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Abstract: Combining recent moment and sparse semidefinite programming (SDP) relaxation
techniques, we propose an approach to find smooth approximations for solutions of problems
involving nonlinear differential equations. Given a system of nonlinear differential equations,
we apply a technique based on finite differences and sparse SDP relaxations for polynomial
optimization problems (POP) to obtain a discrete approximation of its solution. In a second
step we apply maximum entropy estimation (using moments of a Borel measure associated with
the discrete solution) to obtain a smooth closed-form approximation. The approach is illustrated
on a variety of linear and nonlinear ordinary differential equations (ODE), partial differential
equations (PDE) and optimal control problems (OCP), and preliminary numerical results are
reported.
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1. INTRODUCTION

Problems involving nonlinear differential equations arise in
a variety of models for real world problems. Even finding
approximate solutions for nonlinear differential equations
remains a challenge. In the previous work Mevissen et al.
(2008, 2009) we have established a technique based on
sparse semidefinite programming (SDP) relaxations to
construct discrete approximations for solutions of systems
of nonlinear differential equations. In this paper we present
a novel approach to obtain smooth approximations for so-
lutions of differential equations and of problems involving
differential equations such as optimal control problems.
Namely, an approximate solution is obtained by applying
the maximum entropy estimation of Borwein et al. (1991);
Lasserre (2007) with a finite number of moments of a Borel
measure associated with a discrete approximation of the
solution of the differential equation. For linear differential
equations, an SDP relaxation based method was proposed
in Bertsimas et al. (2006) to generate contracting se-
quences of lower and upper bounds for the moments.

! The research of M. Mevissen was supported by the Doctoral
Scholarship of the German Academic Exchange Service. The research
of D. Henrion was partly supported by project No. 103/10/0628 of
the Grant Agency of the Czech Republic.

Our contribution in this paper is primarily concerned with
nonlinear differential equations and nonlinear optimal con-
trol problems. In a first step, we take advantage of the
discrete approximations provided by the SDP relaxation
method in Mevissen et al. (2008) to compute a finite set
of moments for an appropriately defined measure with
discrete support. Next, an approximation for the solution
of the differential equation is obtained in closed form by
maximum entropy estimation, using the moments of the
discrete measure. To the best of our knowledge, it seems to
be the first attempt to apply maximum entropy estimation
to obtain smooth approximations for solutions of linear
and nonlinear differential equations. Finally, if maximum
entropy estimation does guarantee some weak convergence
of the estimate to the true solution as the number of
moments increases, it does not guarantee pointwise con-
vergence on the entire domain of the differential equation.
However, as our preliminary results show for different
linear and nonlinear differential equations and optimal
control problems, accurate pointwise approximations can
be achieved on certain regions of the domain.

The structure of the paper is as follows. In Section 2
we briefly recall the sparse SDP relaxations method for
solving nonlinear differential equations numerically, which
is the basis for our technique. In Section 3 we introduce the



method of maximum entropy estimation. Our technique
to compute smooth approximations for the solutions of
ordinary differential equations (ODE), partial differential
equations (PDE) and optimal control problems (OCP),
which combines the methods from Section 2 and 3, is
presented in Section 4. Finally, preliminary numerical
results for this method are reported in Section 5.

2. SPARSE SDP RELAXATIONS FOR SOLVING
DIFFERENTIAL EQUATIONS

In this section we recall the approach to compute discrete
approximations for solutions to systems of differential
equations with polynomial data presented in Mevissen
et al. (2008).

2.1 Transforming a differential equation into a POP

In this paper we consider bidimensional differential equa-
tion problems of the following type

L(u(x, y)) + G(u(x, y)) = f(x, y) ∀(x, y) ∈ Ω,
H(u(x, y)) = g(x, y) ∀(x, y) ∈ ∂Ω,
lbd ≤ u(x, y) ≤ ubd ∀(x, y) ∈ Ω,

(1)

with Ω := [xmin, xmax] × [ymin, ymax] ⊂ R2, f : Ω → Rm,
g : ∂Ω → Rm smooth functions, L : D → D and
H : D → D differential operators, G : D → D operator,
L, H and G are polynomial in the function u ∈ D and
its derivatives for some function space D ⊆ L1(Ω), with
L1(Ω) the Banach space of integrable functions on Ω, and
lbd < ubd bounds for the function values of u. Even if
lower and upper bounds are not given by the problem
directly, we need to impose them, since they are crucial
for numerical stability of our method. If little is known
about the solutions of (1), loose lower and upper bounds
are to be imposed.

