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Abstract.
Based on the convergent sequence of SDP relaxations for a multivariate polynomial optimization problem
(POP) by Lasserre, Waki et al. constructed a sequence of sparse SDP relaxations to solve sparse POPs
efficiently. Nevertheless, the size of the sparse SDP relaxation is the major obstacle in order to solve POPs
of higher degree. This paper proposes an approach to transform general POPs to quadratic optimization
problems (QOPs), which allows to reduce the size of the SDP relaxation substantially. We introduce
different heuristics resulting in equivalent QOPs and show how sparsity of a POP is maintained under
the transformation procedure. As the most important issue, we discuss how to increase the quality of
the SDP relaxation for a QOP. Moreover, we increase the accuracy of the solution of the SDP relaxation
by applying additional local optimization techniques. Finally, we demonstrate the high potential of this
approach through numerical results for large scale POPs of higher degree.
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1 Introduction - SDP relaxations for POP

The global minimization of a multivariate polynomial over a semialgebraic set is a severely nonconvex,
difficult optimization problem in general. In recent years semidefinite programming (SDP) relaxations for
polynomial optimization problems (POP) have been investigated by a growing number of researchers. In
[8] a hierarchy of SDP relaxations has been proposed whose optima have been proven to converge to the
optimum of a POP for increasing order of the relaxation. The practical use of this powerful theoretical result
has been limited by the capacity of current SDP solvers, as the size of the SDP relaxations grows rapidly
with increasing order. An approach to attempt this problem has been the concept to exploit structured
sparsity in a POP [7]. Whenever a POP satisfies a certain sparsity pattern, a convergent sequence of sparse
SDP relaxations of substantially smaller size can be constructed [16, 9]. Compared to the original SDP
relaxation in [8], the sparse SDP relaxation [16] provides stronger numerical results.

Still, the size of the sparse SDP relaxation remains the major obstacle in order to solve large scale POPs,
which contain polynomials of higher degree. We propose a substitution procedure to transform an arbitrary
POP into an equivalent quadratic optimization problem (QOP). It is based on replacing quadratic terms in
higher degree monomials by new variables successively, and adding the substitution relations as constraints
to the optimization problem. The idea to transform a POP into an equivalent QOP can be traced back to
Shor [14], who exploited it to derive dual lower bounds for the minimum of a polynomial function. As the
substitution procedure is not unique, we introduce different heuristics which aim at deriving a QOP with
as few additional variables as possible. Moreover, we show that sparsity of a POP is maintained under the
substitution procedure. The main advantage of deriving an equivalent QOP for a POP is that the sparse
SDP relaxation of first order can be applied to solve it approximately.

The substitution procedure and the considerations to minimize the number of additional variables while
maintaining the sparsity are presented in Section 2. While a POP and the QOP derived from it are
equivalent, we face the problem that the quality of the SDP relaxation for a QOP deteriorates in many
cases. We discuss in Section 3 how to tighten the SDP relaxation for a QOP in order to achieve good
approximations to the global minimum even for SDP relaxation of first or second order. For that purpose
methods as choosing appropriate lower and upper bounds for the multivariate variables, Branch-and-Cut
bounds to shrink the feasible region of the SDP relaxation and locally convergent optimization methods are
proposed. Finally, the power of this technique is demonstrated in Section 4, where it is applied to solve
various large scale POP of higher degree.

2 Transforming a POP into a QOP

2.1 Sparse SDP relaxations for POPs

The aim of this paper is to propose a technique to reduce the size of sparse semidefinite program (SDP)
relaxations for general polynomial optimization problems (POP), which enables us to attempt large scale
polynomial optimization efficiently. As the framework for our approach, we will briefly introduce the basic
notations and the sparse SDP relaxations from [16].

Let fk ∈ R[x] (k = 0, 1, . . . , m), where R[x] denotes the set of real-valued multivariate polynomials
in x ∈ R

n. A polynomial f ∈ R[x] of positive degree d can be written as f(x) =
∑

|α|≤d cα(f)xα with

cα(f) ∈ R, α = (α1, . . . , αn) ∈ N
n, xα = xα1

1 xα2

2 · · ·xαn
n and | α |=

∑

i αi. Consider the following inequality
constrained POP:

minimize f0(x)
subject to fk(x) ≥ 0 ∀ k ∈ {1, . . . , m}.

(2.1)

As an equality constraint h(x) = 0 for h ∈ R[x] is equivalent to the two inequality constraints h(x) ≥ 0
and −h(x) ≥ 0, the POP (2.1) contains the case of polynomial optimization problems with equality and/
or inequality constraints. Given a polynomial f ∈ R[x], f(x) =

∑

α∈Nn cα(f)xα (cα(f) ∈ R), we define its
support by supp(f) = {α ∈ N

n | cα(f) 6= 0}. Then, let ξ⋆ = inf{f0(x) : fk(x) ≥ 0 (k = 1, . . . , m)} and

Fk = {i : αi ≥ 1 for some α ∈ supp(fk) ⊂ N
n} ,

the index set of variables xi involved in the polynomial fk. To construct a sequence of SDP relaxations, a
nonnegative integer ω ≥ ωmax is chosen for the relaxation order, where ωmax = max{ωk : k = 0, 1, . . . , m}
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and ωk = ⌈ 1
2deg(fk)⌉ (k = 0, . . . , m). The dense SDP relaxation for (2.1) of order ω due to [8] is given by

dSDPω min
∑

α∈supp(f0) cα(f0)yα

s.t. Mω−ωk
(fk y) < 0 ∀ k ∈ {1, . . . , m} ,

Mω(y) < 0,

(2.2)

where Mω(y) and Mω(f y) denote the moment matrix and the localizing matrix for f ∈ R[x] of order ω
[8], respectively. In the case of an equality constraint hi(x) = 0, the conditions Mω−ωi

(hi y) < 0 and
−Mω−ωi

(hi y) < 0 are equivalent to Mω−ωi
(hi y) = 0, i.e. a set of equality constraints for y. If the

POP (2.1) satisfies conditions that are slightly stronger than the compactness of its feasible set, it holds
min(dSDPω) → min(POP) for ω → ∞ [8]. The approach by Waki et al. [16] takes structured sparsity
of a POP into account in order to reduce the size of the linear matrix inequalities in (2.2). We define the
n × n correlative sparsity pattern matrix (csp matrix) R of the POP (2.1) such that

Ri,j =



















⋆ if i = j,

⋆ if αi ≥ 1 and αj ≥ 1 for some α ∈ supp(f0),

⋆ if i ∈ Fk and j ∈ Fk for some k ∈ {1, 2, . . . , m},

0 otherwise.

