
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES B: Operations Research

ISSN 1342-2804

Exploiting Sparsity

in Linear and Nonlinear Matrix Inequalities

via Positive Semidefinite Matrix Completion

Sunyoung Kim, Masakazu Kojima,

Martin Mevissen and Makoto Yamashita

January 2009, B–452

Revised in February 2010

Exploiting Sparsity in Linear and Nonlinear Matrix Inequalities
via Positive Semidefinite Matrix Completion

Sunyoung Kim⋆, Masakazu Kojima†, Martin Mevissen‡ and Makoto Yamashita♯

January 2009, Revised in February 2010.

Abstract.

A basic framework for exploiting sparsity via positive semidefinite matrix completion is
presented for an optimization problem with linear and nonlinear matrix inequalities. The
sparsity, characterized with a chordal graph structure, can be detected in the variable matrix
or in a linear or nonlinear matrix-inequality constraint of the problem. We classify the
sparsity in two types, the domain-space sparsity (d-space sparsity) for the symmetric matrix
variable in the objective and/or constraint functions of the problem, which is required to be
positive semidefinite, and the range-space sparsity (r-space sparsity) for a linear or nonlinear
matrix-inequality constraint of the problem. Four conversion methods are proposed in this
framework: two for exploiting the d-space sparsity and the other two for exploiting the r-
space sparsity. When applied to a polynomial semidefinite program (SDP), these conversion
methods enhance the structured sparsity of the problem called the correlative sparsity. As a
result, the resulting polynomial SDP can be solved more effectively by applying the sparse
SDP relaxation. Preliminary numerical results on the conversion methods indicate their
potential for improving the efficiency of solving various problems.

Key words.

Semidefinite Program, Matrix Inequalities, Polynomial Optimization, Positive Semidefinite
Matrix Completion, Sparsity, Chordal Graph

⋆ Department of Mathematics, Ewha W. University, 11-1 Dahyun-dong, Sudaemoon-
gu, Seoul 120-750 Korea. S. Kim’s research was supported by KRF 2008-531-
C00013. skim@ewha.ac.kr

† Department of Mathematical and Computing Sciences, Tokyo Institute of Tech-
nology, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan. M. Kojima’s re-
search was supported by Grant-in-Aid for Scientific Research (B) 19310096. ko-
jima@is.titech.ac.jp

‡ Department of Mathematical and Computing Sciences, Tokyo Institute of Tech-
nology, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan. M. Mevissen’s
research was supported by the Doctoral Scholarship of the German Academic Ex-
change Service (DAAD). mevissen.m.aa@m.titech.ac.jp

♯ Department of Mathematical and Computing Sciences, Tokyo Institute of Tech-
nology, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan. M. Yamashita’s
research was supported by Grant-in-Aid for Young Scientists (B) 18710141.
Makoto.Yamashita@is.titech.ac.jp

1

1 Introduction

Optimization problems with nonlinear matrix inequalities, including quadratic and polyno-
mial matrix inequalities, are known as hard problems. They frequently belong to large-scale
optimization problems. Exploiting sparsity thus has been one of the essential tools for solv-
ing such large-scale optimization problems. We present a basic framework for exploiting the
sparsity characterized in terms of a chordal graph structure via positive semidefinite matrix
completion [7]. Depending on where the sparsity is observed, two types of sparsities are
studied: the domain-space sparsity (d-space sparsity) for a symmetric matrix X that ap-
pears as a variable in objective and/or constraint functions of a given optimization problem
and is required to be positive semidefinite, and the range-space sparsity (r-space sparsity)
for a matrix inequality involved in the constraint of the problem.

The d-space sparsity is basically equivalent to the sparsity studied by Fukuda et. al [6]
for an equality standard form SDP1. See also [20]. Two methods, the completion method
and the conversion method, were proposed to exploit the aggregated sparsity pattern over all
coefficient matrices of the linear objective and constraint functions via the positive semidef-
inite matrix completion. Their conversion method transforms an equality standard form
of SDP with a single (large) matrix variable X in the space Sn of n × n real symmetric
matrices to an SDP with multiple smaller matrix variables X1, X2, . . . , Xp and some ad-
ditional linear equality constraints. We can interpret their aggregated sparsity pattern as
the set of row and column index pairs (i, j) such that the value of Xij is relevant (or nec-
essary) in the evaluation of the linear objective and/or constraint functions. Thus we call
their aggregated sparsity as the d-space sparsity and their method as a d-space conversion
method in this paper. With this interpretation, their conversion method can be directly
extended to a d-space conversion method for more general optimization problems. One of
the two d-space conversion methods proposed in this paper corresponds to this extension,
and the other d-space conversion method is an extension of the method used for the sparse
SDP relaxation of polynomial optimization problems in [23, 24] and for the sparse SDP
relaxation of a sensor network localization problem in [11].

The r-space sparsity concerns with a matrix inequality

M (y) ≽ O, (1)

involved in a general nonlinear optimization problem. Here M denotes a mapping from
the s-dimensional Euclidean space Rs into Sn, and A ≽ O implies that A ∈ Sn is posi-
tive semidefinite. If M is linear, (1) is known as a linear matrix inequality (LMI), which
appears in the constraint of a dual standard form of SDP. If each element of M (y) is a
multivariate polynomial function in y ∈ Rs, (1) is called a polynomial matrix inequality and
the SDP relaxation [8, 9, 14, 15, 16, 18], which is an extension of the SDP relaxation [17]
for polynomial optimization problems, can be applied to (1). We assume a similar chordal
graph structured sparsity as the d-space sparsity (or the aggregated sparsity by Fukuda et
al. [6]) on the set of row and column index pairs (i, j) of the mapping M such that Mij is
not identically zero, i.e., Mij(y) ̸= 0 for some y ∈ Rs. A representative example satisfying
the r-space sparsity can be found with tridiagonal M . We do not impose any additional

1This paper is concerned with linear, nonlinear, polynomial and quadratic SDPs. We simply say an SDP
for a linear SDP.

2

assumption on (1) to derive a r-space conversion method. When M is polynomial in y ∈ Rs,
we can effectively combine it with the sparse SDP relaxation method [14, 16] for polynomial
optimization problems over symmetric cones to solve (1).

We propose two methods to exploit the r-space sparsity. One may be regarded as a
dual of the d-space conversion method by Fukuda et. al [6]. More precisely, it exploits
the sparsity of the mapping M in the range space via a dual of the positive semidefinite
matrix completion to transform the matrix inequality (1) to a system of multiple matrix
inequalities with smaller sizes and an auxiliary vector variable z of some dimension q. The
resulting matrix inequality system is of the form

M̃
k
(y) − L̃

k
(z) ≽ O (k = 1, 2, . . . , p), (2)

and y ∈ Rs is a solution of (1) if and only if it satisfies (2) for some z. Here M̃
k

denotes

a mapping from Rs into the space of symmetric matrices with some size and L̃
k

a linear
mapping from Rq into the space of symmetric matrices with the same size. The sizes of

symmetric matrix valued mappings M̃
k

(k = 1, 2, . . . , p) and the dimension q of the auxiliary
variable vector z are determined by the r-space sparsity pattern of M . For example, if M is

tridiagonal, the sizes of M̃
k

are all 2×2 and q = n−2. The other r-space conversion method
corresponds to a dual of the second d-space conversion method mentioned previously.

Another type of sparsity discussed in this paper is the correlative sparsity [13], which has
been used under two different circumstances. First, in the primal-dual interior-point method
for solving a linear optimization problem over symmetric cones that includes an SDP as a
special case, the correlative sparsity of the problem characterizes the sparsity of the Schur
complement matrix. We note that the Schur complement matrix is the coefficient matrix of
a system of linear equations that is solved at each iteration of the primal-dual interior-point
method by the Cholesky factorization to compute a search direction. As the Cholesky factor
of the Schur complement matrix becomes sparse, each iteration is executed more efficiently.
Second, in the sparse SDP relaxation [14, 16, 23, 24] of a polynomial optimization problem
and a polynomial SDP, the correlative sparsity is used for its application to the problem. In
addition, the correlative sparsity of the original problem is inherited to its SDP relaxation.
We discuss how the d-space and r-space conversion methods enhance the correlative sparsity.

The main contribution of this paper is to extend the d-space conversion method, which
was originally proposed by Fukuda et al. [6] for linear SDPs, to general nonlinear opti-
mization problems with positive semidefinite symmetric matrix variables, and introduce the
r-space sparsity in linear and nonlinear matrix inequalities. In addition, this paper includes
a survey of the conversion techniques [6, 11, 20, 24] developed for sparse SDPs via positive
semidefinite matrix completion.

The organization of the paper is as follows: In Section 2, to illustrate the d-sparsity,
the r-sparsity, and the correlative sparsity, a very sparse SDP is shown as an example. It
is followed by the introduction of the positive semidefinite matrix completion, a chordal
graph, and their basic properties. In Section 3, we describe two d-space conversion methods
using positive semidefinite matrix completion. Section 4 includes the discussion on duality
in positive semidefinite matrix completion, and Section 5 is devoted to two r-space con-
version methods based on the duality. In Section 6, we show how the d-space and r-space
conversion methods enhance the correlative sparsity. In Section 7, the r-space conversion

3

methods combined with the d-space conversion methods are applied to sparse quadratic
SDPs, and preliminary numerical results are provided. The numerical results are only to
assess the effectiveness of the proposed d- and r-space conversion methods for solving sparse
optimization problems with linear and nonlinear matrix inequalities. There remain impor-
tant issues on implementation of the methods and how to apply the methods to practical
problems. More comprehensive numerical experiments for various problems are necessary
to evaluate the numerical efficiency of the methods. These issues are discussed briefly in
Section 8.