In a first step of the sparse semidefinite programming re-
laxation (SDPR) method for solving differential equations,
we transform an ODE or a PDE of form (1) into a poly-
nomial optimization problem (POP). We then discretize
the rectangular domain Ω by N (one-dimensional case)
or NxNy (two-dimensional case) grid points, approximate
the derivates by standard finite differences, for instance
∂2u(xi,yj)

∂x2 ≈ ui+1,j−2ui,j+ui−1,j

∆x2 , where ui,j := u(xi, yj), and
denote the discretized differential operators at some inte-
rior grid point (xi, yj) and boundary grid point (xk, yl) as
Li,j and Hk,l, respectively. Finally, we take the discretiza-
tion of the problem (1) as a system of constraints, choose
some objective function F which needs to be polynomial in
u, i.e. F (u) ∈ R[u], and obtain the following optimization
problem

min F (u)
s.t. Li,j(u) + G(ui,j) = f(xi, yj),

lbdi,j ≤ ui,j ≤ ubdi,j ∀(i, j) ∈ {1..Nx}× {1..Ny},
Hk,l(u) = g(xk, yl) ∀(k, l) ∈ {1, Nx}× {1..Ny}
∪{1..Nx}× {1, Ny}

(2)
which, since all functions are polynomial in the variable
u = (u1,1, . . . , uNx,Ny

), is a POP. In the case of an OCP
the objective function F is given by the discretization of
the optimal value function. In the case of a differential
equation with several solutions we can pick a specific
solution by choosing an appropriate objective function.

A particular choice for the objective function may be
motivated by the underlying problem, such as energy
functionals in physics.

2.2 Sparse SDP relaxations

Problem (2) is of the form:

POP min F (u)
s.t. g̃j(u) ≥ 0 ∀j ∈ {1, . . . , k̃},

h̃i(u) = 0 ∀i ∈ {1, . . . , l̃},
lbds ≤ us ≤ ubds ∀s ∈ {1, . . . , ñ},

(3)

where F (u) =
∑

α∈Nñ Fαuα, g̃j(u) =
∑

α∈Nñ gjαuα and

h̃i(u) =
∑

α∈Nñ hiαuα. As mentioned above, the dimension
of this POP is ñ = Nx Ny (or ñ = N in the one-
dimensional case). But due to the structure of the finite
difference discretization only a small number of the ñ
components of u occurs in each constraint or in each
monomial of the objective function of (2). Thus, the POPs
derived from nonlinear differential equations are sparse.

A systematic way of characterizing the structured sparsity
of a POP has been introduced in Waki et al. (2006), and
this structured sparsity is exploited by the sparse SDP
relaxations constructed in Waki et al. (2006). For the POP
(3) one obtains the sparse SDP relaxations:

SDPw min
∑

|α|≤2w

Fαyα

s.t. Mw−wj
(g̃j y, It(j)) ! 0 ∀ j ∈ {1, . . . , k̃}

Mw−w̃i
(h̃i y, It̃(i)) = 0 ∀ i ∈ {1, . . . , l̃}

Mw(y, It) ! 0 ∀ t ∈ {1, . . . , d}
lbds ≤ ys ≤ ubds ∀ s ∈ {1, . . . , ñ},

(4)

where wj := +deg g̃j

2 ,, w̃i := +deg h̃i

2 ,, {It}d
t=1 is the set of

subsets of {1, . . . , ñ} derived from the correlative sparsity
pattern matrix of the POP Waki et al. (2006), Mw(·, ·) and
Mw−wj

(·, ·) are the partial moments and localizing matri-
ces of Lasserre (2006), and w ≥ wmin := maxi,j(wj , w̃i) is
the order of the SDP relaxation. As w increases, solving
SDPw generates a nondecreasing sequence of lower bounds
for min(POP), namely:

min (SDPwmin
) ≤ min (SDPwmin+1) ≤ . . . ≤ min (POP) .

