmogoroff conditions are 

semigroup property of P(t) as a 

matrix operator). 

The matrix A (which is called in the literature the "infinitesimal 

generator" has the form 



All the rates Ai, pi involved in A are supposed to be strictly positive. 

The solution of the above equations (2.2.1,2) is unique (since the number 

of states is finite) and having solved it the probabilities of absorption 

at time t (PiM(t)) can be found from 

We know that as t -+ the probabilities Pij(t) converge to the limiting 

vector which ascribes probability 1 to state M and zero to the other states, 

• However, if we condition on a cell being "alive", i.e. not yet belng absorbed 

in state M, there may be some sense in which we may regard the cell as having . 
reached a steady state. 

Let r. .(t) be the probability that, having initially been in state i, 
1 3 3  

a cell is in state j at time t given that it has not yet reached absorption. 

The probability. H(At), that it will be absorbed in (t, t*At] given that it 

1s still "alive" at time t is clearly given by 

(2.2.81 H(At) = ri,M-l (t) . A&,lAt + o (At). 

If r. = r .(t) is both independent of i and t, then the vector 
3 193 

(ro ,rl, r M 1 )  would correspond to the stationary distribution of the 

process conditioned on non-absorption. The last equation would then lead 

to a very simple model of the breakdown phenomena in the system of cells- 

namely to that of a Poisson process. 



In the following we refer to results which show that the r. .(t) do 
1.1 

have limits as t -+ -, the so called quasi-stationary distribution. The 

relation r. .(t) = r. for all t will hold if the initial distribution is 
191 I 

this quasi-stationary distribution. On the other hand, by comparing the 

rates at which the r. .(t) converge to r. with the rate at which the 
191 3 

breakdowns occur in the system, it may be reasonable to assume that this 

quasi-stationary regime is attained after an initial period of observation. 

In other words, after this initial period, at the time of a breakdown the 

remaining cells are distributed in the states'0 to M-1 according to the 

distribution (r ,rl,...,r ). From this property the Poisson process of . 0 M- l 

breakdowns will follow. . 
2,2.2 The quasi-stationary distribution 

Let us consider the process of charge accumulation in a single cell. 

Denote by r. .(t) the probability that the cell is in state j at time t 
1.1 

(the initial state was i) a t h a t  the cell is not in the absorbing state 

M at tlme t. The conditional probabilities r, .(t) are related to the 
191 

transition probabilities P..(t) by the equations 
11 

Pi. (t) Pi. (t) 
(2.2.9) r. . (t) = - - , O<l,]<M, 

1 9 1  
- 

l-PiM(t) P. (t)+Pil (t)+. , .+PiM-l(t) 
10 

We ask now the following question: is it true that the r. , (t) approach 
1 ~ 1  

(as t + m) a limit depending on the final state j only? These limits, if 

they exist, might then be identified with the proportions ro,rl,.,.r M- 1 . of the cells finding themselves in the states {O,1, ..., M-l} respectively 



at any moment of time after the steady state have been reached. It is 

known (See Darroch and Seneta (1965) and Keilson (1979, p. 90)) that the 

answer to this question is affirmative for the general Markov case with 

an absorbing set (instead of an absorbing state M). The quasi-stationary 

probabilistic vector {r r . . . I  is known to be a left eigenvector of 
0' 1' 

the infinitesimal matrix (reduced to the set of non-absorbing states) 

corresponding to its maximal eigenvalue. The modulus of this eigenvalue 

can be shown to be equal to the principal decay rate for the charge accumu- 

lation process on the set of non-absorbing states given that the initial 

distribution on this set is a quasi-stationary distribution {ro,rl,. . . I  ~ 

In other words, the modulus of this eigenvalue times At gives the main term . of the proportion of the "alive" cells which will die in time At. 

In our specific case the process of interest is a birth-death process 

with absorbing state M. The problem of finding the maximal eigenvalue of 

the infinitesimal matrix A and the corresponding left elgenvector (the 

quasi-stationary distribution) is largely simplified by using the set 

of potentials n.(i = 0,1, ..., M-1) attached to the non-absorbing states 
1 

and a set of polynomials Qo(~),Q1(~),maa,QM-l(~) defined by means of A, 

The potentials Iro,rl,. . . ,a are defined by M- 1 

A. Xl" " A  
lr 1 = n-1 
o n for l < n < M - 1 .  - - 

u1 P2" 'Pn 

and the polynomials Qo(~),Q1(~),~~~,QM-l(~) - by means of the relation 
(See Karlin and McGregor (1957a)) 



with Q (x) : 1, The explicit form of the relation (2.2.11) is 
0 

* 

We see that only the last component of this relation does not define a 

new polynomial. For the birth-death process with an infinite number of 

states the matrlx A is infinite and (2,2.11a) for every x defines an 

elgenvector {Qo(~),Q1(~),eoe} . These eigenvectors play a role in 

constructing P .  t which is similar to the role of the eigenvectors 
11 

of the infinitesimal matrix in constructing {P . (t) 1 for Markov processes 
11 

with a finite number of states (See Karlin and Taylor (1975, p. 152)). 

We also see that (-x) will be an eigenvalue of A with corre5ponding 

eigenvector {Qo(x) ,Ql (x) , . . . ,QM-l (x) 1 if and only if the equation for 

the last component in (22.11) is also satisfied, i.e. if and only if x 

1s a root of equatlon 

It was proved by Karlin and McGregor (1957a) that this equation has exactly 

M roots X ~ , X , , . ~ , ~ - ~  and all of them are positive. By their result 



(1957a, p, 494), there exists a positive regular measure $(x) on 

0 - < x < , of total mass one, such that the polynomials {Q,(x), . . . ,QM-l(~)j 
are orthogonal with respect to this measure: 

m 0 for i # j 
(2.2.13) 1 Q: (x)Q2 (x)d@(x) = 

- for i = j  
T. 
1 

For a process with a finite number of states the measure II, will be supported 

by the roots x ~ , x ~ , ~ ~ , ~ - ~  of (2.2.12)'only. The probabilities P..(t) 
11 

have the following representation: 

This last expression shows that the asymptotic properties of P..(t) as 
11 

t - depend exclusively on the smallest root xo of (2.2.12). It is also 

known, that xo is not a root of any of the polynomials Qi(x) for 

i - < M-1 and that xo is always a simple root of (2,2.12) (See Keilson 

(1965, p. 417)). 

Further, the argumentation of Karlin and McGregor (1957a, Theorem 11) 

can be used to show that 

the convergence being exponentially fast. 



Now, using (2.2.9) we can prove the following statement. 

Statement 2.2.1 The conditional probability r. .(t) tends (as t + - ) 
1,J 

to a positive limit r which is independent of i: 
j 

and the rate of convergence is exponential. 

Using the definition of the polynomials Q.(x) we easily show that 
1 

r O r l  r 1 is a left eigenvector of A, corresponding to the M- l 

eigenvalue (-xo). In fact, the left eigenvector, corresponding to 

eigenvalue ( - x . )  (i = 0,1,, . . ,M-1) is {r (i) (i) ,rl **"*,r (i) 
1 M-1 ' 

where 

1) 
s.Q. (x.) 

r(' = I 1 1 

I M- 1 
(j = O,l,~om,M-l) 

C raQQ(xi) 
k=o 

(see Appendix F) but only for i=O is a probability vector obtained. 

The stater1 facts may be used to show (See Darroch and Seneta (1965, p.91)) 

that this vector has the following characteristic property of a statlonary 

distribution. 



Statement 2.2.2 If the initial probability distribution is {rO,rl,. . . ,r 
M-119 

and r.(t) is the probability of finding the cell in state j at time t given 
3 

that the cell is not in state M at time t then 

Finally, this last statement shows together with (2.2.8) that if 

{ro,rl,. .. ,rM-l) is the initial distribution, the time to absorption 
is exponentially distributed with parameter xo (which is equal to . 
XM- 1 r ~ -  1) - 

2.2.3 Computational aspects 

If M is large the computation of the greatest eigenvalue x of A 
0 

using standard matrix operations may be a tedious and time consuming task, 

Fortunately, in the case of birth-death processes the problem is simplified 

by the following considerations. 

First of all, let us prove some statements about the properties of 

the polynomials {Qi (x) defined by (2.2.11). 

Statement 2.2.3 Qi(0) = 1 for i = 0,1,. ..,M-1. 

Proof The proof follows immediately from the definition of the polynomials - 
(See 2.2.11). 

0 



Statement 2.2.4 Let us define an additional polynomial Q (x) by adding M 

an additional relation to the set (2.2.11a). Then 

a) Its roots 0 < x < x, <. ..<x~-~ 
0 

are the eigenvalues of A taken 

with negative sign. 

b) There is exactly one root of Q (x) between any two successive M- 1 

roots of QM(x). 

c) %(x) is convex in the interval [O,x + E]  where E is some positive 
0 

number. 

Proof a) follows from the definition of the polynomials Qi(x) - 
b) can be easily verified by induction. 

c) all the roots of Q (x) are known to be distinct M 

(See Karlin and McGregor (1957a)). Therefore each interval [x. x, ] 
1' l+l 

(j = 0,1,.,.,M-2) contains exactly one zero of s(x). Denote this zero 

by x!. Further, each interval [x!,x! ] (j = O,l,..,,M-3) contains exactly 
1 I l+l 

one inflection point of %(x). The last considerations show that Q (x) is M 

monotonically decreasing and has no inflection points in the interval 

[O,x +€I  where E is some positive number. The convexity of Q (x) just 
0 M 

follows from the fact that QV!(O) > 0 for i > 2 (which can be proved by 
1 - 

induction) . 

Remark. Of course, a statement of this kind holds for any polynomial 

(i) (ill Qi(x) and its roots (0 < xo < o <  

The first four polynomials are schematically shown in Fig. 2.2.1. 



Fig. 2.2.1 The first four  polynomials from t h e  system {Qi(x)?. . 
. 

The fol lowing Statement shows t h a t  t h e  polynomialQi(x) is connected 

with t h e  d i s t r i b u t i o n  o f  t h e  f irst  passage time Toi from t h e  s t a t e  0 t o  

the  s t a t e  i. 

Statement 2.2.5 Denote by 2 . ( s )  t h e  Laplace t ransform of t h e  f i rs t  
01 

passage time d i s t r i b u t i o n  from t h e  s t a t e  0 t o  i. 

Then 

Proof: By making i an absorbing s t a t e  we ob ta in  

i-l 



where P . ( t )  is t h e  t r a n s i t i o n  p robab i l i ty  of a process with absorbing s t a t e  i. 
01 

NOW (2.2.18) can be proved usi9,e t h e  s p e c t r a l  r ep resen ta t ion  of P . ( t )  and 
01 

t h e  p r o p e r t i e s  o f  {Qi(x)}. We s h a l l  not enter into d e t a i l s  he re  because 

(2.2.18) can be deduced immediately from the  f a c t  t h a t  

. 1-1 (5) = Q i m l  (-s)/Qi(-s) which follows from (4.1.3) of Chapter IV  

( (s) is the  Laplace transform of t h e  first passage time d i s t r i b u t i o n  1-1 

from t h e  s t a t e  ( i -1)  t o  i ) .  

From t h e  f a c t  t h a t  

(See Keilson (1979, p .  61)) and (2.2.18) we ob ta in  

The l a s t  e q u a l i t y  can be used t o  ob ta in  a l e f t  bound f o r  x t h e  minimal 
0' 

roo t  o f  QM(x) (See Fig. 2.2.1). 

To c a l c u l a t e  xo we proceed as  follows. F i r s t  of a l l  we v e r i f y  i f  

QM(l/ETo,~-l  ) i s  negat ive.  If so ,  we obta in  



The estimate (2.2.22) enables one t o  obtain an interval  of length 

M- 1 
( l ~ M l ) l  Z n. which cer ta in ly  includes the value of (xo)-le 

j =o 1 

A more precise  estimate can be obtained using c) of the Statement 2.2.4: 

Now the precise value of x may be obtained quickly using a comblnatlon 
0 

. of Newton-Raphson's method and the method of secants (See G. Korn (1968, 

Chapter 20)). . 
In the case t h a t  QM(l/ETo,M-l ) is posi t ive ,  we obtain tha t  xo is 

greater  than (l/ETo,M-l ) The l a s t  value may be used then as a f i r s t  

approximation when calculating xo by Newton-Raphsonrs method. 

2.3 Relevance of Extreme Value Theory 

A l l  the  models described before have some common features:  the Insulator 

consists of N c e l l s  operating independently; the same process of charge 

accumulation is act ive i n  a l l  the c e l l s  and the f i r s t  breakdown occurs 

a f t e r  one of the c e l l s  reaches a c r i t i c a l  s t a t e .  So, these models work 

i n  accordance with the pr inciple  of the weakest l ink:  a chain is destroyed 

as soon as the  weakest l ink i n  it f a i l s .  

Let us consider the r e g e r a t i v e  models. In t h i s  case a f t e r  each 

breakdown the system of c e l l s  ( insulator  as a whole) returns t o  a fixed 



initial state. Let T1,T2, ..., T be the sample of n successive inter- n 

breakdown times. These times are independent identically distributed random 

variables (assuming n << N) and T = min(c1,c2,...,SN) where 5. is the 
1 

th time to explosion of the i- cell. To answer the statistical questions 

formulated in sec. 1.3. we proceed as follows: 

a) We express the distribution of the time to explosion in a single 

cell in the terms of the physical parameters of the model. 

b) The distribution law of the interbreakdown time T is expressed 

using distribution of the time to explosion in' a single cell. 

. C) TO estimate the physical parameters of the model we compare the 

data observed (the set of interbreakdown times T1,T2, ..., Tn) with the . 
.distribution law of interbreakdown time predicted by the theoretical 

model. 

Since the number of cells in the models of breakdown is expected to 

be extremely large, problems arise when trying to express the distribution 

law of interbreakdown times T in terms of distribution laws of 

c1,c2,.m,cNo This problem resembles one of finding the distribution law 

for y = (XI + X2 + . . . +XN)/N, X1 ,X2 , .  , . ,XN being independent and identically 

distributed random variables. We know that the last problem is solved using 

the Central Limit Theory, which states, that under rather mild conditions 

the distribution law of the random variable y (after performing an 

appropriate shift and change of scale) is asymptotically standard normal. 

If we are interested in the behaviour of the random variable 

T = min(cl,. . . ,SN) rather than that of 5, analogous results may be obtained . 



using Extreme Value Theory instead of Central Limit Theory. The former theory 

states that under general conditions the random variable T (after appropriate 

shift and scaling) is distributed in accordance with one of three possible 

laws as N tends to infinity. Should this law be identified and N be large, 

the problem of finding the distribution law for T becomes just a problem of 

finding the appropriate constants of shift and scale (they are called the 

"normalizing constants" in the literature.) 

We see that Extreme Value Theory is relevant for dealing with statistical 

questions in the case of regenerative models. In the case of non-regenerative 

models we start our observations at time t=O and the times of successive . 
breakdowns are {5(1) ,5(2), . . . I  , eleients of the ordered sequence of the 

. times to explosion in various cells. (These times are called "order 

statistics" in the literature). The process of breakdowns in the non- 

regenerative case is not a renewal process and this complicates the procedure 

of the related statistical inference. In practical cases we try to answer 

the statistical questions on the basis of a sample of the first n breakdown 

times {5 
(1) ~ ~ ( 2 )  

, . , . (Note that the distribution of the time of the 
(n) 

first breakdown 
c(1) 

is exactly the same as in the regenerative case). 

In the analysis of the non-regenerative models we also make use of the Extreme 

Value Theory which asserts that the random variables {5(1), .. . ,5 1 (shifted 
(nl 

.by an appropriate value and inflated by the same scale parameter) behave as 

they would be realizations of one of threepossible well known stochastic 

procesres. Provided we know which of the three relevant processes is 

appropriate and provided that N is large, statistical analysis of the model 

may be performed by comparing the observed times of successive breakdowns 

with the behaviour of breakdown times predicted by the model m consideration. 



2.4 Eqerimental evidence 

In this paragraph we show that the "weakest link" models which are 

described in the present chapter and are object of our investigation have 

broad experimental support. Consider our system of N cells. Suppose 

that all the cells are in the same initial state at t=O and at the same 

moment a high field F is applied. Similar processes start in every cell 

and operate independently until the first one explodes. When this happens, 

the field drops instantly to zero and all the cells rush towards the inltial 

state. However, a common situation is that the time of the field absence 

is so short that the effect of the breakdown on the non exploded cells may 

be neglected (we refer to this case as a non-regenerative one). We have 

pointed out in section 2.1 that the experiment providing data for testing 

the adequacy of such models should be conducted in a special manner. Since 

such experiments were not yet conducted, the question about the approprlate- 

ness of the non-regenerative models cannot be definitely settled. The 

exception is the quasi-stationary model which does not require special 

types of experiments. This model (as we shall see in section 4.1,2) 

predicts the process of successive breakdowns to be a homogenious Polsson 

process and there are several sets of data at our disposal which support 

this prediction (See also Solomon, Klein and Albert (1976)). 

Should we artificially preserve the absence of field for a constant 

time after a breakdown occurs (and then restore its nominal value), the 

non exploded cells would have retunled to the initial state and the 

regenerative case would be relevant. However, such experiments have not 

been conducted, so there is no data which enable us to test the adequacy 



of the regenerative models (such tests could be based on the comparison of 

two sample processes of breakdowns: one corresponding to immediate resto- 

ration of the field after a breakdown and another - to the delayed resto- 
ration). Another way to test the adequacy of the regenerative model is 

comparing of the sample process of breakdowns in a slngle specimen, clear 

of "weak spots" (field is restored immediately after a breakdown occurs) 

and the times to the first breakdown corresponding to a group of simllar 

cleared specimen (experiments of such kind have also not been performed). 

The relevance of the regenerative weakest chain models is supported 

by data obtained in ramped voltage tests (See Section 1.1), In these . 
types of tests after a breakdown obtains and the field drops to zero, 

it is restored neither immediately nor after a constant delay (as in 

previously defined step voltage tests). Instead of this it rises in time 

at a constant rate r (F(t) = rt) until the following breakdown occurs and 

so on. (The regenerative case might be thought to be relevant in such 

situations because the field is in the vicinity of zero for a relatively 

long period of time after a breakdown occurs and the non-exploded cells 

have time to return to the initial state). As we shall see in Chapter 111, 

the Extreme Value Theory predicts that in the regenerative cases the inter- 

breakdown times are independent random variables, distributed (after an 

appropriate linear transformation) identically either in zccordance with 

Weibull's law or in accordance with Gwnbel's law (the appropriate distri- 

bution functions are given by formulas (3.1.6-3.1.7) dependent on the 

"thickness" of the left tail of the distribution functlon of the tlme to 

explosion in a single cell. 
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The Weibull, for shape parameter y - > 4, and Gumbel extreme value 

distributions are typified by long left tails (negative skewness). 

Empirical histograms from several ramped voltage experiments also display 

this property (together with independence of the successive interbreak- 

down times) thus giving support to "weakest link" breakdown models. 

The "weakest link" breakdown mechanism is also supported by the tests, 

performed on a number of similar specimen (free of weak spots) when only the 

time to a first breakdown is registered. The times to breakdown in various 

specimen behave as they would be realizations of independent identically 

distributed Gumbel or Weibull variates. We consider several examples. 

Example 1. In the ramp tests carried out by Osburn and Ormond (1972) on 

the Si - Si02 - A1 samples (100 specimens were separately tested) the 

voltage was linearly raised until the firstshorting breakdown occurred. 

The data consisted of the pairs (VI, VFj where VI is the voltage at which 

a first non-shorting breakdown occurred (I means "initial") and VF is the 

voltage at which a first shorting breakdown occurred (F means "final"). 

.The times to breakdowns of the same type over different samples do not 

show any significant dependence. However, the data pairs we;e highly 

positively correlated and had similarly shaped histograms. The histogram 

cf the voltages VF is given in Fig. 2.4.1 and chi-square goodness of f;t 

test shows that both Gumbelts and Weibull's laws represent a good fit. 

The authors didn't try to explain the shape of the histogram but they referred 

to it as to a typical one and pointed out the inconsistency of the norms1 fit,, 

Note that in fact the Fig. 2.4.1 represents the histogram of the times to a 

. shorting breakdown since voltage is proportional to time (in ramp test>). 

. 



Example 2. Ultrathin samples of Si - Si02 - Si (Thickness of the insulator 
0 

limited to 30 - 300 A range) were subjected to constant current in the tests 
performed by E. Harari (1977). Since in such tests the voltage varies to. 

provide a constant current (instead of being constant or ramped) self healing 

mechanisms cannot be relied upon to neutralize weak spot breakdowns. Therefore 

the areas of the insulating oxide were kept very small (so as to minimize the 

probability of occurrence of a weak spot in a given sample). The times to a 

first breakdown were registered. The typical histogram, based on 100 tested 

samples is given by Fig. 2.4.3, As we can.see, the author tries to fit the 

normal curve to the observed data. Though the fit in the shown case is 

not bad (the P-value of the chi-square test is approximately 0.30) the 

negative skew was typical in.twenty experiments under various conditions 

and this shows the normal fit to be inconsistent. Chi-square tests show 

that both Gumbel's and Weibull's distribution laws represent a much better 

fit to the observed data. For example, the P-value equal to 0.60 obtains 

when fitting the Gumbel's law. 

Example 3, In the ramp tests performed by Solomon, Klein and Albert (1976) 

+ 
on the ~ l +  - A1203 - Au- sample (A1 and Au- mean that aluminium and gold 

were used as anode and cathode materials respectively) and on the 
* 

Hf - Hf02 - Au- sample the interbreakdown times revealed an independent 
behaviour and the corresponding histograms were fitted by Gumbel's 

distribution law (See Fig. 2.4.2. The histogram of voltages to breakdown 

is plotted, but it corresponds to the histogram of the interbreakdown 

times) . 



The authors explain the appearance of the Gumbel's law by a model in 

which the following assumption ha9 been made: if the field is held constant 

and equal to F, the process of breakdowns is a homogeneous Poisson process 

with rate (V r(F)) where 

(~(0) and B are appropriate constants). The probability that a breakdown 

occurs in the interval (t, t+dt) is equal to . 

so, the distribution function P(t) of the interbreakdown time is 

The linearly transformed interbreakdown time Y = BrT - ln(Br~(o)) has a 

distribution function equal to 

and, since from the experimental results it follows that Brr(o) rr 100, Y 

is approximately Gumbel. 



A somewhat different model was used to explain the appearance of Gumbel's 

law in ramp tests by de Wit, Wienberg and Crevecoeur (1976). 

Completely different breakdown mechanisms were used to explain the 

situations in the examples 1-3. But, as we can see, Gumbel's or Weibull's 

laws fit the histograms of times to breakdown in every case. It seems very 

possible that these examples reflect the following reality: a) the insulator 

consists of a large number of cells; b) the cells are initially in the same 

state and the same processes develop in every cell independently when the 

field is applied; c) breakdown occurs after one of the cells reaches some 

. prescribed critical state; d) after a breakdown occurs all the system either 

returns to the initial state or dies. . 
Concerning the last example, we could expect that even in the case that 

the process of breakdowns in step tests is not a Poisson one because of non - 
regenerativity of the situation after a breakdown occurs), the successive 

breakdowns in ramp tests will behave as independent identically distributed 

(in accordance with Weibull's or Gumbel's law) random variables, Indeed, such 

was the situation which occurredin tests, performed by the same authors vrhen 

they investigated the dielectric strength of Si - Si02 - Au capacitors (See 

Solomon, Klein and Albert (1976)). In these tests the breakdown processes 

obtained in step tests even had changes in rate. 

Finally, if the process taking place in a single cell when applying step 

or ramp tests satisfies certain conditions, the assumptions of the model 

(in Example 3) may be just consequences of a more general "weakest link" 

model. 
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Fig. 2.4.1 Shape of typical final breakdown histogram (from Osburn and 

Ormond (1972)) . 

Fig. 2.4.2 Gumbel density function and the histogram of breakdown voltages 

on the application of rising ramp voltages to an A1-A1203-Au sample 

(from Solomon et a1 (1976)). 



Fig. 2.4.3 Times to a breakdown in ultrathin Si-Si02-Si samples subject to 

constant current (From E. Harari (1978)). 