2 Preliminaries

2.1 An SDP example

A simple SDP example is shown to illustrate the three types of sparsities considered in this
paper, the d-space sparsity, the r-space sparsity, and the correlative sparsity that character-
izes the sparsity of the Schur complement matrix. These sparsities are discussed in Sections
3, 5 and 6, respectively.

Let A0 be a tridiagonal matrix in Sn such that A0
ij = 0 if |i − j| > 1, and define a

mapping M from Sn into Sn by

M (X) =



1 − X11 0 0 . . . 0 X12

0 1 − X22 0 . . . 0 X23

0 0
. . . 0 X34

.
.

0 0 0 1 − Xn−1,n−1 Xn−1,n

X21 X32 X43 . . . Xn,n−1 1 − Xnn


for every X ∈ Sn. Consider an SDP

minimize A0 • X subject to M (X) ≽ O, X ≽ O. (3)

Among the elements Xij (i = 1, 2, . . . , n, j = 1, 2, . . . , n) of the matrix variable X ∈ Sn,
the elements Xij with |i − j| ≤ 1 are relevant and all other elements Xij with |i − j| > 1
are unnecessary in evaluating the objective function A0 • X and the matrix inequality
M (X) ≽ O. Hence, we can describe the d-sparsity pattern as a symbolic tridiagonal
matrix with the nonzero symbol ⋆

⋆ ⋆ 0 . . . 0 0
⋆ ⋆ ⋆ . . . 0 0

0 ⋆ ⋆
. . . 0 0

.
.

0 0 . . .
. . . ⋆ ⋆

0 0 ⋆ ⋆


.

4

On the other hand, the r-space sparsity pattern is described as
⋆ 0 . . . 0 ⋆
0 ⋆ . . . 0 ⋆

.
.

0 0 . . . ⋆ ⋆
⋆ ⋆ . . . ⋆ ⋆

 .

Applying the d-space conversion method using basis representation described in Section
3.2, and the r-space conversion method using clique trees presented in Section 5.1, we can
reduce the SDP (3) to

minimize
n−1∑
i=1

(
A0

iiXii + 2A0
i,i+1Xi,i+1

)
+ A0

nnXnn

subject to

(
1 0
0 0

)
−

(
X11 −X12

−X21 −z1

)
≽ O,(

1 0
0 0

)
−

(
Xii −Xi,i+1

−Xi+1,i zi−1 − zi

)
≽ O (i = 2, 3, . . . , n − 2),(

1 0
0 1

)
−

(
Xn−1,n−1 −Xn−1,n

−Xn,n−1 Xn,n + zn−2

)
≽ O,(

0 0
0 0

)
−

(
−Xii −Xi,i+1

−Xi+1,i −Xi+1,i+1

)
≽ O (i = 1, 2, . . . , n − 1).



(4)

This problem has (3n − 3) real variables Xii (i = 1, 2, . . . , n), Xi,i+1 (i = 1, 2, . . . , n − 1)
and zi (i = 1, 2, . . . , n − 2), and (2n − 1) linear matrix inequalities with size 2 × 2. Since
the original SDP (3) involves an n × n matrix variable X and an n × n matrix inequality
M (X) ≽ O, we can expect to solve the SDP (4) much more efficiently than the SDP (3)
as n becomes larger.

We can formulate both SDPs in terms of a dual standard form for SeDuMi [22]:

maximize bT y subject to c − AT y ≽ 0,

where b denotes an ℓ-dimensional column vector, A an ℓ×m matrix and c an m-dimensional
column vector for some positive integers ℓ and m. See (36) in Section 6 for the case of SDP
(3). Table 1 shows numerical results on the SDPs (3) and (4) solved by SeDuMi. We observe
that the SDP (4) greatly reduces the size of the coefficient matrix A, the number of nonzeros
in A and the maximum SDP block compared to the original SDP (3). In addition, it should
be emphasized that the ℓ × ℓ Schur complement matrix is sparse in the SDP (4) while it
is fully dense in the the original SDP (3). As shown in Figure 1, the Schur complement
matrix in the SDP (4) allows a very sparse Cholesky factorization. The sparsity of the Schur
complement matrix is characterized by the correlative sparsity whose definition is given in
Section 6. Notice “a hidden correlative sparsity” in the SDP (3), that is, each element Xij

of the matrix variable X appears at most once in the elements of M(X). This leads to the
correlative sparsity when the SDP (3) is decomposed into the SDP (4). The sparsity of the
Schur complement matrix and the reduction in the size of matrix variable from 10000 to 2
are the main reasons that SeDuMi can solve the largest SDP in Table 1 with a 29997×79992
coefficient matrix A in less than 100 seconds. In Section 6, we discuss in detail how the
exploitation of the d- and r-space sparsities contributes to increasing the sparsity of the
Schur complement matrix.

5

SeDuMi CPU time in seconds (sizeA, nnzA, maxBl, nnzSchur)
n the SDP (3) the SDP (4)

10 0.2 (55×200,128,10,3025) 0.1 (27×72, 80,2,161)
100 1091.4 (5050×20000,10298,100,25502500) 0.6 (297×792,890,2,1871)

1000 - 6.3 (2997×7992,8990,2,18971)
10000 - 99.2 (29997×79992,89990,2,189971)

Table 1: Numerical results on the SDPs (3) and (4). Here sizeA denotes the size of the
coefficient matrix A, nnzA the number of nonzero elements in A, maxBl the maximum
SDP block size, and nnzSchur the number of nonzeros in the Schur complement matrix. “-”
means out of memory error.

0 5 10 15 20 25

0

5

10

15

20

25

nz = 94
0 50 100 150 200 250

0

50

100

150

200

250

nz = 1084

Figure 1: The sparsity pattern of the Cholesky factor of the Schur complement matrix for
the SDP (4) with n = 10 and n = 100.

6

2.2 Notation and symbols

Let N = {1, 2, . . . , n} denote the set of row and column indices of n×n symmetric matrices.
A problem of positive semidefinite matrix completion is: Given an n× n partial symmetric
matrix X with entries specified in a proper subset F of N × N , find an n × n positive
semidefinite symmetric matrix X satisfying X ij = Xij ((i, j) ∈ F) if it exists. If X is a
solution of this problem, we say that X is completed to a positive semidefinite symmetric
matrix X. For example, the following 3 × 3 partial symmetric matrix

X =

 3 3
3 3 2

2 2


is completed to a 3 × 3 positive semidefinite symmetric matrix

X =

 3 3 2
3 3 2
2 2 2

 .

For a class of problems of positive semidefinite matrix completion, we discuss the exis-
tence of a solution and its characterization in this section. This provides a theoretical basis
for both d- and r-space conversion methods.

Let us use a graph G(N,E) with the node set N = {1, 2, . . . , n} and an edge set E ⊆
N × N to describe a class of n × n partial symmetric matrices. We assume that (i, i) ̸∈ E,
i.e., the graph G(N,E) has no loop. We also assume that if (i, j) ∈ E, then (j, i) ∈ E, and
(i, j) and (j, i) are interchangeably identified. Define

E• = E ∪ {(i, i) : i ∈ N},
Sn(E, ?) = the set of n × n partial symmetric matrices with entries

specified in E•,

Sn
+(E, ?) = {X ∈ Sn(E, ?) : ∃X ∈ Sn

+; X ij = Xij if (i, j) ∈ E•}
(the set of n × n partial symmetric matrices with entries

specified in E• that can be completed to positive

semidefinite symmetric matrices).

For a graph G(N,E) shown in Figure 2 as an illustrative example, we have

S6(E, ?) =




X11 X16

X22 X26

X33 X34 X36

X43 X44 X45

X54 X55 X56

X61 X62 X63 X65 X66

 : Xij ∈ R (i, j) ∈ E•


. (5)

Let

#C = the number of elements in C for every C ⊆ N,

7

SC = {X ∈ Sn : Xij = 0 if (i, j) ̸∈ C × C} for every C ⊆ N,

SC
+ = {X ∈ SC : X ≽ O} for every C ⊆ N,

X(C) = X̃ ∈ SC such that X̃ij = Xij ((i, j) ∈ C × C)

for every X ∈ Sn and every C ⊆ N,

J(C) = {(i, j) ∈ C × C : 1 ≤ i ≤ j ≤ n} for every C ⊆ N.

Note that X ∈ SC is an n × n matrix although Xij = 0 for every (i, j) ̸∈ C × C. Thus,

X ∈ SC and X ′ ∈ SC′
can be added even when C and C ′ are distinct subsets of N .

When all matrices involved in an equality or a matrix inequality belong to SC , matrices in
SC are frequently identified with the #C × #C matrix whose elements are indexed with
(i, j) ∈ C × C. If N = {1, 2, 3} and C = {1, 3}, then a matrix variable X ∈ SC ⊂ Sn has
full and compact representations as follows:

X =

 X11 0 X13

0 0 0
X31 0 X33

 and X =

(
X11 X13

X31 X33

)
.

It should be noted that X ∈ SC ⊂ Sn has elements Xij with (i, j) ∈ C × C in the 2 × 2
compact representation on the right. Let

Eij = the n × n symmetric matrix with 1 in (i, j)th and (j, i)th

elements and 0 elsewhere

for every (i, j) ∈ N × N . Then Eij (1 ≤ i ≤ j ≤ n) form a basis of Sn. Obviously, if
i, j ∈ C ⊆ N , then Eij ∈ SC . We also observe the identity

X(C) =
∑

(i,j)∈J(C)

EijXij for every C ⊆ N. (6)

This identity is utilized in Section 3.

