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Abstract.
To solve a partial differential equation (PDE) numerically, we formulate it as a polynomial optimization
problem (POP) by discretizing it via a finite difference approximation. The resulting POP satisfies a
structured sparsity, which we can exploit to apply the sparse SDP relaxation of Waki, Kim, Kojima and
Muramatsu [20] to the POP to obtain a roughly approximate solution of the PDE. To compute a more
accurate solution, we incorporate a grid-refining method with repeated applications of the sparse SDP
relaxation or Newton’s method. The main features of this approach are: (a) we can choose an appropriate
objective function, and (b) we can add inequality constraints on the unknown variables and their derivatives.
These features make it possible for us to compute a specific solution when the PDE has multiple solutions.
Some numerical results on the proposed method applied to ordinary differential equations, PDEs, differential
algebraic equations and an optimal control problem are reported.
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1 Introduction

A vast number of problems arising from various areas, for instance physics, economics and engineering,
can be expressed as partial differential equations (PDEs). Problems involving PDEs are often difficult to
analyze, and therefore numerical methods to solve them are of particular interest. Though linear PDEs of
second order are well studied and many numerical solvers for specific classes such as elliptic, parabolic and
hyperbolic second order PDEs were developed, solvers for fairly general classes of nonlinear PDEs are in
high demand and remain an active field of research.

Some ordinary and partial differential equations can be expressed as polynomial optimization problems
(POPs) if they are approximated by finite differences. Presently POPs are in the focus of researchers
of different background, involving fields such as semidefinite programming (SDP), moment theory, sum of
squares, real algebra and operator theory. One of the fundamental contributions in polynomial optimization
is the paper [10] by Lasserre. Lasserre introduced a sequence of SDP relaxation problems whose solutions
converge to a global optimal solution of an unconstrained or constrained POP under moderate assumptions.
In many POPs, the polynomials involved in objective functions and the constraints are sparse. A concept
of structured sparsity for POPs was introduced in [8, 9]. Exploiting a structured sparsity of a POP, which
is called the correlative sparsity, a sequence of sparse SDP relaxation problems was constructed by Waki,
Kim, Kojima and Muramatsu in their paper [20]. Compared to the original SDP relaxation proposed by
Lasserre, their sparse SDP relaxation provides stronger numerical results . Recently, Lasserre proved in his
paper [11] the convergence of a sequence of sparse SDP relaxation problems. The observation that the POPs
derived from certain PDE problems are equipped with some structured sparsity is the first motivation for
our approach, as it enables us to apply the sparse SDP relaxations efficiently.

The purpose of this paper is to present a new numerical approach with the use of the sparse SDP
relaxation of POPs to a class of nonlinear second order PDEs. Given a PDE with a boundary condition,
(i) we discretize it into a system of polynomial equations, which forms equality constraints of the POP
to be formulated, by applying a finite difference approximation, and (ii) we set up a polynomial objective
function in the discretized variables, to formulate a POP. Also, (iii) we can add inequality constraints to
impose lower and upper bounds on the unknown functions and their derivatives. As the resulting POP
satisfies the correlative sparsity, the sparse SDP relaxation [20] works effectively in solving the POP. The
features (ii) and (iii) are the main advantages of this approach; when the PDE has multiple solutions, we
can pick up a specific solution by choosing an appropriate objective function in (ii) and adding inequality
constraints in (iii) to restrict the unknown functions and their derivatives. It is an further advantage,
that this approach covers ordinary differential equations (ODEs) and is extended to differential algebraic
equations (DAEs) and optimal control problems. Our approach exploits, that these different classes of
problems can be transformed to sparse POPs. To demonstrate its high potential we present some numerical
results.

The correlative sparsity for POPs and the sparse SDP relaxation [20] are briefly recalled in Section 2.
The new approach to solve a class of nonlinear PDEs using the sparse SDP relaxation for POPs is introduced
in Section 3. We show there that POPs derived from discretized PDEs satisfy the correlative sparsity; hence
we can effectively apply the sparse SDP relaxation to them. Section 4 discusses some numerical results on
our approach applied to ODEs, PDEs, a DAE and an optimal control problem. An approach to solve first
order PDEs was proposed recently in [5]. We discuss the performance of our approach for particular first
order PDEs from [5].

2 Semidefinite program relaxations for sparse polynomial opti-

mization problems

All partial differential equations, ordinary differential equations, differential algebraic equations and optimal
control problems we will study in this paper can be expressed as equality-inequality constrained POPs
satisfying the correlative sparsity. In this section, we briefly recall the concept of correlative sparsity of a
POP and the SDP relaxation, which exploits the correlative sparsity, by Waki, Kim, Kojima and Muramatsu
[20]. For simplicity of discussions here, we will consider only an inequality constrained POP. Basically, we
could replace an equality constraint h(x) = 0 by two inequality constraints h(x) ≥ 0 and −h(x) ≥ 0, so
that we could apply the discussions below to equality-inequality constrained POPs. For more direct and
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efficient handling of equality constraints and technical details of the sparse SDP relaxation, see [20].
Let fk ∈ R[x] (k = 0, 1, . . . , m), where R[x] denotes the set of real-valued multivariate polynomials in

x ∈ R
n. Consider the following inequality constrained POP:

minimize f0(x)
subject to fk(x) ≥ 0 ∀ k ∈ {1, . . . , m}.

(2.1)

Given a polynomial f ∈ R[x], f(x) =
∑

α∈Nn cα(f)xα (cα(f) ∈ R), we define its support by supp(f) =
{α ∈ N

n | cα(f) 6= 0}. Then, let ξ⋆ = inf{f0(x) : fk(x) ≥ 0 (k = 1, . . . , m)} and

Fk = {i : αi ≥ 1 for some α ∈ supp(fk) ⊂ N
n} ,

the index set of variables xi involved in the polynomial fk. We define the n × n correlative sparsity
pattern matrix (csp matrix) R of the POP (2.1) such that

Ri,j =



















⋆ if i = j,

⋆ if αi ≥ 1 and αj ≥ 1 for some α ∈ supp(f0),

⋆ if i ∈ Fk and j ∈ Fk for some k ∈ {1, 2, . . . , m},

0 otherwise.

If R is sparse, the POP (2.1) is called correlatively sparse. The csp matrix R induces the correlative
sparsity pattern graph (csp graph) G(N, E). Its node set N and edge set E are defined as

N = {1, 2, . . . , n} and E = {{i, j} : Ri,j = ⋆, i < j} ,

respectively. Note that each edge {i, j} corresponds to a nonzero off-diagonal element Ri,j = ⋆ of R. The
sequence of SDP relaxations is defined via the maximal cliques of the csp graph G(N, E). As it is an NP-
hard problem to determine the maximal cliques of an arbitrary graph, we introduce a chordal extension
G(N, E′) of the csp graph. (See the literature [1] for chordal graphs and their fundamental properties). Let
C1, . . . , Cp ⊆ N be the maximal cliques of G(N, E′). Since each Fk ⊆ N forms a clique, it must be contained

in some maximal Cq. Let F̂k be such a maximal clique Cq. To construct a sequence of SDP relaxations, a
nonnegative integer ω ≥ ωmax is chosen for the relaxation order, where ωmax = max{ωk : k = 0, 1, . . . , m}
and ωk = ⌈ 1

2deg(fk)⌉ (k = 0, . . . , m). In order to take the sparsity of R, i.e., the correlative sparsity of

the POP, into account, we consider subsets AC1
ω , . . . ,A

Cp

ω ,AF̂1

ω−ω1
, . . . ,AF̂m

ω−ωm
of Z

n
+, which are defined as

AC
ω = {α ∈ Z

n
+ : αi = 0 if i /∈ C and

∑

j∈C

αj ≤ ω}. Then the POP (2.1) is equivalent to the problem

min f0(x)

s.t. u(x,AF̂k

ω−ωk
)u(x,AF̂k

ω−ωk
)T fk(x) � 0 ∀ k ∈ {1, . . . , m},

u(x,ACl
ω )u(x,ACl

ω )T � 0 ∀ l ∈ {1, . . . , p},

(2.2)

where u(x,G) is used for the |G|-dimensional column vector consisting of the monomials xα (α ∈ G). If we
reform the m + p matrix inequality constraints in (2.2) into a single matrix inequality and expand it with
respect to the monomials xα, we can write (2.2) as

min
∑

α∈F̃ c̃0(α)xα

s.t. M(0) +
∑

α∈F̃ M(α)xα � 0,

where F̃ =
(

∪p
l=1A

Cl
ω

)

/{0}. M(0) and the M(α) are symmetric block diagonal matrices. If we replace each
monomial xα by a scalar variable yα, we then derive an SDP relaxation of (2.1):

min
∑

α∈F̃ c̃0(α)yα

s.t. M(0) +
∑

α∈F̃ M(α)yα � 0.

