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ABSTRACT
We propose a general algorithm to approximately enumerate
all solutions of a zero-dimensional polynomial system with
respect to a given cost function. The algorithm is developed
and is used to study a polynomial system obtained by dis-
cretizing the steady cavity flow problem in two dimensions.
The key technique on which our algorithm is based is to solve
polynomial optimization problems via sparse semidefinite
program relaxations (SDPR) [18], which has been adopted
successfully to solve reaction-diffusion boundary value prob-
lems in [11]. The cost function to be minimized is derived
from discretizing the kinetic energy of the fluid. The solu-
tions of the enumeration algorithm are shown to converge to
the minimal kinetic energy solutions for SDPR of increas-
ing order. We take advantage of Gröbner basis method to
tune the performance of the algorithm, demonstrate the al-
gorithm with SDPR of first and second order on polynomial
systems for different scenarios of the cavity flow problem
and succeed in approximately deriving the k smallest kinetic
energy solutions. The question of whether these solutions
converge to solutions of the steady cavity flow problem is
discussed, and we pose a conjecture for the minimal energy
solution for increasing Reynolds number.
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1. INTRODUCTION
The steady cavity flow problem is a simple model of a

flow with closed streamlines and is used for examining and
validating numerical solution techniques in fluid dynamics.
Although it has been discussed in the literature of numerical
analysis of fluid mechanics (see, e.g., [8], [3], [6], [4], [14]), it
is still an interesting problem to a number of researchers for
a range of Reynolds numbers. We are interested in a poly-
nomial system derived from discretizing the steady cavity
flow problem. This polynomial system, called the discrete
steady cavity flow problem, is obtained by discretizing the
cavity region, approximating the partial differential equa-
tion of the two-dimensional cavity flow problem by finite
difference method, and depends on two parameters: The
Reynolds number, R; and the grid discretization, N .

Our main contribution, presented in section 3 is an al-
gorithm to approximately enumerate the solutions of the
discrete cavity flow problem with respect to an objective
function. The objective function is derived from discretiz-
ing the kinetic energy function of the flow. The key ele-
ment of the enumeration algorithm is the sparse semidefinite
program relaxation method (SDPR) [18] for solving polyno-
mial optimization problems, whose solution is taken as the
starting point for Newton’s method or sequential quadratic
programming. Recently, the SDPR has been successfully
adopted to derive numerical solutions to a class of reaction
diffusion equations [11]. We prove that the first k solutions
provided by the enumeration algorithm converge to the k
smallest energy solutions of the discrete cavity flow prob-
lem, in that case we apply SDPR of increasing relaxation
order. Furthermore, we demonstrate this algorithm for dif-
ferent parameter settings of R, and we show how to use the
Gröbner basis method to tune the parameters in SDPR and
the performance of the enumeration algorithm. Secondly,
we discuss the behavior of the minimal energy solution of
the discrete steady cavity flow problem in the case that a
finer grid is chosen to discretize the cavity flow problem in
section 4. For small Reynolds numbers R standard grid-



refining techniques can be applied to extend solutions of the
polynomial system to finer grids. However the polynomial
systems for large R behave differently and convergence is
far more difficult to obtain. Therefore, we examine how the
polynomial system depends on the Reynolds number R in
case that the discretization N is fixed.

2. THE DISCRETE STEADY CAVITY FLOW
PROBLEM

The 2-dimensional steady cavity flow problem is to solve
the Navier-Stokes equation on the cavity region ABCD with
the coordinates A = (0, 1), B = (0, 0), C = (1, 0), D =
(1, 1).
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We apply the well-know stream function method (see, e.g.,
[8], [14]) to solve the Navier-Stokes equation numerically,
and obtain the following polynomial system.

g1
i,j(ψ, ω) = 0 ∀ 2 ≤ i, j ≤ N − 1, (1)

g2
i,j(ψ, ω) = 0 ∀ 2 ≤ i, j ≤ N − 1, (2)

ψ1,j = ψN,j = 0 ∀ j ∈ {1, . . . , N} ,
ψi,1 = ψi,N = 0 ∀ i ∈ {1, . . . , N} ,

ω1,j = −2
ψ2,j

h2 ∀ j ∈ {1, . . . , N} ,

ωN,j = −2
ψN−1,j

h2 ∀ j ∈ {1, . . . , N} ,

ωi,1 = −2
ψi,2

h2 ∀ i ∈ {1, . . . , N} ,

ωi,N = −2
ψi,N−1+h

h2 ∀ i ∈ {1, . . . , N} ,

(3)

where

g1
i,j(ψ,ω) = −4ωi,j + ωi+1,j + ωi−1,j + ωi,j+1 + ωi,j−1

+R
4
(ψi+1,j − ψi−1,j)(ωi,j+1 − ωi,j−1)

