MODELLING AND ANALYZING BREAKDOWN PHENOMENA IN INSULATORS - A STOCHASTIC APPROACH

Research Thesis

Submitted in partial fulfillment of the requirements for the degree of Doctor of Science

ENMANUEL YASHCHIN

V

MODELLING AND ANALYZING BREAKDOWN PHENOMENA

IN INSULATORS - A STOCHASTIC APPROACH

Research Thesis

Submitted in partial fulfillment of the requirements for the degree of Doctor of Science

EMMANUEL YASHCHIN

 This research was carried out under the supervision of Dr. Paul Feigin in the Faculty of Industrial Engineering and Management.

I would like to thank Dr. Paul Feigin for his ideas and good advice which made the present research possible.

Special thanks are due to Professor Nicolas Klein (Faculty of Electrical Engineering, Technion) for motiv?.ting this research and for his invaluable consultations.

My sincere thanks are also due to Professor J.L. Teugels (The Catholic University of Louvain) for his help and good advice and the referees, for their valuable comments.

Thanks are also due to Mrs. Hadassah Nesher for her excellent work in the preparation of the manuscript.

CONTENT S

		Page No.	
Abstract			
CHAPTER I			
1. Introduction			
1.1	The breakdown phenomenon	5	
	1.1.1 Description	5	
	1.1.2 Data available	9	
1.2	Some physical models of breakdown	10	
	1.2.1 The model of thermal breakdown	11	
	1.2.2 Energetic structure of a thin film capacitor	13	
	1.2.3 Principles of conduction	17	
	1.2.4 Non-thermal models of breakdown	19	
1.3	Statistical questions	27	
CHAPTER 11		29	
2. A Clas	s of Stochastic Models	29	
2.1	Pure birth and birth-death models	30	
2.2	The quasi-stationary model	32	
	2.2.1 The charge accumulation process	33	
	2.2.2 The quasi-stationary distribution	36	
	2.2.3 Computational aspects	41	
2.3	Relevance of Extreme Value Theory 45		
2.4	Experimental evidence	48	

Contents - Cont'd

	E	Page No,	
CHAPTER III		56	
3. Extreme Value Theory - a Survey of Relevant Results			
3.1 T	he domain of attraction problem	56	
3.2 T	The joint distribution of extreme order statistics	68	
3.3 A	pplications to statistical inference	71	
CHAPTER IV		82	
4. Finite C	harge Breakdown Models	82	
4.1 D	omain of attraction	82	
4	1.1.1 Zero initial charge	82	
4	1.1.2 Quasi-stationary case	85	
4.2 R	Regenerative case	86	
4.3 N	Non-regenerative case		
4	2.3.1 Zero initial charge	88	
4	1.3.2 Quasi-stationary case	89	
CHAPTER V			
5. Infinite Charge Breakdown Models - Pure Birth Case			
5.1 D	Domain of attraction	91	
5	5.1.1 Exact form of the distribution function P(t)	92	
5	5.1.2 Quadratic rates	96	
5	5.1.3 General approach	98	
5	5.1.4 An alternative approach	107	

Contents - Cont'd

			Page No	
5.2	2 Norma	lizing constants	109	
	5.2.1	Power charge accumulation rates	109	
	5.2.2	Geometric charge accumulation rates	123	
	5.2.3	The direct approach in the geometric rates cas	e 137	
5.3	3 Infer	ence for the pure birth model	138	
	5.3.1	Regenerative case	139	
	5.3.2	The non-regenerative case	148	
CHAPTER V	7T		150	
6. A Mon	re Gener	al Model of Breakdown, A Tauberian Theorem	150	
6.1	l The i	nfinite charge model based on transient birth-		
	death	process	150	
6.2	2 A Tau	berian theorem	159	
6.3	3 Speci	al case	171	
CITA DEED 1	7T T		1.74	
CHAPTER V	VII		174	
7. Concl	lusions		174	
7.2	1 Resum	ne	174	
7.2	2 Open	problems	176	
Appendix	A. Bas	sic properties of theta-functions	179	
Appendix	B. Eul	er's summation formula	183	
Appendix	C. On	the saddle point method	186	

Contents - Cont'd.

		Page No.
Appendix D.	The classification of birth and death processes	191
Appendix E.	Choice of the appropriate function $\;\theta\;(\gamma\;,N\;,\beta\;)\;$	
	when finding the normalizing constants in the	
	case $X_{j} = a(j+1)^{\alpha}$	197
Appendix F.	Eigenvalues and eigenvectors of the infinitesimal	
	matrix A	199
Appendix G.	Transforming the contour of integration and mapping	
	in the integral form of F(t) in the case $k_{\;j}=\;$ b $\!k$	202
Appendix H.	O_{n} oscillatory behavior of $\phi\left(\textbf{q}\right)$ in the case $\lambda_{ j }=\text{b}\lambda^{j}$	204
Appendix I.	Justification of the termwise passage to the limit	
	\sim for finding k in the case of power charge accumulation	
	rates.	205a
Appendix 3.	Properties of the estimators $\widehat{1/\gamma}$ and $(\widehat{1n}\ b_N)$	205c
	References	206