The optimal objective value of this SDP relaxation problem is denoted by ξω. For any feasible solution x of
(2.1) and for ωmax ≤ ω ≤ ω′, the relation ξω ≤ ξω′ ≤ ξ⋆ ≤ f0(x) holds. See [20] for more details. Lasserre
[11] showed the convergence of this SDP relaxation under a moderate additional assumption.

Numerical experiments [20] show that it is usually sufficient to choose a ω ∈ {ωmax, . . . , ωmax + 3} as
relaxation order to approximate an optimal solution of the POP (2.1) accurately. In theory, however, it is
not known a priori which relaxation order ω is necessary to obtain a sufficiently accurate solution. Moreover

the size of the SDP relaxation increases as

(

n + ω
ω

)

in ω.
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3 Application of the sparse SDP relaxation to partial differential

equations

In this section some methods of solving a certain class of partial differential equation (PDE) problems via
SDP relaxations are introduced. They are based on the idea to derive a sparse polynomial optimization
problem (POP) by taking a discretized PDE problem as constraint and choosing an appropriate objective
function. The first method applies the software SparsePOP [17] to this POP directly. SparsePOP is an
implementation of the SDP relaxation by Waki et al. [20]. For detailed information about SparsePOP,
see [21]. This SDP relaxation method is improved by applying subsequently Newton’s method with the
SparsePOP solution as an initial guess. Finally a grid-refining method is proposed, which extends solutions
found by SparsePOP (and Newton’ s method) on a coarse grid to a finer grid by linear interpolation and
subsequent iterations of SparsePOP or Newton’s method. We demonstrate those three different methods
to solve PDE problems in Section 4. Our grid-refining method shares a basic idea with the multigrid
method for linear PDEs, where more sophisticated techniques such as a smoothing technique with the use
of the weighted Jacobi iteration are used to get accurate approximate solutions on fine grids from rough
approximate solutions on coarse grids. See [2, 19] for more details on the multigrid method.

In general we distinguish a PDE, which is an equation involving an unknown function u : Ω → R
m

and its partial derivatives, and a PDE problem, which is a PDE equipped with additional conditions for
the unknown function u on the boundary of the domain Ω. We restrict our attention to a certain class
of PDE problems where Ω is given as a rectangular region [xl, xu] × [yl, yu] of R

2. (Later we deal with
ordinary differential equations where Ω = [xl, xu] ⊂ R

1). The target class of PDE problems is specified by
the following definition.

Definition 1 A PDE problem is called polynomial second order in two variables (PSO), if it is a
problem of finding an unknown function u : Ω → R

m of the form

a(x, y, u)∂2u
∂x2 (x, y) + b(x, y, u) ∂2u

∂x∂y
(x, y)+

c(x, y, u)∂2u
∂y2 (x, y) + d(x, y, u)∂u

∂x
(x, y)+

e(x, y, u)∂u
∂y

(x, y) + f(x, y, u) = 0 ∀ (x, y) ∈ Ω ⊂ R
2,

rx
l

∂u
∂n

(xl, y) + sx
l u(xl, y) − ox

uu(xu, y) = H(xl, y) ∀ y ∈ [yl, yu],
rx
u

∂u
∂n

(xu, y) + sx
uu(xu, y) − ox

l u(xl, y) = H(xu, y) ∀ y ∈ [yl, yu],
ry
l

∂u
∂n

(x, yl) + sy
l u(x, yl) − oy

uu(x, yu) = H(x, yl) ∀ x ∈ [xl, xu],
ry
u

∂u
∂n

(x, yu) + sy
uu(x, yu) − oy

l u(x, yl) = H(x, yu) ∀ x ∈ [xl, xu].

(3.1)

Here a, b, c, d and e are diagonal functions Ω×R
m → R

m×m polynomial in u, f : Ω×R
m → R

m is a function
polynomial in u , the domain Ω is of the form Ω = [xl, xu]×[yl, yu] and H : ∂Ω → R

m. ∂u
∂n

denotes the partial
derivative of u in direction orthogonal to the boundary and rx

l , sx
l , ox

l , rx
u, sx

u, ox
u, ry

l , sy
l , oy

l , ry
u, sy

u, oy
u ∈

{0, 1}. The PSO discriminant D is defined as

D : R
2 → R

m×m,

D(x, y) = b(x, y, u(x, y))2 − 4a(x, y, u(x, y)) c(x, y, u(x, y)).

In case D negative definite on Ω a PSO PDE is called elliptic, in case D positive definite on Ω hyperbolic
and in case det(D) = 0 on Ω parabolic.

3.1 Discretization of PDEs and their formulation in terms of sparse POPs

Given a PSO PDE problem we induce a sparse POP in two steps. First we discretize the PDE and its
boundary conditions into a system of polynomial equations. Next we choose an appropriate objective
function, lower, upper and variational bounds for the discretized variables to construct a POP which we
can apply SparsePOP to.

3.1.1 Discretization

Finite difference approximations: The rectangular domain Ω = [xl, xu] × [yl, yu] of u is discretized
with Nx × Ny grid points. In order to approximate the partial derivatives of u at each point in the grid,
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define
ui,j = u (xl + (i − 1)∆x, yl + (j − 1)∆y) ∀i ∈ {1, . . . , Nx}, ∀j ∈ {1, . . . , Ny},

where ∆x = 1
Nx−1 (xu − xl) and ∆y = 1

Ny−1 (yu − yl). We use the vector

u = (ui,j)i,j = (u1,1, . . . , u1,Ny
, . . . , uNx,Ny

)

to denote the unknown variables. With these variables (ui,j)i,j the partial derivatives in the PSO PDE
problem are approximated by standard finite difference schemes. The finite difference approximations

at a ui0,j0 are linear in (ui,j)i,j , e.g. ∂2u(x,y)
∂x2 |u(x,y)=ui0,j0

≈
∆2ui0,j0

(∆x)2 :=
ui0+1,j0

−2 ui0,j0
+ui0−1,j0

(∆x)2 and
∂u(x,y)

∂x
|u(x,y)=ui0,j0

≈
∆ui0,j0

∆x
:=

ui0+1,j0
−ui0−1,j0

2∆x
. Note that derivatives exist at interior grid points,

i.e. grid points ui,j with i ∈ {2, Nx − 1} and j ∈ {2, Ny − 1}. Applying these finite difference approxi-
mations to the PDE problem (3.1), where a, b, c, d, e and f are polynomial in u, a system of polynomial

equations (pi,j(u) = 0)
Nx−1,Ny−1
i=2,j=2 in u is obtained, where pi,j(u) is given by

pi,j(u) =a(xi, yj , ui,j)
∆2ui,j

∆x2
+ b(xi, yj , ui,j)

∆2ui,j

∆x∆y
+ c(xi, yj, ui,j)

∆2ui,j

∆y2
+

d(xi, yj, ui,j)
∆ui,j

∆x
+ e(xi, yj , ui,j)

∆ui.j

∆y
+ f(xi, yj , ui,j).

There is no general theorem guaranteeing the convergence of a finite difference scheme’s solution (ui,j)
Nx, Ny

i=1, j=1
to a solution u of the original PDE if Nx, Ny → ∞. It may occur that more than one solution for the
difference scheme exists. There are a lot of studies on the convergence. Among them, we note that Theorem
2.1 in [18] provides convergence for finite difference schemes of a certain class of parabolic PDE problems.
Stable solutions of such a parabolic PDE problem will be discussed as one of our testing problems.