If R is sparse, the POP (2.1) is called correlatively sparse. The csp matrix R induces the correlative
sparsity pattern graph (csp graph) G(N, E). Its node set N and edge set E are defined as

N = {1, 2, . . . , n} and E = {{i, j} : Ri,j = ⋆, i < j} ,

respectively. Let C1, . . . , Cp ⊆ N be the maximal cliques of G(N, E′), the chordal extension of G(N, E). A
graph is called chordal if each of its cycles of four or more nodes has an edge joining two nodes that are
not adjacent in the cycle. The number p of maximal cliques in G(N, E′) is upper bounded by n. Since
each Fk ⊆ N forms a clique, it must be contained in some maximal Cq. Let F̂k be such a maximal clique
Cq. The sparse SDP relaxation of order ω ≥ ωmax [16] in dual form of (2.1) is then given by the following
optimization problem:

sSDPω min
∑

α∈supp(f0) cα(f0)yα

s.t. Mω−ωk
(fk y, F̂k) < 0 ∀ k ∈ {1, . . . , m} ,

Mω(y, Cl) < 0 ∀ l ∈ {1, . . . , p} ,

(2.3)

where Mω(y, Cl) and Mω(f y, Cl) denote the partial moment matrix and the partial localizing matrix of
order ω for the set Cl, respectively. For instance in the case of n = 3 and g(x) = x2

1 + 2x2 + 3, they have
the form

M2(y, {1, 3}) =

















y000 y100 y001 y200 y101 y002

y100 y200 y101 y300 y201 y102

y001 y101 y002 y201 y102 y003

y200 y300 y201 y400 y301 y202

y101 y201 y102 y301 y202 y103

y002 y102 y003 y202 y103 y004

















,

M1(g y, {1, 2}) =





y200 + 2y010 + 3y000 y300 + 2y110 + 3y100 y210 + 2y020 + 3y010

y300 + 2y110 + 3y100 y400 + 2y210 + 3y200 y310 + 2y120 + 3y110

y210 + 2y020 + 3y010 y310 + 2y120 + 3y110 y220 + 2y030 + 3y020.





As for the dense case, it holds min(sSDPω) → min(POP), if ω → ∞ and certain compactness conditions

are satisfied [9]. Note, Mω(y, Cl) is a symmetric matrix of size d(nl, ω) , where d(n, m) :=

(

n + m
m

)

and

nl :=| Cl |. The length of a partial moment vector y(Cl) is given by d(nl, 2ω). The number of variables in
(2.3) is bounded by p d(nmax, 2ω), where nmax = max1≤i≤p ni. This is to be compared with d(n, 2ω), the
upper bound for the number of variables in the dense SDP relaxation dSDPω. Thus, in the case nmax ≪ n
the size of the sparse SDP relaxation is substantially smaller than the size of the dense one.
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2.2 Sparse SDP relaxations for QOPs

The technique to transform a POP into an equivalent quadratic optimization problem (QOP), which we
introduce in this section, aims at reducing the size of the SDP relaxation by decreasing the minimum
relaxation order ωmax, whereas the technique in [16] aims at reducing the SDP relaxation by decreasing n.
A general quadratic optimization problem (QOP) is a special case of the POP (2.1), where the polynomials
fi (i = 0, . . . , m) are at most of degree 2. With respect to the definition of ωk, the minimal relaxation order
ωmax of the sparse SDP relaxation (2.3) equals one. As pointed out in [16], the sparse SDP relaxation sSDP1

and the dense SDP relaxation dSDP1 of order one are equivalent for any QOP. The equivalence of a QOP
and its SDP relaxation has been shown for a few restrictive classes of QOPs. For instance, if in a QOP f0

and −fi (i = 1, . . . , m) are convex quadratic polynomials, the QOP is equivalent to the corresponding SDP
relaxation [10]. Also, equivalence of QOPs and their SDP relaxations was shown for the class of uniformly
OD-nonpositive QOPs [5]. As pointed out in Section 2.1 min(sSDPω) → min(POP) for ω → ∞, but to the
best of our knowledge there is no result for a rate of convergence or guaranteed approximation of the global
minimum for a fixed relaxation order ω ≥ ωmax in the case of a general POP.

2.3 Transformation algorithm

To illustrate the idea of our transformation technique, consider the following example of a simple uncon-
strained POP, whose optimal value is −∞:

min 10x3
1 − 102x3

1x2 + 103x2
1x

2
2 − 104x1x

3
2 + 105x4

2 (2.4)

It is straight forward that POP (2.4) is equivalent to

min 10x1x3 − 102x3x4 + 103x2
4 − 104x4x5 + 105x2

5

s.t. x3 = x2
1,

x4 = x1x2,
x5 = x2

2,

(2.5)

where we introduced three additional variables x3, x4 and x5. Obviously QOP (2.5) is not the only QOP
equivalent to POP (2.4): The QOP

min 10x3 − 102x2x3 + 103x5x6 − 104x1x4 + 105x2x4

s.t. x3 = x1x5,
x4 = x2x6,
x5 = x2

1,
x6 = x2

2,

(2.6)

is equivalent to (2.4) as well. We notice the number of additional variables in QOP (2.5) equals three,
whereas it equals four in QOP (2.6). Thus, there are numerous ways to transform a higher degree POP
into a QOP in general. For the transformation procedures we are proposing, we consider 1) the number of
additional variables should be as small as possible, in order to obtain a SDP relaxation of smaller size, 2)
sparsity of a POP should be maintained under the transformation and 3) the quality of the SDP relaxation
for the derived QOP should be as good as possible. How to deal with 3) is discussed in Section 3, 1) and
2) are discussed in the following.

2.4 Maintaining sparsity

The transformation proposed in the previous subsection raises the question, whether the correlative sparsity
of a POP is preserved under the transformation, i.e., whether the resulting QOP is correlative sparse as
well.

Let POP⋆ be a correlative sparse POP of dimension n, G(N, E′) the chordal extension of its csp graph,
(C1, . . . , Cp) the maximal cliques of G(N, E′) and nmax = maxi=1,...,p | Ci |. Let xn+1 = xixj be the
substitution variable for some i, j ∈ {1, . . . , n} determined by either criterion A or B, which is explained in
Section 2.5. Let ˜POP denote the POP derived after substituting xn+1 = xixj in POP⋆. Given the chordal

extension G(N, E′) of the csp graph of POP⋆, a chordal extension of the csp graph of ˜POP over the vertex
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set Ñ = N ∪ {n + 1} can be obtained by the extension: For a clique Cl with {i, j} ⊂ Cl add the edges
{v, n + 1} for all v ∈ Cl and obtain the clique C̃l. For each clique Ck not containing {i, j}, set C̃k = Ck. In
the end we obtain the graph G(Ñ , Ẽ′) which is a chordal extension of the csp graph G(Ñ , Ẽ) of ˜POP. Note,
(C̃1, . . . , C̃p) are maximal cliques for G(Ñ , Ẽ′) and for all C̃l holds | C̃l |≤| Cl | +1, i.e. ñmax ≤ nmax + 1.
Moreover, the number of maximal cliques p remains unchanged under the transformation. As pointed out,
G(Ñ , Ẽ′) is one possible chordal extension of G(Ñ , Ẽ). It seems reasonable to expect that the heuristics we
are using for the chordal extension, such as the reverse Cuthill-McKee and the symmetric minimum degree
ordering, add less edges to G(Ñ , Ẽ) than we did in constructing G(Ñ , Ẽ′). Thus, we are able to apply the
sparse SDP relaxation efficiently to the POPs derived after each iteration of the transformation algorithm.
For illustration we consider Figure 1 and Figure 2, where the csp matrices of two POPs and their QOPs
are pictured.
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Figure 1: CSP matrix of the chordal extension of POP pdeBifurcation(7) (left) and its QOP (right) derived
under strategy BI (c.f. 2.5).