2.3 Positive semidefinite matrix completion

Let G(N,E) be a graph and Ck (k = 1, 2, . . . , p) be the maximal cliques of G(N,E). We
assume that X ∈ Sn(E, ?). The condition X(Ck) ∈ SCk

+ (k = 1, 2, . . . , p) is necessary
for X ∈ Sn

+(E, ?). For the graph G(N,E) shown in Figure 2, the maximal cliques are
C1 = {1, 6}, C2 = {2, 6}, C3 = {3, 4}, C4 = {3, 6}, C5 = {4, 5} and C6 = {5, 6}. Hence,
the necessary condition for X ∈ S6(E, ?) to be completed to a positive semidefinite matrix is
that its 6 principal submatrices X(Ck) (k = 1, 2, . . . , 6) are positive semidefinite. Although
this condition is not sufficient in general, it is a sufficient condition for X ∈ Sn

+(E, ?) when
G(N,E) is chordal. In this case, the number of the maximal cliques is bounded by the
number of nodes of G(N,E), i.e., p ≤ n. A graph is said chordal if every (simple) cycle of
the graph with more than three edges has a chord. See [3] for basic properties on choral
graphs.

Lemma 2.1. (Theorem 7 of Grone et al. [7]) Let Ck (k = 1, 2, . . . , p) be the maximal cliques
of a chordal graph G(N,E). Suppose that X ∈ Sn(E, ?). Then X ∈ Sn

+(E, ?) if and only if

X(Ck) ∈ SCk
+ (k = 1, 2, . . . , p).

8

1

2

6

43

5

Figure 2: A graph G(N,E) with N = {1, 2, 3, 4, 5, 6}

1

2

6

43

5 1

2

6

43

5

(a) (b)

Figure 3: Chordal extensions of the graph G(N,E) given in Figure 2. (a) The maximal
cliques are C1 = {3, 4, 6}, C2 = {4, 5, 6}, C3 = {1, 6} and C4 = {2, 6}. (b) The maximal
cliques are C1 = {3, 4, 5}, C2 = {3, 5, 6}, C3 = {1, 6} and C4 = {2, 6}.

Since the graph G(N,E) in Figure 2 is not a chordal graph, we can not apply Lemma 2.1
to determine whether X ∈ S6(E, ?) of the form (5) belongs to S6

+(E, ?). In such a case, we
need to introduce a chordal extension of the graph G(N,E) to use the lemma effectively.
A graph G(N, E) is a chordal extension of G(N,E) if it is a chordal graph and E ⊆ E.
From the definition, Figure 3 shows two chordal extensions. If we choose the left graph
as a chordal extension G(N, E) of G(N,E), the maximal cliques are C1 = {3, 4, 6}, C2 =
{4, 5, 6}, C3 = {1, 6} and C4 = {2, 6}, consequently, X ∈ S6

+(E, ?) is characterized by

X(Ck) ∈ SCk
+ (k = 1, 2, 3, 4).

Remark 2.2. To compute the positive definite matrix completion of a matrix, we can
recursively apply Lemma 2.6 of [6]. A numerical example is shown on page 657 of [6].

3 Exploiting the domain-space sparsity

In this section, we consider a general nonlinear optimization problem involving a matrix
variable X ∈ Sn:

minimize f0(x, X) subject to f(x,X) ∈ Ω and X ∈ Sn
+, (7)

where f0 : Rs × Sn → R, f : Rs × Sn → Rm and Ω ⊂ Rm. Let E denote the set of distinct
row and column index pairs (i, j) such that a value of Xij is necessary to evaluate f0(x,X)
and/or f(x,X). More precisely, E is a collection of index (i, j) such that even if X1

kℓ = X2
kℓ

for ∀ (k, ℓ) ̸= (i, j), we have f0(x, X1) ̸= f0(x, X2) and/or f(x, X1) ̸= f(x,X2) for some
x ∈ Rs, X1 ∈ Sn and X2 ∈ Sn. Consider a graph G(N,E). We call E the d-space sparsity
pattern and G(N,E) the d-space sparsity pattern graph. If G(N, E) is an extension of
G(N,E), then we may replace the condition X ∈ Sn

+ by X ∈ Sn
+(E, ?). To apply Lemma 2.1,

we choose a chordal extension G(N, E) of G(N,E). Let C1, C2, . . . , Cp be its maximal

9

cliques. Then we may regard f0 and f as functions in x ∈ Rs and X(Ck) (k = 1, 2, . . . , p),
i.e., there are functions f̃0 and f̃ in the variables x and X(Ck) (k = 1, 2, . . . , p) such that

f0(x,X) = f̃0(x,X(C1),X(C2), . . . , X(Cp)) for every (x,X) ∈ Rs × Sn,

f(x,X) = f̃(x,X(C1),X(C2), . . . , X(Cp)) for every (x, X) ∈ Rs × Sn.

}
(8)

Therefore, the problem (7) is equivalent to

minimize f̃0(x, X(C1), X(C2), . . . , X(Cp))

subject to f̃(x,X(C1),X(C2), . . . , X(Cp)) ∈ Ω and

X(Ck) ∈ SCk
+ (k = 1, 2, . . . , p).

(9)

As an illustrative example, we consider the problem whose d-space sparsity pattern
graph G(N,E) is shown in Figure 2:

minimize −
∑

(i,j)∈E, i<j

Xij

subject to
6∑

i=1

(Xii − αi)
2 ≤ 6, X ∈ S6

+,

 (10)

where αi > 0 (i = 1, 2, . . . , 6). As a chordal extension, we choose the graph G(N, E) in (a)
of Figure 3. Then, the problem (9) becomes

minimize
4∑

k=1

f̃0k(X(Ck))

subject to
4∑

k=1

f̃k(X(Ck)) ≤ 6, X(Ck) ∈ SCk
+ (k = 1, 2, 3, 4),

 (11)

where

f̃01(X(C1)) = −X34 − X36, f̃02(X(C2)) = −X45 − X56,

f̃03(X(C3)) = −X16, f̃04(X(C4)) = −X26,

f̃1(X(C1)) = (X33 − α3)
2 + (X44 − α4)

2 + (X66 − α6)
2,

f̃2(X(C2)) = (X55 − α5)
2, f̃3(X(C3)) = (X11 − α1)

2,

f̃4(X(C4)) = (X22 − α2)
2.


(12)

The positive semidefinite condition X(Ck) ∈ SCk
+ (k = 1, 2, . . . , p) in the problem (9) is

not an ordinary positive semidefinite condition in the sense that overlapping variables Xij

((i, j) ∈ Ck ∩ Cℓ) exist in two distinct positive semidefinite constraints X(Ck) ∈ SCk
+ and

X(Cℓ) ∈ SCℓ
+ if Ck ∩ Cℓ ̸= ∅. We describe two methods to transform the condition into

an ordinary positive semidefinite condition. The first one was given in the papers [6, 20]
where a d-space conversion method was proposed, and the second one was originally used
for the sparse SDP relaxation of polynomial optimization problems [23, 24] and also in the
paper [11] where a d-space conversion method was applied to an SDP relaxation of a sensor
network localization problem. We call the first one the d-space conversion method using
clique trees and the second one the d-space conversion method using basis representation.

10

3.1 The d-space conversion method using clique trees

We can replace X(Ck) (k = 1, 2, . . . , p) by p independent matrix variables Xk (k =
1, 2, . . . , p) if we add all equality constraints Xk

ij = Xℓ
ij for every (i, j) ∈ Ck ∩ Cℓ with

i ≤ j and every pair of Ck and Cℓ such that Ck ∩ Cℓ ̸= ∅. For the chordal graph G(N, E)
given in (a) of Figure 3, those equalities turn out to be the 8 equalities

Xk
66 − Xℓ

66 = 0 (1 ≤ k < ℓ ≤ 4), X1
44 = X2

44, X1
46 = X2

46

These equalities are linearly dependent, and we can choose a maximal number of linearly
independent equalities that are equivalent to the original equalities. For example, either of
a set of 5 equalities

X1
44 − X2

44 = 0, X1
46 − X2

46 = 0, X1
66 − X2

66 = 0, X1
66 − X3

66 = 0, X1
66 − X4

66 = 0 (13)

or a set of 5 equalities

X1
44 − X2

44 = 0, X1
46 − X2

46 = 0, X1
66 − X2

66 = 0, X2
66 − X3

66 = 0, X3
66 − X4

66 = 0 (14)

is equivalent to the set of 8 equalities above.
In general, we use a clique tree T (K, E) with K = {C1, C2, . . . , Cp} and E ⊆ K × K

to consistently choose a set of maximal number of linearly independent equalities. Here
T (K, E) is called a clique tree if it satisfies the clique-intersection property, that is, for each
pair of nodes Ck ∈ K and Cℓ ∈ K, the set Ck∩Cℓ is contained in every node on the (unique)
path connecting Ck and Cℓ. See [3] for basic properties on clique trees. We fix one clique for
a root node of the tree T (K, E), say C1. For simplicity, we assume that the nodes C2, . . . , Cp

are indexed so that if a sequence of nodes C1, Cℓ2 , . . . , Cℓk
forms a path from the root node