Additional polynomial inequality constraints: In order to apply POP solvers as SparsePOP, we are
required to fix lower bounds (lbdi,j)i,j and upper bounds (ubdi,j)i,j for the (ui,j)i,j . When choosing these
bounds care has to be taken. A choice of lbd and ubd which is too tight may exclude solutions of the
polynomial system, while a choice which is too loose may cause inaccurate results.

Beside those necessary constraints, it is also possible to impose additional inequality constraints of the
form

gl(u) ≥ 0 ∀ l ∈ {1, . . . , k}, (3.2)

where the gl are polynomial in (ui,j)i,j . One possibility to obtain such bounds is derived by constraining
the partial derivatives. We call bounds of this type variation bounds. For the derivative in x−direction
they are given by

|
∂u(xi, yj)

∂x
|≤ M ∀i ∈ {2, . . . , Nx − 1}, ∀j ∈ {2, . . . , Ny − 1}. (3.3)

Expression (3.3) can be transformed into polynomial constraints easily. Choosing variation bounds (3.3)
restricts the class of admissible functions in which we search for a PDE problem’ s solution.

Choosing an objective function: To derive a POP, it remains to choose an appropriate objective
function F that is polynomial in ui,j (i = 1, . . . , Nx, j = 1, . . . , Ny). The choice of an appropriate objective
function is dependent on the PDE problem we are aiming to solve. In case there is at most one solution
of the PDE problem, we are interested in the feasibility of the POP we construct. Thus any objective
is a priori acceptable for that purpose. However, the accuracy of obtained solutions may depend on the
particular objective function. In case the solution of the PDE problem is not unique, the choice of the
objective function determines a particular solution to be found. A large class of PDE’s which occur in
many applications can be written as Euler-Lagrange equations. A typical case is a stable state equation
of reaction-diffusion type. In this case, a canonical choice is a discretization of the corresponding energy
integral as we see in example 4.3.2.
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With the definition of the objective function and the discretized PDE problem, we obtain the POP

max F ((ui,j)i,j)
s.t. pi,j(u) = 0 ∀i ∈ {2, . . . , Nx − 1},

∀j ∈ {2, . . . , Ny − 1},

−rx
l

∆u1,j

∆x
+ sx

l u1,j − ox
uuNx,j = H1,j ∀j ∈ {1, . . . , Ny} ,

rx
u

∆uNx,j

∆x
+ sx

uuNx,j − ox
l u1,j = HNx,j ∀j ∈ {1, . . . , Ny} ,

−ry
l

∆ui,1

∆y
+ sy

l ui,1 − oy
uui,Ny

= Hi,1 ∀i ∈ {1, . . . , Nx} ,

ry
u

∆ui,Ny

∆y
+ sy

uui,Ny
− oy

l ui,1 = Hi,Ny
∀i ∈ {1, . . . , Nx} ,

lbdi,j ≤ ui,j ≤ ubdi,j ∀i ∈ {1, . . . , Nx} ,
∀j ∈ {1, . . . , Ny},

gl ((ui,j)i,j) ≥ 0 ∀l ∈ {1, . . . , k} .

(3.4)

We show in Section 3.4 that the POP (3.4) is correlatively sparse under some mild assumptions.

3.1.2 Note on boundary conditions

Beside the choice of the objective function and the discretization of the PDE in (3.4), the boundary condi-
tions for the unknown function u have a crucial impact on the accuracy of numerical solutions obtained by
SparsePOP. Recall the boundary condition of the PSO PDE (3.1). In our approach to solve PSO PDE we
restricted ourselves to problems with boundary conditions of the types Dirichlet, Neumann or periodic.

Boundary conditions at x = xl or x = xu are called Dirichlet, if the values u(xl, y) or u(xu, y) are fixed

for all y ∈ [yl, yu]. And they are called Neumann, if the values of the partial derivative ∂u(x,y)
∂n

orthogonal
to the domain’s boundary are fixed at x = xl or x = xu for all y ∈ [yl, yu]. For instance the boundary
conditions at x = xl and x = xu are of the form

−rx
l

∂u(xl, y)

∂x
+ sx

l u(xl, y) = H(xl, y) ∀ y ∈ [yl, yu],

rx
u

∂u(xu, y)

∂x
+ sx

u u(xu, y) = H(xu, y) ∀ y ∈ [yl, yu],

with rx
l + sx

l = 1, rx
u + sx

u = 1. We discretize these equations by finite difference approximations.
In various PDE problems, the function u(xl, y) in y ∈ [yl, yu] is sometimes identified with the function

u(xu, y) in y ∈ [yl, yu]. In that case, the boundary condition is called periodic, it is written

u(xl, y) = u(xu, y) ∀y ∈ [yl, yu],

and is easily discretized to u1,j = uNx,j (j = 1, . . . , Ny). It corresponds to the general boundary condition
in (3.1) at (xl, y) with H(xl, ·) ≡ 0, rx

l = 0 and sx
l = ox

u = 1. Analogous expressions can be derived for
boundary conditions in y−direction accordingly. Note that boundary conditions in x- and y-direction may
be of different type.

3.1.3 Reducing the number of variables

In order to improve the numerical performance of the sparse SDP relaxation, we can simplify the POP
(3.4). It is observed that by imposing Dirichlet or Neumann conditions on grid points at the boundary of
the domain, the ui,j become either known or can be expressed in dependence of an adjacent interior grid
point. For instance at xl,

u1,j = H1,j or u1,j = H1,j ∆x + u2,j. (3.5)

If we substitute the variables ui,j corresponding to boundary grid points by the expression (3.5), the number
of grid points in x direction is reduced by 2. In case of periodic condition the number of grid points in that
direction is reduced by 1. For instance under Dirichlet or Neumann condition for x and periodic condition
for y the dimension n is reduced to n = N̂xN̂y = (Nx − 2)(Ny − 1). These substitutions result in a POP
where the constraints derived from discretized boundary conditions are eliminated:

max F (u)

s.t.

pi,j(u) = 0

lbdi,j ≤ ui,j ≤ ubdi,j ∀i ∈ {1, . . . , N̂x}, ∀j ∈ {1, . . . , N̂y},
gℓ(u) ≥ 0 ∀ℓ ∈ {1, . . . , k}.

(3.6)
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The finite difference approximations at boundary ui,j (i ∈ {1, N̂x} or j ∈ {1, N̂y}) preserve the information
given by the boundary conditions in POP (3.4).

3.2 SparsePOP and Newton’s method

The optimal solution for a POP (3.6) obtained by the sparse SDP relaxation is often of inappropriate
accuracy. Therefore, additional techniques are introduced to improve the solution’s accuracy. Since the
number of equality constraints in (3.6) coincides with the number n of unknown ui,j , it is possible to apply
the well known Newton’s method for nonlinear systems of equations. It can be found in detail in [14] for
example.

In our approach, we exploit the locally rapid convergence of Newton’s method in combination with the
global optimization property of SparsePOP [17]. At first, SparsePOP is applied to the POP (3.6) with an
appropriate objective function and a sufficient relaxation order ω. In a second step Newton’s method is
applied to the system (pk,l(u) = 0)k,l of dimension n with the SparsePOP solution as the initial guess u0.
Newton’s method terminates after obtaining an appropriate accuracy or exceeding a maximum number NN

of iterations.