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

nz = 412
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 624

Figure 2: CSP matrix of the chordal extension of POP Mimura(25) (left) and its QOP (right) derived under
strategy BI (c.f. 2.5).

We observe that the sparsity pattern of the chordal extension of the csp graph is maintained under the
substitution procedure. Nevertheless, if the number of substitutions, which is required to transform a higher
degree POP into a QOP, is far greater than the number of variables of the original POP, it may occur that
we obtain a dense QOP under the transformation procedure. To illustrate this effect, consider the chordal
extension of csp matrix of the QOP derived for the POP randomEQ(7,3,5,8,0) which is pictured in Figure
3. In that example, the number n of variables of the original POP equals seven, the number of additional
variables equals 108.
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Figure 3: CSP matrix of the chordal extension of POP randomWithEQ(7,3,5,8,0) (left) and its QOP (right).

2.5 Minimizing the number of additional variables

Let n denote the number of variables involved in a POP and ñ the number of variables in the corresponding
QOP. The first question we are facing is, how to transform a POP into a QOP such that the number
k0 := ñ − n of additional variables is as small as possible. Each additional variable xn+k corresponds to
the substitution of a certain quadratic monomial xixj by xn+k. Given an arbitrary POP, the question to
find a substitution procedure minimizing ñ is a difficult problem. We propose four different heuristics for
transforming a POP into a QOP, which aim at reducing the number k0 of additional variables. At the end
of this section we give some motivation, why it is more important to find a strategy optimizing the quality
of the SDP relaxation than one that minimizes the number k0 of additional variables.

Our transformation algorithm iterates substitutions of pairs of quadratic monomials xixj in the higher
degree monomials in objective function and constraints by a new variable xn+k, and adding the substitution
relation xn+k = xixj as constraints to the POP. Let POP0 denote the original POP, and POPk the
POP obtained after the k-th iteration, i.e. after substituting xn+k = xixj and adding it as constraint to

POPk−1. The algorithm terminates as soon as POPk0 is a QOP for some k0 ∈ N. In each iteration of
the transformation algorithm we distinguish two steps. The first one is to choose which pair of variables
(xi, xj) (1 ≤ i, j ≤ n + k) is substituted by the additional variable xn+k+1. The second one is to choose to
which extent xixj is substituted by xn+k+1 in each higher degree monomial.

Step 1: Choosing the substitution variables

Definition 1 Let POPk be a POP of dimension ñ with m̃ constraints. The higher monomial set Mk
S

of POPk is given by

Mk
S =

{

α ∈ N
ñ | ∃i ∈ {0, . . . , m̃} s.t. α ∈ supp(fi) and | α |≥ 3

}

,

and the higher monomial list Mk of POPk by

Mk =
{

(α, wα) | α ∈ Mk
S and wα := # {i | α ∈ supp(fi)}

}

.

By Definition 1, the higher monomial list of a QOP is empty.

Definition 2 Given α ∈ N
n and a pair (i, j) where 1 ≤ i, j ≤ n, we define the dividing coefficient

kα
i,j ∈ N0 as the integer that satisfies xα

(xixj)
kα

i,j
∈ R[x] and xα

(xixj)
kα

i,j
+1 /∈ R[x].

Given POPk the k-th iterate of POP0 and its higher monomial list Mk, determine the symmetric matrix
C(POPk) ∈ R

(n+k)×(n+k) given by

C(POPk)i,j = C(POPk)j,i =
∑

(α,wα)∈Mk

kα
i,j wα.

We consider two alternatives to choose a pair (xi, xj)(1 ≤ i, j ≤ n + k) to be substituted by xn+k+1:
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A. Naive criterion: Choose a pair (xi, xj) such that there exists a α ∈ MS(POPk) which satisfies
xα

xixj
∈ R[x].

B. Maximum criterion Choose a pair (xi, xj) such that C(POPk)i,j ≥ C(POPk)u,v ∀1 ≤ u, v ≤ n + k.

Step 2: Choose the substitution strategy Next we have to decide to what extent we substitute
xn+k+1 = xixj in each monomial of MS(POPk). We will distinguish full and partial substitution. Let
us demonstrate the importance of considering that question on the following two examples.

Example 1 Consider two different substitution strategies for transforming the problem to minimize x4
1 into

a QOP.
min x4

1

(1) ւ ց (2)
min x2

2 min x2
1x2

s.t. x2 = x2
1 s.t. x2 = x2

1

↓
min x1x3

s.t. x2 = x2
1

x3 = x1x2

(2.7)

In both substitution strategies, we choose x2
1 for substitution in the first step. In (1) we fully substituted

x2
1 by x2, whereas in (2) we substituted x2

1 partially. By choosing full substitution in the first iteration in
(1), we need one additional variable to obtain a QOP, partial substitution requires two additional variables
to yield a QOP.

Example 2
min x6

1

s.t. x3
1x2 ≥ 0

(1) ւ ց (2)
min x3

3 min x2
1x

2
3

s.t. x1x2x3 ≥ 0 s.t. x1x2x3 ≥ 0
x3 = x2

1 x3 = x2
1

↓ ↓
min x3x4 min x2

4

s.t. x1x2x3 ≥ 0 s.t. x2x4 ≥ 0
x3 = x2

1 x3 = x2
1

x4 = x2
3 x4 = x1x2

↓
min x3x4

s.t. x2x5 ≥ 0
x3 = x2

1

x4 = x2
3

x5 = x1x3

(2.8)

In this example full substitution (1) of x2
1 requires three, and partial substitution (2) only two additional

variables to yield a QOP.

The examples illustrate it depends on the structure of the monomial set, whether partial or full substi-
tution require less additional variables and result in a smaller size of the SDP relaxation. In general partial
and full substitution are given as follows.

I. Full substitution: Let tf
r
i,j

: R[x] → R[z], where x ∈ R
r and z ∈ R

r+1 for a r ∈ N and i, j ∈

{1, . . . , r}, be a linear operator defined by its mappings for each monomial xα,

tf
r
i,j

(xα) =

{

zα1

1 . . . z
αi−1

i−1 z
αi−min(αi,αj)
i z

αi+1

i+1 . . . z
αj−1

j−1 z
αj−min(αi,αj)
j z

αj+1

j+1 . . . zαr
r z

min(αi,αj)
r+1 , if i 6= j,

zα1

1 . . . z
αi−1

i−1 z
mod(αi,2)
i z

αi+1

i+1 . . . zαr
r z

⌊
αi
2
⌋

r+1 , if i = j.

Thus, tf
r
i,j

(g(x)) =
∑

α∈supp(g) cα(g)tf
r
i,j

(xα) for any g ∈ R[x]. The operator tf
n+k
i,j substitutes xixj

by xn+k+1 in each monomial to the maximal possible extent.
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II. Partial substitution: Let tp
r
i,j

: R[x] → R[z], where x ∈ R
r and z ∈ R

r+1 for a r ∈ N and

i, j ∈ {1, . . . , r}, be a linear operator defined by its mappings for each monomial xα,

tp
r
i,j

(xα) =























tf
r
i,j

(xα), if i 6= j,

tf
r
i,j

(xα), if i = j and αi odd,

tf
r
i,j

(xα), if i = j and log2(αi) ∈ N0,

zα1

1 . . . z
αi−1

i−1 zgi

i z
αi+1

i+1 . . . zαr
r z

1
2
(αi−gi)

r+1 , else,

where gi := gcd(2⌊log2(αi)⌋, αi). Thus, tp
r
i,j

(g(x)) =
∑

α∈supp(g) cα(g)tp
r
i,j

(xα) for any g ∈ R[x].