C1 to a leaf node Cℓk
, then 1 < ℓ2 < · · · < ℓk, and each edge is directed from the node

with a smaller index to the other node with a larger index. Thus, the clique tree T (K, E)
is directed from the root node C1 to its leaf nodes. Each edge (Ck, Cℓ) of the clique tree
T (K, E) induces a set of equalities

Xk
ij − Xℓ

ij = 0 ((i, j) ∈ J(Ck ∩ Cℓ)),

or equivalently,

Eij • Xk − Eij • Xℓ = 0 ((i, j) ∈ J(Ck ∩ Cℓ)),

where J(C) = {(i, j) ∈ C × C : i ≤ j} for every C ⊆ N . We add equalities of the form
above for all (Ck, Cℓ) ∈ E when we replace X(Ck) (k = 1, 2, . . . , p) by p independent matrix
variables Xk (k = 1, 2, . . . , p). We thus obtain a problem

minimize f̃0(x,X1,X2, . . . , Xp)

subject to f̃(x,X1,X2, . . . , Xp) ∈ Ω,
Eij • Xk − Eij • Xℓ = 0 ((i, j, k, ℓ) ∈ Λ),

Xk ∈ SCk
+ (k = 1, 2, . . . , p),

 (15)

where

Λ = {(g, h, k, ℓ) : (g, h) ∈ J(Ck ∩ Cℓ), (Ck, Cℓ) ∈ E}. (16)

11

C
1
={3,4,6}

C
4
={2,6} C

3
={1,6} C

2
={4,5,6}

C
4
={2,6}

C
3
={1,6} C

2
={4,5,6}

C
1
={3,4,6}

Figure 4: Two clique trees with K = {C1 = {3, 4, 6}, C2 = {4, 5, 6}, C3 = {1, 6}, C4 =
{2, 6}}

This is equivalent to the problem (9). See Section 4 of [20] for more details.
Now we illustrate the conversion process above by the simple example (10). Figure 4

shows two clique trees for the graph given in (a) of Figure 3. The left clique tree in Figure 4
leads to the 5 equalities in (13), while the right clique tree in Figure 4 induces the 5 equalities
in (14). In both cases, the problem (15) has the following form

minimize
4∑

k=1

f̂0k(X
k)

subject to
4∑

k=1

f̂k(X
k) ≤ 6,

the 5 equalities in (13) or (14),

Xk ∈ SCk
+ (k = 1, 2, 3, 4),

where

f̂01(X
1) = −X1

34 − X1
36, f̂02(X

2) = −X2
45 − X2

56,

f̂03(X
3) = −X3

16, f̂04(X
4) = −X4

26,

f̂1(X
1) = (X1

33 − α3)
2 + (X1

44 − α4) + (X1
66 − α6)

2,

f̂2(X
2) = (X2

55 − α5)
2, f̂3(X

3) = (X3
11 − α1)

2, f̂4(X
4) = (X4

22 − α2)
2.

Remark 3.1. The d-space conversion method using clique trees can be implemented in
many different ways. The fact that the chordal extension G(N, E) of G(N,E) is not unique
offers flexibility in constructing an optimization problem of the form (15). More precisely,
a choice of chordal extension G(N, E) of G(N,E) decides how “small” and “sparse” an op-
timization problem of the form (15) is, which is an important issue for solving the problem
more efficiently. For the size of the problem (15), we need to consider the sizes of the matrix
variables Xk (k = 1, 2, . . . , p) and the number of equalities in (15). Note that the sizes of
the matrix variables Xk (k = 1, 2, . . . , p) are determined by the sizes of the maximal cliques
Ck (k = 1, 2, . . . , p). This indicates that a chordal extension G(N, E) with smaller maximal
cliques Ck (k = 1, 2, . . . , p) may be better theoretically. (In computation, however, this is
not necessarily true because of overhead of processing too many small positive semidefinite
matrix variables.) The number of equalities in (15) or the cardinality of Λ is also determined
by the chordal extension G(N, E) of G(N,E). Choosing a chordal extension G(N, E) with
smaller maximal cliques increases the number of equalities. Balancing these two contra-
dicting targets, decreasing the sizes of the matrix variables and decreasing the number of
equalities was studied in the paper [20] by combining some adjacent cliques along the clique

12

tree T (K, E). See Section 4 of [20] for more details. In addition to the choice of a chordal
extension G(N, E) of G(N,E), the representation of the functions and the choice of a clique
tree add flexibilities in the construction of the problem (15). That is, the representation of
the functions f0 : Rs × Sn → R and f : Rs × Sn → Rm in the vector variable x and the
matrix variables X(Ck) (k = 1, 2, . . . , p) as in (8); for example, we could move the term
(X66 − α6)

2 from f̃1(x, X(C1)) to either of f̃k(x,X(Ck)) (k = 2, 3, 4). These choices of the
functions f0, f and a clique tree affect the sparse structure of the resulting problem (15),
which is also important for efficient computation.

Remark 3.2. Software packages [2, 10] are available to generate a chordal extension G(N, E)
of a graph G(N,E) and the maximal cliques of G(N, E). Alternatively, a chordal extension
and its maximal cliques can be obtained by the Matlab functions symamd.m (a symmetric
approximate minimum degree ordering) and chol.m (the Cholesky factorization). We used
the Matlab functions in [11, 24] and the numerical experiments in Section 7.

3.2 The domain-space conversion method using basis representa-
tion

Define

J̄ =

p∪
k=1

J(Ck),

(Xij : (i, j) ∈ J̄) = the vector variable consisting of Xij ((i, j) ∈ J̄),

f̄0(x, (Xij : (i, j) ∈ J̄)) = f0(x,X) for every (x,X) ∈ Rs × Sn,

f̄(x, (Xij : (i, j) ∈ J̄)) = f(x,X) for every (x,X) ∈ Rs × Sn.

We represent each X(Ck) in terms of a linear combination of the basis Eij ((i, j) ∈ J(Ck)) of
the space SCk as in (6) with C = Ck (k = 1, 2, . . . , p). Substituting this basis representation
into the problem (9), we obtain

minimize f̄0(x, (Xij : (i, j) ∈ J̄))
subject to f̄(x, (Xij : (i, j) ∈ J̄) ∈ Ω,∑

(i,j)∈J(Ck)

EijXij ∈ SCk
+ (k = 1, 2, . . . , p).

 (17)

We observe that the illustrative example (10) is converted into the problem

minimize −
∑

(i,j)∈E, i<j

Xij

subject to
6∑

i=1

(Xii − αi)
2 ≤ 6,∑

(i,j)∈J(Ck)

EijXij ∈ SCk
+ (k = 1, 2, 3, 4).


(18)

Remark 3.3. Compared to the d-space conversion method using clique trees, the d-space
conversion method using basis representation described above provides limited flexibilities.

13

To make the size of the problem (17) smaller, we need to select a chordal extension G(N, E)
of G(N,E) with smaller maximal cliques Ck (k = 1, 2, . . . , p). As a result, the sizes of
semidefinite constraints become smaller. As we mentioned in Remark 3.1, however, too
many smaller positive semidefinite matrix variables may yield heavy overhead in computa-
tion.

4 Duality in positive semidefinite matrix completion

Throughout this section, we assume that G(N,E) denotes a chordal graph. In Lemma 2.1,
we have described a necessary and sufficient condition for a partial symmetric matrix X ∈
Sn(E, ?) to be completed to a positive semidefinite symmetric matrix. Let

Sn(E, 0) = {A ∈ Sn : Aij = 0 if (i, j) ̸∈ E•},
Sn

+(E, 0) = {A ∈ Sn(E, 0) : A ≽ O}.

In this section, we derive a necessary and sufficient condition for a symmetric matrix A ∈
Sn(E, 0) to be positive semidefinite, i.e., A ∈ Sn

+(E, 0). This condition is used for the
range-space conversion methods in Section 5. We note that for A ∈ Sn(E, 0), these two
issues have primal-dual relationship:

A ∈ Sn
+(E, 0) if and only if

∑
(i,j)∈E•

AijXij ≥ 0 for every X ∈ Sn
+(E, ?). (19)

Suppose A ∈ Sn(E, 0). Let C1, C2, . . . , Cp be the maximal cliques of G(N,E). Then,

we can consistently decompose A ∈ Sn(E, 0) into Ã
k
∈ SCk (k = 1, 2, . . . , p) such that

A =

p∑
k=1

Ã
k
. We know that A is positive semidefinite if and only if A • X ≥ 0 for every

X ∈ Sn
+. This relation and Lemma 2.1 are used in the following.

Since A ∈ Sn(E, 0), the condition A ≽ O can be relaxed to the condition on the right-
hand side of (19). Therefore, A is positive semidefinite if and only if the following SDP has
the optimal value 0.

minimize
∑

(i,j)∈E•

[
p∑

k=1

Ã
k

]
ij

Xij subject to X ∈ Sn
+(E, ?). (20)

We can rewrite the objective function as

∑
(i,j)∈E•

[
p∑

k=1

Ã
k

]
ij

Xij =

p∑
k=1

 ∑
(i,j)∈E•

Ãk
ijXij


=

p∑
k=1

(
Ã

k
• X(Ck)

)
for every X ∈ Sn

+(E, ?).