3.3 Grid-refining method

Even though SparsePOP is combined with Newton’s method, still a high relaxation order ω is necessary in
many examples, in order to obtain accurate solutions. Because the size of the SDP relaxation increases as
(

n + ω
ω

)

in the relaxation order ω and in the number n of variables, those problems are solved for coarse

discretization in appropriate time only.
In our grid-refining method a solution, which is obtained by SparsePOP and optional Newton’s method

for a coarse grid as a first step, is extended stepwise to a finer grid by subsequent interpolation, and applying
SparsePOP or Newton’ s method. The grid-refining method is implemented in the following algorithm:

Step 1 - Initialization Apply SparsePOP, obj. F (u), ω = ω1.
Apply Newton’s method (optional). obtain u1

Step 2 - Extension Nx(k) = 2 Nx(k − 1) − 1
or
Ny(k) = 2 Ny(k − 1) − 1

Interpolation of uk−1 obtain uk−1⋆

Step 3a Apply SparsePOP, obj. FM (u), ω = ω2.
Step 3b Apply Newton’s method. obtain uk

Iterate Step 2 and Step 3

Step 1 - SparsePOP: Choose an objective function F (u), a discretization grid size (Nx(1), Ny(1)), lower
bounds (lbdi(1))i, upper bounds (ubdi(1))i and an initial relaxation order ω1. Apply SparsePOP with these
parameters to a discretized PDE problem and obtain a solution u1. To improve the accuracy of the Sparse-
POP solution u1, Newton’s method as stated in Section 3.2 may be applied to the same discretized PDE
problem with the initial guess u1.

Step 2 - Extension: Extend the (k-1)th iteration’s solution uk−1 to a finer grid. Choose either x- or
y-direction as the direction of refinement, i.e. choose either Nx(k) = 2 Nx(k−1)−1 and Ny(k) = Ny(k−1),
or Nx(k) = Nx(k−1) and Ny(k) = 2 Ny(k−1)−1. In order to extend uk−1 to the new grid with the doubled
number of grid points, assume without loss of generality the direction of extension is x. The interpolation
of the solution uk−1 to uk−1⋆

is given by the scheme

uk−1
2i−1,j

⋆
= uk−1

i,j ∀i ∈ {1, . . . , Nx(k − 1)}, ∀j ∈ {1, . . . , Ny(k)},

uk−1
2i,j

⋆
= 1

2

(

uk−1
i+1,j + uk−1

i,j

)

∀i ∈ {1, . . . , Nx(k − 1) − 1}, ∀j ∈ {1, . . . , Ny(k)}.

The interpolated solution uk−1⋆
is a first approximation to the solution of POP (3.6) for the Nx(k)×Ny(k)-

grid.
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Step 3a - Apply SparsePOP: We would like to be able to choose a new relaxation order ω2 ≤ ω1 to
apply SparsePOP with a new objective function FM , defined as

FM (u) =
∑

i,j

(ui,j − uk−1
i,j

⋆
)2, (3.7)

to POP (3.6) on the refined grid. We choose this objective function as we are interested in finding a feasible
solution of the POP (3.6) with minimal Euclidean distance to the interpolated solution uk−1⋆

. To utilize
the information given by uk−1⋆

the lower and upper bounds are adapted by

lbdi,j(k) = max
{

lbdi,j(k − 1), uk−1
i,j

⋆
− δ

}

∀ i, j,

ubdi,j(k) = min
{

ubdi,j(k − 1), uk−1
i,j

⋆
+ δ

}

∀ i, j,

where δ > 0. Apply SparsePOP to obtain a solution uk.

Step 3b - Apply Newton’s method: The SparsePOP solution uk may be equipped with an inappropriate
feasibility error ǫfeas. Or it may occur that POP (3.6) for the finer grid is intractable, even when ω2 < ω1.
In the first case Newton’s method is applied with initial guess u0 = uk, in the second case it is applied with
u0 = uk−1⋆

.

The steps 2 and 3 are repeated until an accurate solution for a high resolution grid is obtained.

3.4 Sparsity of discretized PDE problems

The introduced SDP relaxations are desired to be deduced from a sparse POP in order to solve them
efficiently. Due to the few variables ui,j involved in each equality constraint of POP (3.6), we expect POP
(3.6) to be sparse. But it remains to confirm this expectation by showing the n× n csp matrix R is sparse,
i.e. the number nz(R) of nonzero elements in R is of order O(n). We distinguish the two cases:

1. a 6= 0, b = 0 and c 6= 0,

2. a 6= 0, b 6= 0 and c 6= 0,

where a, b and c the coefficients of uxx, uxy and uyy in the PSO PDE (3.1). We derive bounds for nz(R)
under the assumption that the objective function is linear in ui,j . In case 1 there are at most 12 unknown
uk,l that can occur in some equality constraint with a particular unknown ui,j as pictured in Figure 1.
Hence the maximum number of nonzero elements in the row of R corresponding to ui,j is 13, which implies
nz(R) ≤ 13n. Under the same argument it follows in case 2 that nz(R) ≤ 25n; see Figure 1. These bounds
are tight; they are attained in case of periodic condition for x and y. Thus R is sparse and POP (3.6) is
correlatively sparse.

ui,j

ui-1,j+1

ui+1,j+1

ui-2,j

ui,j

Figure 1: uk,l involved in some constraint with ui,j in case 1 (left) and case 2 (right)
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Let R′ denote the n × n matrix corresponding to the graph G(N, E′), which is a chordal extension of
G(N, E). For the computational effort it is also useful to know whether R′ is sparse or not. nz(R

′)
depends on the employed ordering method P for R, which is used to avoid fill-ins in the symbolic sparse
Cholesky factorization LLT of the ordered matrix PRPT . R′ is constructed as R′ = L + LT . We examine
two different methods of ordering R, the symmetric minimum degree (SMD) ordering and reverse
Cuthill-McKee (RCM) ordering. See [4] for details.
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Figure 2: nz(R′)
n

for SMD (left) and RCM (right) ordering in case 1

We conduct some numerical experiments, in order to estimate the behavior of nz(R
′). Figure 3 shows

examples of R′ after SMD and RCM ordering, and Figure 2 shows nz(R′)
n

obtained by the SMD and RCM
orderings for the n × n-matrix R, respectively, in case 1 with Dirichlet or Neumann condition in x and

periodic condition in y. For n ∈ [100, 160000] it holds nz(R′)
n

≤ 300 for SMD ordering and nz(R′)
n

≤ 600 for

RCM ordering, respectively. The behavior of nz(R′)
n

may suggest nz(R
′) = O(n) for both ordering methods.

Hence we expect the numerical advantage of the sparse SDP relaxations. As the constants 300 and 600 are
large, we can not expect a quick solution of the sparse SDP relaxation.

0 50 100 150 200 250 300 350 400
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200

250
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350

400
0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

nz = 27344

Figure 3: R′ obtained by SMD (left) and RCM (right) orderings in case 1 with n = 400

4 Numerical results

In this section examples of ordinary differential equation, partial differential equation (PDE), differential
algebraic equation and optimal control problems are solved via the methods proposed in Section 3. Before
examining different PDE problems, we mention the most important parameters that have to be chosen to
apply our approach. Apart from the objective function F , we choose the relaxation order ω for SparsePOP

8



[17]. In case we employ Newton’ s method it is necessary to determine the number NN of Newton steps,
each time Newton’s method is called. When the grid-refining method is applied with strategy 3a, instead
of ω we have to choose two relaxation orders ω1 and ω2.

We used a Mac OS with CPU 2.5 GHz and 2 Gb Memory for all calculations. The total processing
time is denoted as tC .

4.1 Verification of results

After determining numerical solutions for discretized PDE problems by applying SparsePOP [17], Newton’s
method or the grid-refining method, the question arises, how to verify the accuracy of those results. Measures
for feasibility and optimality of a numerical solution u of POP (3.6) are given by ǫfeas, ǫscaled and ǫobj.

ǫobj =
|the optimal value of SDP − F (u)|

max {1, |F (u)|}

denotes a measure for the optimality of the solution u. It is observed ǫobj is usually negligible if F is
linear in u. Therefore ǫobj is documented in exemplary cases only. The absolute feasibility error

ǫfeas = min {− | pi,j(u) |, min {gl(u), 0} ∀ i, j, l}

is the measure for feasibility of the numerical solution u. In case the problem is badly scaled, it is more
suitable to consider the scaled feasibility error

ǫscaled = min {− | pi,j(u)/σi,j(u) |, min {gl(u)/σ̂l(u), 0} ∀ i, j, l} ,

where σi,j and σ̂l are the maxima of the monomials in the corresponding polynomials pi,j and gl at u. In
most examples we document ǫfeas; if ǫfeas and ǫscaled differ by some magnitudes, both are given.