We notice that full and partial substitution only differ in the case i = j, αi even and log2(αi) /∈ N0 holds.
By pairwise combining the choice of A or B in Step 1 and the choice of I or II in Step 2, we obtain four
different procedures to transform POPk−1 into POPk that we denote as AI, AII, BI and BII. We do not
expect AI or AII to result in a POP with a small number of substitutions, as A does not take into account
the structure of the higher degree monomial list Mk−1

S , but we use AI and AII to evaluate the potential of
BI and BII. The numerical performance of these four procedures is demonstrated on some example POPs
in Table 2, where n denotes the number of variables in the original POP, deg the degree of the highest order
polynomial in the POP, and k0 the number of additional variables required to transform the POP into a
QOP under the respective substitution strategy. The POPs pdeBifurcation(n) are derived from discretizing
differential equations [11], the other POPs are test problems from [16]. As expected, strategy B is superior
to A for all but one example class of POP, when reducing the number of variables is concerned.

The entire algorithm to transform a POP into a QOP can be summarized by the scheme in Table 1. As
mentioned before the QOP of dimension n + k derived by AI, AII, BI or BII is equivalent to the original
POP of dimension n. In fact it is easy to see, if x̃ ∈ R

n+k an optimal solution of the QOP, the vector
(x̃1, . . . , x̃n) of the first n components of x̃ is an optimizer of the original POP.

INPUT POP0 with M0
S

WHILE Mk
S 6= ∅

1. Determine the pair (xi, xj) for substitution by A or B.

2. Apply tf
k
i,j

or tp
k
i,j

to each polynomial in POPk and derive POPk+1.

3. Update k → k + 1, POPk → POPk+1, Mk
S → Mk+1

S .

OUTPUT QOP = POPk0

Table 1: Scheme for transforming a POP into a QOP

POP n deg k0(AI) k0(AII) k0(BI) k0(BII)
BroydenBand(20) 20 6 229 211 60 40
BroydenBand(60) 60 6 749 691 180 120

nondquar(32) 32 4 93 93 94 94
nondquar(8) 8 4 21 21 22 22

optControl(10) 60 4 60 60 60 60
randINEQ(8,4,6,8,0) 8 8 253 307 248 238
randEQ(7,3,5,8,0) 7 8 135 146 116 115
pdeBifurcation(5) 25 3 25 25 25 25
pdeBifurcation(10) 100 3 100 100 100 100

randINEQ(3,1,3,16,0) 3 16 145 192 105 117
randUnconst(3,2,3,14,0) 3 14 86 107 63 69

Table 2: Number of required variables for strategies AI, AII, BI and BII
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2.6 Computational complexity

Finally, let us consider how the size of the sparse SDP relaxation of order ω = 1 for a QOP depends on
the number k0 of additional variables. Let a sparse POP of dimension n be given by the polynomials
(f0, f1, . . . , fm) and the maximal cliques (C1, . . . , Cp) of the chordal extension. With the construction in

Section 2.4, the corresponding QOP of dimension ñ = n + k0 has the maximal cliques (C̃1, . . . , C̃p) such

that Ci ⊆ C̃i and ñi ≤ ni + k0 for all (i = 1, . . . , p), where ni =| Ci | and ñi =| C̃i |. All partial localizing
matrices M0(fk y, F̂k) are scalars in sSDP1(QOP ). The size of the partial moment matrices M1(y, C̃i) is

d(1, ñi) = ñi + 1 ≤ ni + k0 + 1 = O(k0). (2.9)

Thus, the size of the linear matrix inequality is bounded by

m+k0
∑

j=1

1 +

p
∑

i=1

d(1, ñi) ≤ m + k0 + p (nmax + k0 + 1) ≤ m + k0 + n (nmax + k0 + 1). (2.10)

The length of the vector variable y in sSDP1(QOP ) is bounded by

| y | ≤
∑p

i=1 | y(C̃p) |=
∑p

i=1 d(2, 2ñi) ≤
1
2p (2nmax + 2k0 + 2) (2nmax + 2k0 + 1)

≤ 2p (nmax + k0 + 1)2 ≤ 2n (nmax + k0 + 1) = O(k2
0).

(2.11)

Thus, the size of the linear matrix inequalities of the sparse SDP relaxation is linear and the length of the
moment vector y quadratic in the number k0 of additional variables. For this reason the computational cost
does not grow too fast, even if k0 is not minimal. Heuristics BI and BII are sufficient in order to derive
QOP with a small number k0 of additional variables.

Moreover, the bounds (2.10) and (2.11) for the size of the primal and dual variables of the SDP relaxation
for the QOP are to be compared to the respective bounds for the SDP relaxation of the POP. If we assume
ωmax = ωi for all i ∈ {1, . . . , m}, the size of the linear matrix inequality in the SDP relaxation of order
ωmax for the original POP can be bounded by

m
∑

j=1

d(nj , ωmax − ωj) +

p
∑

i=1

d(ni, ωmax) ≤ m + n

(

nmax + ωmax

ωmax

)

, (2.12)

and the length of the moment vector by

p
∑

i=1

d(2ni, 2ωmax) ≤ n

(

2nmax + 2ωmax

2nmax

)

. (2.13)

Already for ωmax = 2 the bounds (2.12) and (2.13) are of second and fourth degree in nmax, whereas
(2.10) and (2.11) are linear and quadratic in nmax + k0, respectively. Therefore we can expect a substantial
reduction of the SDP relaxation under the transformation procedure. Note, we did not exploit any sparsity
in the SDP relaxation or any intersection of the maximal cliques (C1, . . . , Cp) and (C̃1, . . . , C̃p) when deriving
these bounds. Thus, the actual size of SDP relaxations in numerical experiments may be far smaller than
the one suggested by these bounds.

3 Quality of SDP relaxations for QOP

A polynomial optimization problem (POP) and the quadratic optimization problem (QOP) derived from
it under one of the transformation strategies AI, AII, BI or BII are equivalent. Nevertheless, the same
statement does not hold for the SDP relaxations of both problems. In fact, the SDP relaxation for QOP
is weaker than the SDP relaxation for the original POP. Before stating this negative result, we consider an
example to illustrate it.

Example 3 Let a POP and its equivalent QOP be given by

POP min x2
1x

2
2 ⇔ QOP min x̃2

3

s.t. x2
1x2 ≥ 0 s.t. x̃1x̃3 ≥ 0

x̃1x̃2 = x̃3.
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The dense SDP relaxations of minimal relaxation order dSDP2(POP) and dSDP1(QOP) are given by

min y22 min ỹ002

s.t. y21 ≥ 0 s.t. ỹ101 ≥ 0
ỹ110 = ỹ001

M2(y) =

















y00 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y13 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04

















< 0 M1(ỹ) =









ỹ000 ỹ100 ỹ010 ỹ001

ỹ100 ỹ200 ỹ110 ỹ101

ỹ010 ỹ110 ỹ020 ỹ011

ỹ001 ỹ101 ỹ011 ỹ002









< 0.