Note that the second equality follows from Ã
k
∈ SCk (k = 1, 2, . . . , p). Applying Lemma 2.1

to the constraint X ∈ Sn
+(E, ?) of the SDP (20), we obtain an SDP

minimize

p∑
k=1

(
Ã

k
• X(Ck)

)
subject to X(Ck) ∈ SCk

+ (k = 1, 2, . . . , p), (21)

14

which is equivalent to the SDP (20).
The SDP (21) involves multiple positive semidefinite matrix variables with overlapping

elements. We have described two methods to convert such multiple matrix variables into
independent ones with no overlapping elements in Sections 3.1 and 3.2, respectively. We
apply the method given in Section 3.1 to the SDP (21). Let T (K, E) be a clique tree with
K = {C1, C2, . . . , Cp} and E ⊆ K ×K. Then, we obtain an SDP

minimize

p∑
k=1

(
Ã

k
• Xk

)
subject to Eij • Xk − Eij • Xℓ = 0 ((i, j, k, ℓ) ∈ Λ),

Xk ∈ SCk
+ (k = 1, 2, . . . , p),

(22)

which is equivalent to the SDP (21). Here Λ is given in (16).

Theorem 4.1. A ∈ Sn(E, 0) is positive semidefinite if and only if the system of LMIs

Ã
k
− L̃

k
(z) ≽ O (k = 1, 2, . . . , p). (23)

has a solution v = (vghkℓ : (g, h, k, ℓ) ∈ Λ). Here z = (zghkℓ : (g, h, k, ℓ) ∈ Λ) denotes a
vector variable consisting of zghkℓ ((g, h, k, ℓ) ∈ Λ), and

L̃
k
(z) = −

∑
(i, j, h); (i, j, h, k) ∈ Λ

Eijzijhk +
∑

(i, j, ℓ); (i, j, k, ℓ) ∈ Λ

Eijzijkℓ

for every z = (zijkℓ : (i, j, k, ℓ) ∈ Λ) (k = 1, 2, . . . , p). (24)

Proof: In the previous discussions, we have shown that A ∈ Sn(E, 0) is positive semidef-
inite if and only if the SDP (22) has the optimal value 0. The dual of the SDP (22) is

maximize 0 subject to (23). (25)

The primal SDP (22) attains the objective value 0 at a trivial feasible solution (X1,X2, . . . ,
Xp) = (O,O, . . . , O). If the dual SDP (25) is feasible or the system of LMIs (23) has a
solution, then the primal SDP (22) has the optimal value 0 by the week duality theorem.
Thus we have shown the “if part” of the theorem. Now suppose that the primal SDP
(22) has the optimal value 0. The primal SDP (22) has an interior-feasible solution; for
example, take Xk to be the #Ck × #Ck identity matrix in SCk (k = 1, 2, . . . , p). By the
strong duality theorem (Theorem 4.2.1 of [21]), the optimal value of the dual SDP (25) is
zero, which implies that (25) is feasible.

As a corollary, we obtain the following.

Theorem 4.2. (Theorem 2.3 of [1]) A ∈ Sn(E, 0) is positive semidefinite if and only if

there exist Y k ∈ SCk
+ (k = 1, 2, . . . , p) which decompose A as A =

p∑
k=1

Y k.

Proof: Since the “if part” is straightforward, we prove the “only if” part. Assume
that A is positive semidefinite. By Theorem 4.1, the LMI (23) has a solution z̃. Let

15

Y k = Ã
k
−L̃

k
(z̃) (k = 1, 2, . . . , p). Then Y k ∈ SCk

+ (k = 1, 2, . . . , p). Since

p∑
k=1

L̃
k
(z̃) = O

by construction, we obtain the desired result.

Conversely, Theorem 4.1 can be derived from Theorem 4.2. In the paper [1], Theorem 4.2
was proved by Theorem 7 of Grone et al. [7] (Lemma 2.1 of the this paper).

We conclude this section by applying Theorem 4.1 to the case of the chordal graph
G(N,E) given in (a) of Figure 3. The maximal cliques are C1 = {3, 4, 6}, C2 = {4, 5, 6}, C3 =
{1, 6} and C4 = {2, 6}, so that A ∈ S6(E, 0) is decomposed into 4 matrices

Ã
1

=


0 0 0 0 0 0
0 0 0 0 0 0
0 0 A33 A34 0 A36

0 0 A43 A44 0 A46

0 0 0 0 0 0
0 0 A63 A64 0 A66

 ∈ S{3,4,6},

Ã
2

=


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 A45 0
0 0 0 A54 A55 A56

0 0 0 0 A65 0

 ∈ S{4,5,6},

Ã
3

=


A11 0 0 0 0 A16

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

A61 0 0 0 0 0

 ∈ S{1,6},

Ã
4

=


0 0 0 0 0 0
0 A22 0 0 0 A26

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 A62 0 0 0 0

 ∈ S{2,6},

or,

Ã
1

=

 A33 A34 A36

A43 A44 A46

A63 A64 A66

 ∈ S{3,4,6}, Ã
2

=

 0 A45 0
A54 A55 A56

0 A65 0

 ∈ S{4,5,6},

Ã
3

=

(
A11 A16

A61 0

)
∈ S{1,6}, Ã

4
=

(
A22 A26

A62 0

)
∈ S{2,6}

 (26)

in the compact representation. We note that this decomposition is not unique. For ex-

ample, we can move the (6, 6) element A66 from Ã
1

to any other Ã
k
. We showed two

clique trees with K = {C1, C2, C3, C4} in Figure 4. For the left clique tree, we have

16

Λ = {(4, 4, 1, 2), (4, 6, 1, 2), (6, 6, 1, 2), (6, 6, 1, 3), (6, 6, 1, 4))}. Thus, the system of LMIs (23)
becomes  A33 A34 A36

A43 A44 − z4412 A46 − z4612

A63 A64 − z4612 A66 − z6612 − z6613 − z6614

 ≽ O, z4412 A45 z4612

A54 A55 A56

z4612 A65 z6612

 ≽ O,(
A11 A16

A61 z6613

)
≽ O,

(
A22 A26

A62 z6614

)
≽ O.


(27)

For the right clique tree, we have Λ = {(4, 4, 1, 2), (4, 6, 1, 2), (6, 6, 1, 2), (6, 6, 2, 3), (6, 6, 3, 4)}
and  A33 A34 A36

A43 A44 − z4412 A46 − z4612

A63 A64 − z4612 A66 − z6612

 ≽ O, z4412 A45 z4612

A54 A55 A56

z4612 A65 z6612 − z6623

 ≽ O,(
A11 A16

A61 z6623 − z6634

)
≽ O,

(
A22 A26

A62 z6634

)
≽ O.


(28)

5 Exploiting the range-space sparsity

In this section, we present two range-space conversion methods, the r-space conversion
method using clique trees based on Theorem 4.1 and the r-space conversion method using
matrix decomposition based on Theorem 4.2.

5.1 The range-space conversion method using clique trees

Let

F = {(i, j) ∈ N × N : Mij(y) ̸= 0 for some y ∈ Rs, i ̸= j}.

We call F the r-space sparsity pattern and G(N,F) the r-space sparsity pattern graph of the
mapping M : Rs → Sn. Apparently, M (y) ∈ Sn(F, 0) for every y ∈ Rs, but the graph
G(N,F) may not be chordal. Let G(N,E) be a chordal extension of G(N,F). Then

M (y) ∈ Sn(E, 0) for every y ∈ Rs. (29)

Let C1, C2, . . . , Cp be the maximal cliques of G(N,E).

To apply Theorem 4.1, we choose mappings M̃
k

(k = 1, 2, . . . , p) to decompose the
mapping M : Rs → Sn such that

M (y) =

p∑
k=1

M̃
k
(y) for every y ∈ Rs, M̃

k
: Rs → SCk (k = 1, 2, . . . , p). (30)

17

Let T (K, E) be a clique tree where K = {C1, C2, . . . , Cp} and E ⊂ K×K. By Theorem 4.1,
y is a solution of (1) if and only if it is a solution of

M̃
k
(y) − L̃

k
(z) ≽ O (k = 1, 2, . . . , p) (31)

for some z = (zghkℓ : (g, h, k, ℓ) ∈ Λ), where Λ is given in (16) and L̃
k

in (24).
We may regard the r-space conversion method using clique trees described above as a

dual of the d-space conversion method using clique trees applied to the SDP

minimize M (y) • X subject to X ≽ O, (32)

where X ∈ Sn denotes a variable matrix and y ∈ Rs a fixed vector. We know that
M (y) ≽ O if and only if the optimal value of the SDP (32) is zero, so that (32) serves
as a dual of the matrix inequality M (y) ≽ O. Each element zijkℓ of the vector variable z
corresponds to a dual variable of the equality constraint Eij • Xk − Eij • Xℓ = 0 in the
problem (15), while each matrix variable Xk ∈ SCk in the problem (15) corresponds to a

dual matrix variable of the kth matrix inequality M̃
k
(y) − L̃

k
(z) ≽ O.

Remark 5.1. On the flexibilities in implementing the r-space conversion method using
clique trees, the comments in Remark 3.1 are valid if we replace the sizes of the matrix

variable Xk by the size of the mapping M̃
k

: Rs → SCk and the number of equalities by the
number of elements zijkℓ of the vector variable z. The correlative sparsity of (31) depends on
the choice of the clique tree and the decomposition (30). This is illustrated in Remark 6.1.

As an example, we consider the case where M is tridiagonal, i.e., the (i, j)th element Mij

of M is zero if |i − j| ≥ 2, to illustrate the range space conversion of the matrix inequality
(1) into the system of matrix inequalities (31). By letting E = {(i, j) : |i − j| = 1}, we
have a simple chordal graph G(N,E) with no cycle satisfying (29), its maximal cliques
Ck = {k, k + 1} (k = 1, 2, . . . , n − 1), and a clique tree T (K, E) with

K = {C1, C2, . . . , Cn−1} and E = {(Ck, Ck+1) ∈ K ×K : k = 1, 2, . . . , n − 2}.