Moreover, we define the Jacobian J of the system at a solution u as

J(u) =

(

∂pi,j

∂uk,l

)N̂x,N̂y,N̂x,N̂y

i=1,j=1,k=1,l=1

.

The maximal eigenvalue of J(u) is denoted as me. A solution u of POP (3.6) is called stable if me is
nonpositive.

4.2 Ordinary differential equation problems

Simple ordinary differential equation (ODE) problems can be solved by a direct SparsePOP approach.
Namely, highly accurate solutions on high resolution grids of ODE problems in one unknown function (PSO
PDE with m = 1) under Dirichlet conditions are obtained by applying SparsePOP with a low relaxation
order ω ∈ {1, 2}.

4.2.1 A problem in Yokota’s text book

An example of those easy solvable ODE problems is given by

ü(x) + 1
8u(x)u̇(x) − 4 − 1

4x3 = 0 ∀ x ∈ [1, 3],
u(1) = 17,
u(3) = 43

3 ,
10 ≤ u(x) ≤ 20 ∀ x ∈ [1, 3].

(4.1)

For details about problem (4.1) see [22]. Choosing relaxation order ω = 2 and objective function F ,
given by

F (u) =

Nx
∑

i=1

ui,

we obtain the highly accurate, stable solution, that is documented in Table 1 and pictured in Figure 4.
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Nx ǫfeas ǫscaled ǫobj me tC
200 1e-4 2e-9 -4e-11 -3 104

Table 1: results for problem (4.1)

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
11

12

13

14

15

16

17

x

u(
x)

u

Figure 4: solution u for problem (4.1)

4.2.2 Mimura’s problem

In the following we demonstrate the potential of our approach on a more difficult ODE example. An exciting
and difficult ODE problem of two dependent functions is a problem by M. Mimura [13] which arises from
the context of planktonic prey and predator models in biology. This problem is given below and is called
Mimura’s problem.

1
20 u′′(t) + 1

9

(

35 + 16u(t)− u(t)2
)

u(t) − u(t) v(t) = 0,
4 v′′(t) −

(

1 + 2
5v(t)

)

v(t) + u(t) v(t) = 0,
u̇(0) = u̇(5) = v̇(0) = v̇(5) = 0,

0 ≤ u(t) ≤ 14,
0 ≤ v(t) ≤ 14,

∀t ∈ [0, 5] .

(4.2)

In [13] the problem is analyzed, and the existence of continuous solutions is shown in [15]. This problem
is obviously nonlinear in u and v, and various techniques introduced in Section 3 can be applied to it. Let
N be the number of grid points in the interval [0, 5]. In order to construct a POP of the type (3.6), different
objective functions are considered:

F1(u, v) = u⌈N
2
⌉, F2(u, v) =

N
∑

i=1

ui, F3(u, v) = u2,

F4(u, v) = uN−1, F5(u, v) = u2 + uN−1.

(4.3)

At first, we apply SparsePOP with ω = 3 and N = 5. In order to confirm the numerical results obtained
for this coarse grid, we apply PHoM [7], which is a C++ implementation of the polyhedral homotopy
continuation method for computing all isolated complex solutions of a polynomial system of equations, to
the system of discretized PDEs. In that case the dimension n of the problem equals 6, as there are 2
unknown functions with 3 interior grid points each. PHoM finds 182 complex, 64 real and 11 nonnegative
real solutions. Varying the upper and lower bounds for u2 and u4 and choosing one of the functions
F1, . . . , F5 as an objective function, all 11 solutions are detected by SparsePOP, as enlisted in Table 2.

The confirmation of our SparsePOP results by PHoM encourages us to solve Mimura’s problem for a
higher discretization. Relaxation order ω = 3 is necessary to obtain an accurate solution in case N = 7
(Table 3, row 1). The upper bounds for u2 and uN−1 are chosen to be 1. When we extended the grid size
from 7 to 13, the solution obtained by SparsePOP got inaccurate, so that convergence of our algorithm was
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u2 u3 u4 v2 v3 v4 obj ubd2 ubd4 ǫfeas
4.623 6.787 0.939 9.748 10.799 5.659 F3 5 1.5 -2e-6
4.607 6.930 0.259 9.737 10.831 5.166 F3 5 0.5 -3e-6
0.259 6.930 4.607 5.166 10.831 9.737 F2 0.5 6 -5e-7
5.683 2.971 5.683 10.388 8.248 10.388 F3 6 6 -1e-6
6.274 0.177 6.274 10.638 6.404 10.638 F3 7 7 -7e-5
0.970 7.812 0.970 5.735 10.94 5.735 F3 2 2 -2e-7
0.297 7.932 0.966 5.230 10.94 5.729 F4 0.5 2 -1e-7
0.962 7.932 0.297 5.729 10.94 5.230 F3 2 0.5 -2e-7
0.304 8.045 0.304 5.234 10.94 5.234 F1 14 14 -5e-9
0.939 6.787 4.623 5.659 10.80 9.748 F4 2 14 -1e-3
5.000 5.000 5.000 10.000 10.000 10.000 F2 14 14 -2e-7

Table 2: SparsePOP solutions for (4.2) with discretization N = 5 grid points

strategy NN N solution ǫfeas ǫscaled me

init SPOP with F2 10 7 -1e-8 -5e-9 -2.2
mGrid 3b 10 13 -1e+6 -2e+0 2.7
mGrid 3b 10 25 -6e-5 -2e-6 -0.9
mGrid 3b 10 49 -5e-11 -1e-12 0.1
mGrid 3b 10 97 -5e-10 -5e-12 0.2
mGrid 3b 10 193 -9e-2 -2e-4 0.3
mGrid 3b 10 385 2teeth -1e-1 -5e-5 0.2

init SPOP with F5 10 26 -3e+0 -1e-1 2.09
mGrid 3b 10 51 -8e-1 -5e-2 -0.18
mGrid 3b 10 101 -6e-12 -2e-15 -0.07
mGrid 3b 10 401 2,3peak -1e-10 -6e-16 -0.07

Table 3: Results of grid-refining strategy 3b for solutions 2teeth and 2,3peak

lost. Also, if the initial SparsePOP is started with ω = 2, or if Newton method is applied with another
arbitrary starting point, or if we start for instance with N = 5 or N = 9, it is not possible to get an accurate
solution. One possibility to overcome these difficulties is to start the grid-refining method with strategy 3b
on a finer grid. We finally obtained a highly accurate stable solution 2teeth when we started with N = 7
and the F2 objective function, and a highly accurate stable solution 2,3peak when we started with N = 25
and the F5 objective function. See Table 3 and Figure 5. It seems reasonable to state that SparsePOP
provides an appropriate initial guess for Newton’ s method, which leads to accurate solutions for sufficiently
high discretizations.

As the most powerful approach we apply the grid-refining method with strategy 3a/b, ω1 = 3 and
ω2 = 2. We obtain the highly accurate stable solutions 3peak and 4peak, that are documented in Table 4
and pictured in Figure 6. As objective function for the iterated application of SparsePOP we choose the
function FM , which was introduced in (3.7).