Moreover, if (3) has a unique minimizer x#, the vector
(y#

w,1, . . . , y
#
w,ñ) obtained from an optimal solution y#

w

of (4) is an approximation of x#, and under certain
compactness conditions, see Lasserre (2006), as w → ∞,

min (SDPw) → min (POP) and y#
w → x#. (5)

In implementations of the sparse SDP relaxation such as
SparsePOP, small linear perturbation terms are added to
the objective function F , in order to ensure that (2) has a
unique optimal solution. Therefore, an optimal solution of
the SDP (4) is an approximation of the optimal solution
of the POP (2).

2.3 Discrete approximation

From (5), asymptotic convergence of minimum and min-
imizer of SDPw to minimum and minimizer of POP (3)
are guaranteed under uniqueness of the optimal solution
and compactness of the feasible set of the POP. However,
recall that the dimension ñ of POP (3) is Nx Ny, and so,
if w is much larger than wmin, the resulting SDPw in (4)



is untractable for general purpose SDP solvers. Therefore,
we have to restrict ourselves to w ∈ {wmin, wmin + 1} for
medium scale N , and we cannot expect that SDPwmin

or
SDPwmin+1 provide accurate approximations to a solution
of a nonlinear differential equation. In order to improve
accuracy, we may apply additional locally convergent op-
timization techniques. For instance sequential quadratic
programming (SQP) can be applied to (2), starting from
the solution of SDPw as initial guess. Since the solution
of the SDP relaxation is an approximation for the global
optimizer, it is a systematic choice for an initial point for
local methods which does not require any a priori infor-
mation. Combining the sparse SDP relaxation with SQP
(or another local method) is summarized in the scheme:

Method 1. The SDPR method

(1) Choose a discretization (Nx, Ny) for the differential
equation problem.

(2) Choose a relaxation order w and an objective function
F . Apply SDPw to (2) and obtain its solution ũ and
the lower bound min (SDPw) for min (POP).

(3) Apply sequential quadratic programming (SQP) to
(2) with ũ as initial guess, and obtain u as discrete
approximation to a solution of the differential equa-
tion problem.

3. MAXIMUM ENTROPY ESTIMATION

In this section we briefly introduce the maximum entropy
estimation of Borwein et al. (1991); Lasserre (2007, 2009),
our second tool to find smooth approximations for solu-
tions of nonlinear differential equations. The maximum
entropy estimation is concerned with the following prob-
lem: Let u ∈ L1(Ω) be nonnegative and partially known
by the finite vector m of moments up to order M of
the associated Borel measure dµ := u dx dy on Ω. From
the only knowledge of m, find an estimate uM ∈ L1(Ω)
such that all moments of order up to M of the measure
dµM := uM dx dy match those of dµ and analyze the
asymptotic behavior of uM as M → ∞. An elegant method
consists in finding the estimate uM that maximizes the
Boltzmann-Shannon entropy functional

u .→

∫

Ω
u lnu dxdy, u ∈ L1(Ω).

In this case, the optimal estimate u#
M is given by

u#
M (x, y) ≡ ũ#

M (v#, x, y) = exp
∑

0≤i,j≤M
i+j≤M

v#
i,jx

iyj , (6)

where v# ∈ R|m| is a (global) optimizer of the convex finite-
dimensional optimization problem:

max
v∈R|m|

〈m, v〉 −

∫

Ω
uM (v, x, y) dx dy. (7)

The optimization problem (7) can be solved by first or
second order methods like Newton’s method or SQP.
For these methods, gradient and Hessian of the objective
function in (7) must be computed. In the case the domain
Ω is simple, we may compute them by quadrature and
cubature formulas. For more difficult domains one may
use the procedure described in Lasserre (2007); Bertsimas
et al. (2008). Concerning the behavior of u#

M as M → ∞
and its relationship with u, one has the following weak
convergence result from Borwein et al. (1991).

Proposition 1. Let u#
M be obtained from an optimal solu-

tion of (7). Then, as M → ∞,
∫

Ω
ψ(x, y)u#

M (x, y) dxdy →

∫

Ω
ψ(x, y)u(x, y) dxdy,

for every bounded measurable function ψ : Ω → R which
is continuous almost everywhere.

However, the pointwise convergence u#
M (x, y) → u(x, y)

does not hold in general.