For every y ∈ Rs, let

M̃
k
(y) =



(
Mkk(y) Mk,k+1(y)

Mk+1,k(y) 0

)
∈ SCk if 1 ≤ k ≤ n − 2,

(
Mn−1,n−1(y) Mn−1,n(y)
Mn,n−1(y) Mnn(y)

)
∈ SCk if k = n − 1.

Then, we can decompose M : Rs → Sn(E, 0) into M̃
k

: Rs → SCk (k = 1, 2, . . . , n − 1) as
in (30) with p = n − 1. We also see that

Λ = {(k + 1, k + 1, k, k + 1) : k = 1, 2, . . . , n − 2},

L̃
k
(z) =


E22 z2212 ∈ SC1 if k = 1,
−Ek,k zk,k,k−1,k + Ek+1,k+1 zk+1,k+1,k,k+1 ∈ SCk if k = 2, 3, . . . , n − 2,
−En−1,n−1 zn−1,n−1,n−2,n−1 ∈ SCn−1 if k = n − 1,

18

Thus the resulting system of matrix inequalities (31) is(
M11(y) M12(y)
M21(y) −z2212

)
≽ O,(

Mkk(y) + zk,k,k−1,k Mk,k+1(y)
Mk+1,k(y) −zk+1,k+1,k,k+1

)
≽ O (k = 2, 3, . . . , n − 2),(

Mn−1,n−1(y) + zn−1,n−1,n−2,n−1 Mn−1,n(y)
Mn,n−1(y) Mnn(y)

)
≽ O.


5.2 The range-space conversion method using matrix decomposi-

tion

By Theorem 4.2, we obtain that y ∈ Rs is a solution of the matrix inequality (1) if and only
if there exist Y k ∈ SCk (k = 1, 2, . . . , p) such that

p∑
k=1

Y k = M (y) and Y k ∈ SCk
+ (k = 1, 2, . . . , p).

Let J = ∪p
k=1J(Ck) and Γ(i, j) = {k : i ∈ Ck, j ∈ Ck} ((i, j) ∈ J). Then we can rewrite the

condition above as∑
k∈Γ(i,j)

Eij • Y k − Eij • M (y) = 0 ((i, j) ∈ J) and Y k ∈ SCk
+ (k = 1, 2, . . . , p). (33)

We may regard the r-space conversion method using matrix decomposition as a dual
of the d-space conversion method using basis representation applied to the SDP (32) with
a fixed y ∈ Rs. Each variable Xij ((i, j) ∈ J) in the problem (17) corresponds to a
dual real variable of the (i, j)th equality constraint of the problem (33), while each matrix
variable Y k in the problem (33) corresponds to a dual matrix variable of the constraint∑
(i,j)∈J(Ck)

EijXij ∈ SCk
+ .

Remark 5.2. On the flexibilities in implementing the r-space conversion method using
matrix decomposition, the comments in Remark 3.3 are valid if we replace the sizes of the
semidefinite constraints by the sizes of the matrix variables Y k (k = 1, 2, . . . , p).

We illustrate the r-space conversion method using matrix decomposition with the same
example where M is tridiagonal as in Section 5.1. In this case, we see that

p = n − 1,

Ck = {k, k + 1} (k = 1, 2, . . . , n − 1),

J(Ck) = {(k, k), (k, k + 1), (k + 1, k + 1)} (k = 1, 2, . . . , n − 1),

J = {(k, k) : k = 1, 2, . . . , n}
∪

{(k, k + 1) : k = 1, 2, . . . , n − 1},

Γ(i, j) =


{1} if i = j = 1,
{k} if i = k, j = k + 1 and 1 ≤ k ≤ n − 1,
{k − 1, k} if i = j = k and 2 ≤ k ≤ n − 1,
{n − 1} if i = j = n.

19

Hence, the matrix inequality (1) with the tridiagonal M : Rs → Sn is converted into

E11 • Y 1 − E11 • M (y) = 0,
Ek,k+1 • Y k − Ek,k+1 • M (y) = 0 (k = 1, 2, . . . , n − 1),
Ekk • Y k−1 + Ekk • Y k − Ekk • M (y) = 0 (k = 2, . . . , n − 1),
Enn • Y n−1 − Enn • M (y) = 0,

Y k =

(
Y k

kk Y k
k,k+1

Y k
k+1,k Y k

k+1,k+1

)
∈ SCk

+ (k = 1, 2, . . . , n − 1).

6 Correlative sparsity

When we are concerned with the SDP relaxation of polynomial SDPs (including ordinary
polynomial optimization problems) and linear SDPs, another type of sparsity called the
correlative sparsity plays an important role in solving the SDPs efficiently. The correlative
sparsity was dealt with extensively in the paper [13]. It is known that the sparse SDP
relaxation [16, 18, 23, 24] for a correlatively sparse polynomial optimization problem leads
to an SDP that can maintain the sparsity for primal-dual interior-point methods. See
Section 6 of [13]. In this section, we focus on how the d-space and r-space conversion
methods enhance the correlative sparsity. We consider a polynomial SDP of the form

maximize f0(y) subject to F k(y) ∈ Smk
+ (k = 1, 2, . . . , p). (34)

Here f0 denotes a real valued polynomial function in y ∈ Rn, F k a mapping from Rn into
Smk with

all polynomial components in y ∈ Rn. For simplicity, we assume that f0 is a linear
function of the form f0(y) = bT y for some b ∈ Rn. The correlative sparsity pattern graph
is defined as a graph G(N,E) with the node set N = {1, 2, . . . , n} and the edge set

E =

{
(i, j) ∈ N × N :

i ̸= j, both values yi and yj are necessary
to evaluate the value of F k(y) for some k

}
.

When a chordal extension G(N, E) of the correlative sparsity pattern graph G(N,E)
is sparse or all the maximal cliques of G(N, E) are small-sized, we can effectively apply
the sparse SDP relaxation [16, 18, 23, 24] to the polynomial SDP (34). As a result, we
have a linear SDP satisfying a correlative sparsity characterized by the same chordal graph
structure as G(N, E). More details can be found in Section 6 of [13]. Even when the
correlative sparsity pattern graph G(N,E) or its chordal extension G(N, E) is not sparse,
the polynomial SDP may have “a hidden correlative sparsity” that can be recognized by
applying the d-space and/or r-space conversion methods to the problem to decompose a
large size matrix variable (and/or inequality) into multiple smaller size matrix variables
(and/or inequalities). To illustrate this, let us consider a polynomial SDP of the form

minimize bT y subject to F (y) ∈ Sn
+,

20

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

nz = 218
0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

nz = 128

Figure 5: The correlative sparsity pattern of the polynomial SDP (35) with n = 20, and its
Cholesky factor with a symmetric minimum degree ordering of its rows and columns.

where F denotes a mapping from Rn into Sn defined by

F (y) =



1 − y4
1 0 0 . . . 0 y1y2

0 1 − y4
2 0 . . . 0 y2y3

0 0
. . . 0 y3y4

.
.

0 0 0 1 − y4
n−1 yn−1yn

y1y2 y2y3 y3y4 . . . yn−1yn 1 − y4
n


.

This polynomial SDP is not correlatively sparse at all (i.e., G(N,E) becomes a complete
graph) because all variables y1, y2, . . . , yn are involved in the single matrix inequality F (y) ∈
Sn

+. Hence, the sparse SDP relaxation [16] is not effective for this problem. Applying the
r-space conversion method using clique trees to the polynomial SDP under consideration,
we have a polynomial SDP

minimize bT y

subject to

(
1 − y4

1 y1y2

y1y2 z1

)
≽ O,(

1 − y4
i yiyi+1

yiyi+1 −zi−1 + zi

)
≽ O (i = 2, 3, . . . , n − 2),(

1 − y4
n−1 yn−1yn

yn−1yn 1 − y4
n − zn−2

)
≽ O,


(35)

which is equivalent to the original polynomial SDP. The resulting polynomial SDP now
satisfies the correlative sparsity as shown in Figure 5. Thus the sparse SDP relaxation [16]
is efficient for solving (35).

The correlative sparsity is important in linear SDPs, too. We have seen such a case in

21

0 5 10 15 20 25

0

5

10

15

20

25

nz = 161
0 50 100 150 200 250

0

50

100

150

200

250

nz = 1871

Figure 6: The correlative sparsity pattern of the SDP (37) induced from (4) with n = 10
and n = 100, and its Cholesky factor with a symmetric minimum degree ordering of its rows
and columns.

Section 2.1. We can rewrite the SDP (3) as

maximize −
n−1∑
i=1

(
A0

iiXii + 2A0
i,i+1Xi,i+1

)
− A0

nnXnn

subject to I −
n∑

i=1

EiiXii +
n−1∑
i=1

EinXi,i+1 ≽ O,∑
1≤i≤j≤n

EijXij ≽ O,


(36)

where I denotes the n×n identity matrix. Since the coefficient matrices of all real variables
Xij (1 ≤ i ≤ j ≤ n) are nonzero in the last constraint, the correlative sparsity pattern
graph G(N,E) forms a complete graph. Applying the d-space conversion method using
basis representation and the r-space conversion method using clique trees to the original
SDP (3), we have reduced it to the SDP (4) in Section 2.1. We rewrite the constraints of
the SDP (4) as an ordinary LMI form:

maximize bT y

subject to Ak
0 −

s∑
h=1

Ak
hyh ≽ O (k = 1, 2, . . . , p).