CHAPTER I11 

3. EXTREME VALUE THEORY - A SURVEY OF RELEVANT RESULTS 

As we pointed out in the previous chapter, Extreme Value Theory is crucial 

for dealing with models of the "weakest link" type (as our models are). In thls 

chapter we formulate the most important (for us) results of this theory in the 

way that is convenient for applications in our specific models, These results 

will be referred to often in the following chapters. In the Section 3.1 we 

formulate the domain of attraction problem for a single extreme variate and 

review the main results connected with identification of the domain of 

attraction and finding the normalizing constants (the reader may already 

have an intuitive explanation of these notions from Section 2.3. In Section 

3.2 we reproduce the main results concerning the domain of attraction problem 

for the joint extreme variates. These results will play a crucial role in 

analysis of the non-regenerative models. At last, in Section 3.3 we consider 

the applications of Extreme Value Theory to our models of breakdown phenomena, 

described in Chapter 11. These applications include tests for consistency of 

the specific model of breakdown with observed data, estimation of the appropriate 

physical parameters and predicting the types of interdependence ber~een charac- 

teristics of the model which is assumed to be operative in a given situarion. 

3.1 The domain of attraction problem 

Let 51,52,...,5 be independent random variables, identically distributed N 

with common distribution function F. Denote 



As well, let xo be the left endpoint of the distribution function F: 

(3.1.2) xo = inf {X(F(X) > 01 

(of course x is either finite or equal to (--I). The distrlbution functlon 
0 

FN of WN 1s given by 

and tends to 1 as N +-for every x > x However, we can expect that after . 0- 

an appropriate linear transformation the random variable WN will be asympto- 

tlcally distributed in accordance wlth some non-degenerate distrlbution function 

G [See Sectlon 2.31. 

Definztion 3.1.1 A distribution function F belongs to tne domain of attraction 

of a non-degenerate distrlbution function G in the sense of minlmum when it is 

possible to choose two sequences of real numbers {bNj (bN > 0 for N = 1,2,. . .) 
and I%} such that for every x 

The sequences {bN) and satisfying (3,1,4) are called the sequences of 

normalizing constants. 



Identifying the domain of a t t r ac t ion  f o r  F and finding the appropriate 

normalizing constants a r e  the main problems tha t  Extreme Value Theory deals 

with. So, l e t  us s t a t e  (without proof) several theorems from t h i s  theory, 

We sha l l  often r e f e r  t o  these theorems throughout the tex t .  Every statement 

concerning Extreme Value Theory can be formulated i n  terms of e l t he r  maximum 

or  minimum. Since we use t h i s  theory i n  the sense of minimum, a l l  the 

theorems w i l l  be formulated i n  t h i s  sense. This means tha t  the asymptotic 

behaviour of WN (as N + m) w i l l  be connected with the l e f t  t a i l  properties 

of F .  

F i r s t  of a l l ,  l e t  us define the following three classes of functions 

1 - e  
- (4) -y  i f  x < O  

I3.1.5) L (x) = 
1 , Y  

; Y > O  

1 i f  x . 0  - 

Let us also define a c lass  of regularly varying functions, which play 

an important ro le  i n  Extreme Value Theory, 



Definition 3.1.2 The function F with left endpoint xo is cdled a regularly 

varyinq function at xo if it satisfies 

for every t > o and some finite y . The number y is called the exponent of 
regular variation for F. In the particular case y = 0, F is called slowly 

varyinq at x 
0' 

Remark. Condition (3.1.8) is not as strong as it may appear. It is shown 

(See L. De Haan (1970, p.5)) that if the limit on the left hand side of (3.1.8) 

Y exists it must be of the form t . 
,. 

It is possible that F does not belong to the domain of attraction of 

any non-degenerate function G, but if it does then the normalizing constants 

may be chosen in such a way that G coincides with one of the three functions 

Ll ,yL2 ,yr L defined above. Thus, in what follows, G will always denote one of 

these functions (except where otherwise stated). It is also known that if F 

belongs to the domain of attraction of G then F belongs to the domain of at- 

traction of any function G(Bx+a), ( 6  > 0,a is real) and of no other function 

(see G-1 (1958)). Necessary and sufficient conditions for F to belong to 

the domain of attraction of L1 
,Ye L 2 . ~  

or L are given by the following theorems. 

(See Galambos (1978, pp. 49-75) for the proofs.) 

Theorem 3.1.1 A d.f. F belongs to the domain of attraction of L1 (y > 0) 
,Y 

if and only if xo = -m and F varies regularly with exponent (-y) at xe. 



The n o r m a l i z i n g  c o n s t a n t s  aN C s h i f t )  and bN ( s c a l e )  c a n  b e  chosen  

a s  f o l l o w s :  
aN = 0  

(3 .1 .9 )  

Theorem 3.1.2  A d .  f .  F b e l o n g s  t o  t h e  domain of  a t t r a c t i o n  o f  

L2 , Y  
(y > 0 )  i f  and o n l y  i f  i t s  l e f t  e n d p o i n t  xo i s  f i n i t e  and F 

v a r i e s  r e g u l a r l y  w i t h  exponent  y a t  xo. The n o r m a l i z i n g  c o n s t a n t s  

aN and bN can  b e  chosen  a s  

Theorem 3 .1 .3  A d . f .  F ( t )  b e l o n g s  t o  t h e  domain o f  a t t r a c t i o n  

o f  L i f  and o n l y  i f  f o r  e v e r y  t 

where 



The normalizing constants % and bN can be chosen as 

. Remark (I. Weissman) The expression for bN in (3.1.13) implies that 

bN = %-E(S 1 5 <%I .  

The last theorem leads to the following corollary (which plays an 

important role in applications). 

Corollary 3.1.3 Let F be a d.f. with finite left endpoint xo. If F 

belongs to the domain of attraction of L with normalizing constants % 

and bN then 

Proof: The proof follows directly from the fact that - 

r(t) , - as t-X t ' X c  
0 

. 
(See De Haan (1971,p.82)). 



Another  c h a r a c t e r i z a t i o n  o f  t h e  domain of  a t t r a c t i o n  o f  

L i s  g i v e n  by  t h e  f o l l o w i n g  theorem ( s e e  De Haan (1971 ,  p .  8 0 ) ) .  

Theorem 3 . 1 . 4  A d . f .  F b e l o n g s  t o  t h e  domain o f  a t t r a c t i o n  

o f  L w i t h  n o r m a l i z i n g  c o n s t a n t s  a and bN i f  and o n l y  i f  N 

l i m  N . F(aN + b N t )  = e  t 

N+m 

f o r  e v e r y  t .  

From t h i s  theorem t h e  f o l l o w i n g  c o r o l l a r y  i s  e a s i l y  deduced 

( s e e  De Haan (1971, p .  5 8 ) ) :  

C o r o l l a r y  3 .1 .4  I f  t h e  c o n t i n u o u s  d . f .  F b e l o n g s  t o  t h e  domain 

o f  a t t r a c t i o n  o f  L ,  t h e  n o r m a l i z i n g  c o n s t a n t s  can  b e  found  from 

t h e  e q u a t i o n s  

The f o l l o w i n g  theorem p r o v i d e s  o t h e r  p o s s i b i l i t i e s  f o r  

t h e  c h o i c e  o f  t h e  n o r m a l i z i n g  c o n s t a n t s  ( s e e  Galambos (1978 ,  p. 6 1 ) ) .  



Theorem 3 . 1 . 5  Le t  F  b e l o n g  t o  t h e  domain o f  a t t r a c t i o n  of  G, t h e  

n o r m a l i z i n g  c o n s t a n t s  b e i n g  aN ( s h i f t )  and b N ( s c a l e )  . 
O t h e r  s e t s  {a;) and (b;) may a l s o  b e  used  a s  n o r m a l i z i n g  

c o n s t a n t s  i f  and o n l y  i f  

b; a  - a*  ( 3 . 1 . 1 6 )  l i m  - = 1 ;  l i m  N N = 0 .  
N+w b~ N+m N 

Le t  u s  now d e f i n e  t h e  c o n c e p t  o f  t a i l  e q u i v a l e n c e  which i s  

one  o f  t h e  b a s i c  c o n c e p t s  i n  t h e  p r e s e n t  work. 

D e f i n i t i o n  3 . 1 . 3  Assume t h a t  f u n c t i o n s  ' ~ ( t )  and F l ( t )  have  

a  cocmon l e f t  hand  e n d p o i n t  x o .  I f  

t h e n  t h e  f u n c t i o n s  F ( t )  and F l ( t )  a r e  c a l l e d  - t a i l  e q u i v a l e n t .  

The f o l l o w i n g  theorem shows t h e  i m p o r t a n c e  of  t h i s  c o n c e p t  t o  

Extreme Va lue  Theory  ( s e e  Resn ick  ( 1 9 7 1 ) ) .  



Theorem 3 . 1 . 6  a )  If  t h e  d i s t r i b u t i o n  f u n c t i o n s  F ( t )  and F l ( t )  

b e l o n g  t o  t h e  domain o f  a t t r a c t i o n  of  G w i t h  t h e  same n o r m a l i z i n g  

c o n s t a n t s  aN and bN t h e n ,  

( i )  F ( t )  and F1( t )  have  a  common l e f t  e n d p o i n t  x  . 
(3 .1 .18)  0 '  

( i i )  F ( t )  and F l  ( t )  a r e  t a i l  e q u i v a l e n t .  

b) I f  t h e  d i s t r i b u t i o n  f u n c t i o n s  F ( t )  and F l ( t )  s a t i s f y  ( 3 . 1 . 1 8 )  

and one o f  them b e l o n g s  t o  t h e  domain of a t t r a c t i o n  o f  G w i t h  t h e  

n o r m a l i z i n g  c o n s t a n t s  aN and bN t h e n  t h e  o t h e r  one  a l s o  b e l o n g s  t o  

t h e  domain o f  a t t r a c t i o n  of G w i t h  t h e  same n o r m a l i z i n g  c o n s t a n t s  

aN and bN.  

0 

The n e x t  theqrem p r o v i d e s  a  r e l a t i v e l y  s i m p l e  way f o r  i d e n t i f y -  

i n g  t h e  domain o f  a t t r a c t i o n  o f  L ( s e e  De Haan (1971 ,  p .  1 1 0 ) ) .  

Theorem 3 . 1 . 7  Suppose  t h a t  t h e  d . f .  F ( t )  h a s  a  p o s i t i v e  m e a s u r a b l e  

d e r i v a t i v e  F'  i n  t h e  ne ighborhood  of  xo.  

t h e n  F  b e l o n g s  t o  t h e  domain o f  a t t r a c t i o n  of  L .  

b)  I f  F 1  is  n o n - d e c r e a s i n g  and F b e l o n g s  t o  t h e  domain o f  a t t r a c t i o n  

o f  L ,  t h e n  (3 .1 .19)  h o l d s .  

The n e x t  theorem s t a t e s  t h a t  m u l t i p l i c a t i o n  of  a  d i s t r i b u t i o n  

f u n c t i o n  by a  r e g u l a r  v a r y i n g  f u n c t i o n  d o e s  n o t  a f f e c t  i t s  domain 

o f  a t t r a c t i o n  ( s e e  L .  De Haan (1971, p .  8 3 ) ) .  



Theorem 3.1.8 Let F1 and F2 be d i s t r ibu t ion  functions with common l e f t  

endpoint x  Suppose also tha t  the  function 
0' 

is regularly varying a t  xo. Then F belongs t o  the domain of a t t r ac t ion  of G 1 

i f  and only i f  F2 belongs t o  the  domain of a t t r ac t ion  of G. 

In the models describing the breakdown phenomena F(t )  i s  the  d i s t r ibu t ion  

function of the time t o  explosion of a  s ingle  c e l l .  So xo, the l e f t  endpoint 

of F w i l l  always be f i n i t e .  Therefore, by the Theorem 3.1.1, F may belong 

to  the  domain of a t t r ac t ion  of e i t he r  L o r  L . L. De Haan (1971, p.100) 
2 ,Y 

gives a  unifying approach which enables one t o  iden t i fy  the domain of 

a t t rac t ion  i n  t h i s  case. 

Theorem 3.1.9 Suppose F i s  a  d i s t r ibu t ion  function with f i n i t e  l e f t  endpoint 

x  F belongs t o  the  domain of a t t r ac t ion  of a  non-degenerate d . f .  G i f  and 
0'  

where 

(301021) 

l i m  g(x) = c 
x+x 0 

g(x) = 
Xo Xo for  a l l  x  > xo 
X 

{ f F( t )d t  }2 
X 

0 



If c=l then G=L. If c < 1 then G = L with 
2 ,Y 

(3.1.22) Y = (l-c)-l - 2 

Remark a) It is known (See De Haan (1971, p.102)) that if the limit c in 

(3.1.20) exists, then c e (1/2. I]. 

b) Note that g(x) is similar to the left hand side of (3.1.19). 

However, the Theorem 3.1.9 does not require the existence of F 1  in the 

neighborhood of xo as Theorem 5.1.7 does. 

Finally, in Fig. 3.1.1 the density functions corresponding to L and 

L 2 , ~  
(for several values of y ) are plotted. We shalI see that these 

densities give the main features of the interbreakdown time distribution 

for the regenerative models. 

/(z$ 

Fig. 3.1.1 The density functions corresponding to L and L 
2 ,Y 



As we see from Theorem 3.1.5 we have a large freedom in choosing the 

wrmalizing constants so that the convergence in (3.1.4) holds. However, 

the rate of convergence may depend essentially on the particular choice of 

the sequences {%I and {bNlo The following theorem (Galambos (1978, p.113)) 

enables one to estimate the rate of convergence as soon as the normalizing 

sequences have been chosen. 

Theorem 3.1.10 Let G be one of the possible extreme value distributions (in 

the sense of minimum). Let F belong to the domain of attraction of G. For 

given sequences and {bN> (bN > 0) we put 

and, for x's for which G(x) < 1, 

(3.1.24) pN(x) = zN(x) + ln[l-G(x)]. 

If x is such that G(x) 1 and if zN(x)/N - < 1/2, then 

where 



(3 .1 .27 )  1 2  1 
r 2 B N  ( X I  = I P ~ ( x J I ;  P ~ ( x )  # 

2  
w i t h  q < 1 and s < 1 such  t h a t  ( 2 / 3 )  zN(x) /N 5 q and 

( 1 / 3 ) 1 p N ( x ) I  5 s ,  r e s p e c t i v e l y .  

We c l o s e  t h i s  r ev i ew w i t h  a  theorem which g i v e s  s u f f i c i e n t  

c o n d i t i o n s  f o r  c o n v e r g e n c e  of moments o f  (WN-aN)/bN t o  t h e  

c o r r e s p o n d i n g  moments o f  t h e  l i m i t i n g  e x t r e m a l  d i s t r i b u t i o n  

( s e e  P i c k a n d s  I 1 1  (1968 ,  p .  8 8 2 ) ) .  

Theorem 3 .1 .11  Suppose t h a t  F i s  a  d . f .  w i t h  f i n i t e  l e f t  e n d p o i n t  

b e l o n g i n g  t o  t h e  domain o f  a t t r a c t i o n  of  w i t h  n o r m a l i z i n g  con-  

s t a n t s  { a N )  and {bN) .  

L e t  m b e  any r e a l  p o s i t i v e  number. I f  f o r  some p o s i t i v e  i n t e g e r  

where 

N , E ( w ~ ) ~  i s  f i n i t e  t h e n  

Remark 1. S i n c e  l y l m  = ( y + l m  + (y-)".  u n d e r  t h e  c o n d i t i o n s  of  

[". iNaN] - 
(3 .1 .28 )  

lim e l [ W N ~ N a N ]  
N +m 

Theorem 3 . 1 . 1 1 ,  

= O / ( - x ) ~  d  3 ( x )  , - m 

+ m  
= / xm d  2 ( x )  , 

0 



Remark 2. I f  t h e  c o n d i t i o n s  o f  Theorem 3.1.11 a r e  s a t i s f i e d  w i t h  

m a  p o s i t i v e  i n t e g e r ,  we o b t a i n  t h a t  

. + m ( T h i s  r e l a t i o n  f o l l o w s  from (3 .1 .28 )  and t h e  i d e n t i t y  y m = ( y  ) + ( - I ) ?  

3 .2  The j o i n t  d i s t r i b u t i o n  o f  ex t r eme  o r d e r  s t a t i s t i c s  

I n  t h i s  s e c t i o n  we c o n s i d e r  t h e  domain o f  a t t r a c t i o n  problem f o r  

t h e  k  f i r s t  s ample  e x t r e m e s .  The s t a t e d  f a c t s  w i l l  p l a y  a n  i m p o r t a n t  

r o l e  i n  a n a l y z i n g  t h e  n o n - r e g e n e r a t i v e  models  of  breakdown phenomena. 

Le t  E l ,  S 2 , .  . . , E N  b e  i n d e p e n d e n t  random v a r i a b l e s ,  i d e n t i c a l l y  

d i s t r i b u t e d  w i t h  common d i s t r i b u t i o n  f u n c t i o n  F  ( i n  t h e  models  o f  

t h  breakdown Si is  t h e  l e n g t h  o f  l i f e  o f  t h e  i- c e l l ) .  Let  us  suppose  

t h a t  t h e  l e f t  e n d p o i n t  o f  F i s  0 .  T h i s  a s sumpt ion  s i m p l i f i e s  t h e  

e x p r e s s i o n s  and i s  by no means r e s t r i c t i v e  a s  w i l l  b e  s e e n  l a t e r .  Le t  

E I N , E Z N ,  ..., SNN b e  t h e  o r d e r e d  sequence  o f  t h e  random v a r i a b l e s  S1, ..., E N ,  

C o n s i d e r  t h e  k  f i r s t  s ample  e x t r e m e s  c 1 N , S 2 N , . . .  ,SkN.  I t  f o l l o w s  

from Ext reme Value  Theory t h a t  t h e  a s y m p t o t i c  j o i n t  d i s t r i b u t i o n  o f  

t h e s e  v a r i a b l e s  ( a f t e r  b e i n g  l i n e a r l y  t r a n s f o r m e d )  may b e  o n l y  o f  c e r -  

t a i n  s p e c i f i c  fo rms .  These  f o r m s ,  a s  we s h a l l  s e e ,  depend o n l y  on  t h e  

domain o f  a t t r a c t i o n  o f  F ( t )  i n  t h e  s e n s e  o f  minimum ( s e e  Sec .  3 . 1 ) .  

L e t  u s  suppose  i n  what f o l l o w s  t h a t  F b e l o n g s  t o  t h e  domain o f  

a t t r a c t i o n  o f  G i n  t h e  s e n s e  o f  mininum t h e  n o r m a l i z i n g  c o n s t a n t s  b e i n g  

a  ( s h i f t ) .  and bN ( s c a l e ) .  From t h e  g e n e r a l  t h e o r y  o f  e x t r e m e  v a l u e s  
N 

we know, t h a t  G must c o i n c i d e  e i t h e r  w i t h  L o r  w i t h  L 
2  ,Y  

( s e e  Theorem 

3 . 1 . 1 ) .  



Moreover ,  we know (Theorem 3 .1 .2 )  t h a t  i n  t h e  c a s e  t h a t  F b e l o n g s  

t o  t h e  domain o f  a t t r a c t i o n  o f  L2 , t h e  s h i f t  p a r a m e t e r  aN may 
3 Y 

b e  t a k e n  e q u a l  t o  0 .  S i n c e  from 

it follows t h a t  

1nElN-ln bN 
l i m  P{ < t )  = L(t) ,  
N- l1-i 

only the case 

needs t o  be considered. So, we suppose tha t  (3.2.3) holds. 

Let us s h i f t  a l l  the  variables 61N,F,2N,...,cH by % and scale  them by bN. 

The transformed variables are  

I t  can be shown (See Weissman (1975)) t ha t  not only mlN tends t o  a 

non-degenerate random variable but also for  fixed k 



i n  d i s t r i b u t i o n .  The d e n s i t y  o f  m i  i s  

( 3 . 2 . 6 )  @ i t t ]  = m- exp {-et  + i t )  , -m < t < -, 

and t h e  j o i n t  d e n s i t y  o f  { m l ,  m 2 .  ..., m k ]  i s  

The j o i n t  d e n s i t y  o f  m k  and t h e  s p a c i n g s  D i  = m i + l - m i  

( i  = 1 , 2 , .  . . ,k-1) can  b e  shown t o  b e  

k - l  - i d i  
( 3 . 2 . 8 )  q ( t k , d l , d 2 , - - -  > d k - l  ) = II i e  

i= l 

Thus ,  t h e  f o l l o w i n g  r e s u l t  h o l d s  ( s e e  Weissman ( 1 9 7 8 ) ) :  

Theorem 3 . 2 . 1  I f  F b e l o n g s  t o  t h e  domain o f  a t t r a c t i o n  o f  L ,  t h e n  

t h e  s e q u e n c e  {ml  ,", . . .) h a s  t h e  p r o p e r t y  t h a t  f o r  e a c h  k  

{ m k  , D l  , D 2  , . .  . , D k - l  a r e  i n d e p e n d e n t  and each  D i  i s  e x p o n e n t i a l l y  

- 1 
d i s t r i b u t e d  w i t h  mean ( i )  . 

The c o n v e r s e  o f  t h i s  theorem i s  a l s o  t r u e  ( s e e  Weissman 

(1978,  Theorem 4 ) ) :  

Theorem 3 . 2 . 2  Suppose t h a t  r e l a t i o n s  ( 3 . 2 . 4 ) - ( 3 . 2 . 5 )  d e f i n e  non- 

d e g e n e r a t e  random v a r i a b l e s  {ml, .  . . ,mk). I f  m k  and m k - m L  a r e  

i n d e p e n d e n t  f o r  some E < k t h e n  F b e l o n g s  t o  t h e  domain o f  a t t r a c t i o n  

o f  L .  



Conce rn ing  t h e  mean and t h e  va r i an ' ce  o f  m k ,  d i r e c t  c a l c u l a t i o n s  

show t h a t  

k = l  
(3 .2 .9 )  u k  = Emk = X -- - C u I n  k ( a s  k  i s  l a r g e ) ,  

j = 1 3 

where C = 0.5772 i s  E u l e r ' s  c o n s t a n t  and 

2  ll 
2 k-1 

( 3 . 2 . 1 0 )  u k  = Var m k  = - - X - 6 2  j=1  j 

I n  t h e  c a s e  t h a t  F  b e l o n g s  t o  t h e  domain o f  a t t r a c t i o n  o f  L 
2  BY 

w i t h  s c a l i n g  c o n s t a n t  bN,  u s i n g  ( 3 . 2 . 2 )  we o b t a i n  t h a t  f o r  f i x e d  k 

I n  S I N - l n  bN I n  SkN- In  bN 
(3 .2 .11 )  I 1 + {m . m k l  

I /Y  
I . . . ,  

I / Y .  

i n  d i s t r i b u t i o n ,  a s  N + -. That  means t h a t  t h e  f i r s t  k  sample 

e x t r e m e s  d i s p l a y e d  u s i n g  t h e  l o g a r i t h m i c  s c a l e  o f  d a t a  r e p r e s e n t  

t h e  same a s y m p t o t i c  b e h a v i o r  a s  t h e  k  f i r s t  e x t r e m e s  i n  t h e  c a s e  

t h a t  F  b e l o n g s  t o  t h e  domain o f  a t t r a c t i o n  o f  L .  

3 . 3  A p p l i c a t i o n s  t o  s t a t i s t i c a l  i n f e r e n c e  

I n  t h i s  s e c t i o n  we s u p p o s e  t h a t  t h e  breakdown phenomena i s  

e x p l a i n e d  by  one  of  t h e  models  d e s c r i b e d  i n  C h a p t e r  11. Assume t h a t  

t h e  model i s  c o m p l e t e l y  d e f i n e d  a f t e r  t h e  p a r a m e t e r s  N ,  8 1 , 8 2 , . . .  ' 'r 
t h  have  been  f i x e d .  The t i m e  t o  t h e  e x p l o s i o n  5 .  o f  t h e  i- c e l l  i s  

1 

d i s t r i b u t e d  i n  a c c o r d a n c e  w i t h  d . f .  F ( t )  (which depends  on 

e l  ,. . . , B r ) .  Let  F b e l o n g  t o  t h e  domain o f  a t t r a c t i o n  o f  G i n  t h e  

s e n s e  o f  minimum, t h e  n o r m a l i z i n g  s e q u e n c e s  b e i n g  { a  } and {bN}. 
N 

We s h a l l  show how t h e  p a r a m e t e r s  o f  t h e  model may b e  e s t i m a t e d  from 

a  sample ( T I ,  ..., T k )  o f  t h e  f i r s t  k  i n t e r b r e a k d o w n  t i m e s .  