4. SMOOTH APPROXIMATIONS TO SOLUTIONS
OF DIFFERENTIAL EQUATIONS

In this section we show how to combine the SDPR method
and maximum entropy estimation to obtain smooth ap-
proximations for solutions of linear and nonlinear differen-
tial equations. Our discussion focuses on the 2-dimensional
case, but the 1-dimensional case is covered analogously.
Let u ∈ D be a solution of (1) and assume without loss
of generality that lbd ≥ 0 so that u is nonnegative on Ω.
For lbd < 0 define ũ := u − lbd and apply the outlined
procedure to the new function ũ. Associated with u, let
dµ(x, y) := u dx dy be the finite Borel measure on Ω with
moment vector m = (mi,j) of all moments up to order M :

mi,j :=

∫

Ω
xiyjdµ(x, y) =

∫

Ω
xiyju(x, y)dx dy,

for (i, j) ∈ N2 with i + j ≤ M . For linear PDEs, a
hierarchy of tightening lower and upper bounds for the
components mi,j of the moment vector can be obtained
by solving a sequence of SDPs as proposed in Bertsimas
et al. (2006). However, this approach cannot be applied
in the case of nonlinear PDEs. Our strategy is to use a
discrete approximation (uk,l)1≤k≤Nx,1≤l≤Ny

of a solution
of the PDE to approximate the moments mi,j by:

m∆
i,j =

Nx
∑

k=1

Ny
∑

l=1

xi
kyj

l uk,l∆x∆y, (8)

for (i, j) ∈ N2 with i + j ≤ M , where ∆x := xmax−xmin

Nx−1 ,

∆y := ymax−ymin

Ny−1 . If the discretization (Nx, Ny) is suffi-

ciently fine and (uk,l)k,l is a close approximation of u, then
we expect m∆

i,j to be a good approximation of mi,j for all
(i, j) ∈ N2. Thus, we can apply maximum entropy estima-
tion to the vector m∆ to obtain a smooth approximation
of u. This idea is formalized in the following algorithm for
obtaining smooth approximations of solutions of linear or
nonlinear PDE problems.

Method 2. The smooth SDP approximation method
Given a PDE problem of form (1).

(1) Choose a discretization (Nx, Ny), relaxation order w
and objective F , and apply the SDPR method to
obtain a discrete approximation (uk,l)k,l to a solution
of the PDE problem. If not given in the formulation
of the PDE problem, impose lower and upper bounds,
lbd and ubd for u.

(2) Choose a moment bound M ∈ N and use (uk,l)k,l to
calculate m∆ as in (8).

(3) Apply maximum entropy estimation to m∆ and ob-

tain vector v# ∈ R|m∆|, optimal solution of (7).



(4) Obtain the approximation u#
M with u#

M (x, y) =
∑

i,j exp(v#
i,jx

iyj) for a solution u of the PDE prob-
lem (1) on Ω.

As M → ∞, u#
M → u weakly (see Proposition 1) but

not pointwise, i.e., one cannot guarantee u#
M (x, y) →

u(x, y) on Ω. Nevertheless, as reported in Lasserre (2007)
the maximum entropy estimation may provide accurate
pointwise approximation of the unknown function to be
recovered on certain segments of the domain Ω. We next
illustrate on a variety of PDE problems and OCPs, that
indeed good pointwise approximation can be obtained on
some parts of the domain Ω.

5. NUMERICAL EXPERIMENTS

We illustrate the potential of Method 2 on a variety of
ODE and PDE problems. As an implementation of the
sparse SDP relaxations we apply the software SparsePOP
of Waki et al. (2005) and as an implementation of sequen-
tial quadratic programming (SQP) in the SDPR method
and in solving the optimization problem (7) we apply the
Matlab Optimization Toolbox commands fmincon and
fminunc, respectively. As we restrict ourselves to ODEs
and PDEs with rectangular domains Ω we can apply
standard quadrature and cubature formulas to compute
the gradient and Hessian for (7). Thus, we apply the
Matlab commands trapz in the one-dimensional case and
dblquad in the two-dimensional case, respectively. In order
to evaluate the quality of the smooth approximation pro-
vided by Method 2 we define the average error ε̄u(M) :=
∆x

∑

i u(xi) − u#
M (xi) and the maximum pointwise error

εmax
u (M) := maxi | u(xi) − u#

M (xi) |.