 (37)

Here p = 2n− 2, s = 3n− 3, each Ak
h is 2× 2 matrix (k = 1, 2, . . . , p, h = 0, 1, . . . , 3n− 3),

b ∈ R3n−3, y ∈ R3n−3, and each element yh of y corresponds to some Xij or some zi.
Comparing the SDP (36) with the SDP (37), we notice that the number of variables is
reduced from n(n + 1)/2 to 3n − 3, and the maximum size of the matrix inequality is
reduced from n to 2. Furthermore, the correlative sparsity pattern graph becomes sparse.
See Figure 6.

Now we consider an SDP of the form (37) in general. The edge set E of the correlative
sparsity pattern graph G(N,E) is written as

E =
{
(g, h) ∈ N × N : g ̸= h, Ak

g ̸= O and Ak
h ̸= O for some k

}
,

22

where N = {1, 2, . . . , s}. It is known that the graph G(N,E) characterizes the sparsity pat-
tern of the Schur complement matrix of the SDP (37). More precisely, if R denotes the s×s
sparsity pattern of the Schur complement matrix, then Rgh = 0 if (g, h) ̸∈ E•. Furthermore,
if the graph G(N,E) is chordal, then there exists a perfect elimination ordering, a simul-
taneous row and column ordering of the Schur complement matrix that allows a Cholesky
factorization with no fill-in. For the SDP induced from (4), we have seen the correlative
sparsity pattern with a symmetric minimum degree ordering of its rows and columns in
Figure 6, which coincides with the sparsity pattern of the Schur complement matrix whose
symbolic Cholesky factorization is shown in Figure 1.

Remark 6.1. As mentioned in Remark 5.1, the application of r-space conversion method
using clique trees to reduce the SDP (3) to the SDP (4) can be implemented in many
different ways. In practice, it should be implemented to have a better correlative sparsity
in the resulting problem. For example, we can reduce the SDP (3) to

minimize
n−1∑
i=1

(
A0

iiXii + 2A0
i,i+1Xi,i+1

)
+ A0

nnXnn

subject to

(
1 0
0 0

)
−

(
X11 −X12

−X21 −z1

)
≽ O,(

1 0
0 0

)
−

(
Xii −Xi,i+1

−Xi+1,i −zi

)
≽ O (i = 2, 3, . . . , n − 2),(

1 0
0 1

)
−

(
Xn−1,n−1 −Xn−1,n

−Xn,n−1 Xn,n +
∑n−2

i=1 zi

)
≽ O,(

0 0
0 0

)
−

(
−Xii −Xi,i+1

−Xi+1,i −Xi+1,i+1

)
≽ O (i = 1, 2, . . . , n − 1),



(38)

which is different from the SDP (4). This is obtained by choosing a different clique tree in
the r-space conversion method using clique trees for the SDP (3). In this case, all auxiliary
variables zi (i = 1, 2, . . . , n − 2) are contained in a single matrix inequality. This implies
that the corresponding correlative sparsity pattern graph G(N,E) involves a clique with
the size n− 2. See Figure 7. Thus the correlative sparsity becomes worse than the previous
conversion. Among various ways of implementing the d- and r-space conversion methods,
determining which one is effective for a better correlative sparsity will be a subject which
requires further study.

7 Preliminary numerical results

We present numerical results to show the effectiveness of the d- and r-space conversion
methods. For test problems, we first consider a quadratic SDP of the form

minimize
s∑

i=1

cixi subject to M (x) ≽ O, (39)

where ci ∈ [0, 1] (i = 1, 2, . . . , s), M : Rs → Sn, and each non-zero element of Mij of the
mapping M is a polynomial in x = (x1, x2, . . . , xs) ∈ Rs with degree at most 2. Then, three

23

0 5 10 15 20 25

0

5

10

15

20

25

nz = 217
0 50 100 150 200 250

0

50

100

150

200

250

nz = 11377

Figure 7: The correlative sparsity pattern of the SDP (37) induced from (38) with n = 10
and n = 100 where the rows and columns are simultaneously reordered by the Matlab
function symamd (a symmetric minimum degree ordering).

max-cut problems, a Lovas theta problem, and a box-constrained quadratic problem from
SDPLIB [5] are considered. A sensor network localization problem and discretized partial
differential equations (PDE) with Neumann and Dirichlet condition are also tested.

7.1 SDP relaxations of a quadratic SDP

In this subsection, we apply the d- and r-space conversion methods to the quadratic SDP
(39), and derive 4 kinds of SDP relaxations:

(a) a dense SDP relaxation without exploiting any sparsity.

(b) a sparse SDP relaxation by applying the d-space conversion method using basis rep-
resentation given in Section 3.2.

(c) a sparse SDP relaxation by applying the r-space conversion method using clique trees
in Section 5.1.

(d) a sparse SDP relaxation by applying both of the d-space conversion method using
basis representation and the r-space conversion method using clique trees.

Some preliminary numerical results on these SDP relaxations are provided to compare their
efficiency in Sections 7.2 and 7.3.

We write each non-zero element Mij(x) as

Mij(x) = Qij •
(

1 xT

x xxT

)
for every x ∈ Rs.

for some Qij ∈ S1+s. Assume that the rows and columns of each Qij are indexed from 0 to

s. Let us introduce a linearization (or lifting) M̂ij : Rs × Ss → R of the quadratic function

24

Mij : Rs → R:

M̂ij(x, X) = Qij •
(

1 xT

x X

)
for every x ∈ Rs and X ∈ Ss,

which induces a linearization (or lifting) M̂ : Rs × Ss → Sn of M : Rs → Sn whose (i, j)th

element is M̂ij. Then we can describe the dense SDP relaxation (a) as

minimize
n∑

i=1

cixi subject to M̂ (x, X) ≽ O and

(
1 xT

x X

)
≽ O.

For simplicity, we rewrite the dense SDP relaxation above as

(a) minimize
n∑

i=1

ciW0i subject to M̂ (W) ≽ O, W00 = 1 and W ≽ O,

where

(W01,W02, . . . ,W0s) = xT ∈ Rs and W =

(
1 xT

x X

)
∈ S1+s.

Let G(N ′, F ′) be the d-space sparsity pattern graph for the SDP (a) with N ′ = {0, 1, . . . , s},
and F ′ = the set of distinct row and column index pairs (i, j) of Wij that is necessary to
evaluate the objective function

∑n
i=1 ciW0i and/or the LMI M (W) ≽ O. Let G(N ′, E ′) be

a chordal extension of G(N ′, F ′), and C ′
1, C

′
2, . . . , C

′
r be the maximal cliques of G(N ′, E ′).

Applying the d-space conversion method using basis representation described in Section 3.2,
we obtain the SDP relaxation

(b)


minimize

n∑
i=1

ciW0i

subject to M̂((Wij : (i, j) ∈ J)) ≽ O, W00 = 1,∑
(i,j)∈J(C′

k)

EijWij ∈ SC′
k

+ (k = 1, 2, . . . , r).

Here J = ∪r
k=1J(C ′

k), (Wij : (i, j) ∈ J) = the vector variable of the elements Wij ((i, j) ∈ J)
and

M̂ ((Wij : (i, j) ∈ J)) = M̂ (W) for every W ∈ Ss(E ′, 0).

To apply the r-space conversion method using clique trees given in Section 5.1 to the
quadratic SDP (39), we assume that M : Rs → Sn(E, 0) for some chordal graph G(N,E)
where N = {1, 2, . . . , n} and E ⊆ N ×N . Then, we convert the matrix inequality M (x) ≽
O in (39) into an equivalent system of matrix inequalities (31). The application of the LMI
relaxation described above to (31) leads to the SDP relaxation

(c)

 minimize
n∑

i=1

ciW0i

subject to M
k
(W) − L̃

k
(z) ≽ O (k = 1, 2, . . . , p), W00 = 1, W ≽ O,

where M
k

: S1+s → SCk denotes a linearization (or lifting) of M̃
k

: Rs → SCk . We may

25

apply the linearization to (39) first to derive the dense SDP relaxation (a), and then apply
the r-space conversion method using clique trees to (a). This results in the same sparse

SDP relaxation (c) of (39). Note that both M and M̂ take values from Sn(E, 0), thus, they
provide the same r-space sparsity pattern characterized by the chordal graph G(N,E).

Finally, the sparse SDP relaxation (d) is derived by applying the d-space conversion
method using basis representation to the the sparse LMI relaxation (c). We note that the
d-space sparsity pattern graph for the SDP (c) with respect to the matrix variable W ∈ S1+s

is the same as the one for the SDP (a). Hence, the sparse SDP relaxation (d) is obtained
in the same way as the SDP (b) is obtained from the SDP (a). Consequently, we have the
sparse SDP relaxation

(d)


minimize

n∑
i=1

ciW0i

subject to M
k
((Wij : (i, j) ∈ J)) − L̃

k
(z) ≽ O (k = 1, 2, . . . , p), W00 = 1,∑

(α,β)∈J(C′
k)

EαβWαβ ∈ SC′
j

+ (j = 1, 2, . . . , r).

Here J = ∪r
k=1J(C ′

k) and

M
k
((Wij : (i, j) ∈ J)) = M

k
(W) for every W ∈ Ss(E ′, 0).