We know from t h e  p r e v i o u s  s e c t i o n  t h a t  a s  N + m, 

i n  d i s t r i b u t i o n  - < X I , .  . . , X k } ,  

where {X l , . . . , X k )  i s  a  n o n - d e g e n e r a t e  random v e c t o r  r e l a t e d  t o  

t h e  d . f .  G .  For  example ,  i n  t h e  c a s e  o f  r e g e n e r a t i v e  m o d e l s ,  

X I ,  ..., X k  a r e  i i d  random v a r i a b l e s ,  d i s t r i b u t e d  i n  a c c o r d a n c e  

w i t h  G .  I n  t h e  c a s e  of  n o n - r e g e n e r a t i v e  models  and G=L 

I X  l , . . . , X k }  = C m l , m  2 , . . . , r n k }  

( s e e  ( 3 . 2 . 5 ) ) .  S i n c e  i n  o u r  c a s e  N i s  l a r g e ,  we suppose  t h a t  

Suppose  t h a t  t h e r e  a r e  j u s t  two p a r a m e t e r s  d e s c r i b i n g  t h e  

model :  N and 8.  Under t h e  a s s u m p t i o n  (3 .3 .0 )  t h e  e s t i m a t i o n  

p r o c e d u r e  f o r  t h e s e  p a r a m e t e r s  i s  a s  f o l l o w s :  

a )  O b t a i n  a n a l y t i c  e x p r e s s i o n s  a  ( O ) ,  b N ( 8 )  o f  t h e  n o r m a l i z i n g  N 

c o n s t a n t s  a s  f u n c t i o n s  o f  N and 8 .  

b )  F ind  e s t i m a t e s  a N ( 8 )  and b N ( 8 )  u s i n g  a  sample   IT^, . . . ,Tk) 

o f  i n t e r b r e a k d o w n  t i m e s .  

c )  E q u a t i n g  t h e s e  e s t i m a t e s  t o  t h e i r  a n a l y t i c  e x p r e s s i o n s  o b t a i n  

t h e  two e q u a t i o n s  - J a N ( 8 )  = aNC8) 

The s o l u t i o n  of  t h e s e  e q u a t i o n s  ( i f  it e x i s t s )  p r o v i d e s  t h e  e s t i m a t o r s  
A A 

N and 8 .  

I n  t h e  c a s e  t h a t  t h e r e  a r e  more t h a n  two p a r a m e t e r s  d e s c r i b i n g  

t h e  model ,  t o  e s t i m a t e  a l l  o f  them we u s e  a d d i t i o n a l  s a m p l e s ,  c o r -  

r e s p o n d i n g  t o  a  v a r i e t y  o f  e x p e r i m e n t a l  c o n d i t i o n s  (which have  a 



known e f f e c t  on t h e  s e t  o f  p a r a m e t e r s . I ~ , 8 ~ .  ..., 81)). 
We s h a l l  now d i s c u s s  s e v e r a l  e s t i m a t i o n  p r o c e d u r e s  f o r  b o t h  

r e g e n e r a t i v e  and n o n - r e g e n e r a t i v e  models .  

1. R e g e n e r a t i v e  models .  Suppose t h a t  F s a t i s f i a s  t h e  c o n d i t i o n s  

o f  Theorem 3 .1 .11  w i t h  m=3, s o  t h a t  t h e  f i r s t  t h r e e  moments o f  t h e  

* n o r m a l i z e d  sample  minimum may b e  app rox ima ted  by t h o s e  o f  G .  

( R e c a l l  t h a t  we know a  p r i o r i  t h a t  N i s  l a r g e ) .  Denote  

2 2 (3 .3 .1 )  E = /x d  G ( x ) ,  v2 = I x  d  G(x)  - E . 
Let  T1,T2, ..., T k  b e  a  s ample  o f  i n t e r b r e a k d o w n  t i m e s .  Denote  by 
- 
T  and ST t h e  mean and s t a n d a r d  d e v i a t i o n  o f  t h i s  sample .  

a )  Suppose t h a t  t h e r e  a r e  j u s t  two p a r a m e t e r s  d e s c r i b i n g  t h e  model :  

N and 8  ( i . e . ,  t h e  u n d e r l y i n g  d . f .  F depends  on s i n g l e  p a r a m e t e r  

8  a s  w e l l  a s  t h e  a p p r o p r i a t e  n o r m a l i z i n g  c o n s t a n t s  which w i l l  b e  

d e n o t e d  by  a N ( 8 )  and b N ( 8 ) ) .  Then,  s i n c e  t h e  f i r s t  two moments 

o f  ( T - a N ( 8 ) ) / b N ( 8 )  a r e  a p p r o x i m a t e l y  e q u a l  t o  t h o s e  o f  G ,  one  p a i r  
A A 

o f  e s t i m a t o r s  N and 8  a r e  o b t a i n e d  by u s i n g  t h e  method of  moments; 

i . e . ,  by  s o l v i n g  t h e  e q u a t i o n s :  

a N ( 8 )  + b N ( 8 )  E = T 

b N ( 8 )  V = ST,  

p r o v i d e d  t h e  s o l u t i o n  e x i s t s .  

( R e c a l l  t h a t  t h e  a n a l y t i c  e x p r e s s i o n s  f o r  a N ( 8 )  and bN(B) a r e  known). 

Another  p a i r  o f  estimatoc:&e o b t a i n e d  by u s i n g  t h e  method o f  

maximum l i k e l i h o o d :  M L E ' s  aN(B) and b N ( 8 )  a r e  o b t a i n e d  by u s i n g  

t h e  f a c t  t h a t  ( T i - a N ( B ) ) / b N ( 8 ) ,  i = 1 , 2 , .  .. , k ,  a r e  i . i . d .  random 

*) We s e e  i n  t h e  s e q u e l  t h a t  f o r  t h e  s p e c i f i c  c l a s s  o f  models  

c o n s i d e r e d  i n ; . t h e  p r e s e n t  work a l l  t h e  moments o f  F e x i s t .  ( s e e  

f o r  example ,  K a r l i n  (1968 ,  5 3 ) ) .  



v a r i a b l e s  d i s t r i b u t e d  i n  a c c o r d a n c e  w i t h  G ( s e e  Johnson  and Kotz 

- (1970 ,  Ch. 2 0 , 2 1 ) ) .  Then if t h e  e q u a t i o n s ,  a N ( 8 )  = a N ( 0 ) ,  b N ( 8 ) = b N ( 8 )  
A A 

have a  s o l u t i o n ,  i t  r e p r e s e n t s  t h e  M L E ' s  N and 8. 

b )  We now d i s c u s s  t h e  problem of  e s t i m a t i n g  N i n  t h e  c a s e  t h a t  

t h e  o t h e r  p a r a m e t e r s  ( d e s c r i b i n g  t h e  p r o p e r t i e s  o f  t h e  i n s u l a t i n g  

m a t e r i a l  and  t h e  e x p e r i m e n t a l  c o n d i t i o n s j a r e  known. 
A 

The p o i n t  e s t i m a t o r  N may b e  found a s  a  s o l u t i o n  o f  t h e  

e q u a t i o n  ( b a s e d  on t h e  method o f  moments) 

i n  t h e  c a s e  t h a t  a  s o l u t i o n  e x i s t s .  * 

For  o b t a i n i n g  an a p p r o x i m a t e  c o n f i d e n c e  i n t e r v a l  f o r  N 

a s  w e l l  a s  f o r  t e s t i n g  h y p o t h e s i s  c o n c e r n i n g  N t h e  f o l l o w i n g  

theorem c o u l d  b e  a p p l i e d .  

Theorem 3 . 3 . 1  Le t  W N  b e  a  minimum o f  N i . i . d .  random v a r i a b l e s  

w i t h  d . f .  F .  Le t  F s a t i s f y  t h e  c o n d i t i o n s  o f  Theorem 3 .1 .11  w i t h  

(1 )  m = 3.  L e t  W N  ,..., WN ( k )  b e  a  sample  of  k i . i . d .  random v a r i a b l e s  

h a v i n g  t h e  same d i s t r i b u t i o n  a s  W N .  Then f o r  e v e r y  t 

where rN is  t h e  sample mean, @ i s  t h e  d . f .  o f  t h e  s t a n d a r d  normal  

r . v . .  

2  3 
u N  = EWN, a = Var W N ,  P = E I W N - ! + I  

*) Another  p o s s i b i l i t y  i s  t o  u s e  t h e  e q u a t i o n  bNV = ST 
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P r o o f :  Us ing  t h e  Be r ry -Esseen  Theorem ( s e e  B h a t t a c h a r y a  and Rao 

(1976,  p .  1 0 4 ) )  we o b t a i n  

f o r  e v e r y  k  and x .  R e n o r m a l i z i n g  by  u s i n g  ( a  + b  E) and  (bNV) N N N 

i n s t e a d  o f  uN and aN ,  r e s p e c t i v e l y ,  l e a d s  t o  

f o r  e v e r y  k  and t .  A f t e r  a d d i n g  and s u b s t r a c t i n g  O ( t )  w i t h i n  t h e  

t h e  modulus s i g n  we a p p l y  t h e  i n e q u a l i t y  l a -b l  > l a [ - l b l  t o  o b t a i n  

The f o l l o w i n g  theorem i s  r e l a t e d  t o  t h e  b e h a v i o r  o f  t h e  bound i n  

( 3 . 3 . 3 )  a s  N-. 

Theorem 3 . 3 . 2  Le t  t h e  a s s u m p t i o n s  of  Theorem 3 . 3 . 1  b e  s a t i s f i e d  and 

l e t  A(N,k) and  B(N,k , t )  b e  d e f i n e d  by ( 3 . 3 . 4 ) .  Then 

a  B(N,k , t )  + 0 ,  u n i f o r m l y  i n  t 
N- 

b  1 . 6  X - E  
3  

A(N,k) - - . 
--& 

. 
where X i s  a  r . v .  d i s t r i b u t e d  i n  a c c o r d a n c e  w i t h  G .  

P r o o f :  To p r o v e  a )  n o t e  t h a t  b y  Theorem 3 . 1 . 1 1 ,  



Then,  by a p p l y i n g  P o l y a ' s  Theorem ( s e e a R a o  (1965,  p .  1 0 0 ) )  we 

o b t a i n  t h a t  B ( N , k , t , )  + 0  a s  N", u n i f o r m l y  i n  t .  

To p r o v e  b )  we n o t e  t h a t  e x i s t e n c e  o f  t h e  l i m i t  f o r  (a / b  ) 
N N 

a s  N- i m p l i e s  t h a t  l i m  ( u N - a N ) / b N  e x i s t s .  T h u s ,  uN and oN can 
N" 

a l s o  b e  used  a s  s h i f t  and s c a l e  n o r m a l i z i n g  c o n s t a n t s  and 

(See  De Haan (1971 ,  Theorem 2 . 1 . 2  and C o r o l l a r y ' 2 . 1 . 3 ) ) .  S o ,  by 

Theorem 3 .1 .11  and (3 .1 .29 )  

and b)  i s  p roved .  

Theorems 3 . 3 . 1  and 3 .3 .2  show t h a t  f o r  l a r g e  k and N t h e  d . f .  o f  t h e  

s t a t i s t i c  - 
T - (aN+bNE)  

z = 
(bNv)  / fi 

can b e  app rox ima ted  by @ and t h e r e f o r e  Z may b e  h o p e f u l l y  u sed  a s  

a  p i v o t a l  q u a n t i t y  i n  o r d e r  t o  o b t a i n  c o n f i d e n c e  i n t e r v a l s  f o r  N o r  

t o  t e s t  h y p o t h e s e s  c o n c e r n i n g  N .  

We a l s o  can  s e e ,  t h a t  a f t e r  t h e  n o r m a l i z i n g  c o n s t a n t s  a r e  e x p r e s s e d  

a n a l y t i c a l l y  i n  t e r m s  o f  N , B  . , O r ,  t h e  r e l a t i o n s  ( 3 . 3 . 5 )  e n a b l e  u s  

t o  e x p r e s s  t h e  dependence  o f  t h e  mean and s t a n d a r d  d e v i a t i o n  o f  t h e  

i n t e r b r e a k d o w n  t i m e  on t h e  p a r a m e t e r s  o f  t h e  model .  Fo r  example ,  s i n c e  

t h e  a r e a  o f  i n s u l a t o r ,  S  i s  p r o p o r t i o n a l  t o  t h e  number o f  c e l l s  N ,  

( 3 .3 .5 )  e n a b l e  u s  t o  o b t a i n  t h e  form o f  dependence  between t h e  mean 

. and s t a n d a r d  d e v i a t i o n  o f  t h e  i n t e r b r e a k d o w n  t i m e  and S .  



2. Non-regenerative models Let 5., the time to explosion in a single cell, 
1 

be distributed in accordance to d.f. F(t) with left endpoint t=O, Suppose. 

F belongs to the domain of attraction of L, the normalizing constants being 

%(O1,...,Or) and bN(Olr...,Or). Suppose we observe the ordered sequence of 

the first k sutcessive breakdowns CC1) ,5(2) , ". '5 
(k) ' 

Since (See paragraph 

10 3.2) N is large (the expected order of N is 10 ), the joint distribution 

of 5( 5 
(k) 

is fully determined by the normalizing constants. The 

questions related to their estimation are discussed in Weissman (1978). 

The confidence intervals for % and bN (which were obtained in Weissman 

(1978) and appear below may be used to construct confidence intervals for 

the unknown parameters. Since estimation of the normalizing constants aN 

and bN preceeds any other statistical analysis, let us formulate (without 

proof) the relevant results (which are due to I. Weissman). 

First of all, by (3.2.6), the random ~ariables{5(~), . . , ,5 1 shifted 
(k) 

by % and scaled by bN are distributed as {ml,-. a .mk}. So, % and bN can 

be estimated using the times of the first k breakdowns. Since the likelihood 

function for the parameters % and bN is (by 3.2.7) 

and 

k- 1 k-l 
c Cti) = (k-l)S(k) - i($i-ll-5(i)), 
i= l i=l 



- k-1 
by the factorization criteria the pair (5 = E(i) ) represents a set of 

(k)' i=l 
k- 1 

sufficient statistics for (%,bN) as well as the pair (5 x i(E(i+l)-E(i))). (k) 'pl 

6 A 

Now, the maximum likelihood estimators % and bN can be obtained using standard 

arguments : 

Since 

,. 6 

and since a, and bN are functions of the pair of sufficient statistics and 
the completeness condition for this pair is satisfied (See Weissman (1978, 

Sec. 3) )  the minimum variance unbiassed estimators for a, and bN are 



For i = 1 2 . k - 1  the random variables i (  
Ti+l)-'(i)) are  independent 

and ident ica l ly  dis t r ibuted (exponentially with mean bN). Further, by 

Ir % 
Theorem (3.2.1), bN and 5 a re  independent. Thus, the  variances of b 

(k) N 
% 

and % are 

Ir 
Var b = - 

N k-1 

The confidence in te rva ls  for  bN and % may be also obtained using the 

f ac t  t ha t  

and tha t  the  random var iable  

i s  d i s t r ibu t ion  f ree  (See Weissman (1978). In t h i s  reference we also find the 

percentage points of Uk) . 



Suppose now, t h a t  F ( t )  b e l o n g s  t o  t h e  domain o f  a t t r a c t i o n  

of  L ( t ) .  I n  this c a s e  w e  c o n s i d e r  t h e  t r a n s f o r m e d  sequence  
7. ,Y 

{ lnS  (,) , l n S  . . . . , I n %  and u s e  (3.2.11) . The minimum v a r i a n c e  

u n b i a s e d  e s t i m a t o r s  f o r  l / y  and i n  bN a r e  

1 1 k- l  1 k-1 
(3.3'. 19)  $1 = k-l - c  ( l nSck)  -lnSCi) = - c i ( l n S ( i + l )  - l n S  

1= 1 k-1 i=l  ( i ) )  - 'L k - l  
(3 .3 .20)  ( I n  bN) = I n S  1 

(k) 
- (-1 ( 7 - C) 

Y i=l I 

and t h e  c o n f i d e n c e  i n t e r v a l s  f o r  y  and bN a r e  o b t a i n e d  v i a  ( 3 . 3 . 1 7 ) -  

( 3 . 3 . 1 8 ) .  The h i s t o g r a m  o f  l o g a r i t h m i c  i n t e r b r e a k d o w n  t i m e s  

-1nS ) m u l t i p l i e d  by i c o r r e s p o n d  t o  t h e  e x p o n e n t i a l  law ( l n ' ( i + l )  Ci) 

w i t h  mean 1 / y .  

I n  t h e  c a s e .  t h a t  F ( t )  b e l o n g s  t o  t h e  domain o f  a t t r a c t i o n  

o f  L ( t )  and i t s  l e f t  e n d p o i n t  i s  D > 0  t h e  h i s t o g r a m  o f  l o g a r i t h m i c  
2  ,Y 

s h i f t e d  i n t e r b r e a k d o w n  t i m e s  ( l n ( S  ( i , l )  -D) - l n ( S  -D)) m u l t i p l i e d  by  
( i )  

i c o r r e s p o n d s  t o  t h e  e x p o n e n t i a l  law w i t h  mean and s t a n d a r d  d e v i a t i o n  

e q u a l  t o  i / y .  The e s t i m a t o r s  f o r  ( l / Y )  and ( I n  bN) when D i s  known 

a r e  

1 1 k - l  
( 3 . 3 . 2 1 )  (7) = 1 i [ l n ( ~ ( ~ + ~ ) - ~ )  - I ~ ( S  -D)]  

i= 1 ( i )  

I n  t h e  c a s e  t h a t  D i s  n o t  known t h e  s i t u a t i o n  i s  much more 

c o m p l i c a t e d .  S i n c e  

i n  d i s t r i b u t i o n  a s  N+-, t h e  j o i n t  d i s t r i b u t i o n  o f  { S ( l ) , . . .  " (k) '  . '  
f o r  l a r g e  N i s  o b t a i n e d  u s i n g  (3 .2 .7 ) :  



D < S(,)  s..  . q k )  ' 

1 0  
o t h e r w i s e .  

We can  s e e  t h a t  t h e  maximum l i k e l i h o o d  method c a n n o t  b e  a p p l i e d  

d i r e c t l y  t o  e s t i m a t e ' { y , b N , D )  s i m u l t a n e o u s l y  s i n c e  t h e  l i k e l i h o o d  

f u n c t i o n  ( 3 . 3 . 2 4 )  t e n d s  t o  i n f i n i t y  a s  D+S 
111 

and y  i s  g r e a t e r  t h a n  

1. T h e r e f o r e  we s h a l l  c o n s i d e r  o t h e ~  e s t i m a t i o n  p r o c e d u r e s  f o r  

D,y and ( I n  b N ) .  

E s t i m a t i n g  D S i n c e  (SC1)-D)/bN i s  d i s t r i b u t e d  i n  a c c o r d a n c e  

w i t h  L and bN + 0 a s  N + m, we t a k e  5 
( 1  

a s  an e s t i m a t o r  o f  
,. - 2  , Y  

D :  D = . The mean and  s t a n d a r d  d e v i a t i o n  o f  D s a t i s f y  

The problem o f  f i n d i n g  c o n f i d e n c e  bounds f o r  D was c o n s i d e r e d  

by I .  Weissman ( s e e  Weissman (1981a ,  1 9 8 1 b ) ) .  The f i r s t  p a p e r  

d e a l s  w i t h  t h e  c a s e  o f  known shape  p a r a m e t e r  y ,  t h e  s e c o n d  one  

( u n p u b l i s h e d )  - w i t h  t h e  c a s e  o f  unknown y .  

' E s t i m a t i n g  y  When D i s  known, we can  e s t i m a t e  y  by means o f  

( 3 . 3 . 2 1 ) .  When D i s  unknown we u s e  6 
( 1  

i n s t e a d  o f  D i~ (3 .3 .21 )  

and  o b t a i n  t h e  e s t i m a t o r  

A 1 k - l  
( 3 . 3 . 2 7 )  l / y  = 1 i [ l n ( ~ ~ ~ + ~ ) - < ( , ) ) - l n ( ~ ( ~ ) - ~ ) ) l  

i = 2  



A 
Let  u s  - i n v e s t i g a t e  t h e  mean and t h e  v a r i a n c e  o f  l / y .  

A 
F i r s t  o f  a l l ,  n o t e  t h a t  t h e  d i s t r i b u t i o n  of  l / y  depends  on y 

o n l y  s i n c e  

5 .  D 
a n d  (by  5 .3 .23 )  t h e  j o i n t  d i s t r i b u t i o n  g  o f  Yl = x,. . ..,yk= 4 ( k ) - D  

N b~ 

depends  on y  o n l y :  

The e s t i m a t o r  ( 3 . 3 . 2 7 )  i s ,  o f  c o u r s e ,  b i a s e d  s i n c e  

A d i s t r .  1 k-1 - 
(3 .3 .29 )  i n  Yi+l- ln  Yi  'Iy = k-2  

t h e  mean of  t h e  f i r s t  t e r m  i s  l / y  and t h e  mean o f  t h e  second  one  

( r e p r e s e n t i n g  t h e  b i a s )  i s  p o s i t i v e .  To i n v e s t i g a t e  t h e  magn i tude  

of  th ,e  b i a s  we f i r s t  n o t e  t h e  f a c t  t h a t  t h e  random v a r i a b l e s  

( I n  Yi+l - ln  Yi) a r e  i n d e p e n d e n t  and d i s t r i b u t e d  e x p o n e n t i a l l y  w i t h  

meaa ( i y ) - l .  Thus ,  t h e  L a p l a c e  t r a n s f o r m ,  X ( s )  o f  t h e  d e n s i t y  

f ~ n c t i o n  h ( t )  o f  ( I n  Y i+ l - ln  Y1) i s  g i v e n  by 

and 
-myt 

, t > O  

. 
( 3 . 3 . 3 0 a )  h( t ) -  lo9 o t h e r w i s e ,  



where 
m - 1  

( 3 .3 .31 )  ~ ( 1 )  = y ( i ! )  ( -1)  m - l  i 
m (m-1) ! (i-m) ! = ~ m ( - 1 )  Cm). 

~ e x t  we o b t a i n  t h a t  

(Here we used  t h e  s u b s t i t u t i o n  ~ - e - ~ = z ) .  The i n t e g r a l  i n  t h e  

summand i s  known ( s e e  G r a d s t e y n  and Ryzhik (1965 ,  p .  5 3 8 ) ) :  

where J, i s  t h e  s o - c a l l e d  p s i - f u n c t i o n  ( t h e  l o g - d e r i v a t i v e  o f  t h e  

gamma f u n c t i o n )  and C i s  E u l e r ' s  c o n s t a n t  (C u 0 .577) .  S i n c e  

F(aJ = 1 ,  we have 
( i )  i Am 

(3 .3 .34)  - =  1. 
m= l my 

F u r t h e r m o r e ,  

1 
( i )  i Am 

(3 .3 .35 )  E i n  (I-- ) =  -c  - E - $ ( l + m y ) ,  ( i = l , 2 , .  . .). Y. 
1+ 1 m =  l my 

S i n c e  Am m 

Thus; by  (3 .3 .29 )  

A 1 k-1  i 
(3 .3 .37 )  E ( l / y )  = - - c E ~ : ~ ) + ( l + m y ) =  

Y ~ ( k - 2 ) ~ = 2  m=l 



k-1 k  I 
F i n a l l y ,  t h e  i d e n t i t y  C d) = (m+l) i m p l i e s  t h a t  

i = m  

where &,,i=l i f  m = l  and 0 o t h e r w i s e .  

The sum, r e p r e s e n t i n g  t h e  b i a s  i n  ( 3 . 3 . 3 8 )  p o s s e s s e s  some i n t e r e s t -  

? 
i n g  p r o p e r t i e s  from an a n a l y t i c a l  p o i n t  of v i ew ,  which ,  however .  

w i l l  n o t  be  d i s c u s s e d  h e r e .  We o n l y  n o t e  t h a t  expand ing  $( l+my)  

a b o u t  t h e  p o i n t  1 up t o  two t e r m s , u s i n g  t h e  f a c t  t h a t  $ ' ( I ) =  -C 

a n d  t h e  two i d e n t i t i e s  

we o b t a i n  t h a t  

Thus,  t h e  r e l a t i v e  b i a s  i s  s m a l l  f o r  s m a l l  v a l u e s  of  y .  

I 
When y i s  l a r g e ,  s o  i s  t h e  b i a s ,  a s  t h e  f o l l o w i n g  argument  

shows. We know ( s e e  Grads t eyn  and Ryzhik (1965 ,  p .943) )  t h a t  

* ) T h i s  i d e n t i t y  can  b e  e a s i l y  p r o v e i  by  i n d u c t i o n .  

* * ) ( 3 . 3 . 3 9 a )  can  b e  found  i n  Grads t eyn  and Ryzhik (1965 ,  p . 3 ) .  
(3 .3 .39b)  i s  e a s i l y  p roven  by i n d u c t i o n  a s  w e l l  a s  t h e  i d e n t i t y  
( 3 . 3 . 4 1 a )  which a p p e a r s  l a t e r  i n  t h e  t e x t .  