5.1 Linear differential equations

As first test problems for our approach we consider a linear
ODE and a linear PDE from Bertsimas et al. (2006)
and compare (a) the discretized moment approximations
obtained by Method 2 to the bounds obtained in Bertsimas
et al. (2006), and (b) the smooth approximation u#

M to
the known analytic solution.

Linear ODE The linear ODE is given by,

u′′(x) + 3u′(x) + 2u(x) = 0 ∀x ∈ [0, 1],
u′(0) = −2e2, u′(1) = −2.

(9)

For this problem the unique solution is u(x) = e2e−2x. We
apply Method 1 with F = −

∑

i ui, N = 2000 and w = 1.
We calculate the approximate moments m∆ for M = 40
and compare them to approximate moments for m derived
in Bertsimas et al. (2006) by contracting lower and upper
bounds in Table 1. All moments coincide up to the fourth
digit.

We apply Method 2 for M ∈ {1, . . . , 5} and report the
resulting vector v#

M in Table 2.

Note that the actual solution of the ODE problem cor-
responds to a parameter vector vopt = (2,−2, 0, . . .). As
reported in Table 2, (v#

0(M), v#
1(M)) ≈ (2,−2), and even

though v#
i (M) 3= 0 for i > 1, the maximum pointwise error

is quite small. However, (v#
0(M), v#

1(M)) does not converge
to (2,−2) since pointwise convergence is not guaranteed.

i m∆
i mBC

i

0 3.1942 3.1945
1 1.0957 1.0973

10 0.1086 0.1088
20 0.0524 0.0524
30 0.0345 0.0344
40 0.0258 0.0256

Table 1. Approx. moments m∆ for N = 2000
compared to approx. mBC derived from lower
and upper bounds in Bertsimas et al. (2006)

for linear ODE (9)

M 1 2 3 4 5
v!
0 2.0043 2.0042 2.0040 2.0032 2.0039

v!
1 -2.0135 -2.0083 -1.9922 -1.9744 -1.9528

v!
2 -0.0083 -0.0938 -0.1998 -0.3205

v!
3 0.0851 0.2886 0.3269

v!
4 -0.1180 0.2018

v!
5 -0.2694

ε̄u(M) 0.0042 0.0044 0.0042 0.0039 0.0044
εmax
u (M) 0.0242 0.0228 0.0228 0.0222 0.0326

Table 2. Smooth SDP approx. for linear ODE
(9)

(i, j) m∆
i,j mi,j LB UB

(0,0) 2.9512 2.9525 2.9235 3.1707
(1,0) 1.7287 1.7183 1.6944 1.7742
(1,1) 1.0121 1.0000 0.9847 1.0130
(2,0) 1.2504 1.2342 1.1123 1.3088
(2,1) 0.7319 0.7183 0.7151 0.7458
(2,2) 0.5292 0.5159 0.4948 0.5456
(3,0) 0.9869 0.9681 0.8244 1.0478
(3,1) 0.5775 0.5634 0.5054 0.5818
(3,2) 0.4176 0.4047 0.3874 0.5818
(3,3) 0.3295 0.3175 0.3017 0.3399

Table 3. Approx. moments for Nx = Ny = 100
compared to exact moments and bounds from
Bertsimas et al. (2006) for linear PDE (10)

In fact the higher moment terms v#
i (M) for i > 1 coun-

terbalancce the difference between (v#
0(M), v#

1(M)) and
(2,−2).

Linear PDE The linear PDE is given by

uxx(x, y) + uyy(x, y) − 3ex+y = 0 ∀ (x, y) ∈ [0, 1]2, (10)

where the boundary conditions are set up such that
u(x, y) = ex+y is the unique solution of the PDE problem.
We apply the SDPR method with F (u) = −

∑

k,l uk,l,

w = 1 and Nx = Ny = 100, compute m∆ for all moments
of order up to 3 and compare these moments to the exact
moments derived from the known solution and to the best
lower and upper bounds for the moments from Table 7 in
Bertsimas et al. (2006). See Table 3 for the results. Our
approach provides some approximations for the moments
that is well within the bounds LB and UB from Bertsimas
et al. (2006).