4.3 Partial differential equation problems

4.3.1 Elliptic nonlinear PDE

For a PDE problem of two unknown functions in two variables, consider the following problem, where we
distinguish two types of boundary conditions, Case I (Dirichlet condition) and Case II (Neumann condition).

uxx + uyy + u
(

1 − u2 − v2
)

= 0,
vxx + vyy + v

(

1 − u2 − v2
)

= 0,
0 ≤ u, v ≤ 5,

∀ (x, y) ∈ [0, 1]2. (4.4)
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Figure 5: unstable solution 2teeth (left) and stable solution 2,3peak (right)

strategy obj NN N solution ǫfeas ǫscaled me tC
init SPOP F5 10 26 -3e+1 -2e-1 2.09 203

mGrid 3a/b FM 10 51 -8e-1 -4e-2 -0.05 224
mGrid 3a/b FM 10 101 -3e-2 -4e-4 -0.02 383
mGrid 3a/b FM 10 201 4peak -1e-8 -3e-11 -0.02 1082

init SPOP F1 10 26 -1e-1 -1e-3 -0.12 270
mGrid 3a/b FM 10 51 -1e-1 -4e-3 -0.08 348
mGrid 3a/b FM 10 101 -9e-12 -3e-16 -0.08 511
mGrid 3a/b FM 10 201 3peak -5e-9 -2e-11 -0.07 1192

Table 4: Results for grid-refining strategy 3a/3b

Case I:
u(0, y) = 0.5y + 0.3 sin(2πy), u(1, y) = 0.4 − 0.4y ∀ y ∈ [0, 1],
u(x, 0) = 0.4x + 0.2 sin(2πx), u(x, 1) = 0.5 − 0.5x ∀ x ∈ [0, 1],
v(x, 0) = v(x, 1) = v(0, y) = v(1, y) = 0 ∀ x ∈ [0, 1]

∀ y ∈ [0, 1].
or
Case II:
ux(0, y) = −1, ux(1, y) = 1 ∀ y ∈ [0, 1],
uy(x, 0) = 2x, uy(x, 1) = x + 5 sin(πx

2 ) ∀ x ∈ [0, 1],
vx(0, y) = 0, vx(1, y) = 0 ∀ y ∈ [0, 1],
vy(x, 0) = −1, vy(x, 1) = 1 ∀ x ∈ [0, 1].

In both cases, we choose F (u, v) =
∑

i,j ui,j as an objective function.

Case I. SparsePOP is applied with the objective F and ω = 2 to problem (4.4) under Dirichlet condition
on a 9× 9-grid. A highly accurate stable solution is found, which can be extended via grid-refining strategy
3b to a 65×65-grid. The numerical results are given in Table 5; the solution u is non-constant and pictured
in Figure 7, and the solution v is zero on the entire domain.

boundary strategy NN Nx Ny ǫfeas me tC
I init SparsePOP 5 9 9 -9e-9 -19 125
I mGrid 3b 5 65 65 -1e-12 -19 12280

Table 5: Results for problem (4.4) in Case I, grid-refining strategy 3b
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Figure 6: Stable solutions for grid-refining strategy 3a/b
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Figure 7: Stable solution u for problem (4.4) in Case I

Case II. SparsePOP is applied with the objective F and ω = 2 to problem (4.4) under Neumann condition
on a 6 × 6-grid. We obtain a non-constant stable solution for u and v, which we extend to a 41 × 41-grid
via grid-refining strategy 3b. For the results see Table 6 and Figure 8.

boundary strategy NN Nx Ny ǫfeas me

II init SparsePOP 5 6 6 -2e-14 -3
II mGrid 3b 5 41 41 -4e-12 -3

Table 6: Results for problem (4.4) in Case II, grid-refining strategy 3b

4.3.2 Elliptic - Bifurcation

Consider another nonlinear elliptic PDE problem,

uxx(x, y) + uyy(x, y) + λu(x, y)
(

1 − u(x, y)2
)

= 0 ∀ (x, y) ∈ [0, 1]2,
u(x, y) = 0 ∀ (x, y) ∈ ∂[0, 1]2,

0 ≤ u(x, y) ≤ 1 ∀ (x, y) ∈ [0, 1]2,
(4.5)

with parameter λ > 0. It is shown in [16], there exists a unique nontrivial solution for this problem if
λ > λ0 = 2π2 ≈ 19.7392, and there exists only the trivial zero solution if λ ≤ λ0, where λ0 is characterized
as the smallest eigenvalue of the Laplacian ∆. At first we demonstrate the power of the grid-refining method
for the case λ = 22. Beyond that, we apply a bisection algorithm to approximate λ0.

13



0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0.5

1

1.5

2

2.5

3

3.5

xy

u(
x,

y)

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

0.7

0.8

0.9

1

1.1

xy

v(
x,

y)

Figure 8: Solutions u (left) and v (right) for problem (4.4) in Case II

We take the objective function as F (u) =
∑

i,j ui,j and choose ω = 2 and Nx = Ny = 6 for the initial
SparsePOP and obtain a highly accurate stable solution on a 41 × 41-grid. The results are documented in
Table 7 and pictured in Figure 9.

Nx 6 11 11 21 21 41 41
Ny 6 6 11 11 21 21 41
ǫfeas -6.4e-10 -6.2e-11 -1.2e-10 -8.3e-8 -8.9e-8 -3.7e-10 -3.8e-10
me -5.61 -5.18 -4.74 -4.63 -4.51 -4.48 -4.46

Table 7: grid-refining strategy 3b for problem (4.5) in case λ = 22

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

xy

u(
x,

y)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

xy

u(
x,

y)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 9: Solution for (4.5) if λ = 22, (Nx, Ny) = (6, 6) and (Nx, Ny) = (41, 41)

To examine the uniqueness of the positive solution, we impose additional constraints

| ux(x, y) | ≤ M
| uy(x, y) | ≤ M

∀ (x, y) ∈ [0, 1]2. (4.6)

We apply SparsePOP with ω = 2 to problem (4.5) under (4.6) and λ = 22 on a 6 × 6-grid. For M > 0.8
we obtain a positive solution, as the one in the second column of Table 7. If we decrease M sufficiently, we
obtain the zero solution. Hence, it seems there exists exactly one positive non-trivial solution to problem
(4.5).

Next, we exploit a well known result for problem (4.5). As already shown in [3] a function u : [0, 1]2 → R
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that is a minimizer of the optimization problem

minu: [0,1]2→R

∫

[0,1]2 u2
x + u2

y − 2λ
(

u2

2 − u4

4

)

dx dy

s.t. u = 0 on ∂[0, 1]2,
0 ≤ u ≤ 1 on [0, 1]2.

(4.7)

is a solution to problem (4.5). The integral to be minimized in this problem is called the energy integral.
In analogy to the discretization procedure for a polynomial second order PDE problem, problem (4.7) can
be transformed into a polynomial optimization problem in case the partial derivatives are approximated by
standard finite difference expressions:

min
∑

i,j

[

(

∆ui,j

∆x

)2

+
(

∆ui,j

∆y

)2

− 2λ
(

u2
i,j

2 −
u4

i,j

4

)

]

∆x∆y

s.t. 0 ≤ ui,j ≤ 1, ∀i ∈ {1, . . . , Nx} , j ∈ {1, . . . , Ny} ,
u1,j = uNx,j = 0 ∀j ∈ {1, . . . , Ny} ,
ui,1 = ui,Ny

= 0 ∀i ∈ {1, . . . , Nx} .

(4.8)

In opposite to the polynomial optimization problems that we derive from the class of polynomial second order
PDE, the objective function of polynomial optimization problem (4.8) is not of free choice but canonically
given by the discretization of the objective function in problem (4.7). We apply SparsePOP with relaxation
order ω = 2 to problem (4.5) and problem (4.7) on a 6 × 6- and a 10 × 10- grid and obtain an identical
solution for both problems. These results are given in Table 8, where ∆u, given by

∆u = max
i,j

| ũi,j − ûi,j |,

evaluates the deviation of the SparsePOP solutions of both problems. ũi,j denotes the SparsePOP solution
to problem (4.5) and ûi,j the solution to problem (4.7).

Problem Nx Ny tC ǫobj ǫfeas ∆u
(4.5) 6 6 5.4 2e-14 -3e-13 2e-6
(4.7) 6 6 2.1 1e-10 - 2e-6
(4.5) 10 10 131 4e-15 -4e-13 9e-7
(4.7) 10 10 98 2e-10 - 9e-7

Table 8: Computational results for problems (4.5) and (4.7)

The solutions to both problems are highly accurate and we note that the total computation time to
minimize the energy integral is less than the time required to solve the polynomial optimization problem
corresponding to (4.5).