( s e e  A p p e n d i x  C) . T h u s ,  b y  ( 3 . 3 . 3 9 a )  , a n d  i d e n t i t y  

w h e r e  

( s e e  T a b l e  3 . 3 . 1  f o r  v a l u e s  o f  C ( k ) ) .  I 
C o n s e q u e n t l y ,  i f  i t  i s  known a - p r i o r i  t h a t  y t a k e s  o n  l a r g e  

v a l u e s ,  t h e  e s t i m a t o r  
A 

( 3 . 3 . 4 3 )  1% = 2 ( l / y  - C ( k ) )  
A 

i s  l e s s  b i a s e d  t h a n  l / y  ( b u t  h a s  a  g r e a t e r  v a r i a n c e ) .  I n  e f f e c t ,  

if  it i s  known a - p r i o r i  t h a t  y 2 1,  t h e  l i k e l i h o o d  f u n c t i o n  I 
( 3 . 3 . 2 4 ) ,  i s  b o u n d e d  a n d  t h e  MLE o f  ( D , y , l n  b N )  may b e  o b t a i n e d  I 
by  a n  o r d i n a r y  p r o c e d u r e  o f  s o l v i n g  t h e  e q u a t i o n s  o b t a i n e d  b y  I 
t h e  s t a n d a r d  p r o c e d u r e  o f  s e t t i n g  t h e  p a r t i a l  d e r i v a t i v e s  o f  L I 
w i t h  r e s p e c t  t o  D ,  y a n d  ( I n  b N )  t o  z e r o .  ( I f  t h e s e  e q u a t i o n s  h a v e  I 

T a b l e  3 . 3 . 1 :  The  v a l u e s  o f  C(k) 

k  C ( k )  k  C ( k )  k  C ( k )  k  C ( k )  k  C(k)  

1 9  0 . 7 0 9  1 7  0 . 5 3 0  25 0 . 4 5 4  3 3  0 . 4 0 9  
2  - 1 0  0 . 6 7 4  1 8  0 . 5 1 8  26  0 . 4 4 7  34 0 . 4 0 4  
3  1 . 3 8 6  11 0 . 6 4 4  19  0 . 5 0 6  27 0 . 4 4 0  3 5  0 . 4 0 0  
4  1 . 1 2 5  12  0 . 6 1 8  20 0 . 4 9 6  28 0 . 4 3 4  36 0 . 3 9 6  
5  0 . 9 7 6  1 3  0 . 5 9 6  21 0 . 4 8 6  29  0 . 4 2 9  37  0 . 3 9 2  
6  0 . 8 7 8  1 4  0 . 5 7 7  22 0 . 4 7 7  30 0 . 4 2 3  38  0 . 3 8 8  
7  0 . 8 0 7  1 5  0 . 5 6 0  2 3  0 . 4 6 9  31  0 . 4 1 8  39 0 . 3 8 5  
8  0 . 7 5 3  1 6  0 . 5 4 4  24 0 . 4 6 1  32 0 . 4 1 3  40  0 . 3 8 1  

no s o l u t i o n  i n  t h e  r e g i o n  0  s D s 5 y  t 1 ,  we s h o u l d  max imize ,  I 
t h e  l i k e l i h o o d  f u n c t i o n  i n  t h i s  r e g i o n  b y  o t h e r  means o r  l o o k  f o r  I 
a n o t h e r  a p p r o a c h ) .  We w i l l  n o t  d i s c u s s ,  h o w e v e r ,  t h e  p r o p e r t i e s  I 
o f  e s t i m a t o r s  p r o d u c e d  b y  t h i s  p r o c e d u r e .  



f i  
To o b t a i n  t h e  v a r i a n c e  o f  l / y ,  l e t  ,US d e n o t e  t h e  f i r s t  t e r m  

i n  t h e  r i g h t  hand s i d e  o f  ( 3 . 3 . 2 9 )  by A and t h e  second  one  by B.  

2  By Theorem 3 . 2 . 1 ,  Var A = [y ( k - 2 ) ] - l .  S i n c e  f o r  i < j 

( s e e  ( 3 . 3 . 3 3 ) )  and 

t h e  domina ted  conve rgence  p r i n c i p l e  ( s e e  ' F e l l e r  (1971 ,  p .  1 1 1 ) )  may 

b e  a p p l i e d  t o  o b t a i n  t h a t  f o r  i 5 j 

F u r t h e r m o r e ,  by  ( 3 . 3 . 2 3 )  and Theorem 3 . 2 . 1 ,  / 

0 

= - z n  j r y  
2 n -  n + r y  

n = l  i j y  ( n + i y )  r= 1 



Thus ,  s i n c e  C .  . = O  f o r  i > j ,  
13 

1 k - l  k - l  m 

( 3 . 3 . 4 8 )  Cov(A,B)= - Z Z C -  n  n- ry < 0 
j 

2 7 ( k - 2 j 2  i = 2  j = i  n = l n + i ~  r= ln+'Y 

Next we o b t a i n  Var B .  A t  f i r s t ,  

2  1 i 
(3 .3 .49)  ei+l=E i n  (I-- ) =  c nAi) j l n 2 r  (1-2) my-l dz  = 

' i + ~  m = l  o  

( s e e  ( 3 . 3 . 3 2 ) ,  G r a d s t e y n  and  Ryzhik (1965 ,  p .  541) and ( 3 . 3 . 3 4 ) )  

Then, by expand ing  in( l -Y1/Yi+l)  and u s i n g  t h e  domina ted  con-  

v e r g e n c e  p r i n c i p l e ,  we o b t a i n :  

( 3 . 3 . 5 0 )  e i , i+ l=E  
i+l 

OD 

i y  i - l  
= -C -t - n t - m r t  d t  = 

n ( n + i y )  - )  I -  ) e  n= l ' Am m = l  . 0 

ID ( i - 1 )  
i i - l  Am 

= C ' n(n:ir) m = l  n+my [C + $  ( l+n+my)  ] 
n= l 

and 

1 (3 .3 .51 )  bii= E l n ( l - -  - n ( - - )  = e i + l + e . - 2 e  
'i+l ' i 12 1 i , i + l 0  

Nex t ,  f o r  i < j ,  



F i n a l l y ,  t r a n s f o r m i n g  t h e  l a s t  e x p r e s s i o n  w i t h  t h e  h e l p  o f  (3 .3 .30 )  

we o b t a i n  

A 
and a s  soon a s  k  i s  g i v e n ,  Var l / y  may be c a l c u l a t e d  a s  a  f u n c t i o n  

o f  y by means o f  t h e  f o r m u l a  

A 
(3 .3 .54)  Var l / y  = 1 + ZCov(A,B) + Var B 

r2 (k -2 )  

w i t h  ( 3 i 3 . 4 8 )  and ( 3 . 3 . 5 3 )  e x p r e s s i n g  t h e  l a s t  two t e r m s .  When k  i s  

l a r g e ' ,  t h e  n u m e r i c a l  c a l c u l a t i o n s  o f  t h e  above f o r m u l a e  become t i m e -  

consuming and need  t o  b e  p l a n n e d  and pe r fo rmed  c a r e f u l l y  ( i n  p a r t i c u l a r  

( i )  must b e  t r e a t e d  d e l i c a t e l y  s i n c e  some t e r m s  may sums c o n t a i n i n g  Am 

r e a c h  l a r g e  v a l u e s ) .  T h e r e  a r e  s e v e r a l  ways t o  o b t a i n  an u p p e r  
A 

bound f o r  V a r ( l / y )  by s i m p l e r  c a l c u l a t i o n s ,  ( f o r  example ,  u s i n g  a  

f i n i t e  u p p e r  l i m i t  i n s t e a d  o f  when summing n i n  (3 .3 .48 )  and 

( 3 . 3 . 5 0 ) ,  a p p l y i n g  t h e  i n e q u a l i t y  e i , i + l  ' ei+l  i n  ( 3 . 3 . 5 1 ) ,  a p p l y -  

i n g  H81der1s  i n e q u a l i t y  e t c . )  However, we have n o t  i n v e s t i g a t e d  

t h e s e ,  o r  o t h e r ,  p o s s i b i l i t i e s  i n  d e t a i l ,  and s o  have  no e x a c t  i n f o r -  

m a t i o n  on t h e  b e h a v i o r  o f  t h e  v a r i a n c e  o r ,  i n d e e d ,  t h e  b i a s .  Thus ,  

t o  i n v e s t i g a t e  t h e s e  f a c t o r s  f u r t h e r ,  we c o n s t r u c t e d  a  d o u b l e  p r e -  



c i s i o n  FORTRAN program and computed them n u m e r i c a l l y  f o r  p a r t i c u l a r  

v a l u e s  of  y  and k  ( s e e  Appendix J ,  T a b l e  J . l ) .  The c a l c u l a t i o n s  
A 

show t h a t  f o r  modera t e  v a l u e s  o f  k  (k 5 30) t h e  e s t i m a t o r  ( I / y )  

h a s  good p r o p e r t i e s  o n l y  when l / y  i s  g r e a t e r  t h a n  0 .5 .  For example ,  
A 

when l / y = 8  and k=6 t h e  b i a s  o f  l / y  i s  0 .102 ,  t h e  s t a n d a r d  d e v i a t i o n  

i s  3.955 and i s  3.954.  Should  D b e  known, t h e  e s t i m a t o r  

(3 .3 .21)  would p r o d u c e  an  u n b i a s e d  e s t i m a t e  w i t h  = l/(~r'k-l)= 

E s t i m a t i n g  ( I n  bN) .  A n a t u r a l  e s t i m a t o r  f o r  ( I n  bN) can  be o b t a i n e d  

from (3 .3 .22 )  w i t h  D r e p l a c e d  by 6 . . 
(1)  ' 

d i s t r  
1 A k-1  

= I n  b N + l n Y k + l n ( l - T )  - l / y  ( E - -C) 
k  X=' j 

A 
C l e a r l y ,  t h e  d i s t r i b u t i o n  o f  ( I n  b N - l n  bN)  depends  o n l y  on 

y  ( a  f a c t  which e n a b l e s  t h e  c o n s t r u c t i o n . o f  c o n f i d e n c e  bounds f o r  

I n  bN and D*) i n  t h e  c a s e  t h a t  y  i s  known). By ( 3 . 2 . 9 ) ,  ( 3 . 3 . 3 5 )  

and (3 .3 .37 )  

s o  t h a t  t h e  e s t i m a t o r  (3 .3 .56 )  i s  n e g a t i v e l y  b i a s e d .  The b i a s  can  

b e  i n v e s t i g a t e d  f o r  s m a l l  and l a r g e  v a l u e s  o f  y  by t h e  methods we 
A 

used  b e f o r e ,  when i n v e s t i g a t i n g  t h e  b i a s  of  l / y .  Note o n l y ,  t h a t  
N 

p e r h a p s  i t  i s  b e t t e r  t o  u s e  t h e  e s t i m a t o r  l / y  ( s e e  ( 3 . 3 . 4 3 ) )  i n s t e a d  

*) Conf idence  bounds f o r  D may b e  o b t a i n e d  from t h e  r e l a t i o n :  
A 1 A k - 1  

l n ( 5 ( k ) - D )  -1n bN d i z t r - l n ( ~ - T )  + l / y (  z - c ( s e e  Weissman 
k  i= 1 j 

(1981a)  f o r  a n o t h e r  a p p r o a c h ) .  



A 
o f  l / y  i n  (3 .3 .56)  when it i s  known a - p r i o r i  t h a t  y i s  l a r g e .  (As 

we have  a l r e a d y  p o i n t e d  o u t ,  i n  t h i s  c a s e  t h e  MLE e s t i m a t o r s  f o r  

t h e  p a r a m e t e r s  may b e  found  by an  o r d i n a r y  p r o c e d u r e  o f  maximiz ing  

t h e  l i k e l i h o o d  f u n c t i o n .  However, even  i n  t h i s  c a s e  o u r  e s t i m a t o r s  

may b e  u s e d  a s  f i r s t  a p p r o x i m a t i o n  i n  t h e  m a x i m a t i o n ' p r o c e d u r e .  
A 

To c a l c u l a t e  Var(1n  bN) we u s e  t h e  i ndependence  o f  i n  Y k  

on t h e  o t h e r  t e r m s  i n  t h e  r i g h t  hand s i d e  o f  ( 3 . 3 . 5 6 ) .  To f i n d  
A 

C O Y [ ~ ~ ( ~ - Y ~ / Y ~ ) ,  l / y ]we  expand ln(1-Y1/Yk) and c a l c u l a t e  

~ o v [ l n ( l - ~ ~ / ~ ~ )  ,A]  and ~ o v [ l n ( l - ~ ~ / ~ ~ )  ,B] s e p a r a t e l y ,  u s i n g  t h e  same 

method a s  i n  (3 .3 .46 )  and C3.3.52).  We o b t a i n  

k-1 
where f o r  i = k  - 1 we d e f i n e  ll a s  1. We have  a l s o  (by  3.2 .10)  

r= i+l  

1 n 
2 k-1 1 

(3 .3 .60)  u l  = Var(1n  Y )  = - ( -  E -2) k  
Y j = l  j 



and Cby C3.3.49)) 
a Ck-1) 

1 
k- l  Am 

(3 .3 .61 )  u 2 = v a r  in (I--) = ek  -[C + l my JI Cl+my 1 
Y k  m = l  I' 

f i  
Thus ,  t h e  f i n a l  e x p r e s s i o n  f o r  Var ( I n  bN)  i s  

A k - l  A k - l  
( 3 . 3 . 6 2 )  Var ( I n  bN)  = u1+u2+( l - - c ) ~  V a r ( l / y )  - 2 (  E 7 -C) (v l+v2)  

i=l  1 i=l 3 

A A 
F i n a l l y ,  we n o t e  t h a t  l / y  and  i n  bN a r e  h i g h l y  c o r r e l a t e d  and  

T h i s  c o v a r i a n c e  i s  l i k e l y  t o  b e  n e g a t i v e  - we e x p e c t  t h a t  I . l n ( l - Y  / Y  ) i s  c l o s e  t o  z e r o  f o r  l a r g e  v a l u e s  o f  k  s o  t h a t  v1+v2 
1 k  

R 
i s  s m a l l  compared t o  V a r ( l / y ) .  

A 
C a l c u l a t e d  v a l u e s  o f  t h e  b i a s  and s t a n d a r d  d e v i a t i o n  o f  i n  bN 

f o r  some v a l u e s  o f  k  and y  can  b e  found i n  T a b l e  5 . 2  o f  Appendix 
A A 

5.  The c o r r e l a t i o n  c o e f f i c i e n t  be tween  l / y  and i n  bN i s  a l s o  

t a b u l a t e d  ( 'see T a b l e  5 . 3 ) .  



CHAPTER IV 

4. FINITE CHARGE BREAKDOWN MODELS 

In this chapter we consider a class of models described in Chapter I1 

namely, finite charge breakdown models. The process of charge accumulation 

in a given cell is a birth-death process with absorbing state M, "birth" 

rates {Xo,X1, a . . 1 and "death" rates {ul ,vZ,. . . } AS soon as the 

charge accumulated in one of the cells reaches M, current runaway (breakdown) 

occurs in this cell after some prescribed time D. In section 4.1 we solve 

the domain of attraction problem for F(t), the d.f. of the time to explosion 

of a single cell, and find the normalizing constants. In sections 4.2-4.3 

we consider the regenerative and non-regenerative models separately. 

4.1 Domain of attraction 

In this section we consider two models. In the first model we assume 

that the initial charge accumulated in every cell at time t=O is zero. In 

the second model the initial charge at t-0 is distributed in accordance 

with the quasi-stationary distribution (See Sec. 2.2). 

4.1.1 Zero initial charge 

In this model the initial charge of a single cell is zero and F(t) IS 

just a d.f. of the first passage time from 0 to M. To solve the domain of 

attraction problem we must investigate the left tail properties of F(t), 



Let us denote the first passage time from 0 to M by T, the first passage 

time from the state i to i+l (i = 0,1,2,. ..,M-1) by Ti, the corresponding 

densities by f(t) , fo(t) ,fl(t). . . . ,fM-l(t) and their Laplace transforms 

By the strong Markov property, To,T1,ooo,TM-l are independent random 

variables and 

As functions ( s  , (s) satisfy (See Keilson 11965, p.407)) M- 1 

they are related by the following recursive formulae : 

(4.1.3) 2.  (s) = 
'i , i = 1,2, ..., M-1 ; 

1 A +S+!J~(~-~~-~(S)) 
i 

where 20(s) = Ao/ao-s) 

Since 

and 



>(s) has at infinity the following asymptotic form 

(See Keilson (1964) and Rosenlund (1977)). 

We see that >(s) varies regularly at infinity, so we can apply one of 

the Tauberian theorems (See Feller (1971, p. 445)) and conclude that F(t) 

. varies regularly at t=O. The asymptotic expression for F(t) as t C 0 is 

We see that the "death" rates U. are not represented at all in this 
1 

asymptotic expression. This means that from the point of view of extreme value 

theory, the finite birth-death model is equivalent to the finite pure birth 

model with the same "birth" rates. We can explain Intuitively the absence 

of "death" rates in (4.1.6) as follows: The probablllty of reachlng state 

M in a short time t with a "death" occurring at some state are negligibly small 

compared to the probability of reaching state M in time t by "birth" only, 

Now let us solve the domain of attraction problem and find the normalizing 

constants. By Theorem 3.1.2 F(t) belongs to the domain of attraction of 

L (Weibull distribution function ) defined by (3.1.6). The normalizing 
2 ,M 

constant b may be found from the equation (due to tall equivalence) N 



If we suppose the delay D is present, the normalizing constant % is 

equal to D. So, the normalizing constants are 

4.1.2 Quasi-stationary case 

In this model the initial charge at t=O in a single cell is distributed 

on the set {O,l,. . . ,M-1) in accordance with the quasi-stationary distribution 
(See Sec. 2.2). The cell explodes as soon as the accumulated charge reaches M 

and its explosion does not affect the other cells. In the case that the cell 

explodes with delay D after it reaches state M, the initial distribution is 

not a quasi-statlonary one (since there is a proportion of cells which are 

in state M). However the process of breakdowns in this case differs from that 

corresponding to D=O by a shift in time only. Therefore only the case D=O 

needs to be considered. 

We have seen from Section 2.2, that if a single cell is "alive" at 

t=O, the d.f. FT of the time to explosion T in this cell is 



(where (-x ) is the maximal eigenvalue of the infinitesimal matrix A). So, 
0 

FT belongs to the domain of attraction of L (the standard exponential 
281 

distribution), the normalizing constants being 

Thus, in the quasi-stationary case the process of breakdowns is just a 

Poisson process with the rate A = (xoN). 
* 

4.2 Regenerative case 

As we saw in Section 4.1, in the regenerative case (i.e. in the case 

that all the cells lose the accumulated charge after a breakdown occurs) 

F(t) belongs to the domain of attraction of L with normallzing constants 
2 ,M 

given by (4.1.8). So, this model predicts interbreakdown times to come 

from the three parameter Weibull distribution (these parameters can be 

estimated uslng a sample of interbreakdown times). Since the moments of 

L are given by 
2 ,M 

denoting the interbreakdown time by T we obtain the following expressions for 

its mean and standard deviation: 



The last formulae show that if the model is valid, we expect the following 

relations between the sample mean ?Z and the sample standard deviation sT 

as functions of the area of insulator S : . 

where k, kl,k2,k3 are appropriate positive constants with k = liM for some 

positive integer M. 

4.3 Non-regenerative case 

In this section we consider the methods for estimation of the parameters 

in the case of non-regenerative models. We consider separately the zero 

initial charge model and the quasi-stationary model. 



. 4.3.1 Zero initial charge 

In this case F(t), the d.f. of the time to explosion of a single cell, 

belongs to the domain of attraction of L (See Sec. 4.1.1) with normalizing 
2 ,M 

constants given by (4.1.8). Suppose that M is known and C(l) ,C(2), ~. ,C (k) 
is the sequence of first k breakdown times. Then the estimator fl for D is 

the solution of 

and the estimator for (N AoX1.. .X ) can be found by solving M- 1 

(See paragraph 3.3). If the birth rates {Ao,. . . are not known, to 

estimate N we need an additional sample. This sample must be drawn from 

another experiment in which the product {XoA1. . . is changed by a 

known value. 

A 

Supposing that M is unknown, the estimator D can be taken equal to 

C(1) 
(in accordance with the estimating procedure given in the end of 

Sec. 3). Then the estimators for M and (N A o A 1 ~ ~ A M - l )  are obtained 

from 

and (4.3.2) with M replaced by a (int(x) is the integral part of x) . 



4 . 3 . 2  Quasi-stationary case 

In this case the process of breakdowns is a homogeneous Poisson process 

with the rate X = (xoN). So, if xl,x2, ..., xk are the observed interbreak- 

down times, the product (xoN) may be estimated by 

To estimate xo and N separately we need an additional sample, corresponding 

to other experimental conditions or some theoretical value of xo. Note, that 

just changing of the area of the insulator and observing the process of 

breakdowns gives us no extra information about N and xo separately. The 

computation of x via the "birth" and "death" rates may be carried out 
0 

using the technique of Sec. 2 . 2 . 3 .  



CHAPTER V 

5. INFINITE CHARGE BREAKDOWN MODELS - PURE BIRTH CASE 

In t h i s  chapter we suppose tha t  charge accumulation i n  a c e l l  proceeds 

i n  accordance with a pure b i r th  process. The c e l l  explodes ( i . e .  current 

runaway i n  the c e l l  occurs) as the accumulated charge reaches i n f in i ty .  

There a r e  N c e l l s  operating independently and the i n i t i a l  charge i n  every 

c e l l  i s  zero. 

t h  Let us denote by Ei the time t o  explosion i n  the i- c e l l .  We see, t ha t  

c l , a o o , c N  are  independent and Ei i s  an i n f i n i t e  sum of independent 

exponential random variables with parameters X o , X 1 , m a  , In the l i t e r a t u r e  

d i s t r ibu t ion  functions of such kind of sums aresometimes cal led escalator  

functions (See Chung (1967) and Kingman (1972)). I t  i s  known by the 

theorem of Feller-Lundberg (See Bharucha-Reid (1960, p ,  81)) t ha t  Si 

is a f i n i t e  random var iable  i f  and only i f  

and t h i s  is supposed t o  hold i n  what follows. 

Let us denote the d i s t r ibu t ion  function of Ci by F ( t ) .  In order 

t o  cope with both regenerative and non-regenerative types of models we 

must solve the domsln of a t t rac t ion  problem for  F(t)  and t o  find the 

appropriate normalizing constants. To do t h i s  we f i r s t  explore the l e f t  

t a i l  properties of F ( t ) .  



I n  S e c t i o n  5 .1  we c o n s i d e r  t h e  domain o f  a t t r a c t i o n  problem 

f o r  F ( t )  i n  t h e  s e n s e  o f  minimum. I n  S e c t i o n  5 .2  we f i n d  t h e  

a p p r o p r i a t e  n o r m a l i z i n g  c o n s t a n t s  f o r  two i m p o r t a n t  c l a s s e s  of  

c h a r g e  a c c u m u l a t i o n  p r o c e s s e s .  I n  S e c t i o n  5 . 3  t h e  s t a t i s t i c a l  

' a p p l i c a t i o n s  o f  t h e  r e s u l t s  a r e  c o n s i d e r e d .  

5 . 1  Domain o f  a t t r a c t i o n  

The L a p l a c e - S t i e l t j e s  t r a n s f o r m  TCS)  o f  F ( t )  i s  g i v e n  by 

S i n c e  t = O  i s  t h e  l e f t  e n d p o i n t  o f  F and f o r  s?O, x > l  

? ( s )  i s  n o t  a  r e g u l a r l y  v a r y i n g  f u n c t i o n  a s  s+-. Then t h e  T a u b e r i a n  

theo rem ( s e e  F e l l e r  (1971.  p. 445 ) )  a s s e r t s  t h a t  F ( t )  c a n n o t  be 

a  r e g u l a r l y  v a r y i n g  f u n c t i o n  a s  t C 0. S o ,  t h e  Theorem 3 . 1 . 1  l e a d s  

t o  t h e  c o n c l u s i o n  t h a t  o n l y  two p o s s i b i l i t i e s  r ema in :  

a )  F b e l o n g s  t o  t h e  domain o f  a t t r a c t i o n  of  L .  

b )  F d o e s  n o t  b e l o n g  t o  any domain o f  a t t r a c t i o n .  

We s h a l l  s e e  t h a t  a )  o b t a i n s  by d e t e r m i n i n g  t h e  main t e rm o f  

t h e  a s y m p t o t i c  e x p a n s i o n  f o r  F ( t )  a s  t J. 0. T h i s  t e r m ,  by Theorem 

3 . 1 . 6  may be used  t o  i d e n t i f y  t h e  domain o f  a t t r a c t i o n  and t o  f i n d  

t h e  n o r m a l i z i n g  s e q u e n c e s  {aN} and {bN)  a s  w e l l .  