−R
4
(ψi,j+1 − ψi,j−1)(ωi+1,j − ωi−1,j),

g2
i,j(ψ,ω) = −4ψi,j + ψi+1,j + ψi−1,j + ψi,j+1

+ψi,j−1 + h2ωi,j ,

and h = 1/(N − 1). We will call the polynomial system (1),
(2), (3) the discrete steady cavity flow problem denoted as
DSCF(R,N). It depends on two parameters, the Reynolds
number R and the discretization N of the cavity region
ABCD = [0, 1]2. Let the number 2(N − 2)2 of variables
in DSCF(R,N) corresponding to function evaluations at in-
terior grid points, be called the dimension n of the dis-
crete steady cavity flow problem. In order to visualize a
numerical solution (ψ, ω)(N) we display the horizontal and
vertical velocities v1 and v2 at (x, y) = ((i − 1)h, (j − 1)h)
given by

v1 =
∂ψ

∂y
≈
ψi,j+1 − ψi,j−1

2h
, v2 = −

∂ψ

∂x
≈ −

ψi+1,j − ψi−1,j

2h
.

(4)
Moreover, a solution (ψ, ω)(N) of the discrete cavity flow
problem of discretization N , one that does not converge to a

physical solution of the original continuous cavity flow prob-
lem for N → ∞, is called a fake solution. Several meth-
ods have been used to solve the cavity flow problem and the
steady cavity flow problem numerically (see, e.g., [1], [3], [4],
[6], [8], [14], [16]). In this paper, we propose a new method
to solve the discrete steady cavity flow problem. It provides
solutions sorted by their (discretized) kinetic energy.

Remark 1. In (1), we discretize the Jacobian ∂ψ

∂y
∂ω
∂x

−
∂ψ

∂x
∂ω
∂y

by the central difference scheme. It is shown by Ara-

kawa [1] that the central difference scheme is the simplest,
but the discretized system does not keep important physical
invariants. We study the system DSCF(R,N) with standard
central difference scheme as the simplest starting test case.

Remark 2. We conjecture that the discrete cavity flow
problem DSCF(R,N) has finite complex solutions. In other
words, it defines a zero-dimensional ideal. We have checked
the conjecture up to N = 5 by Gröbner basis computation.

3. SPARSE SDP RELAXATION METHOD
The main contribution of this paper is to propose an al-

gorithm that enumerates the smallest kinetic energy solu-
tions of the discrete steady cavity flow problem DSCF(R,N)
starting with the minimal energy solution. The key element
of this algorithm is to apply the sparse semidefinite program
relaxation method (SDPR) to solve the DSCF(R,N). The
SDPR for PDEs was proposed in [11] and is based on the idea
to take the polynomial system derived from a finite differ-
ence discretization of a differential equation and its bound-
ary conditions (for instance: DSCF(R,N)) as constraints
for an optimization problem. Choosing another polynomial
function F as objective, a polynomial optimization problem
(POP) of the form

min F (x)
s.t. gj(x) ≥ 0 ∀ j ∈ {1, . . . , k} ,

hi(x) = 0 ∀ i ∈ {1, . . . , l} .
(5)

is obtained. As shown in [11], polynomial optimization prob-
lems derived from differential equations satisfy structured
sparsity patterns and the sparse SDP relaxations due to [18]
can be applied to approximate the solution of POP (5). The
crucial point is how to choose the objective function F in
POP (5). In the case that several solutions to a discretized
PDE problem exist, the choice of the objective function al-
lows to select solutions of particular interest. For the cavity
flow problem, we are interested in the solution which mini-
mizes the kinetic energy (6) given by

Z Z

ABCD

„

∂ψ

∂y

«2

+

„

−∂ψ

∂x

«2

dxdy (6)

Thus, for the cavity flow problem we yield by discretizing
(6) the following function F as a canonical choice for the
objective function of (5):

F (ψ, ω) =
1

4

X

2≤i,j≤N−1

ψ2
i+1,j + ψ2

i−1,j + ψ2
i,j+1 + ψ2

i,j−1

−2ψi+1,jψi−1,j − 2ψi,j+1ψi,j−1.
(7)

Taking DSCF(R,N) as a system of constraints and F as
objective function, we derive the polynomial optimization



problem,

min F (ψ, ω)
s.t. (1), (2), (3)

(8)

We call POP (8) the steady cavity flow optimization
problem CF(R,N) . As all polynomials in (8) are of de-
gree at most two, CF(R,N) is a quadratic optimization
problem (QOP). In fact, a further classification is possible
for R = 0 and R 6= 0.

Proposition 1. a) CF(0, N) is a convex quadratic

program for any N .

b) CF(R,N) is non-convex for any N , if R 6= 0.