Finally, we approximate the bifurcation point λ0. Since a nontrivial solution is obtained for λ = 20 and
the zero solution for λ = 18, we apply the bifurcation algorithm BISEC, which is given by

BISEC
initialize λl = λ0

l , λu = λ0
u

repeat

λ̂ = 1
2 (λl + λu)

if F
(

u(λ̂)
)

> ǫ1

λu = λ̂
else

λl = λ̂
until λu − λl < ǫ2,

with λ0
l = 18, λ0

u = 20 and ǫ1 = ǫ2 = 1e-10. BISEC determines λ̂(Nx, Ny) to approximate λ0, as reported

in Table 9. The accuracy of λ̂(Nx, Ny) to approximate λ0 = 2π2 ≈ 19.7392 increases in (Nx, Ny).
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N = Nx = Ny 5 6 7 8 9 11 13

λ̂ 18.731 19.090 19.285 19.398 19.474 19.553 19.601

Table 9: Approximation λ̂ of λ0 ≈ 19.7392 for different (Nx, Ny)

4.3.3 Hyperbolic - Nonlinear Wave equation

As an example of a hyperbolic PDE we study time periodic solutions of the nonlinear wave equation

−uxx + uyy + u (1 − u) + 0.2 sin(2x) = 0
∀ (x, y) ∈ [0, π] × [0, 2π],

u(0, y) = u(π, y) = 0 ∀ y ∈ [0, 2π], (4.9)

u(x, 0) = u(x, 2π) ∀ x ∈ [0, π],

−3 ≤ u(x, y) ≤ 3 ∀ (x, y) ∈ [0, π] × [0, 2π].

As far as we have checked on the mathsci data base, there is no mathematical proof of the existence of
periodic solution of this system. However, our solver finds some periodic solutions. We observed the POP
corresponding to problem (4.9) has various solutions. Therefore, the choice of the objective determines the
solution found by the sparse SDP relaxation. We choose one of the functions

F1(u) =
∑

i,j

σi,jui,j , F2(u) =
∑

i,j

ui,j ,

as objective, where σi,j (i = 1, . . . , Nx, j = 1, . . . , Ny) are random variables that are uniformly distributed
on [−0.5, 0.5]. The results are enlisted in Table 10 and pictured in Figures 10 and 11.

strategy ω NN Nx Ny ǫfeas tC me

initial SPOP, obj. F1 2 5 5 6 -3e-9 151 7
grid-refining 3b 5 33 40 -1e-6 427 415

initial SPOP, obj F2 2 5 5 5 -5e-10 19 3
grid-refining 3b 5 33 33 -4e-9 86 411

Table 10: Results for nonlinear wave equation (4.9)
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Figure 10: Solution for nonlinear wave equation (4.9), objective F1

Variation bounds: As an extension of problem (4.9), we demonstrate the impact of additional polynomial
inequality constraints in POP (3.6). We impose variation bounds w.r.t. y−direction, i.e.,

| uy(x, y) |≤ 0.5 ∀ (x, y) ∈ (0, π) × (0, 2π). (4.10)
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Figure 11: Solution for nonlinear wave equation (4.9), objective F2

If SparsePOP is applied to (4.9) with additional condition (4.10) and objective function F1, another solution
of the PDE problem is obtained, which is documented in Table 11 and pictured in Figure 12. Thus several
solutions of problem (4.9) are selected by changing the objective function of POP (3.6) and by enabling
additional polynomial inequality constraints.

strategy ω NN Nx Ny ǫfeas tC me

initial SPOP, obj. F1 2 5 5 6 -1e-14 437 7
grid-refining 3b 5 17 21 -7e-13 1710 104

Table 11: Results for nonlinear wave equation (4.9) under (4.10)
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Figure 12: Solution for nonlinear wave equation (4.9) under (4.10), objective F1

4.3.4 Parabolic - Diffusion

Consider a nonlinear parabolic PDE problem of two dependent scalar functions

1
50uxx − uy + 1 + u2 v − 4u = 0 ∀x ∈ [0, 1], y ≥ 0,

1
50vxx − vy + 3u − u2 v = 0 ∀x ∈ [0, 1], y ≥ 0,

u(0, y) = u(1, y) = 1 ∀ y ≥ 0,
v(0, y) = v(1, y) = 3 ∀ y ≥ 0,

u(x, 0) = 1 + sin(2πx) ∀ x ∈ [0, 1],
v(x, 0) = 3 ∀ x ∈ [0, 1].

(4.11)
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In order to discretize the problem (4.11), y has to be cut at y = T . Since problem (4.11) is parabolic we know
by [18], the solutions ((ui,j , vi,j)(Nx, Ny))

i,j
of the discretized problems converge to solutions (u, v) of (4.11).

We apply the grid-refining method with strategy 3b, where objective F is given by F (u, v) =
∑

i,j ui,j and
ω = 3. Furthermore, lbd ≡ 0 and ubd ≡ 5 are chosen as bounds for u and v. Following this strategy we
obtain highly accurate stable solutions on a 33× 65-grid; see Table 12 and Figure 13.

strategy Nx Ny me ǫfeas ǫabs

init SparsePOP 5 9 -4.12 -7e-10 -2e-10
grid-refining 3b 33 65 -2.88 -3e-9 -5e-11

Table 12: Results for diffusion problem (4.11)
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Figure 13: Solutions u (left) and v (right) for diffusion problem (4.11)

4.3.5 First order PDEs

An optimization based approach to attempt first order PDE was proposed recently by Guermond and
Popov [5, 6]. In [5] the following example of an first order PDE with a discontinuous solution is solved on
a 40 × 40−grid:

ux(x, y) = 0 ∀ (x, y) ∈ [0, 2] × [0.2, 0.8],
u(0, y) = 1 if y ∈ [0.5, 0.8],
u(0, y) = 0 if y ∈ [0.2, 0.5[.

(4.12)

Applying our approach with an forward or central difference approximation for the first derivative in (4.12)
we detect the discontinuous solution

u(x, y) =

{

1 if y ≥ 0.5

0 otherwise

on a 40 × 40-grid.

A more difficult first order PDE problem is given by

ux(x, y) + u(x, y) − 1 = 0 ∀ (x, y) ∈ [0, 1]2,
u(0, y) = u(1, y) = 0 ∀ y ∈ [0, 1],
0 ≤ u(x, y) ≤ 1 ∀ (x, y) ∈ [0, 1]2.

(4.13)

As can be seen easily and was pointed out in [6], problem (4.13) is not well-posed since the outflow boundary
condition is over-specified. Problem (4.13) is discussed in detail in [6] and the authors obtained an accurate
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approximation to the exact solution by L1 approximation on a 10 × 10-grid. Applying our approach with
relaxation order ω = 1 and objective function F (u) =

∑

i,j ui,j on a 10× 10 grid, we succeed in finding this
solution in case we choose a forward difference approximation for the first derivative. In case of choosing
central or backwards difference scheme the dual problem in the resulting SDP relaxation becomes infeasibe.
Furthermore, by applying SparsePOP we are able to obtain a highly accurate solution to (4.13) on a
50 × 50-grid, as documented in Table 13 and pictured in Figure 14.

Nx Ny ǫfeas tC
10 10 -4e-16 8
50 50 -3e-15 224

Table 13: Results for problem (4.13)
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Figure 14: Solution u for problem (4.13)

4.4 Differential algebraic equation problem

The class of PSO PDE problems (3.1) includes the case of m ≥ 2 and n = 1 with a = b = c = e = 0,

d =

(

1 0
0 0

)

and f =

(

−f1(x, u1(x), u2(x))
f2(x, u1(x), u2(x))

)

. Such a problem is called a differential algebraic

equation (DAE). It is an equation, where the derivatives of several unknown functions, in this case u2,
are not involved explicitly. As we will see in the following example, we are able to solve such problems with
our approach.

Consider the DAE problem

u̇1(x) = u3(x),
0 = u2(x) (1 − u2(x)) ,
0 = u1(x)u2(x) + u3(x) (1 − u2(x)) − x,

u1(0) = u0.

∀x ∈ [0, T ] (4.14)

It is easy to see that two closed-form solutions u1 and u2 are given by

u1(x) =
(

u0 + x2

2 , 0, x
)T

x ∈ [0, T ],

u2(x) = (x, 1, 1)T x ∈ [0, T ].