First of all, in Paragraph 5.1.1 we obtain the exact form of F(t) 

as a limit of a sequence of exponential polynomials. Then we use this 

form in Paragraph 5.1.2 to obtain the asymptotic representation of 

2 F(t) when A .  = (j+l) , j = 0,1, ... :This relatively simple case is 
1 

solved using the theory of Jakobi's 8 - function and the asymptotic 

form of F(t) attained enables one to get a feeling for the possible left 

tail behaviour of the distribution function F corresponding to power 

a charge accumulation rates (A = a(j+l) ;a > 1). The last fact makes 
j 

the power rates case simpler. 

Further, in Paragraph 5.1.3 we consider the general pure birth model 

of charge accumulation. We extend the results of Hirschman and Widder 

(1955) to obtain the representation of F(t) and its indefinite integrals 

as t C 0. Then we solve the domain of attraction problem and obtain 

equations for finding the appropriate normalizing constants. Since 

these equations are too complicated to give closed expressions for the 

normalizing constants, in Paragraph 5.1.4 we develop an alternative 

approach based on the use of Euler's summation method and saddle point 

methods for finding asymptotic expansions. This approach will be 

applied in Section 5.2 to find the closed expressions for the norma- 

lizing constants and ib } in the cases of power and geometrical 
N 

charge accumulation rates. 

5.1.1 Exact form of the distribution function F(t) 

First of all, from the form (5.1.1) for the Laplace-Stieltjes 

transform of F(t) we see that the derivatives ~(")(t) exist for every 



i n t e g e r  n  and F ( t )  v a n i s h e s  a t  z e r d  t o g e t h e r  w i t h  a l l  i t s  d e r i v a -  

t i v e s  of  f i n i t e  o r d e r ,  i . e .  

T h i s  f o l l o w s  by o b s e r v i n g  t h a t  f o r  e v e r y  i n t e g e r  k  

Le t  u s  now assume ( i n  t h e  p r e s e n t  s u b s e c t i o n  o n l y )  t h a t  X i  #Aj 

f o r  i f j and d e n o t e  by F n ( t )  t h e  d i s t r i b u t i o n  f u n c t i o n  c o r r e s -  

ponding  t o  t h e  sum o f  ( n + l )  e x p o n e n t i a l  random v a r i a b l e s  w i t h  

r a t e s  A o ,  X I , .  .. > A n  . L e t  u s  d e n o t e  by f n ( t )  t h e  d e n s i t y  f u n c t i o n  
... 

o f  F n ( t )  and by  f n ( s )  - t h e  L a p l a c e  t r a n s f o r m  o f  f n ( t ) .  We know 

t h a t  - n  n  A. ( n )  
(5 .1 .5 )  f n ( s )  = n (3-1 = z k , 

j  =o A j + s  j Z O  

where A, (n)  i s  g i v e n  by 

S i n c e  (by 5 . 1 . 5 ) )  E Aj(n) /Xj  = 1 f o r  e v e r y  n ,  i n t e g r a t i n g  t h e  
i =o - , - 

i n v e r s i o n  o f  f n ( s )  from 0 t o  t we o b t a i n  

Thus ,  t h e  e x a c t  e x p r e s s i o n  f o r  F ( t )  i s  g i v e n  by 



Let  u s  now c o n s i d e r  two s p e c i a l  c a s e s .  

Case a )  L e t  

Then ( 5 . 1 . 8 )  l e a d s  t o  
OD 2 

+ 2 z ( - 1 ) j  e - j  t ,  t > o., 
j =1 

( 5 . 1 - 1 0 )  

0  , t 5 0. 

( s e e  K a r l i n  (1968 ,  p .  349) f o r  d e t a i l s ) .  The l a s t  e x p r e s s i o n  shows 

t h a t  F ( t )  i s  a  s p e c i a l  form o f  J a k a b i ' s  f o u r t h  t h e t a - f u n c t i o n  ( s e e  

Appendix A). 

Case b )  I n  t h i s  c a s e  

Formula ( 5 . 1 . 8 )  t a k e s  on t h e  f o l l o w i n g  form:  

where  I -' . j > 0 ,  

( 5 . 1 . 1 3 )  B .  = 
3 , j = O  

w i t h  

( 5 . 1 . 1 4 )  
i= l  

( s e e  K a r l i n  (1968 ,  p .  350 ) ]  f o r  d e t a i l s .  I t  i s  shown t h e r e  t h a t  
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S i n c e  E ~ I ~ . b - l j l <  -, we can  i n t e g r a t e  t e rm by t e r m  i n  (5 .1 .15 ) .  
j=O 

T h i s  l e a d s  t o  ( 5 . 1 . 1 2 ) ) ,  

We s e e  t h a t  r e p r e s e n t a t i o n  (5 .1 .8 )  o f  F ( t )  i s  i n  g e n e r a l  

t o o  c o m p l i c a t e d  t o  b e  u s e d  f o r  s o l v i n g  t h e  domain o f  a t t r a c t i o n  

p rob lem and  we s h a l l  l o o k  f o r  a n o t h e r  app roach .  N e v e r t h e l e s s ,  

we a r e  a b l e  t o  cope  w i t h  t h e  f i r s t  c a s e  u s i n g  some p r o p e r t i e s  

o f  t h e t a - f u n c t i o n s .  T h i s  w i l l  be  done i n  t h e  f o l l o w i n g  s e c t i o n .  



5 . 1 . 2  Q u a d r a t i c  r a t e s  

I n  t h i s  p a r a g r a p h  we s h a l l  f i n d  t h e  a s y m p t o t i c  r e p r e s e n t a t i o n  

L 
o f  F ( t )  i n  t h e  c a s e  X = ( j + l )  , j = 0 1 2 , .  . . I n  t h e  p r e v i o u s  

j 

p a r a g r a p h  we found t h e  e x p r e s s i o n  (5 .1 .10)  f o r  F ( t )  i n  t h i s  c a s e .  

From t h i s  e x p r e s s i o n  we s e e  t h a t  

where T i s  t a k e n  t o  b e  T = i t / n .  ( s e e  Appendix A). Ru t ,  u s i n g  

(A.12) we o b t a i n :  



Thus, we see that as t + 0 , 

The last asymptotic expression enables us to identify the domain of attraction 

of F(t) (F(t) belongs to the domain of attraction of L(t)) and to find the 

normalizing constants. This will be done in Section 5.2. Meanwhile 

let us note that the factor 1/fi in (5.1.18) is a regularly varying one. 

This factor does not affect the domain of attraction (See Theorem 3.1.8) 

and, as we shall see later, it does not affect the normalizing scale constant. 

so' it seems quite possible that in the general case of power charge accumu- 
a lation rates (A. = a(j+l) ,a > 1, a > 0, j = 0,1,2,. . . ) (F(t) will be of the 

I 

form 

where a, 0,  y and 6 are constants. We shall see later that this is indeed 

the form of F(t) in this case. 

Let us note that we can obtain the representation (5.118 using the 

Laplace-Stieltjes transform ?(s) of F(t) 

m m 
i& i&/k -1 [, + 

=[  n (1 - T)e 1 i - i k  1 -1 - - 
k= l k= 1 



The l a s t  e q u a l i t y  i s  o b t a i n e d  u s i n g  t h e  f a c t  t h a t  

where C i s  E u l e r ' s  c o n s t a n t  (C - 0 .577) .  

S i n c e  r ( l  - i&)  = ( - i & ) r ( - i & )  and 

(5.1 .22)  r ( ~ ) r ( ~ - z )  = n  

s i n  nz 

we o b t a i n  t h e  f o l l o w i n g  form f o r  >(j) : 

Now, i f  we i n v e r t  t e rmwise  (5 .1 .23)  we o b t a i n  t h e  expans ion  

( 5 . 1 . 1 7 ) .  Such t e rmwise  i n v e r s i o n  can  b e  j u s t i f i e d  by a p p l y i n g  

Theorem 30 .1  ( s e e  Doetsch  (1974 ,  p .  1 9 3 ) ) .  The l a s t  e x p r e s s i o n  

shows t h a t  one  way t o  h a n d l e  t h e  c a s e  o f  g e n e r a l  r a t e s  ( A  o , A l , . . . )  

would b e  by t r y i n g  t o  r e p r e s e n t  ? ( s )  by means of a  c o n v e r g e n t  ( o r  

a s y m p t o t i c ,  f o r  l a r g e  :) s e r i e s  and t h e n  t o  i n v e r t  t e rm by t e r m .  

5 . 1 . 3  Gene ra l  Approach 

I n  t h i s  p a r a g r a p h  we s h a l l  c o n s i d e r  t h e  domain o f  a t t r a c t i o n  

problem f o r  d i s t r i b u t i o n  f u n c t i o n s  F whose L a p l a c e - S t i e l t j e s  

t r a n s f o r m  i s  g i v e n  by 5 . 1 . 1 .  The b e h a v i o r  of  f ( t )  a s  t $ 0  

was c o n s i d e r e d  by Hirschman and Widder (1955) when i n v e s t i g a t i n g  

f ( t )  a s  a  k e r n e l  of a  c o n v o l u t i o n  t r a n s f o r m .  T h e i r  r e s u l t s  a r e  

p r e s e n t e d  i n  t h e  f o l l o w i n g  form (Theorem 3 . 1 ,  Ch. V ) :  



Denoting for r > 0 

th the n- derivative of f(t) satisfies: 

(0) for n = 0,1,2, ... . (f (t) I f(t)). We could use this result to flrst 

obtaln the asymptotic estimate of f(t) as t + 0 and then, by lntegratlng 
thls asymptotic relation, obtain the representation of F(t) as t + 0 .  

Instead of doing so we show that (5.1.27) remains true for n negatlve 

where we interpret f(-") (t) via 

(5.1.28) (-n+l) f(-") (t) = I f (x)dx ; n = 1.2.. 
0 



Lemma 5.1.3 Let n  be a  p o s i t i v e  i n t e g e r .  Then 

(5.1.29) f  - I  (1  ( r )  ) ?, - r-" ~ ( r )  a s  r + - . 
v'2a 

Proof: The proof i s  a  modified vers ion  of Hirschman and Widder's proof.  - 
F i r s t  of a l l ,  l e t  us  note  t h a t  F ( t )  vanishes a t  zero toge the r  with a l l  i t s  

de r iva t ives .  Fur ther ,  s ince  a l l  t h e  poles  o f  ?(s)  a r e  i n  t h e  l e f t  h a l f -  

plane,  applying t h e  invers ion  formula (See Doetch (1974)) we ob ta in  

Af ter  a  change o f  v a r i a b l e  s = r - p / o ( r ) ,  we have . 

But we may e a s i l y  v e r i f y  t h a t  

where 



If we set u = A(r) in (5.1.31). we obtain 

where A(r) is defined by (5.1.26) and 

Now, let us show that - 
L 

(5.1.36) lim E (p) = e-P I2 r 
yrm 

. 
for all p, tmiformly forp in any compact set. 

First of all let us note that 

, 

where the main branch of logarithm is taken. 

The proof of this inequality can be found in Titchmarsh (1939, p. 246), 

So, since by definition of o(r) 

2 m 

(5.1.38) E = i  [ P I 2 ,  
2 2 

j =o u (r) (A +r) 

we obtain 



Then, since 

(5.1.36) follows immediately from (5.1.39). 

The equality (5.1.36) was used in the above mentioned Theorem 3.1 to 

prove that Ir tends to (2a) -'I2 as r + m. 

Let us prove that the same is true in our case. Take a > 0 and write 

I as r 

Taking E > 0 we then have 

Now, 



m m m 

= l + t 2  C 1 2 + - t  c 1 1 4  1 
12{ z 1 1 

2 - 1 + - o ,  

j=o [o(r)  (A. +r)  ] j o  o r  A .  m=o [o(r)  (X,+r)] b ( r )  (Aj+ryL 
I I 

where a l l  the  remaining terms a re  posi t ive .  Let us denote 

'L 
(5.1.44) h = inf(X1,A2, ...) 

Then, by (5.1.40), it is possible t o  choose R > 0 such tha t  

(5.1.45) 1 - [o(r)(? + T ) ] - ~  > 1/2 f o r  r > R .  

Therefore, using the def in i t ion  of o ( r ) ,  we have as  r > R ,  

m 

d t  < rr~/: ,  whenever a > a l ( ~ )  < I ( l + t  + ; r t )  - 
a 

and also 



CO 

2 1 exp(-t2/2) dt < n ~ / 2  whenever a > a (E) . 
a 2 

Denoting a(€) = max[al(€), a2(€)] we obtain from (5.1.36) that 

a(~) it 
(5.1.49) 1 r {[I - - 2  it)]-^ - exp(-t /2)}dt\ < T E / ~  for r>R1(€) 

-a(€) m (r) 

and therefore, as r > max(R,R1(c)) 

This completes the proof. 

We are now in a position to solve the domain of attraction problem 

and to provide some indirect information concerning the nature of the 

normalizing sequences 1%) and {bN}. 

Theorem 5.1.3 F belongs to the domain of attraction of L, the sequence 

of normalizing constants {aN} and IbN} being determined by 

where r is the root of the equation N 
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Proof: Let h-'(t) be the inverse function of A(r) . By Lemma 5.1.3 

t 
f (t) / F(x)dx 

(5.1.53) 0 1 ,  a s t J O ,  

[~(t) I 

and,,by the theorem of R. von Mises (See Theorem 3.1.7) 

F belongs to the domain of attraction of Lo Since 

by Theorem 3.1.3 and Theorem 3.1.5 the normalizing constants can be found 

from the equations 

- 1 After we set rN = A (%), the theorem is proved. 

Concerning the numerical aspects of the problem, we note, that in connection 

with equation (5.1,52) if we set 



t h e n  from (5.1 .29)  

But we know t h a t  i f  two p o s i t i v e  f u n c t i o n s  f  and g  s a t i s f y  t h e  

c o n d i t i o n s  
r r 

l i m  / f ( x ) d x  = l i m  / g ( x ) d x  = 
r- 0 em 0 

and 

(5 .1 .56a )  l i m  (0  5 c  5 ") 
em 

t h e n  

l i m  o  
r- r = C 

( s e e  De Haan (1971 ,  p .  1 2 )  f o r  a  p r o o f  o f  t h i s  s t a t e m e n t ) .  I t  i s  

a l s o  known t h a t  i f  ( 5 . 1 . 5 6 a )  h o l d s  w i t h  0  < c  < m t h e n  t h e  i n t e g r a l s  
m 0) 

/ f ( x ) d x  and / g ( x ) d x  e i t h e r  b o t h  conve rge  o r  b o t h  d i v e r g e .  
0 0 

Thus a f t e r  m u l t i p l y i n g  b o t h  s i d e s  o f  ( 5 . 1 . 5 6 )  by X t ( r )  and 

i n t e g r a t i n g  them from 0  t o  r we o b t a i n  

S i n c e  t h e  n o r m a l i z i n g  c o n s t a n t  aN can  a l s o  b e  found  from t h e  e q u a t i o n  

rN can  b e  app rox ima ted  by  t h e  r o o t  o f  t h e  e q u a t i o n  
% 

( 5 . 1 . 5 8 )  - r X ( r )  - I n  f ( r )  = I n  N 

This root may be used as a  f i r s t  approximation when solving (5.1.521 by 

some i t e r a t i v e  procedure. However, it would clear ly  be desirable  t o  have 

an expl ic l t  way of computing the constants, a t  l e a s t  f o r  some jpecific 

cases. Such a  method i s  developed i n  the  following paragraph. 

*) Here we i d e n t i f y  f ( r )  w i t h  A' ( r ) X t ( X ( r ) )  and g ( r )  w i t h  ( - r ) A t  ( r ) .  



5.1.4 An alternative approach 

The method described in the previous section is general in that it 

deals with any sequence {A. of rates satisfying (5.1). However, the 
I 

determination of the sequences {aN} and {bN} is not explicit and so we seek 

an alternative approach which might be applied successfully for given forms 

of the dependence of A. on j. This approach may also be useful when dealing 
3 

with infinite convolutions of non-exponential densities, The method is 

based on: 

a) finding a representation of ?(s) .for large s using summation 

methods. 

b) finding, by saddle point methods, the main term of the asymptotic 

expansion of F(t) as t +' 0. 

c) finding the normalizing constants from this main term. 

This approach has more chance of producing simple expressions for the 

normallzing constants since'the main term often has a fairly simple form. 

Concerning the representation of f(s) for large s the idea is as follows. 

We know that 

Now let us suppose for simplicity that {I.) form a monotonically 
I 

increasing sequence and let us denote by A(u) a continuous function that 

satisfies 



Then the function (-ln ?(s)) can be represented by 

(See Fig. 5.1,4). The left hand side is the total area 

Fig, 5,1.4 

under the "stairs", the first term of the right hand side is the shaded area, 

the second term is the sum of the areas of the non-shaded triangles and R(s) 

is the remainder. The expansion (5.1.61) may be continued in accnrdance 

with Euler's summation formula (See Appendix B), but in many cases already 

(5.1.61) will be adequate for our purposes (depending on the behaviour of 

R(s) for large s). 
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For step b) we use (5.1,61) and obtain the integral representation 

of the inverse for F(t). Using the saddle point method we obtain the 

asymptotic representation of F(t) as t i 0 using this integral representa- 

tion for F(t). The first term of this representation contains all the 

information needed to find the normalizing sequence (See Theorem 3.1.6). ' : 

In the following section we apply this alternative approach for the 

cases of power and geometric charge accumulation rates. The latter is of 

particular interest for the breakdown model s.ince electric field calcu- 

lations indicate that the current through a ckll increases geometrically 

as a function of the number of charge units in that cell. 

5.2 Normalizing constants 

In this sectlon we apply the alternative approach developed in the 

paragraph 5.1,4 to solve the domain of attraction problem for two specific 
\. 

cases and to find the normallzlng constants. In the flrst case the pure 

birth process of charge accumulation in a single cell has birth rates of 

the type A. = a(]-1)' (power charge accumulation rates) and in the 
1 

second one - of the type A = b~' (geometric charge accumulations rates). 
j 

Let us consider these cases separately. ,.' 

5.2.1 Power charge accumulation rates 

In this paragraph we shall consider the case 
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u s i n g  t h e  a l t e r n a t i v e  a p p r o a c h .  We s h a l l  compare t h e  r e s u l t s  w i t h  

t h o s e  o b t a i n e d  by u s i n g  t h e  g e n e r a l  a p p r o a c h .  

1. Asympto t ic  Behav io r  o f  t h e  D i s t r i b u t i o n  F u n c t i o n  

By a p p l y i n g  E u l e r ' s  summation method ( s e e  ~ ~ ~ e i d i x  B)  we o b t a i n  

- 1 The f u l l  a s y m p t o t i c  e x p a n s i o n  of  Z (-- ) can  be found i n  Hirschman 
j = o  a j a + s  

and Widder (1955 .  p .  1 1 8 ) .  The re  it i s  shown t h a t  R( s )  + a  S ( - a ) / s  2 

3 i s  O ( l / s  ) a s  s+- . ( 5  i s  t h e  Riemann z e t a - f u n c t i o n  ( s e e  T i t c h m a r s h  

(1964 ,  p. 1 5 2 ) ) .  So ,  by i n t e g r a t i n g  ( 5 . 2 . 1 )  from 1 t o  s we o b t a i n  

- 
To f i n d  t h e  c o n s t a n t  k we u s e  E u l e r ' s  summation method and  o b t a i n  

- 
t h e  a s y m p t o t i c  e x p r e s s i o n  f o r  i n  f ( s )  ( s e e  (B.6) - (B .8 )  of  Appendix 

B). By compar ing  t h i s  e x p r e s s i o n  w i t h  ( 5 . 2 . 2 )  we f i n d  t h a t  

a 1 1 m e  a s  
( 5 . 2 . 3 )  k = z l i m  e ~ p { ~ !  . ! ' 1 (2w- l )  E dwl . 

J a  s+- o  i= l  (w+i )  [ a (w+i )  a + s ]  

S i n c e  t h e  s e r i e s  i n  t h e  i n t e g r a n d  c o n v e r g e s  u n i f o r m l y  o v e r  w e [ 0 , 1 ] ,  

i t  can be i n t e g r a t e d  t e r m  by t e r m  ( s e e  T i t c h m a r s h  (1964.  S e c t i o n  1 . 7 1 ) ) .  

T h e r e f o r e  



P a s s i n g  t o  t h e  l i m i t  t e rmwise  ( s e e  Appendix I f o r  j u s t i f i c a t i o n )  

we o b t a i n  t h a t  

T h e r e  i s  no need  t o  c a l c u l a t e  t h e  sum, it i s  s u f f i c i e n t  t o  s e e  

t h a t  t h e  sum e x i s t s  and t h e  exponen t  i n  ( 5 . 2 . 4 )  depends  on a  o n l y .  

S i n c e  f o r  ( a = Z , a = l )  t h e  q u a d r a t i c  c a s e  o b t a i n s  f o r  which we have  

k=2n ( s e e  ( 5 . 1 . 2 3 ) ) ,  by s u b s t i t u t i n g  ( a = 2 , a = 1 )  i n t o  ( 5 . 2 . 4 )  we 

o b t a i n  

OD 

( 5 . 2 . 5 )  1 2n exp { Z [ ~ - ( ~ i + l ) l n ( l + ~ ) ]  1 
i= l e  
- 

and t h e  c o n s t a n t  k i s  e q u a l  t o  

Thus ,  t h e  d i s t r i b u t i o n  f u n c t i o n  FCt) i s  g i v e n  by: 



where 

The formula (5.2.7) is obtained using the inversion f o m i a  f o r  the  Laplace- 

S t i e l t j e s  transform (See Doetsch (1974)).. In (5.2.7) the appropriate branch 

of ,'Icc is tha t  f o r  which s1la i s  r ea l  and posi t ive  when s  i s  posi t ive .  Now 

we must find an appropriate transform bringing the in tegra l  t o  the  form 

sui table  f o r  saddle point analysis (See Appendix C ) .  Let us t r y  t o  make 

Y a  subst i tut ion s = z t  . Then the exponent i n  the  integral  becomes 

To factor ize  the exponent l e t  us chose y sa t i s fy ing  y/a = y + 1 

i , e .  l e t  us take y t o  be 

So,  a f t e r  performing the subst i tut ion s  = z t  a' i n  (5,2.3) we 

obtain : 

. 
where d ( t )  > 0 and d ( t )  * 0 as  t + 0. We see tha t  s  -+ m as  t -+ 0 since 



Now the asymptotic expansion of F(t) as t J. 0 can be obtained by using 

the saddle point method (which is also known in the literature as "method 

of steepest descent" (See Murray (1974, p. 40-50)). 

If we set 

h(z) = -TZ'/~ + z, 

the saddle point is found from the equation 

and,therefore, the only saddle point is 

which is a point on the real axis. 

Note that though (a/r) aX1-a)does not generally possess a unique value in the 

z-plane, only one of its values (lying on the real axis) satisfies (5.2.10) 

because of the particular choice of branch. 

Since by (5.2.8) c(s) = 1 + O(l/s) as s + m ,  c(s) will not affect 

the leading term of the expansion. To proceed further we must deform the 

path of integration in such a way that it passes through the saddle point 

and coincides in a neighborhood of the saddle point with the curve 

Im h(z) = 0. Since 



a - 
(5.2.15) P(t) = [ 1 , - ~ < t < r *  rsin(t/a) a-1 

sin t 

We can verify immediately that pt(0) = 0. This means that the curve (5.2.15) 

forms an angle of i~/2 with the real axis. It is known that along this second 

curve Re[h(z)] has a maximum, so it is the appropriate new integration path 

(See Fig. 5.2.1). Doing so and applying the saddle point method we obtain 

% 
1 -- 1 - 

k (5.2.16) F(t) % - . 2t a/2(1-a) [2m 1 "'1 hll(zO) 1 o exp [tlah(z0)+] 
-1/Zz -1/2 

2 ~ i  

as t J. 0, or 

zo is a simple zero of hl(z) and there are two lines satisfying Im h(z) = 0 

and passing through the point zo. One of them is, of course, the real line 

but it is not suitable for our purposes since (by (5.2.12)) Re[h(z)] has a 

minimum along this direction, not a maximum. So we need to find the second 

one. Denoting its parametric equation by 

(5.2.13) z(t) = p(t)eit , with p(0) = zo , -TI < t < TT, 

. . 

the equation Im h(z) = 0 becomes 

so the second curve has in polar coordinates the following form: 



It is easy to verify that this form coincides with (5.1.18) when a = 2. 