Also for this problem, there is a vector vopt = (0, 1, 1, 0, . . .)
corresponding to the solution u. When applying Method 2
with M ∈ {2, 3} we obtain v#(M) reported in Table 4 with
errors ε̄u(2) = 0.0677 , ε̄u(3) = 0.0682, εmax

u (2) = 1.0276
and εmax

u (3) = 1.3267.



(i, j) (0,0) (1,0) (0,1) (2,0) (1,1) (0,2)
v!

i,j(2) 0.064 0.709 0.710 0.329 0.099 0.329

v!
i,j(3) 0.013 0.959 0.959 -0.213 0.160 -0.213

vopti,j 0 1 1 0 0 0

Table 4. Smooth SDP approx. for linear PDE
(10)

For both linear differential equations we obtain accurate
approximations of the moments for the measures associ-
ated with the unique solutions. Moreover, unlike Bertsimas
et al. (2006), we can exploit these moment approximation
to find smooth approximations for the actual solutions.

5.2 A nonlinear elliptic PDE

As a first nonlinear problem, consider the elliptic PDE:

uxx + uyy + 22u(1− u2) = 0 on [0, 1]2,
u = 0 on ∂[0, 1]2,
0 ≤ u ≤ 1 on [0, 1]2.

(11)

This problem is well known to have a nontrivial positive
solution. We apply Method 2 with F (u) := −

∑

k,l uk,l,
w = 2, Nx = Ny = 49 and M ∈ {2, 3}, and obtain an
accurate discrete approximation (ui,j)i,j and two smooth
approximations u#

2 and u#
3 with errors (εmax

u (2), ε̄u(2)) =
(0.081,−0.002) and (εmax

u (3), ε̄u(3)) = (0.076,−0.002),
respectively. In Figure 1 it is illustrated how accurate
the smooth approximation u#

3 resembles the shape of the
discrete approximation (ui,j)i,j .

5.3 Reaction diffusion equation

A challenging ODE problem which is known to have many
solutions is given as in Mimura (1979) by :

1

20
u′′ +

1

9

(

35 + 16u − u2
)

u − u v = 0 on [0, 5],

4v′′ −

(

1 +
2

5
v

)

v + u v = 0 on [0, 5],

u′(0) = u′(5) = v′(0) = v′(5) = 0,
0 ≤ u, v ≤ 14 on [0, 5].

(12)

To ensure numerical stability we scale the domain [0, 5]
of (12) to [0, 1] before applying Method 2, as exp(xi) gets
very large for |x| > 1. Problem (12) involves two functions
u and v, thus we need to apply Method 2 twice, once for u
and once for v, in order to obtain smooth approximations
for both functions. Note that the SDPR method only needs
to be applied once and provides a discrete approximation
(ui, vi)i, maximum entropy estimation needs to be applied
twice. We apply Method 2 for F (u, v) = −u&N

2
' , N = 100,

w = 3 and M ∈ {10, 20, 30, 50}. Solutions for u and v and
the derived smooth approximations are pictured in Figure
2 and the errors are reported in Table 5. Even though
the average and the maximum pointwise approximation
errors are not small, even for large M , we observe that
the pointwise approximation gets more and more accurate
on certain segments of the domain - in this case the third
part of the interior, where the third peak of u and v occurs.
The pointwise approximation is not good - or does even
get worse - near the boundary of [0, 1].

5.4 Control of production and consumption

A first example of an optimal control problem is given by

M εmax
u (M) ε̄u(M) εmax

v (M) ε̄v(M)
10 4.11 0.0011 2.10 0.1080
20 3.84 0.0143 6.66 0.1371
30 3.48 0.0012 9.61 0.1547
50 3.39 0.0085 23.69 0.2658

Table 5. Errors for nonlinear ODE (12)

min −

∫ T

0
(1 − u(t))x(t) dt

s.t. ẋ(t) = u(t)x(t) ∀t ∈ [0, T ] ,
x(0) = x0,
0 ≤ x(t) ≤ 1 ∀t ∈ [0, 1] ,
0 ≤ x(t) ≤ 10 ∀t ∈ [0, 10] ,

(13)

where T > 1 fixed. For this simple problem the optimal
control law is given by

u#(t) =

{

1 if 0 ≤ t ≤ T − 1,

0 if T − 1 < t ≤ T.