Proof:

a) In case R = 0 all constraints are linear. Further-
more, the objective function can be written as F =
P

i,j F
1
i,j + F 2

i,j , where

F 1
i,j(ψ, ω) =

„

ψi−1,j

ψi+1,j

«T „

2 −2
−2 2

«„

ψi−1,j

ψi+1,j

«

.

It follows that F 1
i,j is convex as

„

2 −2
−2 2

«

positive

semidefinite with eigenvalues 0 and 4. The convexity
of F 2

i,j follows analoguously. Thus, F can be written
as a sum of convex function and is therefore convex as
well. The proposition follows.

b) In case R 6= 0, the equality constraint function g1
i,j is

indefinite quadratic. Thus, CF(R,N) is a non-convex
quadratic program. �

Like the class of POPs treated in [11], the POP (8) satisfies
some structured sparsity. With respect to the framework
developed in [18] the sparsity structure of (8) is characterized
by the chordal correlative sparsity pattern (CSP) matrix,
which describes which ψi,j (1,≤ i, j ≤ N) and ωk,l (1 ≤
k, l ≤ N) are dependent on each other in CF(R,N) (C.f.
Figure 1).

Figure 1: Chordal CSP matrix for CF (R, 20)

Therefore we apply the methods proposed in [11] to solve
CF(R,N), i.e. to approximate the solutions of (8) by so-
lutions of a hierarchy of semidefinite program relaxations
SDPR(w) [18], where w denotes the order of the semidef-
inite program (SDP) relaxation. In theory, the solution
of SDPR(w) converges to the optimal solution for (8) for
w → ∞. Nevertheless, the capacity of present SDP solvers
restricts the choice of the relaxation order w, as the size
of SDPR(w) grows rapidly in w. However, as pointed out
in [18] for many quadratic POPs it is sufficient to choose a
relaxation order w ∈ {1, . . . , 4} to approximate the POP’s
minimizer accurately.

Remark 3. It is a well known result (c.f. [10]), that
SDPR(1) and (5) are equivalent, in the case POP (5) is a
convex quadratic program. Thus, solving CF (0, N) is equiv-
alent to solving a SDP. Moreover, it is easy to show that the
constraints admit only one feasible point when R = 0.

3.1 Improving the accuracy of SDPR(w)
As stated before, the solution of SDPR(w) converges to

the optimizer of the POP for w → ∞. Nevertheless, as the
dimension n of CF(R,N) is given by n = 2(N − 2)2, choos-
ing a relaxation order w greater than 2 for a medium scale
discretization N yields a SDP which requires too much mem-
ory in order to be solved by the used SDP-solver SeDuMi
[17]. Therefore, we have to restrict ourselves to w = 1, 2 for
small scale N , or even to w = 1 for medium scale N . We
cannot expect that SDPR(1) or SDPR(2) provide accurate
approximations to the optimal solution for any R. In order
to tighten the SDP relaxation, we impose lower and upper

bounds lbdψ, lbdω, ubdψ and ubdω ∈ R
N2

such that

lbdψi ≤ ψi ≤ ubdψi and lbdωi ≤ ωi ≤ ubdωi ∀ 1 ≤ i ≤ N2.
(9)

And in order to improve the accuracy of the SDPR solu-
tion, we may apply additional locally convergent optimiza-
tion techniques. For instance Newton’s method for nonlinear
systems can be applied to DSCF(R,N) where the SDPR(w)
solution is taken as the starting point. Or alternatively, (8) is
approximated by sequential quadratic programming (SQP)
[2], again, with the SDPR(w) solution as starting point of
the algorithm. Combining the sparse SDP relaxation with
Newton’s method or SQP is summarized in the scheme:

Method 1. SDPR method

1. Choose the two parameters R and N .

2. Apply SDPR(w) to CF(R,N) and obtain solution ũ :=

(ψ̃, ω̃).

3. Apply sequential quadratic programming (SQP) to
CF(R,N) or Newton’s method to DSCF(R,N), each
of them starting from ũ, and obtain u := (ψ, ω).