As well, we see that (5.2.17) has indeed the form predicted in (5.1.19) 
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Fig. 5.2.1 Choice of a new integration path. 

2. Finding the normalizing constants 

Now we may find the appropriate normalizing constants since they 

known to coincide with those of the main term given by (5.2.17). (See 

Theorem 3.1.6). We prove the following 

c 



Lemma 5.2.1 If the distribution function F satisfies the relation 

for 0 > 0, then F belongs to the domain of attraction of L, the normalizing 

constants being 

- (B+l)/B (scale constant) 

(5.2.19) 

a, = (In N) -'IB N, (shift constant) . + 

~ ~ ( 1 n  N) 
(0+1)/0 

Proof: The proof is straightforward. It is enough to show that - 

(5.2.20) lim N(bNt + a,lY exp(- 1 1 = exp (t) 
NQI (bNt+~) 

for every t > 0. 

Instead of verifying (5.2.20) directly, we show, how the forni (5.2.19) 

of bN and a, is obtained. Let us denote 

We see that F is a proper distribution function belonging to the domain 1 
?r % 

of attraction of L. The normalizing constants a~ and b are found from the . N 

equations (3.1.15). Solving these equations we obtain, that 



Since F( t )  d i f f e r s  from Fl(t)  by a factor ,  varying regularly as  t C 0, we 

guess and assume tha t  the  sca le  parameter b i s  the same for  F(t)  and Fl(t)  N 

and the normalizing constants aN and'bN corresponding t o  F have the form 

We can show (See Appendix E f o r  de t a i l s )  tha t  (5.2.20) i s  s a t i s f i ed  

when 8 s a t i s f i e s  the  equation 

tha t  i s ,  when 

This completes the proof. 

We see tha t  (5.2.20) i s  t rue a lso i f  N tends t o  i n f i n i t y  as a continuous 

variable. Therefore i f  



then F2 belongs to the domain of attraction of L, the normalizing constants 
- % and being 

So, if 

then the norma1izing.constants of F2(t) are 

And to obtain the normalizing constants for the F(t) of interest given 

by (5.2.17) we simply set, in (5.2.29), 

1 a a/a-a) . Ta-l/a Y = - -  , . m = (a-1) (7) ,T = 
sin (rr/a) 



Example. As an example let us calculate the normalizing constants for F(t) 

2 in the case of quadratic charge accumulation case, i.e. then A. = (j41) , 
1 

10 j = 0 1 2  Let the number of cells be N = 10 . 
In this case we have 

Further, 

Therefore, by (5.2.19) 

And finally, by (5.2.29) the normalizing constants for F(t) are: 

Let us summarize the results by the means of following 

Theorem 5.2.1 Let F(t) be the distribution function of infinite convolution 

a .  of exponential densities with parameters A .  = a(j+l) , I =  0,1,2,,,, ;a > 1 . 
I 

Then F belongs to the domain of attraction of L, the normalizing constants 

being 



where 

The Fig. 5.2.2 illustrates the behaviour of I a N )  and {bN) as functions of 

Fig. 5.2.2 Normalizing constants % (shift) and bN (scales) for the power 

rate of charge accumulation case. Effect of varying a and N (a=l). 
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3. R e l a t i o n  t o  t h e  g e n e r a l  app roach  

I n  t h i s  s u b s e c t i o n  we s h a l l  u s e  t h e  g e n e r a l  a p p r o a c h  f o r  t h e  power 

c h a r g e  a c c u m u l a t i o n  r a t e  c a s e .  [See p a r a g r a p h  5 . 1 . 3 ) .  F i r s t  o f  a l l ,  

we have  from ( 5 . 1 . 2 9 ) ,  t h a t  

where A( r )  and X(r )  a r e  g i v e n  by (5 .1 .26)  and (5 .1 .24 )  r e s p e c t i v e l y .  

Le t  us  f i n d  t h e  a s y m p t o t i c  r e p r e s e n t a t i o n  f o r  t h e s e  f u n c t i o n s  a s  r-. 

We have  ( s e e  5 . 2 . 1 ) :  

where T i s  g i v e n  by ( 5 . 2 . 8 ) .  

S i n c e  by d e f i n i t i o n  of  , o ( r ) ,  

l e t  u s  d i f f e r e n t i a t e  t h e  r e l a t i o n  ( 5 . 2 . 3 4 )  and w r i t e  

S i n c e  d i f f e r e n t i a t i o n  o f  a s y m p t o t i c  r e l a t i o n s  i s  i n  g e n e r a l  i n v a l i d ,  

(5 .2 .36 )  must b e  j u s t i f i e d  s e p a r a t e l y .  Fo r  t h e  p u r p o s e s  o f  t h e  p r e s e n t  

s u b s e c t i o n ,  l e t  us  suppose  t h a t  ( 5 . 2 . 3 6 )  h o l d s .  The a s y m p t o t i c  

b e h a v i o r  o f  > ( r )  i s  g i v e n  by ( 5 . 2 . 2 ) .  



Thus, A(r) has the following representation, 

So, the asymptotic expression for F(A(r)) 'is 

and to find the form of F(t) as t + 0 we must find the first terms of 

expansion of A-'(t) for t 4- 0, i.e. we must expand the root of equation 

in the neighborhood of t=O. This is a tedious task though it can be carried 

out using the asymptotic expansion of A(r) (See 5.2.34). For example, the 

first approximation gives 

and substitution of this first approximation into (5.2.38) leads to the true 

expression for F(t) except the constant of multiplication. To obtaln this 



constant we need the higher order terms in the representation (5.2.40) for 

! i-l(t) 

The last paragraph illustrates the difficulties which arise when using 

the general approach. It seems that in many cases it is much easier to obtain 

the solution in a closed form using the saddle point analysis as was done in 

the previous paragraphs. 

5.2.2 Geometric charge accumulation rates 

In this section the case 

will be considered using the alternative approach. We shall see that this 

case is much more complicated than the previous one for three reasons. 

a) The saddle point analysis for finding the form of F(t) 

as t + 0 is much more refined, 

b) There exist certain oscillations in the behaviour of 

F(t) as t i 0. 

c) The asymptotic form of F(t) is not as convenient for finding 

the normalizing constants. 

At the end of this section we shall consider a possible direct approach 

for finding the form of F(t) as t J. 0 using a differential equation which is 

satisfied by F(t) . 



1. Asymptotic representation of F(t) as t J. 0 

First of all let us denote 

Using Euler's summation method, we obtain: 

where 

We can see that Rl(s) is bounded as s + -. On the other hand, using the 

integration by parts technique we obtain 

(Here and in the sequel we denote by in s the principal branch of the 

logarithm, i.e. the branch that takes real values for positive s), 

But the last integral is the so called Fermi-Dirac integral and it has for 

large s the following representation (See Dingle (1973, p. 20)). 



Thus, we have 

where 

We know tha t  c(s)  is bounded as s  Thus, by the inversion formula the 

d i s t r ibu t ion  function F s a t i s f i e s :  

where a  = l n  A and d > 0. 

Z After the  change of variable t s=x  and performing the mapping x = e 

(which i s  one-to-one i n  the s t r i p  (Im z l  < T ) ,  we obtain 

- 1 1 n t  where s  = - - - . 
2 . a  

The contour of integration C s t a r t s  a t  (+- - iw/2), crosses the r ea l  axis 

a t  the point ln(d.t) and turns back t o  (+m + i a /2 ) .  C l i e s  en t i r e ly  i n  the 

s t r i p  I Im z  1 < w/2 and i s  symmetric with respect t o  the r ea l  axis ,  Completing 

the square under the exponent sign we obtain 



We are interested in an asymptotic expression for the integral in (5.2.50) 

2. 
as s In this form F(t/b) is similar to the function Fo(t) considered 

in de Bruijn (1953). The saddle point method applied there can be used 

here as well. The saddle point 5 of (5.2.50) satisfies 

Z 
We see that for large s there are two such points - one in the neighborhood 

1 % 
of = -as and the second in that of C2 = In s. We shall see that the 

maln contribution comes from the second point. Let us denote this point 

by 5 and put z = w+5 in (5.2.50). We obtain 

a & w 
2 

- + W 

8 W+S - - 7 :(e -w-1) 
e 2 a / c(L)e 2a 

(5,2,53) F(t/b) = -  cia , 
27ri c-5 t 

where q = ae5 = a: + 5 .  

Transforming the contour appropriately and using the conformal mapplng 



we obtain writing w for w(<)) 

(See Appendix G for details). We see now that the relevant saddle point is 

w = 0. After expanding the first part of the integrand 

e r, (here a. will be equal to c(-) and al,a2,.o. are bounded functions of t), t 

changing the variable 5 ' =  iz and integrating term by term we obtaln the 

asymptotic expansion of F(t/b) as t J. 0 : 

Or, since the first term of the expansion is sufficient for our purposes, we 

have (note, that ae5 = q by definition) 

We see that q can be localized by the following procedure. By (5,6.52),q 

satisfies the equation 



(5.2.59) p + l n q = q  , 

2, a 
where p = as - In a = -In t + - - In a. Let us take the first approximation 2 

(5.2.60) q1 = P + El 

Then satisfies 

From the last equation we find that = O(ln p) (Assuming that this is not 

true leads immediately to a contradiction). So, the first approximation 

for q is 

Now, substituting ql into the original equation (5.2.59) we obtain the second 

approximation for q: 

The third approximation is obtained in the same way . 



We can continue this procedure to obtain higher order terms, Possibly, 

it may be shown that the resulting series will be convergent rather than 

asymptotic (See de Bruijn (1970, p. 25) for a similar case). Using q3 as an 

approximation for q we can express the asymptotic representation (5.2.581 in 

terms of t. The expression is, however, too complicated to deal with and 

therefore we shall use another way to find the normalizing constants. 

2. Oscillating behaviour of F(t) as t + 0 

We know that as t C 0 (and consequently q/at -+ m) the function 

c(q/at) is bounded and positive. But, in contrast to the case of power 

charge accumulation rates, this function oscillates and does not approach a 

limit as t + 0. Since by (5 -2.59) 

using (5.2.47) we obtain that as t C 0 



o r ,  a f t e r  us ing  (5.2.65) and changing t h e  summation index, 

2 2 1  2 
m 

T a 
(5.2.67) c($) % exp(- -) exp{2-- / ( a  -w) C exp [a(w+j +a) ] 2 do 6a o j=-{l+exp [a (w+j+a)] 1 

where -1/2 a < 1/2 is 1/2 minus t h e  f r a c t i o n a l  p a r t  of q /a .  I t  can be 

shown (See Appendix H) t h a t  t h e  r i g h t  hand s i d e  o f  (5.2.67) does depend on 

a though t h e  dependence is weak. So, t h e  funct ion  c ( k )  o s c i l l a t e s  a s  

t + o and i ts  value a t  t h e  po in t  t is determined meainly by t h e  f r a c t i o n a l  

p a r t  o f  (q/a)  . 
Thus, f i n a l l y  t h e  r ep resen ta t ion  o f  F ( t )  a s  t + 0 is : 

where 

and $(q) i s  t h e  second exponent on t h e  r i g h t  hand s i d e  o f  (5.2,66) (o r  

(5.2.67)) .  I t  can be e a s i l y  v e r i f i e d  t h a t  $ ' (q )  is uniformly bounded and 

continuous a s  q > 0. We s h a l l  use  t h e  form (5.2.68) o f  F ( t )  f o r  f ind ing  

t h e  expressions f o r  t h e  normalizing cons tants .  



3 .  Main equation for finding the quantiles of F(t) as t C 0 

After the asymptotic form of F(t) has been found, we can deal with 

the problem of finding expressions for the normalizing constants. Since 

the representation (5.2.68) depends on q only and by (5.2.65) 

in order to determine the normalizing constants it is sufficient to localize 

the quantiles of F(t) for small values of t (See Corollary 3.1,4): that is, 

it is sufficient to localize the solution of the equation 

when x + m. We shall proceed by the method of iterations. Let us find the 

first approximation. Evidently, the solution may be represented as 

where E(X) f 0 as x + m. SO, the first iteration will be 

Now let us put the equation (5.2.71) into the form 



Substituting (5.2.73) into the right hand side of (5.2.74) we obtain the 

second approximation. 

Or, using the expansions 

the second approximation is 

(5.2.77) a q (x) = x1/2 + 1 - - . x in x + O(X -1/2) 2 4 

Substituting q2(xl into the right hand side of (5,2.74), we find the third 

approximation 

because (by boundness of $ ' )  



This iterative procedure can be continued to obtain more precise 

approximations. 

4. Finding the normalizing constants 

Since the normalizing constants % (shift) and bN (scale) can be found 

from the equations (3.1.15), by using (5.2.68), (5.2.69) and (5.2.77) we 

obtain 

1/2 a -1/2 -l/Zl1 -{xl +l - -x 4 1 lnx 1 +O(xl 

where 

(5.2,81) x = 2a ln(kN) ; x2 = 2a[ln(kN) - 11 1 

From the second equation of (5.2.80) we obtain 

so, using the Theorem 3.1.5, we can choose the constant bN as 



The'same theorem says that % can be chosen as 

We can see that the term O(xl ) cannot be omitted. 

This is not surprising as it reflects the oscillating behaviour of the 

distribution function at the origin. But if we specify this term by the means 

of (5,2.78) (i.e. if we take a more precise estimate of q), the remaining term 

O(l/xl) can be omitted. In summary, we have proved the following: 

Theorem 5.6.1 Let F be the distribution function of an infinite convolution 

of exponential densities with parameters A. = bAj ; j = 0,l ,2, ; A > 1 
I 

Then F belongs to the domain of attraction of L, the normalizing constants being 

a = - (xl/'+l) exp I~ - [x L a a - 1 / 2 1 n x -  1/2 + 1 - - x  
4 

where 

a 1/2 a n 2 
(5.2.86) ' a =  In A ; x =  2a ln(kN) ; k = (-). exp(-- - )  and 2n 8 6a 

$(q) is given by 



a 
2 1  2 exp [aw+aj + - - q] (5.2.87) $(q) = > J (w -w) Z 

2 
2 dw 

o j=o {l+exp[au + aj + a - q]} 2 

Remark The form (5.2.87) is rather inconvenient for computing @(q), 

We can simplify this form by using an integration by parts technique or 

(what is essentially the same) simply by using the equality (5.2.42). 

Indeed, by (5.2.42) 

m 
1 

+ -  / tdt - - 
a o l+exp(t-(q-;)) 

after the complete expansion for the Fermi-Dirac integral has been used (See 

Dingle (1973, p. 20)). 

Example Let us calculate the normalizing constants for F(t) in the case that 

j 10 the rates of birth are given by A .  = (1.2) , J = 0 1 2 ,  and N = 10 
3 



Using (5.2.86), (5.2.88) and (5.2.85) we find 

Behaviour of the normalizing sequences as functions of X and N is 

illustrated by Fig. 5.2.3. 
aff - i 

fog"-z. 
C 

4 - 

Fig, 5.2.3 Normalizing constants for the case A .  = X 1 ,  
1 



5.2,3 The direct approach in the geometric rates case 

In this paragraph we show that the asymptotic properties of F at 

t C 0 (geometric rates case) may be obtained using the differential equation 

which is satisfied by F. We shall see that this equation is similar to that 

considered in De Bruijn's work (1953) in connection with Mahler's partition 

problem in number theory. This explains, why the integrals appearing in 

our investigation of this case (See, for example, (5.2.50)) are similar 

to those appearing in his work. 

i 
Let us make a non-restricting assumption that {Ai = A , i = 0, 1 , 1 

Since the Laplace transform 3 of F is given by 

3 satisfies the equation 

Inverting both sides of the last equation, we obtain 

(5.2.91') 
t t 

F(t) = F(-) * F'($ " A 

a -ax Writing A= e , t = Xe , G(x) = ~ ( e - ~ ~ )  we have the relation 

(5.2.92) G' (x) = ae-aX[~(x) - G(x-l)] 

and are interested in the behaviour of G(x) as x -+ rn. 



Furthermore, on considering (5.2.91), two or more of the terms in (5.2.91) 

must have the same order of magnitude as t C 0. However, from (5.2.891 and a 

Tauberian theorem (See Feller (1971, p. 443)) we know that, for A > 1, 

Thus we may conclude that, as x + -, the solution of (5.2.92) behaves as 

that of 

" 
which is De Bruijn's equation except for the sign of a in the exponent. 

Indeed, solving the last equation we obtain a true asymptotic representation 

of F(t) as t C 0, except for the oscillating factor which was lost when 

passlng from (5.2,92) to (5.2.94). Therefore, to obtain the exact form of 

asymptotic behaviour of F(t), we must deal with (5.2.92) which is a much more 

complicated equation than that considered by De Bruijn, Solutlon of (5,2,94) 

may serve as a first approximation. 

5.3 Inference for the pure birth model 

In thls section we apply the methods described in Section 3.3 to estlmate 

the parameters of the infinite charge breakdown models and to obtain the form 

of interconnections between the distribution of the interbreakdown tlme and 

the parameters of the madel. As the results of this chapter show, F(t), the 

d.f. of the tlme to explosion in a single cell, belongs to the domaln of 



a t t rac t ion  of L. So, the process of successive breakdowns is e i the r  a renewal 

process i n  the regenerative case (with time between renewals which i s  a l inear  

transform of the double exponential random variable) o r  a non-homogeneous 

Poisson process (non regenerative case). We consider both types of models. 

5.3.1 Regenerative case 

We know, tha t  i n  t h i s  case the interbreakdown time T i s  given by 

(a, + b~ X), where X i s  the random variable dis t r ibuted i n  accordance with 

the d.f .  L( t ) .  I t  can be ea s i ly  ver i f led  (See David (1981, p.260 1)  t ha t  

the mean E and the variance V' of X are  given by: 

F i r s t  of a l l ,  l e t  us see what influence the area of an insulator  has on the 

interbreakdown time distribution. Suppose tha t  the number of c e l l s  changes 

from N t o  N1 ( In  other words, the area of Insulating material Increases 

1 
N1/N tlmes),  Denote by T the  interbreakdown time corresponding t o  N1 c e l l s .  

Then 



But since in the present model (bN/%) tends to zero as N +-(See 

Corollary 3.1.3) the first relation in (5.3.2) becomes 

Let us give some rough estimations for both pure birth charge accumulation 

models. 

(I) Geometric charge accumulation rates ' 

Notice that since the constant b is a factor in the normalizing constants 

(and therefore, in the mean and standard deviation of the interbreakdown time T) 

all the expressions containing ratios of these constants only, will not depend 

on b. 

As estimate of will therefore be 

and for ET 

These formulas show what kind of dependence between the interbreakdown tlme 

distribution and the area of insulator can be expected should the regenerative 

case be appropriate. As well, they show the kind of dependence between the 

interbreakdown time distribution and other parameters of the model when the 

area of insulator remains unchanged. 



The parameters a, b and N cannot, of course, be estimated from the set 

of observations, corresponding to the same experimental conditions (See paragraph 

3.3). Hence, to perform the estimation we need to take an extra sample, corres- 

ponding to a new situation, to equate all the sets of estimates with their 

analytic expressions (given by (5.2.85) and solve for the parameters. 

We shall not display the relevant equations. Instead of doing so, let us 

demonstrate, how an additional sample, corresponding to a slight change in 

area may be used to obtain rough estimates for a, b and N .  

Suppose that the area of insulator changes from S to S1 = pS, where p 

is close to 1. (That is the number of cells changes from N to N1 =P N). 

Denoting by T and T1 the interbreakdown times corresponding to N and N1 

respectively, we obtain 

and, expanding the numerator at the point x we have 

In the same way we obtain 



These results show that the relative change in ET and aT is proportional to 

In p.  The relations (5.3.7) and (5.3.8) enable one to find estimators 
,. ,. ,. 
a, N and b for the parameters of the model as soon as two sets of interevent 

1 times ITj, j = 1,2,. . . ,n} and {Ti , i = l,2,. . . ,m} ( corresponding to 

areas S and S1 = PS of insulator respectively) are given. If (T,ST) and 

(TI, S are sample mean and sample standard deviation of both sets of data, 
T ,. .. 

(5.3.7) and (5.3.8) provide the following equations for estimators a and N : 

(5.3.9) 

. 
ax-1/2(1-x-1/2) (In p) = 1 - @/TI 

(5.3.10) -1/2 ax. (In p) = 1 - (S /ST) , 
T1 

where x is given by (5.2.85). Dividing these equations one by another we 

obtain 

So, the estimator of a is given by 

and the estimator of N is 



where 2 and 2 are given by the previous two formulae. 

To estimate b we could use the relation uT = bNV. However, this approach 

would not make use of all the information of hand, so some pooled estimator 

for b would be preferable. Such an estimator can be obtained using the fact 

that random variables 

can be considered as n+m independent variables with the same distribution 

function L. Thus, as m and n are large, the estimator for b can be found 

from the equation 

But (by 5.2.84) 

(5.3.15) 

Further, 



,. 
So, the estimator b is 

Finally, when changing the experimental conditions in order to take 

an additional sample, the possible changes. include change of the voltage, 

change of thickness of the insulating material, change of the electrode 

material, change of the polarity, change of the area of the insulator etc. 

The last possibility seems the most practical one because the area of 

insulator is connected directly with the number of cells N. However, it 

is not the best one from a statistical point of view. The reason for this 

will be explained in subsection (iii). 

(ii) Power charge accumulation rates 

In thls case the normalizing constants are expressed by (5.2.31), The 

constant a acts as a constant multiplier. (Like the constant b in the 

previous case). The mean and standard deviation of the interbreakdown 

time depend on N via 



where p and x are given by (5.2.32). Since x = In N + const, the last 

formulas show the kind of dependence between area of insulator and 

distribution of interbreakdown times. 

If the number of cells changes from N to N1 = P N  (p = l), T and T 1 

being (respectively) the interbreakdown times, then 

Acting as in previous case, we obtain 

A 

Using (5.3.21) we can find the estimators N and a as soon as two sets of data 

(corresponding to various areas) are at hand. (See the prevlbus case). An 

estimator 2 is obtained as previously, using (5.3.14). 



(iii) Remark 

Let F-'(-) be the inverse function of the d.f. F. It is known (See 

Gnedenko (1943), De Haan (1971, p .  76) that F belongs to the domain of 

attraction of L with normalizing constants % and bN if and only if the 

left tail quantiles F-'(c/N) satisfy 

The last relation may be used to estimate the left tail quantiles of F 

(after % and bN have been estimated). Suppo-se the number of cells is changed 

to N = pN. Then the new normalizing constants are 1 

satisfying (by 5.3.23) 



. . 

So, the estimators % and bN carry information on the normalizing 
constants =N19 b ~ l  for any number of cells N1 as N tends to infinity, This 

means that changing the area of the insulator is not the best way to estimate 

the internal parameters of the model (other changes of experimental conditions, 

mentioned in the end of subsection (i) might be preferable). Nevertheless, 

such estimation is possible in principle since the number of cells is finite 

and analytic expressions for the normalizing constants provide much stronger 

relations than (5.3.26). Let us take, for example, the case 

~(t) = exp(-(at)-B) ,t,a,B > O. Then, by ~ k m a  5.2.1 the normalizing 

constants are 

and we see, that 

The last relations tell us much more than (5.3.26) and can be used 

(together with (5.3.27).to estimate a , B and N if the estimators % , 
1 



%, bNl,bN are at hand. This remark shows why the estimation procedure, 

applied is subsections (i) and (ii) is legitimate. 

5.3.2 The non-regenerative case 

In this section we consider the non-regenerative model with zero initial 

and pure birth charge accumulation process with geometric rates (the case of 

power rates may be treated analogously). Suppose we observe the sequence of 

the first k breakdowns {C , , 1 Then the normalizing constants % 
(1) (k) 

and bN may be estimated using the formulae (3.3.13)-(3.3.14). In the 

case that one of the three parameters (X,b,N) of the model is known, the 

other two may be estimated by solving the equations 

where expressions for % and bN are given by (5.2.85) 

In the case that all the three parameters (X,b,N) are not known, to 

estimate them we can take the samples of the k first breakdown times 

, , 1 and {5'(1), . . ,<' corresponding to the areas N and 
(k) (k) 

N = pN. Further, we estimate bN, % and bN using (3.3.13)-(3.3.14). 1 
A A A 1 

Then the estimators X , b and N are found from the equations 



where a, x and $(q) are given by (5.2.85)-(i.2.86). This system can be solved 

by expressing x1l2 via a using the second equation. 

The histogram of the modified interbreakdown times [(C(i+L) -Cci1) *i], 

corresponding to this model must be of the exponential form with mean and 

standard deviation equal to aexp{-(B+ In S) , where S is the area of 

the insulator and a, B are appropriate constants. 