We choose x0 = 0.25, T = 4 and N = 100, and apply
Method 2 after scaling the domain to [0, 1] for M ∈
{5, 10, 20, 30}. In this case the objective function F is given
by a discretization of the objective function of (13). As
in the case of ordinary and partial differential equations,
we observe that a fairly good pointwise approximations of
both, optimal control law and corresponding trajectory,
are obtained on the interior of the domain. See Figure 3.

5.5 The double integrator

Another interesting control problem, which has been dis-
cussed in Lasserre et al. (2008), is given by

min T
s.t. ẋ1(t) = x2(t) ∀ t ∈ [0, T ] ,

ẋ2(t) = u(t) ∀ t ∈ [0, T ] ,
x(0) = x0 ∈ R

2,
x(T ) = (0, 0),
−1 ≤ u(t) ≤ 1 ∀ t ∈ [0, T ],
−1 ≤ x1(t), x2(t) ≤ 10 ∀ t ∈ [0, T ].

(14)

After scaling the domain to [0, 1], we apply Method 2 with
N = 50, ω = 3, x0 = (0.8,−1) and M ∈ {5, 10, 20, 30}.
Since T is not fixed, it is treated as an additional variable,
i.e., we consider the polynomial optimization problem
with variable (x11, . . . , x1N , x21, . . . , x2N , u1, . . . , uN , T ).
We observe that the pointwise approximation of optimal
control and trajectories on the interior of the domain
gets better and better for increasing moment order, see
Figure 4. Note, unlike the moment based method in
Lasserre et al. (2008) which yields bounds for the optimal
value of the control problem, we obtain discrete and
smooth approximations to the optimal control and the
corresponding trajectories by Method 1 and Method 2,
respectively.

6. CONCLUDING REMARKS

We introduced a novel technique to derive smooth approx-
imations for solutions of systems of differential equations
and optimal control problems, which is based on sparse
SDP relaxations and the maximum entropy estimation
method. As demonstrated on some examples of nonlinear
ordinary differential equations, partial differential equa-
tions and optimal control problems, this technique is
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(right, notice the vertical axis scale) for nonlinear PDE (11)
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promising to obtain accurate pointwise approximations of
a solution of a differential equation on segments of its
domain. It would be interesting to characterize regions
of the domain of nonlinear differential equations where
accurate pointwise approximations can be guaranteed.
Another question is whether a different, less restrictive
parametrization than (6) allows better pointwise approx-
imations on larger segments of the domain. Of course,
other choices of entropy would lead to different results,
and it remains a topic of future investigation to analyze,
whether or not some choice should be preferred. At this
point solving the sparse SDP relaxation is the major com-
putational bottleneck in Method 2. Every improvement for
approximation accuracy and efficiency of SDP relaxation
techniques for polynomial programs and every improve-
ment for SDP solvers will extend the range of the proposed
method.

In order to validate these techniques in the present context
of PDEs, a comparison with state-of-the-art numerical
methods for solving nonlinear PDEs remains to be done.
In particular, the maximum entropy technique should be
compared with standard and spline interpolation methods
which both provide differentiable approximations that
coincide with the discrete solution at each grid point. But,
unlike our method, in polynomial interpolation the degree
of the polynomial is directly related to the number of
grid points. Also, cubic splines are twice differentiable at
the grid points, whereas our approximation is smooth. In
contrast, and instead of searching for a smooth solution
that matches the unknown u at the grid points, one
searches for a smooth solution that matches finitely many
moments of the associated measure dµ = udx. And so, an
interesting feature is to obtain a smooth approximation
from a limited number of moments and not from the
discrete solution explicitly (still, before using moments,
a sufficiently fine discretization is necessary to ensure
m∆ ≈ m). This method is an attempt to deal with
the curse of dimensionality in the numerical analysis
of PDEs. Furthermore, we emphasize that the proposed
method can be applied to a wide range of problems that
encompasses nonlinear partial differential equations and
nonlinear optimal control problems. A detailed comparison
is however out of the scope of this paper, whose main
objective was to pave the way for the development of SDP
techniques to solve optimal control design problems for
dynamical systems described by polynomial ODEs and
PDEs, in the spirit of Lasserre et al. (2008).
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