3.2 Gröbner basis method and SDPR
The Gröbner basis method to find all complex solutions of

a given system of zero dimensional polynomial equations is
a useful tool for tuning the parameters of the SDPR and for
validating its numerical results. In order to do this, we will
study DSCF(R,N) by the rational univariate representation
[13], [12], which is a variation of the Gröbner basis method,
for coarse discretizations N . The 5 × 5 mesh (N = 5)
is solvable with this method (Groebner(Fgb) in Maple 11,
nd gr trace and tolex gsl in Risa/Asir). The system for the
5×5 mesh case contains 18 variables and 9 in the 18 appear
as linear and the other 9 as quadratic variables. Applying
Gröbner basis method to solve DSCF(R, 5) for different set-
tings of R, and enumerating all solutions by their kinetic
energy allows us to confirm whether the SDPR solutions are
indeed the minimal energy solutions of DSCF(R,N) and to
determine which relaxation order w is sufficient to derive
this global minimal energy solution. The result is also used
to tune parameters εki which appears in the next section.
We have no theorem which states that the tuning based on
the 5×5 case is good for the n×n case. However, we believe



this tuning provides a better approximation for the n × n
case, too. Note, whereas the Gröbner basis method finds all
complex solutions of DSCF(R,N), the SDPR method finds
the real solution of DSCF(R,N) that minimizes F .

3.3 Enumeration algorithm for finding the k

smallest energy solutions
As mentioned in Section 2, we conjecture the number of

solutions of the discrete steady cavity flow problem DSCF(R,N)
is finite, i.e. the feasible set of CF(R,N) is finite. Method
1 enables us to approximate the global minimal solution
u⋆ = u(1)⋆ := (ψ(1)⋆, ω(1)⋆) of CF(R,N). Beside the mini-
mal solution, we are also interested in finding the solution
u(2)⋆ with the second smallest kinetic energy, the solution
u(3)⋆ with the third smallest kinetic energy or in general the
solution u(k)⋆ with the kth smallest kinetic energy. Based
on the SDPR method we propose an algorithm that enu-
merates the k smallest kinetic energy solutions of CF(R,N).
Our algorithm shares the idea of separating the feasible set
by additional constraints with Branch-and-Bound and cut-
ting plane methods that are used for solving mixed integer
linear programs and general concave optimization problems
[7]. In contrast to the linear constraints of those methods
we impose quadratic constraints to separate the feasible set.
Moreover, CF(R,N) is a non-convex continuous quadratic
optimization problem for R 6= 0. It may be worth investigat-
ing in future how extensions of Branch-and-Cut methods for
certain nonconvex problems [5] can be used in our setting.

Algorithm 1. Find the k smallest solutions approxima-
tely:
Given u(k−1), the approximation to the (k − 1)th energy so-
lution obtained by solving SDPRk−1(w).

1. Choose ǫk1 and ǫk2 > 0.

2. Choose integers bk1 , b
k
2 ∈

˘

1, . . . , (N − 2)2
¯

.

3. Add the following quadratic constraints to SDPRk−1(w)
and denote the resulting (tighter) SDP relaxation as
SDPRk(w).

(uj − u
(k−1)
j )2 ≥ ǫk1 ∀1 ≤ j ≤ bk1 ,

(uj+(N−2)2 − u
(k−1)

j+(N−2)2
)2 ≥ ǫk2 ∀1 ≤ j ≤ bk2 .

(10)

4. Solve SDPRk(w) with w = 1, 2 or larger, if possible.

Obtain a first approximation uSDP(k).

5. Apply a local optimization technique as for instance
Newton’s method or SQP with uSDP(k) as starting point.
Obtain u(k) as an approximation to u(k)⋆.

6. Iterate steps 1–5.

Note that uj = ψj and uj+(N−2)2 = ωj if 1 ≤ j ≤ N . The
idea of Algorithm 1 is to impose an additional polynomial
inequality constraint (10) to the POP (8) in iteration k,

that excludes the previous iteration’s solution u(k−1) from
the feasible set of POP (8). In the case the feasible set of (8)

is finite and u(k−1) is sufficiently close to u(k−1)⋆, the new
constraint excludes u(k−1)⋆ from the feasible set of (8) and

u(k)⋆ is the new global minimizer of (8). Of course, there
are various alternatives to step 3 in Algorithm 1, in order to

exclude u(k−1)⋆ from the POP’s feasible set. One alternative
constraint is

“

ui − u
(k−1)⋆
i

”

un+i − ǫi = 0 (1 ≤ i ≤ b), (11)

where b ∈ {1, . . . , n} , ǫi > 0 and un+i an additional slack
variable bounded by −1 and 1. It is easy to see that (11)

is violated, if u = u(k−1)⋆. Nevertheless, it turned out that
the numerical performance of (11) is inferior to the one of
(10) for our problem DSCF(R,N) as the tuning parameters
ǫi and b is far more difficult for (11) compared to (10). A

second alternative to exclude u(k−1)⋆ are lp-norm constraints
such as

‖ u− u(k−1)⋆ ‖p=

 

n
X

i=1

“

ui − u
(k−1)⋆
i

”p

! 1

p

≥ ǫ, (12)

for p ≥ 1. The disadvantage of the constraints (12) is, they
destroy the sparsity of the POP (8), as all ui (i = 1, . . . , n)
occur in the same constraint. Therefore the advantage of
the sparse SDP relaxations is lost and the POP can not
be solved efficiently anymore. These observations justify to
impose (10) as additional constraints in Algorithm 1. We
obtain the following results for Algorithm 1.