The equivalence of POP and QOP holds with the relation

(x̃1, x̃2, x̃3, x̃
2
1, x̃1x̃2, x̃1x̃3, x̃

2
2, x̃2x̃3, x̃

2
3)

= (x1, x2, x1x2, x
2
1, x1x2, x

2
1x2, x

2
2, x1x

2
2, x

2
1x

2
2).

(3.1)

Given a feasible solution y ∈ R
d(2,4) = R

15 for dSDP2(POP), we exploit the relations (3.1) to define a vector
ỹ = (ỹ000, ỹ100, ỹ010, ỹ001, ỹ200, . . . , ỹ002) ∈ R

d(3,1) = R
10 as

ỹ := (y00, y10, y01, y11, y20, y11, y21, y02, y12, y22).

Then ỹ110 = y11 = ỹ001 holds by definition of ỹ, and ỹ101 = y21 ≥ 0 as y is a feasible solution of
dSDP2(POP ). Furthermore, for the moment matrix, we have

M1(ỹ) =









y00 y10 y01 y11

y10 y20 y11 y21

y01 y11 y02 y12

y11 y21 y12 y22









.

Thus M1(ỹ) < 0, as M1(ỹ) is a principal submatrix of M2(y) < 0. It follows that ỹ is feasible for
dSDP1(QOP) and that min(dSDP1(QOP)) ≤ min(dSDP2(POP)) holds.

A generalization of the observation in Example 3 is given by the following proposition.

Proposition 1 Let a POP of dimension n with ωmax > 1 of form (2.1) be given by the set of polyno-
mials (f0, f1, . . . , fm) and the corresponding QOP of dimension n + k derived via AI, AII, BI or BII by
(f̃0, f̃1, . . . , f̃m). Then, for each feasible solution of dSDPωmax

(POP), there exists a feasible solution of
dSDP1(QOP) with the same objective value. Thus, min(dSDP1(QOP))≤ min(dSDPωmax

(POP)).

Proof:
Let y ∈ R

d(n,2ωmax) be a feasible solution of SDPωmax
(POP). Each yα corresponds to a monomial xα for

all α with | α |≤ 2ωmax, x ∈ R
n. Moreover, with respect to the substitution relation for all monomials

x̃α ∈ R
n+k with | α |≤ 2 there exists a monomial xβ(α) ∈ R

n, such that

x̃α = xβ(α), | β(α) |≤ 2ωmax. (3.2)

As β(·) in (3.2) is constructed via the substitution relations,

β(α1) = β(α2) (3.3)

holds for α1, α2 ∈ N
n+k with | α1 |=| α2 |≤ 2, whenever QOP has a substitution constraint x̃α1 = x̃α2 . Now,

define ỹ ∈ R
d(n+k,2) where ỹα := yβ(α) for all | α |≤ 2. Then, ỹ is feasible for dSDP1(QOP), as all equality

constraints derived from substitutions are satisfied due to (3.3), and as the moment matrix M1(ỹ) and the
localizing matrices M0(ỹf̃k) (k = 1, . . . , m) are principal submatrices of Mωmax

(y) and Mωmax−ωk
(y fk)

(k=1,. . . ,m), respectively. Finally, the objective values for y and ỹ coincide. �

This result for the dense SDP relaxation can be extended to the sparse SDP relaxation of minimal
relaxation order in an analog manner, if the maximal cliques (C̃1, . . . , C̃m) of the chordal extended csp
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graph of the QOP are chosen appropriately with respect to the maximal cliques of the chordal extended
csp graph of the POP. Therefore it seems reasonable to expect that in general the sparse SDP relaxation of
minimal order ω = 1 for the QOP provides an approximation to the global minimum of the POP which is
far weaker than the one provided by the sparse SDP relaxation with ω = ωmax > 1 applied to the original
POP. One possibility to strengthen the SDP relaxation for QOPs is to increase the relaxation order to
some ω > 1. But, as in the case of the SDP relaxation for POP we can not guarantee to find the global
minimum of a general QOP for any fixed ω ∈ N. Moreover each of the additional equality constraints
results in 1

2 (d(n, ω − 1) + 1)d(n, ω − 1) equality constraints in sSDPω(QOP) for ω > 1. Therefore it seems
more promising to consider different techniques which can be used to improve the quality of the sparse SDP
relaxation of relaxation order ω = 1 for QOPs.

3.1 Local optimization methods

As pointed out before, the minimum of the sparse SDP relaxation converges to the minimum of the QOP
for ω → ∞. Moreover, an accurate approximation can be obtained by the sparse SDP relaxation of order
ω ∈ {ωmax, . . . , ωmax + 3} for many POPs [16]. Nevertheless, the quality of the sparse SDP relaxation
for the QOP is weaker than the one for the original POP. Therefore, the solution provided by the sparse
SDP relaxation for the QOP can be understood as a first approximation to the global minimizer of the
original POP, and it may serve as initial point for a locally convergent optimization technique applied to
the original POP. For instance sequential quadratic programming (SQP) [2] can be applied to POP where
the sparse SDP solution for the corresponding QOP is taken as starting point. In the case a POP has
equality constraints only, the number of constraints coincides with the number of variables and the feasible
set is finite, we may succeed in finding the global optimizer of the POP by applying Newton’s method for
nonlinear systems [13] to the polynomial system given by the feasible set of the POP, again starting from
the solution provided by the sparse SDP relaxation for the QOP.

3.2 Higher accuracy via Branch-and-Cut bounds

The sparse SDP relaxations proposed in [16] incorporate lower and upper bounds for each component of
the n-dimensional variable,

lbdi ≤ xi ≤ ubdi, ∀i ∈ {1, . . . , n}, (3.4)

in order to establish the compactness of the feasible set of a POP. Compactness is a necessary condition
to guarantee the convergence of the sequence of sparse SDP relaxations towards the global optimum of the
POP. Moreover, the numerical performance for solving the sparse SDP relaxations depends heavily on the
bounds (3.4). The tighter we choose these bounds, the better approximates the solution of the SDP the
minimizer of the POP. Prior to solving the sparse SDP relaxations for the QOP derived from a POP, we fix
the bounds (3.4) for the components of the POP and determine lower and upper bounds for the additional
variables according to the substitution relation. For instance for xn+1 = x2

i the bounds are defined as

lbdn+1 =

{

0, if lbdi ≤ 0 ≤ ubdi

min(lbd2
i , ubd2

i ), else
,

ubdn+1 = max(lbd2
i , ubd2

i ).

(3.5)

In Section 4 we will discuss the sensitivity of the choice of the lower and upper bounds on the accuracy of
the SDP solution for some example POPs.