Finally, let us note, that for large m the observations 

'(m+l)"(m+2) '"'o"(m+k) behave as they would be successive arrival times 

in the homogenious Poisson process (See Theorem 3.2.1). 



CHAPTER VI 

6. A MORE GENERAL MODEL OF BREAKDOWN. A TAUBERIAN THEOREM 

In this chapter we consider the cases when a charge accumulation process 

in a given cell is more complicated than those considered before, in sectlon 

6.1 we consider the infinite charge breakdown model when the charge accumulation 

process is a general transient birth-death.process. 

In section 6.2 we consider a Tauberian theorem which enables one to find 

a representation for F(t) (as t + 0) in terns of its Laplace transform. Such a 

representation may be especially useful in the cases that F, the d.f. of the 

time to explosion of a single cell, corresponds to an infinite convolution 

of independent random variables. In section 6.3 we consider an important 

special case of the Tauberian theorem. 

6.1 Tine infinite charge model based on transient birth-death process 

In the present model we suppose that there are N cells operating 

independently and the initial charge in every cell is zero. The charge 

accumulation in every cell proceeds in accordance with a birth-death process, 

A. (i = 0,1, ... ) being the birth rates and pi (i = 1,2,,,,) the death rates. 
1 

We suppose that these rates are strictly positive. A cell explodes as soon 

as the charge accumulated in it reaches i~finity. Conclusions about both 

regenerative and non-regenerative cases of this model may be drawn from the 

following considerations. 



Suppose that the charge accumulation birth-death process is transient, 

so that the potentials no,7rl,.o. (See (D.8) of Appendix D) satisfy 

Moreover, we assume that 

so that by Theorem D5 of Appendix D, the underlying process is transient of 

type 1 and 

holds for every state i and every t > 0. The last inequality implles (See 

Theorem D 4) that whatever the initial state of the cell, the breakdown of 

this cell occurs in finite time with probability one, Since 
rn 

1 rr C - is the mean time spent by the cell in the state i before it 
1 . A.T. 

I=: 1 1  

explodes (~nitial state of the cell is O), (6.1.2) is just a generalization 

of the Feller-Lundberg condition (See 5.1 of Chapter V) relevanr In pure blrth 

models. 

th Let us denote by ci the time to explosion in the i- cell. Denote the 

dlstributlon functlon of 5. by F(t), the corresponding density functlon by 
1 

f(t) and the Laplace-Stieltjes transform of F(t) by ?(s). To solve the domain 



of attraction problem we must find the asymptotic form of F(t) as t f 0. We 

shall show that (analogously to the case of the pure birth infinite model) 

Si is represented by infinite convolution of independent exponential random 

variables. This will imply that F(t) belongs to the domain of attraction 

of L and the normalizing constants can be found using Theorem 5.1.3. 

To begin with let us define the class of Polya frequency functions, 

which play an important role in applications (See Keilson (1979)). 

Definition 6.1.1 A density function f(x) is a Polya frequency function of 

infinite order (write f e PF,) if, possibly after a linear transformation, 

f(x) is the limit of a sequence of densities each of which is a convolution 
* 

of a finite number of exponential densities. 

Alternative definitions, based on the concept of total positivity may 

be found in Karlin (1968, Chapter 6). The class PFm contains many known 

density functions, for example the uniform and Erlang's density functions. 

The PFm density functions posses many interesting properties. For example, 

it can be shown that if f e PFm then f(x) must be log-concave, strongly 

unimodal (i.e. f is unimodal and its convolution with any unimodal density 

is again unimodal) and has at most an exponentially decreasing tail as 

In terms of Laplace transforms f e PFm means that the reciprocal 

of its Laplace transform @(s) = l/?(s) can be represented as limir of 

sequence of polynomials possesing real and negative zeros only, But such 

functions J, may take.only a specified form as the following theorem shows 

(See Karlin (1968, p. 336) for a proof). 



Theorem 6.1.1 Let $(x), for which $(0)= 1, denote a function defined for 

-A - < x - < A (A > 0) obtained as a limit of polynomials P (x) possessing n 

only real negative zeros, 

Then $(x) admits the analytic continuation $(s) in the complex plane 

and 

Conversely, any function $(s) of the form (6.1.5) is uniformly approximated 

in any bounded domain by polynomials possessing only real negative zeros, 

Remark 1, It follows from the familiar Hurwitz theorem concerning convergent 

sequences of analytic functions. (See Titchmarsh, 1964, p. 119) that every 

Xi in (6.1.5) is a cluster point of the set {Ansi In = 1,2,. . . , i = 1,2, ,n} 

Remark 2. We know that if a density function f is just an infinite convolution 

of exponential densities, that is 



then the corresponding l imiting function has the  form (6.1.5) with 6 = 0. 

6s But, i f  the r a t e s  Xi  i n  (6.1.7) depend on n the mult ipl ier  e may appear 

i n  the  representation of $(s) .  This means tha t  the corresponding density 

function i s  an i n f i n i t e  convolution of exponential densi t ies  shif ted by 6 

i . e .  6 i s  i ts l e f t  endpoint. 

Now l e t  us turn our a t tent ion t o  the random var iable  5 which represents 

the f i r s t  passage time from the zero s t a t e  t o  the absorbing i n f i n i t y  s t a t e .  
0 

Denoting by T. the f i r s t  passage time from the s t a t e  i t o  i+l we obtain 
1 

Of course, the random variables To,T1,.a. a re  independent. As we 

know, (See section 4.1.1) t h e i r  Laplace transforms yo (s) ,y1 (s)  , ~ 

sa t i s fy  the recursive re la t ions  

(6.1.9) = 'n n = 1 , 2 , .  ,, 
~ + h ~ + ! l ~ ( l - ? ~  - l ( s ) )  

with 

Let us denote the f i r s t  passage time from 0 t o  n by Ton and the corres- 

ponding Laplace transform by yOn(s). Then 



The following theorem (See Keilson (1979, p. 59)) shows that Ton 

can be represented as a convolution of n independent exponential random 

variables. 

Theorem 6.1.2 2 (s) can be represented as follows on 

where (i = 1 2 . n  are distinct and positive. 

Proof: The proof can be carried out by induction after we prove auxiliary - 
statements a) and b) : a) Except for singularities, ?n(s) is monotonically 

decreasing for real so 

b) f (s) is a rational function, and has a simple pole n 

between each pair of neighboring poles of ?n-l(;), All (n+l) poles of ?Js) 

are on the negative halfline. 

The full proof may be found in the mentioned work of Keilson. 

Now we are able to prove the following. 



Theorem 6.1.3 The time t o  explosion of a s ingle  c e l l  5 can be represented 

as i n f i n i t e  convolution of independent exponential random variables.  

Proof: We see from the Theorem 6.1.2 tha t  the density function f ( t )  of 5 - 
belongs t o  the c lass  PF- and therefore,  by Theorem 6.1.1 i t s  Laplace 

transform has the form 

The l a s t  equal i ty  means tha t  f ( t )  i s  an i n f i n i t e  convolution of exponential 

dens i t i es ,  sh i f ted  by 6 , t ha t  i s  

,. 

But, by statement D . 1  (See Appendix D) (6.1.14) implies t ha t  6 = 0. So, 

the theorem i s  proved. 

Remark From the recurrence re la t ions  (6.1.9)-(6,1.10) we can eas i ly  obtain, 

t ha t  

a . ,  ETi =~..rr. 
I 1 j=o I 

so t ha t  the  expected time t o  explosion i s  given by 



An interesting fact is that 5 may be represented by another infinite sum 

of exponentla1 random variables which are not independent: 

where T! is the total time spent by the process in the state i before it 
1 

drifts to infinity. (The initial state of the process is supposed to be 0) .  

The exponentiality of T! follows from the fact that once the process leaves 
1 

the state J it can return to it with probabillty 0 < p < 1 or not return 

with probabillty (I-p). The mean of T! is given by 
I 

m m m 

( 6 1 1  ET! = / P .(t)dt = / {a. / e'xt~o(x)~j(x)d$(x)}dt 
0 01 0 J 0 

(See Karlin and McGregor (1957b, p .  397)). Consequently, 

and this is equivalent to (6.1.16) if.the order of summation is interchanged. 



Now the domain of attraction problem for F(t) can be solved exactly as 

in the general case of pure birth process (See 5.3). First of all, we see 

that F(t) belongs to the domain of attraction of L and 

where 

The results are sumed up in the following 

Theorem 6.1.4 F(t) belongs to the domain of attraction of L(t), the sequence 

of normalizing constants and {b 1 being determined by N 

where rN is the root of equation 



The last theorem does not seem very useful for determining the normalizing 

constants since the computation of gi requires considerable effort (for 

example, el is the limit of sequence defined by Theorem 6.1.3). 

But this is not so - we need not compute the 9jS to use Theorem 6.1.4. 

Since 

and, by (6.1.8) - (6.1-10) 

the normalizing sequences may be found to any degree of accuracy directly 

from the birth-death rates. 

6.2 A Tauberian theorem 

The method used by Hirshchman and ~idder to estimate the left tail of 

f(t) and its derivatives (f(t) is a density function of the infinlte convolu- 

tion of exponential random variables) is based on the fact that the function 



tends to e - as r + - (See Sec. 5.1.3 of Chapter Y) . 
In this paragraph we show how the idea of their proof may be used to obtain 

a Tauberian theorem, expressing the left tail of a general distribution 

function F(t) in the terms of its Laplace transform. In the next paragraph 

we shall apply this theorem to the case that F(t) is a d.f. of an infinite 

convolution of non-exponential densities. 

Let F(t) be a d.f. of a random variable T and %(s) be its Laplace 

transform. Suppose that the left endpoint of F(t) is zero (all the 

conclusions may be easily re-formulated for the case that the left endpoint - 
is a non-zero number or (-  - ) ) *  

* To express the values of F(t) as t .L 0 via the Laplace transform 

%(s) we proceed as follows: 

a) We "stretch" F(t) along the t-axis by considering the function 

F(tn(r)) instead of F(t) (q(r) is a continuous function and q(r) + 0 

as r + -  

b) The part of F(t) not connected with its left tail is "killed" 

by considering the function F(tn(r)) multiplied by exp{-t$(r) 1 , where J, 

takes non-negative values only. The function c(r) is chosen so that 

will be a proper density function of some positive random variable Tr 

for arbitrary r > 0 .  The function $ is chosen so that 



(6.2.4) Var Tr = O(1) as  r + m. 

2, 
Since gr(s) , the  Laplace transform of g r ( t )  , i s  given by 

by choosing $ ( r )  equal t o  r n ( r )  we obta in  

? ( r ) ? f r ( r ) - [ ~ l  ( r ) ]  2 
Var T = 1 .  r 

[n(r )12 [?(TI 1 

C )  I f  it i s  known t h a t  l i m  gr[ETr] e x i s t s ,  the  values of  F ( t )  f o r  
yuo 

small arguments may be obtained from (6.2.2) a f t e r  f ix ing  t a t  the  point  

t = ET r' 

Since f o r  any p o s i t i v e  functions f and g the  r e l a t i o n  f ( t ) / g ( t )  0 

implies t h a t  ?(s)/;(s) -+ 0 a s  s -+ -(See Doetsch(l974, p. aZ.1 ) )  , (6.2.3) 

follows from t h e  r e l a t i o n  (6.2.7) 



After s e t t i n g  

we define n(r)  as  follows 

? ( ~ ) ? * ~ [ r )  - [Ff ( r )  ] 2 
2 ~ ( r )  ={ = { -  c f  ( r )}  1/2 

[?(TI 1 

So, denoting the centered version of the density function gr( t )  and i ts  Laplace 
c 

transform by &( t )  and zr(s) respectively;  i . e .  

5 

the r e su l t s  may be presented as follows: 

Lemma 6.2.1 Let F( t )  be a d i s t r ibu t ion  function with 0 being i ts  l e f t  

endpoint and l e t  ?(s) be i ts  Laplace transform. I f  E(r) and n ( r )  are  

defined by (6.2.10)-(6.2.11) then f o r  every r > 0 

s sE(r) 
L. 

?[ r  + -1 - 
(6.2.13) gr(s) = n ( r )  . e  n ( r )  

i s  a (b i la te ra l )  Laplace transform of the random var iable  Tr such tha t  
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E F ~  = 0 , Var = 1 and t h e  densi ty  function z r ( t )  of  Fr is given by 

- n ( r )  e-rS(r) 
F(tn(x-1 + S ( r ) ) e  

- t r n  ( r )  
g,(t) = 

After  pu t t ing  t = O  i n  (6.2.14) we obta in  

I t  might be expected t h a t  under some general condit ions the  jequence 

- 
g,(o) w i l l  tend as  r + t o  a p o s i t i v e  l i m l t  go. Then (6.2.15) leads t o  

an asymptotic expression f o r  F(S(r ) )  i n  terms of ? ( r ) .  For example, i f  

F ( t )  is the  d . f .  of an i n f i n i t e  convolution of exponential terms with 
- 

r a t e s  { A . ,  j = 0 1 the  sequence igr(s)  may be shown t o  converge 
1 

t o  e s2 /2  uniformly i n  any bounded region,  t h i s  implies thac = 1 / f i  
0 

and we obta in  t h a t  

(See Sec. 5.1.3 of Chapter V.). This form i s  s l i g h t l y  d i f f e r e n t  from t h a t  

given by Lemma 5.1.3 because S(r )  and n ( r )  d i f f e r  from the  kunctlons A(r) 

and o ( r )  respect ively:  



(6.2.17) 

Since 

t h e  r e s u l t s  can be formulated by means of t h e  fol lowing 

Theorem 6.2.1 I f  
b 

then ,  a s  r + m 

where c ( r )  and c ( r )  a r e  defined by (6,2.10)-(6.2.11) 

The fol lowing two simple examples i l l u s t r a t e  the  application of  t h i s  theorem. 

Example 1 Let us  consider  tb.e Laplace transform 



- A t  corresponding t o  a d . f .  F ( t )  = 1 - e ( t  > 0) .  - 
In t h i s  case 

The densi ty  function g ( t ) ,  corresponding t o  i ( s )  i s  

I t  can be shown t h a t  the  conditions of Theorem 6.2.1 a r e  s a t i s f i e d  

with g(o)  = 2 f i  e-' ; then (6.2.18) gives 



i 

f and after denoting S(r) by t we finally obtain 

the true asymptotic representation of F(t). 

Example 2 Consider the Laplace transform 

L corresponding to a standard normal distribution function O(t). 
C A S Y  

In this S(r) must tend to (- m) as r +-a (See 6.2.2) and we obtain 

1 17 (r) = (-7 + 1) 1/2 . 
r 

- 
The density function g(t), corresponding to g(s) is a standard normal one 



and t h e  condi t ions  of Theorem 6.2.1 a r e  s a t i s f i e d  with g(o)  = I//% a 

Thus, (6.2.18) g ives  

and a f t e r  denoting S ( r )  by t we ob ta in  

t h e  t r u e  asymptotic expression (See Dingle (1973)). 

To deal  with t h e  domain of a t t r a c t i o n  problem denote 

t 
(6.2.26) F(-") ( t )  = I F (-"+I) ( t ) d t  ; F(O) ( t )  = F ( t )  . 

0 

Then t h e  Laplace transform of  ~ ( - " ) ( t )  i s  ?(s ) / sn .  Since t h e  growth 

of FC-")( t)  a s  t + is con t ro l l ed  by t h a t  of F ( t ) ,  Lemma 6.2.1 can be 

e a s i l y  modlfied f o r  ~ ( - " ) ( t )  i n s t ead  of F ( t )  and we ob ta in  t h a t  t h e  Laplace 

transform of t h e  dens i ty  funct ion  

(6.2,27) 

is given by 



s sS ( r )  ?'[r+-1 - 
(6.2.28) (s)  = n(r )  . e  n(r)  [ 1 

r , n  ?'(TI 
S 1" 1 + -  

rrl ( r )  

Now we can prove the  following 

Theorem 6.2.2 Suppose tha t  m ( r )  + - as r + - . A s  well,  suppose tha t  

there  ex i s t s  a function g(s) which i s  a (b i l a t e r a l )  Laplace transform of 

some g ( t )  and s a t i s f i e s  the conditions 

m - - 
(6.2.29) ( i )  I g(-is)ds > 0 

-m 

and 

m 
-ist (6.2.30) ( i i )  I ( r ( - ) - ( - i s ) ) e  ds + 0 as  r + - 

-m 

uniformly for  t e [-a,a] (a is an a rb i t ra ry  small posi t ive  number). 

Then F(t )  belongs t o  the domain of a t t r ac t ion  of L with normalizing 

constants aN ( sh i f t )  and bN (scale) given by 

where rN is the solution of 



Proof: The densities g (t) converge to g(t) uniformly in [-a,a], as can r 

be seen from (6.2.30). Further, (6.2.28) shows that (s) is a Laplace 
r,n 

transform of T shifted n times by an exponential random variable with 
1' 

parameter m (r) . 
a a Consider the case n=l. For t e [- , and every a > 0 

we have that 

t-a - .  
= J g_(z) rrl(r)e -rn(r) (t-zIdz + 

a a Since g(t) is continuous in [- 7 , -1 (as a limit function of a uniformly 2 

convergent sequence of continuous functions) cr can be chosen so that for given 

a a 
E > 0 and every t e [- - , 2 TI 

. 
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E 
IE(z) - a t )  1 < 7 as t - a < z < t  

a a 
Now we see tha t  i f  a is chosen i n  such a way then f o r  every t e [- , 

t 
(6.2.34) IF  ( t ) -g( t )  1 5 e-"(r)a + / 1gr(z) -?('-I I rn(r)e  -1-0 ( r )  ( t-2) dz + 

r , l  t -a 

Since there  ex i s t  R* such tha t  f o r  every t e [- $ , $1 

and 

- 
whenever r > R*, gr ,1 ( t )  tends t o  g ( t )  as r -+ , uniformly i n  the  interval  

a a 
t e [- - , -1 . Therefore g (0) = g(o) and (6.2.7) gives tha t  as r -c m , 2 2 r, 1 

Further, we can show by induction tha t  an asymptotic equivalence of the 

type (6.2.37) holds f o r  every integer  n: 



Since 

by De Haan's theorem (See Theorem 3.1.9) F belongs t o  t he  domain of a t t r ac t ion  

of L o  The expressions f o r  normalizing constants can be obtained exactly as 

i n  Theorem 5.1.3. 

Remark The condition (6.2.30) i s  s a t i s f i ed  i f  

m 

(6.2.40) 1 ( i s )  - ( i s )  Ids 0 as r -+ m 
-m 

6.3 Special case 

In t h i s  paragraph we show tha t  i f  ?(s) s a t i s f i e s  some general conditions, 

2 then the sequence { i r ( s )}  converge t o  exp {s / 2  , the Laplace transform of 

the standard normal var ia te ,  and the Tauberian re la t ion  between ?(s) as 

r -+ and F(t )  as t C 0 i s  given by (6.2.15a). We can write (by 6.2.13) 



and, expanding the first term, we obtain (See (6.2.10) and (6.2.11)) 

where 0 < e < I. The last expression leads to a proof of the following - - 

Lemma 6.3.1 If 
/ 

uniformly for s* in any bounded region then 

(6.3.7) .ir(s) + e s2/2 as r + m  , 

uniformly for s being in any bounded region. 

Now we shall prove a special case of the Theorem 6.2.2. 

Theorem 6.3.1 If 3 satisfies (6.3.6), rq(r) + - as r + - and 
OD - 2 
/ Iir(-is)-e -S '2 1ds + 0 as r + - , then F belongs to the domain 
-m 

of attraction of L, 



and the normalizing constants are given by 

where rN is the solution of 

Proof: The proof is similar to that of Theorem 6 . 2 . 2  and is therefore omitted. - 

The last theorem may be especially useful when F is the d.f. of an 

2  infinite convolution, since for this case the functions S(r) and rl (r) 

may be represented as sums of functions, each depending on the distribution 

of the particular term of the convolution only. . So, S(r) and qL(r) may be 

evaluated (as r + -) using one of the summation methods. 



CHAPTER VII 

7 .  CONCLUSIONS 

In this chapter we give a resume and formulate several unsolved problems 

which are of interest in connection with the present work. 

7.1 Resume 

In this section we sketch briefly the results of our research. 

In Chapter I we supply information concerning the physical aspects of 

breakdown phenomena and discuss the ways it has been treated in the 

literature 

In Chapter I1 we present a class of stochastic models which is the 

main object of investigation in the thesis. All of them are "weakest link" 

models with a birth-death process used to describe charge accumulation in a 

single cell. The models were classified as regenerative or non-regenerative 

on the one hand and as finite or infinite charge breakdown models on the 

other. We showed that there is experimental evidence supporting the 

relevance of these models. 

In Chapter I11 relevant results from Extreme Value Theory were provlded 

and general methods of identification of the appropriate breakdown mechan~sm 

and estimation of its parameters were discussed. 

Chapter IV was devoted to the study of finite charge breakdown models. 

It is shown that in this case F(t), the distribution functlon of the tlme 



to explosion of a single cell, belongs to the domain of attraction of Weibull's 

distribution law and normalizing constants are found. Both regenerative and 

non-regenerative types of the models are considered. 

In Chapter V we consider the infinite charge breakdown models when the 

charge accumulation process in a single cell is a pure birth process. We 

show that in thls case F(t) belongs to the domain of attraction of Gumbel's 

law and give equations which enable one to find the appropriate normalizing 

sequences. Since these equations do not prs.ide closed expressions for the 

normalizing constants, we develop an alternative approach. We use it to 

obtain an asymptotic representation of the left tail of F(t) and to find 

explicit expressions for the normalizing constants in two important cases - 

when the birth rates are of the type A = a(j-1)' and A. = b ~ j .  Then we 
j I 

consider the estimation problem for both regenerative and non-regenerative 

variants of these models. 

Finally, in Chapter VI we show that the infinite charge breakdown model when 

the charge accumulation process in a single cell is a blrth-death process 

with rates { A . )  and Iu .1  is equivalent to one with a pure birth charge 
1 1 

accumulation process (the "birth" rates of the latter depend on {A 1 and 
I 

{pl)). We give a procedure which enables one to calculate the normalizing 

constants. 

a 
In this chapter we also proveflauberian theorem which enables one to 

obtain the asymptotic representation of some monotone function F(t) in terms 

of its Laplace transform. For the case that F(t) is a distribution functlon 

we show how its domain of attraction may be identified and the normalizing 



constants may be found in terms of the Laplace transform. This theorem may be . 
useful in cases for which the charge accumulation process in a single cell is 

of more complicated form. 

7.2 Open problems 

In this section we mention several open problems which may serve as 

directions of further investigation. 

Problem 1 Continuous charge breakdown madel. , 

In this model we assume that the charge, accumulated in any of N cells 

(operating independently) at time t is a continuous random variable X(t). 

The breakdown in a cell occurs as soon as the accumulated charge reaches 

some prescribed level M (the possibility of constant delay D can easily be 

incorporated in the final results). The initial state of the cell is 

characterized by the density function p(x) (0 - < x - < M), where p(x)dx is a 

proportion of cells with accumulated charge between x and x-dx. Suppose 

that the time axis is divided into intervalsof length At and the following 

relation holds 

where 8 , .  is the set of parameters, characterizing the experimental r 

conditions to which a cell is subjected at time t when accumulated charge 

in it is equal to X(t), and E is a random variable, representing the noise. 

When the function J, is specified, (7.2.1) leads to stochastic differential 



equation with initial condition given in terms of p(x), As soon as the 

solution X(t) of this equation is found, the distribution function of the 

time to explosion in a single cell is given by 

The problem is to find an appropriate (from the physical point of view) 

function $ , to solve the resulting differential equation and to analyze 

the extreme value properties of F(t). 

Problem 2 The limit function problem 

Let Fl(t),F2(t), ..., Fn(t), ... be a convergent sequence of distribution 
functions having the same left endpoint to and let F(t) be a limit function. 

Assume that all the functions in the sequence belong to the domain of 

attraction of G(x). What are the conditions (concerning the functions of 

the sequence) for F(t) to belong to the same domain of attraction? If F(t) 

belongs to some domain of attraction what is the connection between its 

normalizing constants and those of F1,F2, ..., Fn, ... ? It seems, in the 

light of De Haan's unifying approach (See Theorem 3.1.9))that the conditions 

of interest are related to the behaviour of the sequence g (t),g2(t),,.,,gn(t),sea. 1 

In the vicinity of to, where gi(t) is given by (3.1.21). 