Proposition 2. Let R and N be fixed, (u(1), . . . , u(k−1))
be the output of the first (k−1) iterations of Algorithm (1). If
this output is a sufficiently close approximation of the vector
of (k−1) smallest kinetic energy solutions (u(1)⋆, . . . , u(k−1)⋆),
and if the feasible set of POP (8) is finite and distinct in

terms of the energy function, i.e. F (u(1)⋆) < F (u(2)⋆) < . . .,
then there exist b ∈ {1, . . . , n} and ǫ ∈ R

b such that the out-

put u(k) of Algorithm 1 (for kth iteration) satisfies

u(k)(w) → u(k)⋆ when w → ∞. (13)

Proof: .
As each u(j) is in a neighborhood of u(j)⋆ for all j ∈

{1, . . . , k − 1}, we can choose b ∈ {1, . . . , n} and a vector
ǫ ∈ R

b, s.t.

∀j ∈ {1, . . . , k − 1} ∃i ≤ b s.t.
“

u
(j)
i − u

(j)⋆
i

”2

< ǫi,

and for each j ∈ {1, . . . , k − 1} holds

“

u
(j)
i − u

(l)⋆
i

”2

≥ ǫi ∀l ≥ k ∀i ∈ {1, . . . , b} .

Let CF(R,N)(k) denote the CF(R,N) with the k systems of
additional constraints given by step 3 in Algorithm 1, where
the kth constraints are given by (10) for the constructed b
and ǫ. Then it holds

feas
“

CF (R,N)(k)
”

= feas (CF (R,N))\
n

u(1)⋆, . . . , u(k−1)⋆
o

.

Thus, u(k)⋆ is the global minimizer of CF (R,N)(k) and the

global minimum is F (u(k)⋆). As the bounds (9) guarantee
the compactness of the feasible set, it holds with the conver-
gence theorem for the sparse SDP relaxations [9], if w → ∞,

min SDPR(k)(w) → minCF (R,N)(k) = F (u(k)⋆),

u(k)(w) → u(k)⋆. �

(14)



Although we have proven convergence, the capacity of cur-
rent SDP solvers restricts the choice of the relaxation order
w to small integers, in our application typically to w = 1 or
w = 2. Furthermore, we need to choose the parameters ǫ
and b appropriately, to obtain good approximations of the k
smallest kinetic energy solutions. In the following numerical
experiments, we see the Gröbner basis method is an use-
ful tool to tune the two parameters ǫ and b, as it allows to
confirm whether we derive the k smallest energy solutions
successfully in case N is small (N = 5).

3.4 Numerical results
We will demonstrate the numerical performance of the

SDPR(w) and Algorithm 1 to approximately enumerate the
k smallest solutions. All calculations are conducted on a
Mac OS X with CPU 2.5GHz and 2 GB Memory. As an im-
plementation of the sparse SDP relaxation we use the soft-
ware SparsePOP [15] and MATLAB optimization toolbox
for standard SQP routines in order to improve the accuracy
of the solution provided by SDPR(w). The total accumu-
lated computation time in seconds is denoted by tC , the
scaled feasibility error of a SDPR solution u′ w.r.t. the con-
straints of CF(R,N) by ǫsc.

3.4.1 CF(4000,5)
In a first setting we choose the discretization N = 5, i.e.

the dimension of the POP (8) is n = 2·32 = 18. This dimen-
sion is small enough to apply the Gröbner basis method to
determine all complex solutions of DSCF(R,N). Therefore,
we are able to verify whether the solutions provided by Al-
gorithm 1 are optimal. The computational results are given
in Table 1. Comparing our SDPR results to all solutions

k w ǫk1 bk1 bk2 tC ǫsc F (u(k)) solution

0 1 - - - 2 2e-10 4.6e-4 u(0)

1 1 1e-3 3 0 5 5e-4 6.3e-4 u(1)

2 1 1e-3 3 0 8 5e-4 1.0e-3 u(2)

Table 1: Results of Algorithm 1 for CF(4000, 5)

of the polynomial system obtained by polyhedral homotopy
method or Gröbner basis method, it turns out that the so-
lutions u(0), u(1) and u(2) indeed coincide with the three
smallest energy solutions u(0)⋆, u(1)⋆ and u(2)⋆. The veloc-
ities (v1, v2) derived from these three solutions via (4) are
displayed in Figure 2. Note, that the third smallest energy
solution u(2) shows a vortex in counter-clockwise direction,
which may indicate that this solution is a fake solution.