To apply SparsePOP, we choose the bounds lbd ≡ 0 and ubd ≡ 10 for each function u1, u2 and u3. We
define as objective functions F1 and F2,

F1(u) =

Nx
∑

i=1

u1i, F2(u) =

Nx
∑

i=1

u2i.
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First we choose u0 = 0 and apply SparsePOP with F2 as an objective function, and we obtain the highly
accurate approximation of u2, which is documented in Table 14 and Figure 15.

objective ω T Nx u0 ǫobj ǫfeas ǫscaled tC
F2 2 2 100 0 4e-10 -7e-10 -4e-10 29
F2 2 2 200 0 3e-9 -5e-9 -3e-9 122
F1 2 2 200 1 8e-9 -5e-6 -2e-6 98
F1 2 2 200 2 3e-10 -8e-8 -4e-8 107
F1 2 2 10 0.5 3e-10 -5e-7 -3e-7 4
F1 2 2 20 0.5 3e-10 -2e-5 -9e-6 9
F1 2 2 30 0.5 8e-10 -6e-3 -3e-3 15
F1 2 2 40 0.5 7e-8 -2e-1 -1e-1 24
F1 3 2 30 0.5 9e-9 -4e-3 -2e-3 51
F1 4 2 30 0.5 8e-9 -1e-3 -6e-4 210

Table 14: Results for DAE problem (4.14)
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Figure 15: Solutions u2 (left) and u1 (right) of DAE problem (4.14)

Next the objective function is chosen to be F1. For u0 ∈ {1, 2} highly accurate approximations of
u1 are obtained. An interesting phenomenon is observed in case u0 is small. For instance, if we choose
u0 = 0.5 and ω = 2, we get a highly accurate solution for Nx = 10. But, as we increase Nx stepwise to
40, the accuracy decreases, although the relaxation order remains constant. For numerical details see Table
14. This effect can be slightly compensated by increasing relaxation order ω, as demonstrated for the case
Nx = 30. But due to the limited capacity of current SDP solvers it is not possible to increase ω until a high
accuracy is reached.

4.5 Optimal Control problems

We can further apply the sparse SDP relaxation for PDE problems to certain optimal control problems.
As an example, we consider a problem arising from the control of reproductive strategies of social
insects.

max
α(·)

P (w(·), q(·), α(·)) = q(T )

s.t. ẇ(t) = −µw(t) + b s(t)α(t)w(t) ∀ t ∈ [0, T ],
w(0) = w0,
q̇(t) = −νq(t) + c(1 − α(t))s(t)w(t) ∀ t ∈ [0, T ],
q(0) = q0,
0 ≤ α(t) ≤ 1 ∀ t ∈ [0, T ],

(4.15)

where w(t) is the number of workers at time t, q(t) the number of queens, α(t) the control variable,
which denotes the fraction of the colony effort devoted to increasing work force, µ the workers death rate,
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ν the queens death rate, s(t) a known rate at which each worker contributes to the bee-economy, b and c
constants.

The ordinary differential equation constraints are discretized as discussed in Section 3. In contrast to the
previous examples the objective function F of the constructed POP is not of free choice anymore. Instead
it is determined by the objective function P (w(·), q(·), α(·)) = q(T ) of the optimal control problem (4.15)
as

F (w, q, α) = qNt
.

It follows from Pontryagin Maximum Principle [12] that the optimal control law α of problem (4.15) is a
bang-bang control law for any rate s(t), i.e., α(t) ∈ {0, 1} for all t ∈ [0, 1]. Table 15 and Figure 16 show
the results on the application of SparsePOP to the discretized optimal control problem.

T µ b w0 ν c q0 s(t) ω Nt ǫobj ǫfeas ǫscaled
3 0.8 1 10 0.3 1 1 1 2 300 2e-7 -1e-4 -2e-6
3 0.8 1 10 0.3 1 1 1

2 (sint + 1) 2 300 1e-4 -2e-2 -4e-5

Table 15: Control of social insects (4.15) for two different rates s(t)
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Figure 16: Control of social insects (4.15) for s(t) = 1 and s(t) = 0.5(sin(t) + 1)

In the case of s(t) = 1, it is sufficient to choose w(t), q(t) ≤ 20 as upper bounds to get accurate results.
For the more difficult problem with s(t) = 0.5(sin(t) + 1), it is necessary to tighten the upper bounds to
w(t) ≤ 10 and q(t) ≤ 3, in order to obtain fairly accurate results. In both cases the bang-bang control law
is obtained clearly.

5 Conclusion

Examining a class of polynomial second order partial differential equations (PSO PDE) in two variables,
we were able to transform a PSO PDE problem into a sparse polynomial optimization problem (POP). The
description is based on the discretization of a PDE problem, the approximation of its partial derivatives by
finite differences and the choice of an appropriate objective function. Correlative sparsity was encountered
and examined in POPs derived from PSO PDE problems, which enabled us to apply the sparse SDP
relaxation [20] efficiently. Some additional techniques were introduced to obtain highly accurate solutions of
sparse POPs derived from discretized PDE problems and effectively employed. Among others, we presented a
grid-refining technique which applies the sparse SDP relaxation [20] on a coarse grid and extended the coarse
grid solution by alternating interpolation and Newton’s method to high resolution grids. This technique
was shown to be very effective in solving PDE problems with a few unknown functions under Dirichlet,
Neumann and periodic boundary conditions. As we have seen in case of Mimura’ s problem (4.2) and the
optimal control problem (4.15), it may be necessary to impose additional constraints on upper and lower
bounds of the unknown functions to increase the solution’s accuracy. Furthermore, it was demonstrated
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how to choose an objective function in (3.6), lower, upper and variation bounds on the unknown function, in
order to detect particular solutions of a discretized PDE problem. In other words, one of the advantages of
using the sparse SDP relaxation instead of several existing methods is that a function space to find solutions
may be translated into natural constraints for a sparse SDP problem. In case we have certain information
about a particular solution we want to find, this information is exploited by finding an appropriate initial
guess for Newton’s method by the sparse SDP relaxation. And even in case we have no information about
the structure of a PDE’s solution, applying the sparse SDP relaxation yields a reasonable initial solution
for Newton’s method. The possibility to attempt a broad class of PDE, including elliptic, parabolic and
hyperbolic PDE, is another advantage of our approach. As we could transform a differential algebraic
equation and an optimal control problem into a POP, we expect to be able to exploit this technique for
other classes of problems.

Despite succeeding in many PSO PDE problems, we are facing several drawbacks. In the present state
of the art, choices of objective functions are heuristic except the case of finding the global minimizer if a
given equation is an Euler-Lagrange equation as we have seen in the example in 4.3.2. In this example in
4.3.2 the objective function is chosen canonically as a discretization of the energy integral. However this
objective function finds only the stable solution standing for the global minimizer of the energy integral. As
we have seen in the case of Mimura’s problem in 4.2.2, suitable choices of objective functions yield unstable
solutions, which are also interesting in order to understand a dynamical system. To take the sum or a sum
with random coefficients of all unknown variables ui,j as the objective function of POP (3.6) turned out to
be a good choice in order to find accurate solutions, but it is still an open question which objective function
to choose for a POP derived from a particular PSO PDE. Furthermore, although we were able to solve some
PDE problems with minimal relaxation order ω = ωmax in many cases, it is a priori not possible to predict
the relaxation order ω which is necessary to attain an accurate solution. As the size of the sparse SDP
relaxation increases polynomially in ω, the tractability of the SDP is limited by the capacity of current SDP
solvers. Moreover, we observed the relaxation order ω to obtain an accurate solution for a PDE problem is
sometimes increasing in the discretization grid size (Nx, Ny). Defining the class of PSO PDEs, we restricted
ourselves to second order PDEs of unknown functions in at most two independent variables. In theory, it
is possible to apply the SDP relaxation method proposed in this paper to PDE problems of higher degree
and in more independent variables as long as the derivatives’ coefficients are polynomial in the unknown
functions. But in such cases the necessary relaxation order ω can be too large and/or the resulting SDP
relaxation problems can be too large to solve in practice. Nevertheless, we have succeeded in determining
highly accurate solutions for some PSO PDE problems, a differential algebraic equation and an optimal
control problem. It remains our aim to develop a numerical efficient solver for a class of PDE that is as
general as possible. Applying a sequence of sparse SDP relaxations as presented in this paper may be seen
as the first step to reach this aim.
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