A more sophisticated technique to increase the quality of the SDP relaxation of the QOP is inspired by
a Branch-and-Cut algorithm for bilinear matrix inequalities due to Fukuda and Kojima [3]. As nonconvex
quadratic constraints can be reduced to bilinear ones, we are able to adapt this technique for a QOP derived
from a higher degree POP. The technique is based on cutting the feasible region of the SDP, such that every
feasible solution of the QOP remains feasible for the SDP. We distinguish two sets of constraints which
resemble the convex relaxations (5) proposed in [3]. Let (f0, f1, . . . , fm) be a QOP with lower and upper
bounds lbdi and ubdi for all components xi (i = 1, . . . , n). The first set of constraints we consider is
the following. For each constraint fi (i = 1, . . . , m) of form xk = xixj with i 6= j we add the following
constraints to the QOP

xk ≤ ubdjxi + lbdixj − lbdiubdj

xk ≤ lbdjxi + ubdixj − ubdilbdj .
(3.6)

10



For each constraint of the form xk = x2
i we add the following constraint to the QOP

xk ≤ (ubdi + lbdi) xi − lbdiubdi. (3.7)

The second set of constraints shrinks the feasible set of the SDP relaxation even further than the constraints
(3.6) and (3.7). For each monomial xixj of degree 2 which occurs in the objective f0 or one of the constraints
fi (i = 1, . . . , m) of the QOP, we add constraints as follows. If the QOP contains a constraint fi (i =
1, . . . , m) of the form xk = xixj , we add the constraints (3.6) for i 6= j and (3.7) for i = j. If the QOP does
not contain a constraint xk = xixj , we add the quadratic constraints

xixj ≤ ubdjxi + lbdixj − lbdiubdj

xixj ≤ lbdjxi + ubdixj − ubdilbdj
(3.8)

for i 6= j and the constraint
x2

i ≤ (ubdi + lbdi)xi − lbdiubdi (3.9)

for i = j. When linearized, both, the linear constraints (3.6) and (3.7) and the quadratic constraints (3.8)
and (3.9) result in a smaller feasible region of the SDP relaxation which still contains the feasible region of
the QOP. The efficiency of these sets of additional constraints is demonstrated in Section 4 as well.

4 Numerical Examples

The substitution procedure and the sparse SDP relaxations are applied to a number of test problems. These
test problems encompass medium and large scale POPs of higher degree. The numerical performance of the
sparse SDP relaxations of these POPs under the transformation algorithm is evaluated. In the following
the Branch-and-Cut bounds (3.6) and (3.7) are denoted as linear BC-bounds, (3.8) and (3.9) as quadratic
BC-bounds. The optional application of sequential quadratic programming starting from the solution of
the SDP relaxation is abbreviated as SQP. Given a numerical solution x of an equality and inequality
constrained POP, its scaled feasibility error is given by

ǫsc = min {− | hi(x)/σi(x) |, min {gj(x)/σ̂j(x), 0} ∀ i, j} ,

where hi (i = 1, . . . , k) denote the equality constraints, gj (j = 1, . . . , l) the inequality constraints, and σi

and σ̂j are the maxima of the monomials in the corresponding polynomials hi and gj at x, respectively.
Note, an equality and inequality constrained POP is a special case of the POP (2.1), if we define fi :=
gi (i = 1, . . . , l), fi := hi (i = l + 1, . . . , l + k) and fi := −hi (i = k + l + 1, . . . , 2k + l). The value of the
objective function at x is given by f0(x). Let NC denote the number of constraints of a POP. ’OOM’ as
entry for the scaled feasibility error denotes the size of the SDP is too large to be solved by SeDuMi [15]
and results in a memory error (’Out of memory’). A two-component entry for lbd or ubd indicates that the
first component is used as a bound for the first n

2 variables and the second component for the remaining n
2

variables of the POP.
All numerical experiments are conducted on a LINUX OS with CPU 2.4 GHz and 8 Gb memory. The

total processing time in seconds is denoted as tC .

4.1 Randomly generated POPs

As a first class of test problems, consider randomly generated POPs with inequality or equality constraints.
We are interested in the numerical performance of the sparse SDP relaxation for the corresponding QOPs for
different substitution strategies and different choices of lower, upper and Branch-and-Cut bounds. We will
focus on comparing strategies BI and BII as they yield POPs with a small number of additional variables.

For the random equality constrained POP randEQ(7,3,5,8,0) [16] of degree 8 with 7 variables, the size of
the SDP relaxation sSDP4 is described by the matrix Ap of size [2870, 95628] with 124034 non-zero entries.
This size is reduced substantially under each of the four substitution strategies, as can be seen in Table 3.
In that table the matrix Aq in SeDuMi input format [15] and its number of nonzero entries nnz(A) describes
the size of the sparse SDP relaxation. The reduction of the size of the SDP relaxation results in reducing
the total processing time tC by two magnitudes, as can be seen in Table 4.
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Substitution ñ size(Aq) nnz(Aq)
AI 138 [777, 6934] 7106
AII 153 [828, 6922] 7116
BI 115 [753, 5785] 5934
BII 119 [788, 6497] 6653

Table 3: Size of the SDP relaxation sSDP1 for QOPs from POP randEQ(7,3,5,8,0) with n = 7, respectively

Substitution SQP BC-bounds (lbd, ubd) ω n or ñ NC ǫsc min(sSDPω) f0(x) tC
- no none (−∞,∞) 4 7 4 6e-11 -0.708 -0.708 333
AI no none (-1,1) 1 138 135 1e-13 -247.50 -0.508 3
AII no none (-1,1) 1 153 150 1e-13 -254.92 -0.517 3
BI no none (-1,1) 1 115 112 1e-13 -299.11 -0.567 2
BII no none (-1,1) 1 119 116 1e-13 -284.98 -0.455 3
BI yes none (-1,1) 1 115 112 7e-18 -299.11 -0.708 3
BI no none (-0.5,0.5) 1 115 112 9e-14 -6.55 -0.706 3
BI no none (-0.3,0.3) 1 115 112 1e-13 -1.28 -0.708 2

Table 4: Results for SDP relaxation of randEQ(7,3,5,8,0)

Moreover, as reported in Table 4, the performance of AI, AII, BI and BII is similar with the one
of BI being slightly better than the others. In this example with few equality constraints, it is easy to
obtain a feasible solution, but it requires additional techniques as SQP to obtain an optimal solution.
We know, min(sSDP1(QOP )) and min(sSDP4(POP )) are lower bounds for min(POP). Furthermore, with
Proposition 1 it holds min(sSDP1(QOP )) ≤ min(sSDP4(POP )). As reported in Table 4 the bound provided
by sSDP1(QOP ) is much weaker than the one provided by sSDP4(POP ). Note, the objective value and
min(sSDP1(QOP )) improve significantly if the lower and upper bounds are chosen tighter. When chosen
sufficiently tight, an accurate optimal solution can be achieved without applying SQP. The main advantage
of the transformation is the reduction of total processing time by two magnitudes in order to obtain the
global optimal solution.

The results for the inequality constrained POP randINEQ(8,4,6,8,0) [16] with ωmax = 4 and 8 variables
are given in Table 5. In the column for (lbd, ubd) the entries (−0.5, 0.5)⋆ and (−0.5, 0.5)⋆⋆ denote ubd2 =
0.75 6= 0.5 and (ubd2, ubd5) = (0.75, 0) 6= (0.5, 0.5), respectively. By imposing linear Branch-and-Cut
bounds feasibility can be achieved and by choosing tighter lower and upper bounds the objective value
of the approximative solution is improved. Though we did not achieve the optimal value attained by
the solution of the SDP relaxation for the original POP, it seems reasonable to expect that successively
tightening the bounds further yields a feasible solution with optimal objective value. As in the previous
example the total processing time could be reduced by two magnitudes.