3.4.2 CF(20000,7)
We apply Algorithm 1 with SDPR(1) to CF(20000, 7)

and obtain the results in Table 2. The two parameter set-
tings (ǫ11, b

1
1) = (1e − 3, 1) and (ǫ11, b

1
1) = (1e − 6, 5) are

not sufficient to obtain an other solution than u(0), whereas
(ǫ11, b

1
1) = (1e− 5, 5) yields u(1), a solution of larger energy.

After another iteration with (ǫ21, b
2
1) = (1e− 5, 5) we obtain

a third solution u(3) of even larger energy.
It is interesting to observe in Figure 3 that u(1) and u(2)

are one-vortex solutions, whereas there seems to be no vor-
tex in the smallest energy solution u(0).

3.4.3 CF(40000,7)

k w ǫk1 bk1 bk2 tC ǫsc F (u(k)) solution

0 1 - - - 2 3e-7 3.4e-4 u(0)

1 1 1e-3 1 0 5 5e-4 3.4e-4 u(0)

1 1 1e-6 5 0 5 6e-6 3.4e-4 u(0)

1 1 1e-5 5 0 9 5e-6 5.9e-4 u(1)

2 1 1e-5 5 0 14 5e-6 5.2e-3 u(2)

Table 2: Results of Algorithm 1 for CF(20000, 7)

Next, we examine CF (40000, 7), which is a good example
to demonstrate that solving DSCF(R,N) and POP (8) is
becoming more difficult for larger Reynolds numbers. As
for the previous problem, the dimension of the POP is n =
50, which is too large to be solved by Gröbner basis. Our
computational results are reported in Table 3.

k w ǫk1 bk1 bk2 tC ǫsc F (u(k)) solution

0 1 - - - 3 2e-7 3.4e-4 u(0)(1)

1 1 5e-6 5 0 7 6e-9 7.3e-4 u(1)(1)

2 1 5e-6 5 0 11 3e-6 5.9e-4 u(2)(1)

3 1 8e-6 5 0 16 5e-6 2.3e-4 u(3)(1)

0 2 - - - 5872 8e-10 2.6e-4 u(0)(2)

Table 3: Results of Algorithm 1 for CF (40000, 7)

Solution u(2)(1) is of smaller energy than u(1)(1), and

u(3)(1) is even of smaller energy than u(0)(1). This phe-
nomenon can be explained by the fact, that the SDP re-
laxation with w = 1 is not tight enough to yield a solution
that converges to u⋆ under the local optimization procedure.
The energy of u(0)(2) obtained by SDPR(2) is smaller than

the one of u(0)(1), but it is not the global minimizer as well.
In fact, Algorithm 1 with SDPR(1) generates a better solu-

tion u(3)(1) (with smaller energy) in 3 iterations requiring 16

seconds computation time, compared to solution u(0)(2) ob-
tained by applying SDPR(2) to CF (40000, 7) requiring 5872
seconds. Thus, despite failing to enumerate the smalllest en-
ergy solutions in the right order with w = 1, applying our
enumeration algorithm with relaxation order w = 1 is far
more efficient than the original sparse SDP relaxation with
w = 2 for approximating the global minimizer of POP (8).
It is a future problem to make this construction systematic.

4. RELATIONS OF REYNOLDS NUMBERS
R AND CF(R,N)

4.1 SDPR(w) for increasing discretizationN
In our previous experiments we derived small or even min-

imal energy solutions by Method 1 and Algorithm 1 for var-
ious choices of the problem parameter R with discretization
N ∈ {5, 6, 7}. In the case we succeed, applying SDPR(w)
to CF(R,N) yields the minimal kinetic energy solution u⋆

of the discrete steady cavity flow problem. The important
question arises whether it is possible to expand these coarse
grid minimal kinetic energy solutions u⋆ to finer grids with
larger discretization N , i.e. whether these coarse grid solu-
tions converge to analytic solutions of the original (continu-
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Figure 2: (v1, v2) for solutions u(0) (left), u(1) (center) and u(2) (right) of CF(4000, 5) on the interior of [0, 1]2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3: (v1, v2) for solutions u(0) (left), u(1) (center) and u(2) (right) of CF(20000, 7) on [0, 1]2

ous) steady cavity flow problem for N → ∞. As pointed out
in, e.g., [4], in the case of larger and larger Reynolds number
R the discrete steady cavity flow problem has to be solved
for finer and finer grids, in order to obtain solutions con-
verging to solutions of the continuous problem for N → ∞.
As in section 4, the calculations are conducted on a Mac OS
X with CPU 2.5GHz and 2 GB Memory.