Problem 3 The Tauberian relation 

Suppose that F(t) and G(t) are distribution functions with common left 

endpoint to=O and ?(s), 8(s) are their Laplace transforms. It is well known 



(See Doetsch(l974), p. E l ? ! )  t ha t  l i m  [F(t)/G(t)]  = 1 implies t ha t  
t* 

1 [ ( S S ]  = 1 I f  it i s  known tha t  p (s ) ,  8(s)  are  Laplace transforms 
S" 

of the continuous functions with a common l e f t  endpoint and ?(s)% 2(s) 

as s * - , what are  the conditions tha t  ensure F( t )  % G(t) as  t + O? 

Problem 4 

A s  we have seen i n  Section 4.1.1, i n  the  case of f i n i t e  charge break- 

down models with zero i n i t i a l  charge in  every c e l l ,  the asymptotic repre- 

sentation of F( t )  as t + 0 depends on the b i r t h  r a t e s  only. Under what 

conditions can t h i s  property be extrapolated t o  the  case of i n f i n i t e  charge 

breakdown models? 



APPENDIX A 

BASIC PROPERTIES OF THETA-FUNCTIONS 

1. Definition of theta-functions and basic properties table. 

The four theta-functions are denoted as follows: 

1 2  im(n + -) 
e2(z1~) = 2 C e cos [ (2n+l) z] 

n=o 

m 2 
e3(zI~) = I  + 2  c e iarn cos (2112) 

n= 1 

m 
n i a m  2 04(zI~)=1+2 Z (-l)e cos(2nz) . 

n= 1 

In the definition z is considered as variable and r as a parameter. 

For the convergence of the series that are present in the definltions we 

demand that Im r . 0. 
We define also 



As well, we shall write sometimes ei(z) instead of e.(zlr), 
1 

ei(z) are "almost" double periodic functions with perlods and nT as can 

be seen from the following basic properties table: 

2 .  Zeros of theta-functions, the relation 0; = 0, 0, 8, and connection 

between '8 (zlr) and e3(z/r(-l/r) ~ 3 

It can be shown that all theta-functions are entire functions and their 

only zeros are: 

el(zl = 0 at z = 0 - mrr + nrrr 

e2(z) = O  at z = n / 2  - rn7r + nnr 

71 Tn e(z)=O at Z = ~ - F  +rnn*nnr 3 
TT e(z)=O at z =  

4 
- - mn - nnr , 

where rn and n are integers. 



It is known also (See Rainville (1960)) that there exists a relation 

between 8; and e2, e3, e4 namely 

The relation between e,(zl~) and e3(z/'rl-l/'r) plays a crucial role in 

finding the asymptotic representation of F(t) at t + 0. Since the proof of 

this relation rarely appears in the literature, we shall give a short 

sketch of it. The full proof can be found inwttaker and Watson (1963, 

p.475). The relation is: 

To prove this equality we consider the equation 

Then, using the basic properties table we show that q(z1-r) is a double 

periodic function with periods i~ and TT : 

The last fact. means that  ZIT) is an elliptic function. (See Rainville 

(1960)). Since (by A.6 ) the denominator e,(zl.r) has only one zero in the 

parallelogrannn with the vertices. 0 , + T the function n(zl~) 



is an elliptic function of order - one. But we know that elliptic function 

of order less than two must be a constant. Denoting this constant by C 

we obtain 

z 2 (A. 11) Ce,(zlr) = exp(=) e,(z/~I-l/r) 

IT rn Shifting the argument z in (A.11) by , T- IT llr and - + - 2 2 , using the 

basic properties table and the equality ei = e2 0, 0,, we obtain that 

C = (-ia) and so, (A.8) is proved. 

IT Now, substituting z + instead of z into (A.8) we obtain 

z 2 
(A.12) e4(z lr) = (-ir)-1'2exp( - )0(z? l r .  

1.irr 2 / I - / )  



APPENDIX B 

EULER'S SUMMATION FORMULA 

1. Bernoulli numbers 

Bernoulli numbers are the coefficients B1,B 2 . . .  in the expansion 

It is easy to verify that the first Bernoulli numbers are 

but the higher numbers become more complicated. 

2. Bernoulli polynomials 

The Bernoulli polynomial of degree n, denoted by $,,(x), is the 

coefficient of tn/n! in the expansion of 

The first four Bernoulli polynomials are 



The properties of Bernoulli polynomials can be found in Bromwich ((1965), 
* 

p. 300) . 

3. Euler's summation formula 

Let the function f(x) be defined in the interval [a,b], where (b-a) 

is any positive integer (the function f can take also complex values). 

Then Euler's summation formula is: 

where 

1 1 b-a-l 
R = -  
n I $2n(~) { z (a+w+i) > dw 

(2n) ! o i=o 

Since (B.4) with Rn given by (B.5) is an exact formula, under general 

conditions b can be taken equal to infinity. In many cases formula (B.4) 

may be used to obtain asymptotic expansions for sums (For example, Stirling's 

expansion for ln(n!) is immediately obtained using (B.4)). 

As an example, let us use (8.4) for evaluating the function 



appearing in connection with the power rate of charge accumulation case. 

Using the summation method, we obtain, that for large s 

-l/a na sl/a+.a - a + o (s-l/a), = - in(-) - R~ T 
sin (*/ a) a+s 

where (after the integration by parts performed), 



APPENDIX C 

ON THE SADDLE POINT METHOD 

The saddle point method is used to evaluate integrals which can be put in 

the form 

where C is some contour in the complex plane, @(z) and f(z) are analytic 

functions of z in some domain of the complex plane which contains C and A 

is a large positive number. (In fact, the method may be modified to 

include the cases when X is complex and the functions $(z) and f(z) 

depend on A. However, we shall not consider these possibilities). The 

saddle point method results in asymptotic approximations for F(X). It 

is based on the following theorem 

Theorem C.1 Let g and h be functions on the interval (a,5) for which the 

integral 

exists for each sufficiently large positive X . Let h be real, continuous 

at t = a, continuously differentiable for a< t < a + rl (q > O), and such 

that h' < 0 for a < t < a + 0. Suppose that for some E > 0 and every t 

in (a+n, 5) 



holds; let h' (t) % -a(t - a) '-' and g(t) % b(t - as t C a, 

u > O ,  v > O .  Thenas A + - - ,  

Proof: The proof is based on the Taylor's expansion of h(t) at the point - 
t = a in (C.2). Details may be found in (Erdelyi (1956, p. 37)). 

Remark Note that g(t) may be a complex function of t. 

Now let us return to the integral (C.l). The essence of the saddle 

point method is in the fact that for large X the value of F(X) is determined 

by the part of the contour C on which le Xf(z) 1 is large relatively to other 
parts of C. Since 

le A f  (z) I = e hRef (z) 

of interest is the part of C on which Ref(z) is large relatively to other 

parts. We can see that the shorter is this part and the steeper Ref(z) 

decreases in the region of the appropriate point of maximum the better 

F(X) is evaluated by only using the values of the integrand in this 

region (in the sense that a small relative error may be attained for 



moderate values of A ) .  I n  accordance with t h e  s t a t e d  f a c t s  we try t o  

deform C i n t o  a more appropr ia te  pa th  2 (by t h e  well  known Cauchy theorem, 

i f  C and have common endpoints and no s i n g u l a r  po in t  i s  crossed during 

t h e  deformation, t h e  value o f  i n t e g r a l  remains unchanged). To expla in  

the  choice o f  we f i r s t  r e c a l l  t he  following f a c t s  ( the  proofs  may be 

found i n  Titchmarsh (1964)). 

Statement C . 1  The funct ions  Ref(z) and I m  f ( z )  a r e  harmonic a s  funct ions  o f  

x and y i n  t h e  s-plane (z = x+iy ) ,  so  they cannot have extremal po in t s .  

The po in t s  i n  which f 9 ( z )  = 0 a r e  saddle  po in t s  of both o f  these  funct ions .  

Remark: f (x ,y )  is c a l l e d  harmonic i n  D i f  it s a t i s f i e s  t h e  r e l a t i o n  

Statement C.2 The contour l i n e s  of t h e  funct ions  Re f ( z )  and Im f ( z )  a s  

funct ions  of x and y form an orthogonal n e t .  

I t  is c l e a r  from t h e  l a s t  s tatement  how t h e  saddle  p o i n t  method opera tes .  

Flrst o f  a l l ~ e  f i n d  t h e  po in t s  f o r  which f f ( z )  = 0. They a r e  c a l l e d  saddle  

po in t s  [o r  c o l s ) .  Suppose z0 i s  a unique saddle  po in t  and we a r e  a b l e  t o  

transform t h e  contour i n  such a way t h a t  it passes through t h e  saddle  po in t  



and coincides with the line Im f(z) = const passing through z (in the 
0 

direction corresponding to maximum of Re f(z) in zO) excepting the part 

on which the integral may be evaluated and shown to be negligibly small. 

(It can be seen from the Statements C1-C2 that the path of the "steepest 

descent" for Re f(z) at any point must coincide with the contour line of 

Im f(z) passing through this point. Another reason for choosing the new 

path as stated will become clear from (C.5) below). Suppose z is the 
0 

only point on the deformed contour in which Re f(z) reaches its maximum. 

Let {z = z(t), tl 2 t - < t2) be a parametr.ization of ?! the point to 

corresponding to zo. Then 

Since Im f(z(t)) : const, the oscillatory behaviour of the integrand is 

neutralized. After we denote 

and split the integral in (C.5) into two parts 



Theorem C.l may be applied under fairly general conditions to both integrals 

resulting in an asymptotic representation for F(X). 

The saddle point method may succeed in much more complicated situations 

(for example, when several saddle points are present, when singular points 

of the integrand must be crossed to obtain a new contour and the theory of 

residues must be used etc.). Many examples of its application may be found 

In Erdelyi (1956), de Bruijn (1970), Dingle (1973) and other works on 

asymptotic analysis. 



APPENDIX D 

THE CLASSIFICATION OF BIRTH-DEATH PROCESSES 

Consider a birth-death process with transition probability matrix 

P(t) = {P. . (t) 1. This matrix satisfies the differential equations 
11 

P1(t) = AP(t) (backward equations) 

(D.2) P t  (t) = P(t)A (forward equations), 

the initial condition 

(D.3) P(0) = I 

and has the following properties 



The matrix A = {a..) is of the form 
11 

where A. > 0 for i > 0, vi > 0 for i > 1. 
1 - - 

Let us classify the birth-death processes in accordance with the birth 

rates Xi and death rates pi' First of all, let us define the potentials 

. of states by 

It is known (See Karlin and McGregor (1957a, p. 527)) that there is 

one and only one matrix P(t) satisfying (D.1)-(D.6) if and only if 

and this is supposed to hold in what follows. 

Consider a specified state i. This state is called recurrent if, 

started at i the process will return to i in finite time with probability 1. 

Otherwise the state is called transient. A recurrent state i is called 

ergodic or recurrent null according as its expected recurrence time is finite 



or infinite. A process is called recurrent, ergodic, recurrent null, or - 
transient if every one of its states has the corresponding property. 

The following theorems identify the type of birth-death process 

(proofs may be found in Karlin and McGregor (1957b)). 

Theorem D.1 The process is recurrent if and only if 

(D. 10) 

Theorem D.2 a) The process is ergodic if and only if 

b) The process is recurrent null if and only if 

Theorem D.3 The process is transient if and only if 



(D. 13) 

Now consider transient processes only. Denote by T the time at which the 

particle reaches infinity when the initial state is i. 

Theorem D.4 If PIT < -1 > 0, then P{T < m ) = 1 and the function 

(1 - Hi(t)) 

tends to zero exponentially fast as t -t m. 

There are two types of transient processes. A transient process is 

called of type 1 if for some finite t > 0 and for some i 

(D. 14) 

*) We can see that the possibility 

contradicts (D.9) 



and is cal led of type 2 i f  

(D. 15) 

for  a l l  i and a l l  t > 0. 

Before giving the characterization f o r  both types l e t  us prove the 

following statement. 

Statement D . l  I f  (D.14) hold for  some fi.nite t *  > 0 and f o r  some i *  then it 

holds for  every i and every t > 0. 

Proof: Let us f i x  a point t ( t  > t * ) .  Then - 

for  every i ,  (Because for  every i Pii,(t-t*) > 0) .  

Let us show tha t  (D.16) implies t ha t  

'L 
f o r  every i. Suppose (D.17) i s  not t rue  for  some s t a t e  1. Then 

for  every i. But now, by semigroup property of P ( t ) ,  fo r  every i 



(D. 19) 

and t h i s  contradicts t o  (D.16). Since (D.16) implies t ha t  f o r  every 

a > O a n d i  

(D. 20) 

the statement i s  proved. 

Now l e t  us characterize the both types of t ransient  processes 

Theorem D.5 I f  the  process is t ransient  the  following conditions are  

equivalent 

1) The process i s  of type 1, tha t  i s  (D.16) hold f o r  every 

s t a t e  i and t > 0. 

2) I t h o l d s  

*) The l e f t  hand s ide of (D.21) has a simple probabi l i s t i c  meaning - it i s  
m 

represents the equal t o  ET f o r  i n i t i a l  s t a t e  0. The term ni C 
k=o J J 

mean time the p a r t i c l e  spent i n  s t a t e  i. 



APPENDIX E 

CHOICE OF THE APPROPRIATE FUNCTION 0(y,N,B) WHEN FINDING THE 

NORMALIZING CONSTANTS IN THE CASE A. = a(j+llU 
I 

Substituting (5.2.23) into (5.2.20) we obtain 

(E.1) A(t) = lim NF(b t + aN) = 
N" N 

1 

= lim [ t + t B -B  + elYexp{ln N-[1-(- +0.(hN) +l) 11 
@+1)/6 N)l/B Bln ?+ - B(ln N) 

Here we shall impose the first condition on 0 : 

(E. 2) lim 0 . (In N) 116 = 0 
w 

1 r We know also that lim $(x+l) -11 = r, for every r. 
X+o 

So, A(t) can be put into the following form: 



1 

- Y l - ( t  +e( ln  N)'+I)-' 
Bln N 

In N 
(E.3) A(t) = l i m  (In hl) ' .exp(: 1 

N- + e( ln  N) 1/6) 
t 

(- (- + 0 ( ln  N) 
1/ 5- 1 

Bln N 6 In N 

t 
and, since we are  looking f o r  8 tha t  gives l i m  A(t) = e , it can be chosen 

N- 
from the equation 

which coincides with (5.2.24). 



APPENDIX F 

EIGENVALUES AND EIGENVECTORS OF THE INFINITESIMAL MATRIX A 

Consider the infinitesimal matrix A (defined by (2.2.7)) corresponding to 

the birth-death process with absorbing state M. Let the polynomials 

{Q0(x) ,Q1 (x) , . . . (x) be defined by relations (2.2.11). We know, that 

the only eigenvalues of A are the solutions {xo,xl,. . . of (2.2.12) 

taken with negative sign and the right eigenvector, corresponding to 

eigenvalue (-xi) is given by 

Let us prove a statement concerning the - left eigenvectors of A. 

Statement F.l The - left eigenvector, corresponding to the eigenvalue (-x.) 
1 

is given by 

where {IT   IT^, a ,IT are defined by (4.2.2). 
0 M- 1 

th Proof: The proof is straightforward. The k- component of  ti^ 
(k = 1,2, ..., M-2) is given by 
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(F.3) (Zi~)k = Ak-l"k-lQk-l (xi) - (Xk+~k)'kQk(~i)+~k+l"k+lQk+l (xi) = 

- = ak{~kQk-l ( x ~ ) - ( ~ ~ + u ~ ) Q ~ ( x ~ ) + ~ ~ Q ~ + ~  ) - 

+ 
= -x.a Q (x.) = (-xi)(L.) l k k  1 l k  ' 

by the definition of the polynomials (2.2.11). We can see, that the equality 

th is preserved also for the zero- component: 

+ + 
(F.4) (LiAIo = -A0',Qo(xi) + P1r1Q1(xi) = -xinoQo(xi) = (-xi) (Lila . 

Concerning the last component we have 

(F.S1 (ti~)M-l = AM-2nM-2QM-2(xi) - (~-1+%41-1)'M-1QM-1(xi) = 

- 
= a M 1 1 2 x i  - (AM-l+%-l)%-l(xi)) - 

+ 
= (-x.)T 1 M-1 Q M-1 X .  1 = - i i M l  , 

since xi is the root of (2.2.12). 

So, the statement is proved. 



From the last statement an important corollary follows: 

Corollary F.l If xi is a root of (2.2.12) (i.e. (-xi) is a spectral value 

of A) then 

Proof: After we sum the equalities (F.3), (F.4) and (F.5), the result (F.6) - 
follows. 



APPENDIX G 

TRANSFORMING THE CONTOUR OF INTEGRATION AND MAPPING IN THE 

INTEGRAL FORM OF F( t )  IN THE CASE 1 = b ~ j .  
j 

Let us consider .the expression (5.2.53) f o r  F( t /b) .  The contour of 

integration G-S s t a r t s  a t  (- - in /2) ,  crosses the  r e a l  axis  i n  the or igin  

and turns back t o  (m + in /2) .  G-C l i e s  en t i r e ly  i n  the s t r i p  1 I m  z l  < a/2.  

F i r s t  of a l l  l e t  us show tha t  this.contour can be replaced by a new one 

(denote it by V) without affect ing the value of t he  in tegra l .  The contour V 

is defined as follows: it s t a r t s  a t  (- - i n ) ,  crosses the or igin ,  turns back 

t o  (- + in) and l i e s  en t i r e ly  i n  the  s t r i p  IIm zl cn. We can see tha t  

But, since lc(s)  I is bounded f o r  large s and for  1 < x < 2 

inx 
1 

K f -  
inx ]2 (G.2) lexp I -  [K 2 -y + '$ [e 2 - (K f F) - 1 = 

2 2 1 2 n x  e x p { - - K  + - +  K nx 
2a 8 a [e cos T -  K - 11) + o 

+in 
as  K + m, the in tegra l s  I appearing i n  (G.l) a r e  equal t o  zero. 

i n  - * - 
2 



Thus, t h e  i n t e g r a t i o n  i n  (5.2.53) can be performed along t h e  pa th  V 

Now l e t  us  consider  t h e  mapping 5 = (2(eW - w - 1))1/2,  where t h i s  

branch o f  t h e  square roo t  is used f o r  which ( 1 ) l I 2  = 1. Since 

the  p o i n t w =  0 corresponds t o  5 = 0 and t h e  po in t  w = 0 is a s i n g l e  zero 

o f  t h e  mapping, t h e  pa th  V i s  transformed by t h e  mapping i n t o  t h e  imaginary 

a x i s  i n  S-plane. This leads  immediately t o  (5.2.55). 



APPENDIX H 

ON OSCILLATORY BEHAVIOUR OF $(q) IN THE CASE A .  = b ~ j .  
I 

We obtained the following expression f o r  $(q) (See 5.2.66): 

2 1  2 
m 

(H.I) $(q) = $(a) = 1 (w -w) 
exp [a (w+ j +a) ] 

2 
dw = 

o j=-m {l+exp [a(w+j+a)] 1 

where a is 1/2 minus the f rac t iona l  par t  of q/a. Let us show tha t  $(q) does 

not approach a l i m i t  as q + ( i .e .  t ha t  $(a) depends on a ) .  Since 

m 
a (H.2) $' (a) = C (Zw-l)d[ 1 I = 

]=-m l+exp [a(w+j+a)] 



We see now that $'(a) is not identically equal to zero by considering large 

values of a. However, for moderate values of a $'(a) is fairly close to zero 

(See Table H.l). It can be shown that the only zeros of $'(a) in the interval 

1 1 (- 7 , T ]  are a = 0 and a2 = 1/2. Since $(a) is periodic with period 1, 1 

the last fact means that one of the points al,a2 corresponds to maximum and 

another one to minimum of $(a). So, the range of $(a) is equal to 

1 max $(a) - min $(a) = I UJ - $ (0) 1 
a a 

The last equality estimates the amplitude of oscillations of the function 

c(e) appearing in the asymptotic representation of the distribution function at 

(See 5.2.58). 

Table H.l Dependence of $'(a) on a 

a = l n 2  a = l n 4  



APPENDIX I 

J u s t i f i c a t i o n  o f  t h e  t e r m w i s e  p a s s a g e  t o  t h e  l i m i t  f o r  f i n d i n g  - 
k  i n  t h e  c a s e  o f  Dower c h a r g e  a c c u m u l a t i o n  r a t e s  

To j u s t i f y  t h e  t e r m w i s e  p a s s a g e  t o  t h e  l i m i t  i t  is  enough t o  
I I )  

show t h a t  z Ai + 0 a s  s-w , where 
i= l 

( t h e  l a s t  e x p r e s s i o n  i s  o b t a i n e d  by i n t e g r a t i o n  by p a r t s ) .  The 
l / a  

f u n c t i o n  i n [ a z a + s ]  i s  convex f o r  z < [ ~ a - l ) s / a ]  , concave  f o r  
l / a  - 

z >  [ ( a -1 )  s / a ]  and monotone.  S i n c e  t h e  e x i s t e n c e  of  k  f o l l o w s  
OD 

from t h e  e x i s t e n c e  o f  t h e  a s y m p t o t i c  e x p a n s i o n  f o r  Z ( a j a + s ) - l ,  - j=O 
any  subsequence  { ~ ~ ) y + ~  may be used  t o  f i n d  k  b y  means o f  

l / a  
( 5 . 2 . 3 ) .  Let  us  t a k e  a  subsequence  I S k )  f o r  which 1 ( a - 1 ) s k / a l  =k 

S i n c e  f o r  a  f u n c t i o n  f ( x ) ,  convex ( o r  concave )  and c o n t i n u o u s  

i n  [0,1] t h e  i n e q u a l i t y  

h o l d s  ( i t  f o l l o w s  from J e n s e n ' s  i n e q u a l i t y ) ,  f o r  any i n t e g e r s  

i and k  



F u r t h e r m o r e ,  d e n o t i n g  t h e  f r a c t i o n  i n  t h e  l a s t  e x p r e s s i o n  by F i ,  

(Here ,  c > 0, c 2  1 > 0 ,  0 < c c 1  a r e  p o s i t i v e  c o n s t a n t s .  The f i r s t  

0 -1  bound i s  o b t a i n e d  u s i n g  t h e  i n e q u a l i t y  xa-ya < r x  (x-y)  f o r  

x  t y  z 0 ( s e e  Hardy (1973 ,  p .  3 9 ) )  and t h e  second  one by u s i n g  t h e  

T a y l o r  e x p a n s i o n  o f  [ ( i + l )  a+ia] abou t  t h e  p o i n t  ( i + % ) )  . 
Now, u s i n g  t h e  i n e q u a l i t y  of  t h e  a r i t h m e t i c  and g e o m e t r i c  

means ( s e e  Hardy (1973 ,  p . 1 7 ) )  we o b t a i n  t h a t  f o r  e v e r y  0 c 6 < 1 

where C i s  a  p o s i t i v e  c o n s t a n t ,  dependen t  on a  and 6 o n l y .  Choosing 

6 a p p r o p r i a t e l y ,  we o b t a i n  bounds f o r  both.  t e r m s  i n  t h e  r i g h t  hand 

s i d e  o f  ( 1 . 4 ) .  Thus ,  f o r  e v e r y  i and k 

where C1,C2,c1, ... , E ~  a r e  p o s i t i v e  c o n s t a n t s .  The l a s t  r e l a t i o n  
0 

i m p l i e s  t h a t  Z Ai  + 0 a s  s+m . 
i= l  



APPENDIX J 

A A . P r o p e r t i e s  o f  t h e  e s t i m a t o r s  l / y  and  ( I n  b  

I n  t h i s  a p p e n d i x  we d i s p l a y  t h e  c a l c u l a t e d  v a l u e s  o f  t h e  b i a s  
A f i  

and  s t a n d a r d  d e v i a t i o n  f o r  t h e  e s t i m a t o r s  l / y  and  ( I n  bN)  ( s e e  

(3 .3 .27 )  and ( 3 . 3 . 5 6 )  f o r  v a r i o u s  v a l u e s  o f  y and  k .  A s  w e l l ,  we - 
g i v e  t h e  c a l c u l a t e d  c o r r e l a t i o n  c o e f f i c i e n t  b e t w e e i t h e  above  

e s t i m a t o r s .  I n  t a b l e s  J . l  and 5.2 t h e  u p p e r  number i n  e a c h  box 

r e p r e s e n t s  t h e  b i a s  and t h e  l o w e r  number r e p r e s e n t s  t h e  s t a n d a r d  

d e v i a t i o n .  



A 

T a b l e  J . l :  B i a s  and s t a n d a r d  d e v i a t i o n  o f  l / y  



f i  
T a b l e  5 . 2 :  B i a s  and s t a n d a r d  d e v i a t i o n  o f  ( I n  b N )  



A A 
Table  5.3: C o r r e l a t i o n  c o e f f i c i e n t  between l / y  and ( I n  b N ) .  
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