Substitution SQP BC-bounds (lbd, ubd) ω n or ñ NC ǫsc f0(x) tC
- no none (−∞,∞) 4 8 3 0 -1.5 1071
BI no none (−0.75, 0.75) 1 239 234 -1.3 -0.9 14
BI no linear (−0.75, 0.75) 1 239 680 0 -0.6 17
BI no linear (−0.5, 0.5)⋆ 1 239 680 0 -0.8 17
BI no linear (−0.5, 0.5)⋆⋆ 1 239 680 0 -1.2 16

Table 5: Results for SDP relaxation of randINEQ(8,4,6,8,0)

4.2 BroydenBand

Another test problem is the BroydenBand(n) problem [12]. It is an unconstrained POP of degree 6 and
dimension n, and its global minimum is 0. Numerical results are given in Table 6. The performance of
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the sparse SDP relaxation for the QOP with initial bounds and without applying SQP is poor, optimality
of the approximate solution and the lower bounds min(sSDP1(QOP )) for the global optimum are weak.
Nevertheless, SQP does not succeed in detecting the global optimum if started from an arbitrary starting
point. As reported in Table 6, SQP detects a local minimizer with objective 3, if the initial point is an SDP
solution with loose bounds for the QOP. It is interesting to observe that tight lower and upper bounds,
Branch-and-Cut bounds and applying sequential quadratic programming are crucial to obtain the global
minimum by solving the sparse SDP relaxation for the QOP. In fact, when applying substitution strategy
BI only imposing quadratic Branch-and-Cut bounds yields the global minimum, whereas in the case of
applying BII Branch-and-Cut bounds are not necessary to obtain the global minimum. Note, the total
processing time is reduced from around 1300 seconds to less than 5 seconds.

Substitution SQP BC-bounds (lbd, ubd) ω n or ñ NC min(sSDPω) f0(x) tC
- no none (−∞, +∞) 3 20 0 -3e-7 5e-9 1328
BII yes none (-1, 1) 1 60 40 -128 3 4
BII yes linear (-1, 1) 1 60 100 -128 3 4
BII yes quadratic (-1, 1) 1 60 1244 -106 3 4
BI no none (-0.75,0) 1 80 60 -611 47 3
BI no linear (-0.75,0) 1 80 60 -611 47 4
BI no quadratic (-0.75,0) 1 80 60 -132 28 4
BI yes none (-0.75, 0) 1 80 60 -1396 3 4
BI yes linear (-0.75, 0) 1 80 140 -611 3 5
BI yes quadratic (-0.75, 0) 1 80 1284 -611 6e-8 5
BII no none (-0.75, 0) 1 60 40 -26 33 3
BII no linear (-0.75, 0) 1 60 100 -24 24 3
BII no quadratic (-0.75, 0) 1 60 1244 -8 9 4
BII yes none (-0.75, 0) 1 60 40 -26 1e-10 5
BII yes linear (-0.75, 0) 1 60 100 -24 1e-6 4
BII yes quadratic (-0.75, 0) 1 60 1244 -8 2e-7 5

Table 6: Results for SDP relaxation for BroydenBand(20)

4.3 POPs derived from partial differential equations

An important class of large scale polynomial optimization problems of higher degree is derived from dis-
cretizing systems of partial differential equations [11]. Many POPs of this class are of degree 3, but as
the number of their constraints is in the same order as the number of variables, transformation into QOPs
results in SDP relaxations of vastly reduced size. The structure of the higher degree monomial set of these
POPs of degree three is such that there is an unique way to transform them into QOPs. Therefore, we
examine the impact of lower, upper and Branch-and-Cut bounds and not the choice of the substitution
strategy.

Consider the POPs in Table 7, where ωp and ωq the relaxation order of sSDPω for POP and QOP,
to demonstrate the reduction of the size of the SDP relaxation described by the size of the matrix A
in SeDuMi input format [15] and its number of nonzero entries nnz(A). Thus, the SDP relaxations for
the QOPs can be solved in vastly shorter time than the one for the original POPs. The computational
results of the original SDP relaxation and the SDP relaxation of the QOPs for different lower, upper
and Branch-and-Cut bounds are reported in Table 8 for the POP pdeBifurcation. In this example the
accuracy of the sparse SDP relaxation for the QOP is improved by tightening the upper bounds for the
components of the variable x̃ in QOP. Also, the additional application of SQP improves the accuracy a
lot. Additional Branch-and-Cut bounds seem to have no impact on the quality of the solution. The total
processing time is reduced substantially under the transformation. The original sparse SDP relaxation
for pdeBifurcation(14) of dimension 200 cannot be solved in SeDuMi due to memory error, but the SDP
relaxation for the corresponding QOP with tight upper bounds can be solved in 100 seconds.

In the case of POP Mimura(50), c.f. Table 9, quadratic Branch-and-Cut bounds are necessary in addition
to applying SQP, in order to obtain an accurate approximate solution of the global minimizer. In the POPs
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POP n ñ ωp size(Ap) nnz(Ap) ωq size(Aq) nnz(Aq)
pdeBifurcation(6) 36 72 2 [2186, 17605] 23801 1 [422, 4039] 4174
pdeBifurcation(10) 100 200 2 [16592, 139245] 189737 1 [1643, 18646] 19039
pdeBifurcation(14) 196 392 2 [454497, 3822961] 5208475 1 [4126, 45189] 46000
Mimura(50) 100 150 2 [3780, 31258] 39068 1 [690, 5728] 6078
Mimura(50) 100 150 3 [19300, 280007] 354067 2 [7223, 76383] 91755
Mimura(100) 200 300 3 [39100, 565357] 713767 2 [14623, 155183] 186155
Mimura(100) 200 300 2 [7630, 63158] 78818 2 [1390, 11628] 12328
StiffDiff(6,12) 144 216 2 [18569, 163162] 219020 1 [878, 6700] 7402
ginzOrDiri(9) 162 324 2 [74628, 666987] 906558 1 [4567, 49305] 50233
ginzOrNeum(11) 242 484 2 [166092, 1451752] 2504418 1 [8063, 96367] 97776

Table 7: Size of the SDP relaxation for POP and QOP, respectively

POP Substitution SQP BC-bounds ubd ω n or ñ ǫsc f0(x) tC
pdeBifurcation(6) - no none 0.99 2 36 8e-11 -9.0 14
pdeBifurcation(6) AI no none 0.99 1 72 9.6e-2 -22.1 2
pdeBifurcation(6) AI no linear 0.99 1 72 9.6e-2 -22.1 2
pdeBifurcation(6) AI no quadratic 0.99 1 72 9.6e-2 -22.1 2
pdeBifurcation(6) AI yes none 0.99 1 72 7.3e-9 -9.0 5
pdeBifurcation(6) AI no none 0.45 1 72 1.5e-2 -9.5 1
pdeBifurcation(6) AI yes none 0.45 1 72 1.4e-11 -9.0 2
pdeBifurcation(10) - no none 0.99 2 100 3.1e-10 -21.6 2159
pdeBifurcation(10) AI no none 0.99 1 200 4.7e-2 -56.0 20
pdeBifurcation(10) AI yes none 0.99 1 200 2.7e-13 -21.6 66
pdeBifurcation(10) AI no none 0.45 1 200 6.4e-3 -23.2 13
pdeBifurcation(10) AI yes none 0.45 1 200 1e-11 -21.6 22
pdeBifurcation(14) - no none 0.99 1 196 OOM - -
pdeBifurcation(14) AI no none 0.99 1 392 2.4e-2 -103.1 90
pdeBifurcation(14) AI yes none 0.99 1 392 7.9e-14 -39.9 418
pdeBifurcation(14) AI no none 0.45 1 392 3.6e-3 -43.1 85
pdeBifurcation(14) AI yes none 0.45 1 392 5.2e-11 -39.9 107

Table 8: Results for SDP relaxation for POP pdeBifurcation with lbd=0

in Table 10 it is sufficient to apply SQP starting from the solution of the sparse SDP relaxation for the
QOP. In that case the total processing time tC can be reduced by up to two magnitudes. Furthermore, the
original SDP relaxation for ginzOrDiri(9) and ginzOrDiri(13) is too large to be solved, whereas the SDP
relaxations for the QOPs are tractable.