4.1.1 Small Reynolds number R
We apply SDPR(1) to CF(100, N) and take the solution as

starting point for Newton’s method. Accurate solutions with
ǫsc < 1e− 10 to the discrete steady cavity flow problem are
obtained for N ∈ {10, 15, 20}. By applying standard grid-
refinement methods as in [11], we succeed in extending the
solutions to grids of size 30× 30 and 40× 40, as pictured for
N = 40 in Figure 4. Thus, it seems reasonable to conclude,
that the minimal energy solution converges to an analytical
solution of the steady cavity flow problem. The discrete
steady cavity flow problem has multiple solutions. It is an
advantage of our method to show that the minimal kinetic
energy solution u⋆ converges to an analytic solution for N →
∞.
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Figure 4: (v1, v2) for solution u of CF(100, 40)

4.1.2 Large Reynolds number R

Now, we examine CF (10000, N) for N ∈ {8, . . . , 18}. For
all tested discretizations we were able to find accurate solu-
tions by Method 1 with SDPR(1) and SQP.

If we compare the pictures in Figure 5, it seems the SDPR(1)
solution of CF(10000, N) evolves into some stream-like so-
lution. Nevertheless, unlike the solutions of CF(100, N), we
have not been able to expand this solution to a grid of higher
resolution by standard interpolation and grid-refinement meth-
ods so far. It is possible the solution pictured in Figure 5 is
a fake solution.

Question 1. Does the minimal kinetic energy solution
u⋆ of CF(R,N) converge to an analytic solution of the steady
cavity flow problem for N → ∞, even for large values of R?

4.2 Solutions of CF(R,N) for increasing R

In order to address Question 1 and to understand why
convergence to the analytic solution is a lot more difficult to
obtain for large R, we examine the behavior of the minimal
energy solution of the polynomial system DSCF(R,N) and
CF(R,N), respectively, for increasing Reynolds number R.

4.2.1 Minimal kinetic energy solution for increasing
R

Method 1 is one possible approach to solve DSCF(R,N).
If w is chosen sufficiently large, the output u of Method 1 is
guaranteed to accurately approximate the minimal energy
solution u⋆ of CF(R′, N) and DSCF(R′, N), respectively.
In order to show the advantage of the SDPR method we
compare our results to solutions of DSCF(R′, N) obtained
by the following standard procedure:

Method 2. Naive homotopy-like continuation method

1. Choose the parameters R′, N and a step size ∆R.

2. Solve DSCF(0, N), i.e. a linear system, and obtain its
unique solution u0.
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Figure 5: SDPR(1) solutions of CF (10000, N) for N = 8 (left), N = 14 (center) and N = 18 (right)

3. Increase Rk−1 by ∆R: Rk = Rk−1 + ∆R

4. Apply Newton’s method to DSCF(Rk, N) starting from
uk−1. Obtain solution uk as an approximation to a
solution of the discrete cavity flow problem.

5. Iterate 3. and 4. until the desired Reynold’s number
R′ is reached.

Note, the continuation method does not necessarily yield
the minimal kinetic energy solution of DSCF(R,N). Let
u⋆(R,N) denote the global minimizer of CF(R,N), the min-
imal energy is given by Emin(R,N) = F (u⋆(R,N)). Obvi-
ously, it holds Emin(0, N) = F (u0(N)).

In a next step the solution of DSCF(R,N) is obtained
by the continuation method starting from u0 is denoted as
ũ(R), and its energy as EC(R,N) := F (ũ(R,N)). As illus-
trated for N = 5 in Figure 6, it is possible for all R to find
a continuation ũ of u0. For N = 5 the dimension n of the
discrete steady cavity flow problem is n = 18. This dimen-
sion is small enough to solve a polynomial system by Gröb-
ner basis method and to determine all complex solutions
of the system. Therefore, we can verify whether Method
1 detects the global minimizer of CF(R,N) or not. It is
worth pointing out, that we are able to find the minimal
energy solution of the CF(R,N) by applying the SDP re-
laxation method, whereas this solution cannot be obtained
by the continuation method. We observe SDPR(1) is suffi-
cient to detect the global optimizer for R ≤ 10000, and for
R ≥ 20000 the global optimizer is obtained by SDPR(2), i.e.
Emin(R, 5) = ESDPR(2)(R, 5) for any R.