The POP ginzOrNeum in Table 11 is another example where the global optimizer can be found in a
processing time reduced by a factor 100, if the lower bounds lbd and upper bounds ubd are chosen sufficiently
tight and SQP is applied.

5 Conclusion

Large scale polynomial optimization problems (POP) of higher degree arise in a variety of areas and efficient
methods to find their global optimizers are in high demand. Based on the sparse SDP relaxations for POPs
due to Lasserre [8, 9] and Waki et al. [16], we proposed four different heuristics to transform a general POP
into an equivalent quadratic optimization problem (QOP). The advantage of this transformation is that the
sparse SDP relaxation of order one can be applied to the QOP. The sparse SDP relaxation of order one
is of vastly smaller size than the sparse SDP relaxation of minimal order ωmax for the original POP. By
solving the sparse SDP relaxation of the QOP, approximates to the global minimizer of a large scale POP
of higher degree can be derived. The reduction of the SDP relaxation and the gain in numerical tractability
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POP Substitution SQP BC-bounds ubd ω n or ñ ǫsc f0(x) tC
Mimura(50) - no none [11, 14] 2 100 1.8e-1 -899 20
Mimura(50) - yes none [11, 14] 2 100 4.1e-9 -701 31
Mimura(50) AI no none [11, 14] 1 150 6.1e-1 -1067 2
Mimura(50) AI yes none [11, 14] 1 150 5.1e-3 -731 163
Mimura(50) AI no quadratic [11, 14] 1 150 3.3e-1 -1017 2
Mimura(50) AI yes quadratic [11, 14] 1 150 1.0e-13 -719 16
Mimura(100) - no none [11, 14] 3 200 4.5e-2 -733 532
Mimura(100) - yes none [11, 14] 3 200 2.0e-11 -712 557

Table 9: Results for SDP relaxation for POP Mimura with lbd = [0, 0]

POP Substitution SQP ubd ω n or ñ ǫsc f0(x) tC
ginzOrDiri(5) - no 0.6 2 50 6e-6 -25 598
ginzOrDiri(5) - yes 0.6 2 50 4e-15 -25 598
ginzOrDiri(5) AI no 0.6 1 100 3e-1 -100 7
ginzOrDiri(5) AI yes 0.6 1 100 4e-11 -22 10
ginzOrDiri(9) - no 0.6 2 162 OOM - -
ginzOrDiri(9) AI no 0.6 1 324 1e-1 -324 144
ginzOrDiri(9) AI yes 0.6 1 324 6e-12 -72 185
ginzOrDiri(13) - no 0.6 2 338 OOM - -
ginzOrDiri(13) AI yes 0.6 1 676 7e-9 -158 1992
StiffDiff(4,8) - yes 5 2 64 2e-11 -32 54
StiffDiff(4,8) AI yes 5 2 96 7e-10 -32 4
StiffDiff(6,12) - yes 5 1 144 4e-9 -71 1008
StiffDiff(6,12) AI yes 5 1 216 8e-10 -71 48

Table 10: Results for SDP relaxation for POP ginzOrDiri with lbd =0 and StiffDiff with lbd=0

come at the cost of deteriorating feasibility and optimality errors of the approximate solution obtained by
solving the SDP relaxation. In general the SDP relaxation of order one for the QOP is weaker than the SDP
relaxation of order ωmax for the original POP. We discussed how to overcome this difficulty by imposing
tighter lower and upper bounds for the components of the n-dimensional variable of a POP, by adding
linear or quadratic Branch-and-Cut bounds, and by applying local convergent optimization methods such
as sequential quadratic programming (SQP) to the POP starting from the solution provided by the SDP
relaxation for the QOP. The proposed heuristics have been demonstrated with success on various medium
and large-scale POPs. We have seen that imposing additional Branch-and-Cut bounds was necessary to
yield accurate approximations to the global optimizer for some problems. Nevertheless, for most problems
it was crucial to choose the lower and upper bounds for the variable x sufficiently tight and to apply SQP to
obtain a highly accurate approximation of the global optimizer. The total processing time could be reduced
by up to three magnitudes for the problems we tested. For these reasons we think the proposed technique
is promising to find first approximate solutions for POPs, whose size is too large to be solved by the more
precise, original SDP relaxations. Particular classes of problems where this technique is interesting to apply
are POPs derived from discretizing partial differential equations.

As a future problem it remains to tighten the sparse SDP relaxations of order one for the QOP further,
in order to increase the accuracy of their solutions. In that respect, it is desirable to find a systematic
approach to tighten lower and upper bounds successively, without shrinking the optimal set of the POP.
Furthermore, the additional quadratic constraints derived under the transformation algorithm allow to
express some moment as linear combination of other moments. As proposed by Henrion and Lasserre in
[4] and Laurent in [10] these linear combinations can be substituted in the moment and localizing matrices
of the SDP relaxation to reduce the size of the moment vector y. Exploiting this technique will shrink the
size of the sparse SDP relaxations for QOP further and may enable us to solve POP of even larger scale.
Finally, instead of formulating the SDP relaxation of order one for the QOP in dual form and exploiting
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POP Substitution SQP lbd ubd ω n ǫsc f0(x) tC
ginzOrNeum(5) - no [0, 0] [4, 2] 2 50 2.6 -47 448
ginzOrNeum(5) - yes [0, 0] [4, 2] 2 50 2e-13 -45 449
ginzOrNeum(5) AI no [0, 0] [4, 2] 1 100 24 -100 9
ginzOrNeum(5) AI yes [0, 0] [4, 2] 1 100 8e-10 -45 10
ginzOrNeum(5) - no [1, 0.5] [4, 1.5] 2 50 1e-1 -45 582
ginzOrNeum(5) - yes [1, 0.5] [4, 1.5] 2 50 2e-13 -45 583
ginzOrNeum(5) AI no [1, 0.5] [4, 1.5] 1 100 6e-2 -57 6
ginzOrNeum(5) AI yes [1, 0.5] [4, 1.5] 1 100 4e-10 -45 7
ginzOrNeum(11) - no [1, 0.5] [4, 1.5] 2 242 OOM
ginzOrNeum(11) AI no [1, 0.5] [4, 1.5] 1 484 4e-2 -263 740
ginzOrNeum(11) AI yes [1, 0.5] [4, 1.5] 1 484 5e-11 -207 748

Table 11: Results for SDP relaxation for POP ginzOrNeum

correlative sparsity, we may formulate the SDP relaxation in primal form and exploit domain-space sparsity
[6] resulting in a potentially smaller SDP.
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