R NC NR EC ESDPR(1) ESDPR(2)

0 1 1 0.0096 0.0096 0.0096
100 37 13 0.0030 0.0030 0.0030
500 37 13 6.2e-4 6.2e-4 6.2e-4

1000 37 13 5.4e-4 5e-4 5e-4
2000 37 13 6.2e-4 6.2e-4 6.2e-4
4000 37 17 6.3e-4 4.6e-4 4.6e-4
6000 36 16 5.7e-4 4.5e-4 4.5e-4
8000 36 16 5.2e-4 4.5e-4 4.5e-4

10000 35 17 4.7e-4 4.5e-4 4.5e-4
30000 35 17 4.5e-4 4.5e-4 2.5e-4

100000 34 16 4.5e-4 4.5e-4 8.8e-5

Table 4: Numerical results for CF (R, 5)

In the case of N = 6 and N = 7 the dimension of the
polynomial system is too large to be solved by Gröbner basis
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Figure 6: EC(R), ESDPR(1)(R), ESDPR(2)(R) and
Emin(R) for N = 5

method for R > 0. For N = 6 the continuation method,
SDPR(1) and SDPR(2) yield the same solution for all tested
R. And in case of N = 7 the continuation solution ũ(R) is
detected by SDPR(1) as well, except the case R = 6000,
where a solution with slightly smaller energy is detected by
SDPR(1), as documented in Table 5.

R 0 100 4000 6000 10000
EC 2.0e-2 7.7e-3 4.1e-4 3.7e-4 3.4e-4
ESDPR(1) 2.0e-2 7.7e-3 4.1e-4 3.6e-4 3.4e-4

Table 5: Numerical results for CF (R, 7)

Summarizing these results, F (u0(N)) ≥ F (ũ(R,N)) for
any of the tested R > 0. It is an advantage of our ap-
proach to show, ũ(R,N) is in general not the optimizer of
CF (R,N) for increasing R. In fact, for some settings we
obtain far better approximations to the minimal energy so-
lution than ũ(R,N). Furthermore, Emin(R) and EC(R) are
both decreasing in R. The behavior of EC , ESDPR and Emin

coincides for all chosen discretization N and motivates the
following conjecture.

Conjecture 1. Let discretization N be fixed.

a) F (u0(N)) = Emin(0, N) ≥ Emin(R,N) ≥ 0 ∀R ≥ 0.

b) Emin(R,N) → 0 for R → ∞.

As an application, Conjecture 1 can be used as a certificate
for the non-optimality of a feasible solution u′ of CF(R,N)
in case F (u′(R,N)) > Emin(0, N). If it is possible to extend
u0 toR via continuation method, ũ(R,N) can serve as a non-
optimality certificate in case F (u′(R,N)) > F (ũ(R,N)).



5. CONCLUSION
We proposed an algorithm to approximately enumerate

all real solutions of a zero dimensional radical polynomial
system with respect to a cost function, which takes advan-
tage of the sparse semidefinite program relaxation method
(SDPR) in order to find a good starting point for Newton’s
method or sequential quadratic programming. The algo-
rithm can be applied successfully to the discrete cavity flow
problem with the kinetic energy of the flow as cost func-
tion. We can guarantee the convergence of the algorithm’s
output to the smallest kinetic energy solutions of the polyno-
mial system, if the order of the SDPR tends to infinity. Our
numerical experiments for various choices of R have demon-
strated that it is sufficient to apply SDPR of order one or
two, in order to succeed in obtaining accurate approxima-
tions to the smallest energy solutions of the discrete cavity
flow problem by our enumeration algorithm. In the case of
small Reynolds numbers our algorithm allowed for another
interesting observation: Among all solutions of the polyno-
mial system given by the discrete cavity flow problem, the
minimal kinetic energy solution converges to an analytic so-
lution of the continuous steady cavity flow problem. In the
case of large Reynolds number R we are not able to extend
our coarse grid solutions to a finer grid, yet, although many
of them look like stream solutions when the kinetic energy
is small. It is known that the set of solutions of the discrete
cavity flow problem contains lots of non-physical solutions
or fake solutions, but there has been no systematic study of
the discrete cavity flow problem as a polynomial system so
far. Moreover, the more interesting stream-like solutions of
the discrete steady cavity flow problem are usually among
the 3rd or 4th smallest kinetic energy solutions. Our enu-
meration algorithm based on the SDPR method provides a
powerful tool to detect the smallest energy solutions one by
one. Further analysis of the polynomial system derived from
the steady cavity flow problem for large Reynolds number
R will remain an interesting topic in future.

To conclude, we think that the polynomial system of the
discrete steady cavity flow problem is challenging for the
community of solvers of polynomial systems and numerical
algebra. Another interesting challenge is to solve the dis-
crete steady cavity flow problem derived by the alternative
finite difference discretization of the Jacobian proposed by
Arakawa [1]. For its observed and described properties the
discrete steady cavity flow problem will be a good test prob-
lem to validate new techniques for solving systems of alge-
braic equations and inequalities. Furthermore, as solving the
cavity flow problem for large Reynolds numbers R remains
an active field of research, we believe that our numerical
results may be instructive for audiences in the community
of numerical analysis for fluid dynamics to understand fake
solutions in partial differential equations.
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