7.2 A tridiagonal quadratic SDP

In this and next subsection, two sparse cases of the quadratic SDP (39) are considered with
numerical results on the SDP relaxations (a) ∼ (d). The SDP relaxation problems were
solved by SeDuMi on 2.66 GHz Dual-Core Intel Xeon with 12GB memory.

For every i = 1, 2, . . . , n and j = 1, 2, . . . , n, define an (1+ s)× (1+ s) symmetric matrix
Qij such that

Qij =



(
1 0T

0 −Di

)
if i = j,(

0 aT
i /2

ai/2 O

)
if j = i + 1 and i = 1, 2, . . . , n − 1,(

0 aT
j /2

aj/2 O

)
if j = i − 1 and i = 2, 3, . . . , n,

O otherwise.

Di = an s × s diagonal matrix with diagonal elements chosen

randomly from the interval (0, 1).

ai = an s dimensional column vector with elements chosen

randomly from the interval (−1, 1).

We see that, for every x ∈ Rs,

Mii(x) = Qii •
(

1 xT

x xxT

)
= 1 −

s∑
j=1

[Di]jjx
2
j ,

Mij(x) = Qij •
(

1 xT

x xxT

)
= aT

i x if j = i + 1, i = 1, 2, . . . , n − 1

26

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

nz = 121
0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

nz = 118

Figure 8: The d-space sparsity pattern (the left figure) and the r-space sparsity pattern (the
right figure) of the the tridiagonal quadratic SDP with s = 40 and n = 40.

Mij(x) = Qij •
(

1 xT

x xxT

)
= aT

j x if j = i − 1, i = 2, 3, . . . , n,

Mij(x) = Mji(x) (i = 1, 2, . . . , n, j = 1, 2, . . . , n).

Figure 8 shows the d- and r-space sparsity patterns when s = 40 and n = 40.
Table 2 shows the SeDuMi CPU time in seconds, the size of the Schur complement

matrix, and the maximum size of matrix variables of the SDP relaxation problems (a), (b),
(c) and (d) of the tridiagonal quadratic SDP. The size of the Schur complement matrix
and the maximum size of matrix variables are essential factors affecting the CPU time.
Comparing the CPU time of (b) with that of (a), we observe that the d-space conversion
method using basis representation used in (b) works very effectively. In (b), the (1 + s) ×
(1+ s) matrix variable W is decomposed into s 2× 2 matrix variables, while the size of the
matrix inequality remains the same. The reduction in the SeDuMi CPU time to solve the
SDP relaxation problem is mainly due to the reduction in the size of the Schur complement
matrix. On the other hand, using only the r-space conversion method using clique trees in
(c) fails in reducing the maximum size of matrix variables, the size of the Schur complement
matrix, and the SeDuMi CPU time. But when combined with the d-space conversion
method using basis representation as in (d), both of the (1 + s) × (1 + s) matrix variable
W and the matrix inequality are decomposed into 2× 2 matrices, and the size of the Schur
complement matrix decreases more than those in (a) and (c). These contribute to a further
reduction in the SeDuMi CPU time from (b).

Table 3 shows numerical results on the tridiagonal quadratic SDP with the dimension s
of the domain space of the variable vector x fixed to 40. In this case, we observe that the
r-space conversion method using clique trees in (c) works more effectively than the d-space
conversion method using basis representation as the dimension n of the range space of the
matrix inequality M (x) ≽ O becomes larger. We also see that (d) attains the shortest
SeDuMi CPU time.

27

SeDuMi CPU time in seconds
(the size of the Schur complement matrix, the max. size of matrix variables)

s n (a) (b) (c) (d)
40 40 8.38 0.97 8.83 0.68

(860, 41) (80, 40) (898, 41) (118, 2)
80 80 384.43 11.72 402.86 1.58

(3320, 81) (160, 80) (3398, 81) (238, 2)
160 160 - 33.26 - 4.71

(320, 160) (478, 2)
320 320 - 100.36 - 24.57

(640, 320) (958, 2)

Table 2: Numerical results on the tridiagonal SDP with s = n and “-” indicates out of
memory error in Matlab.

SeDuMi CPU time in seconds
(the size of the Schur complement matrix, the max. size of matrix variables)

s n (a) (b) (c) (d)
40 80 30.76 6.27 28.70 1.52

(860, 80) (80, 80) (938, 41) (158, 2)
40 160 41.9 21.86 32.44 2.82

(860, 160) (80, 160) (1081, 41) (238, 2)
40 320 95.46 69.98 40.15 5.25

(860, 320) (80, 320) (1178, 41) (398, 2)
40 640 474.51 393.23 46.26 11.60

(860, 640) (80, 640) (1498, 41) (718, 2)

Table 3: Numerical results on the tridiagonal SDP with the dimension s of the domain
space of the variable vector x fixed to 40.

28

7.3 Quadratic SDPs with d- and r-space sparsity from randomly
generated sparse graphs

Quadratic SDP problem were constructed by first generating two graphs G(Nd, Ed) with
Nd = {1, 2, . . . , 1 + s} and G(Nr, Er) with Nr = {1, 2, . . . , n} and using the Matlab pro-
gram generateProblem.m [12], which was developed for sensor network localization prob-
lems. Sparse chordal extensions G(Nd, Ed) and G(Nr, Er) were then obtained by the
Matlab functions symamd.m and chol.m. Next, we generated data matrices Qij ∈ S1+s

(i = 1, 2, . . . , n, j = 1, 2, . . . , n) and a data vector c ∈ Rs so that the d- and r-space spar-
sity pattern graphs of the resulting quadratic SDP coincide with G(Nd, Ed) and G(Nr, Er),
respectively. Some characteristics of the chordal extensions G(Nd, Ed) of G(Nr, Er) and
G(Nr, Er) of G(Nr, Er) used in the experiments are shown in Table 4.

For the problem with s = 40 and n = 640, the d- and r-space sparsity pattern obtained
from the symmetric approximate minimum degree permutation of rows and columns by the
Matlab function symamd.m is displayed in Figure 9.

Domain space sparsity Range space sparsity
s n #Ed NoC MaxC MinC #Er NoC MaxC MinC

80 80 143 63 3 3 216 72 7 3
320 320 649 260 7 3 840 301 9 3
40 160 70 30 3 3 426 150 7 3
40 640 70 30 3 3 1732 616 13 3

Table 4: Some characteristics of d- and r-space sparsity patterns of the tested quadratic
SDPs. #Ed (or #Er) denotes the number of edges of G(Nd, Ed) (or G(Nr, Er)), NoC the
number of the maximal cliques of G(Nd, Ed) (or G(Nr, Er)), MaxC the size of the largest
maximal cliques of G(Nd, Ed) (or G(Nr, Er)), and MinC the size of the smallest maximal
cliques of G(Nd, Ed) (or G(Nr, Er)).

Table 5 shows numerical results on the quadratic SDPs whose d- and r-space sparsity
characteristics are given in Table 4. We observe that both the d-space conversion method
using basis representation in (b) and the r-space conversion method using clique tree in (c)
work effectively, and that their combination in (d) results in the shortest CPU time among
the four methods.

7.4 SDPs from some applications

For additional numerical experiments, we selected five SDP problems from SDPLIB [5].
Moreover, as SDP problems from applications, we tested a sensor network localization
problem and discretized PDE with Neumann and Dirichlet boundary condition. The test
problems in Table 6 are

mcp500-1, maxG11, maxG32: An SDP relaxation of the max cut problem from SDPLIB.

thetaG11: An SDP relaxation of the Lovasz theta problem from SDPLIB.

qpG11: An SDP relaxation of the box constrained quadratic problem form SDPLIB.

29

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

nz = 181
0 100 200 300 400 500 600

0

100

200

300

400

500

600

nz = 3432

Figure 9: The d-space sparsity pattern of the quadratic SDP with s = 40 and n = 640 on
the left and the r-space sparsity pattern on the right.

SeDuMi CPU time in seconds
(the size of the Schur complement matrix, the max. size of matrix variables)

s n (a) (b) (c) (d)
80 80 296.51 1.38 1.58 0.73

(3321, 81) (224, 80) (801, 81) (252, 19)
320 320 - 74.19 80.09 35.20

(970, 320) (322, 321) (1216, 20)
40 160 6.70 4.22 2.91 0.74

(861, 160) (111, 160) (1626, 41) (207, 21)
40 640 158.95 151.20 120.86 5.71

(861, 640) (111, 640) (6776, 41) (772, 21)

Table 5: Numerical results on the quadratic SDPs with d- and r- sparsity from randomly
generated sparse graphs. “-” indicates out of memory error in Matlab.

30

d2n01s1000a100FSDP: A full SDP relaxation [4] of the sensor network localization problem
with 1000 sensors, 100 anchors distributed in [0, 1]2, radio range = 0.1, and noise =
10%. The method (iii) in Table 6 for this problem is equivalent to the method used
in SFSDP [11], a sparse version of full SDP relaxation.

pdeEllipticNeum11: An SDP relaxation of the discretized nonlinear, elliptic PDE (4.4)
(Case II, Neumann boundary condition) of [19]. We choose a 11 × 11 grid for the
domain [0, 1]2 of the PDE.

pdeEllipticBifur20: An SDP relaxation of the discretized nonlinear, elliptic PDE (4.5)
(Dirichlet boundary condition) of [19]. We choose a 20× 20 grid for the domain [0, 1]2

of the PDE.

The SDP relaxations (i), (ii) and (iii) in Table 6 indicate

(i) a dense SDP relaxation without exploiting any sparsity.

(ii) a sparse SDP relaxation by applying the d-space conversion method using clique trees
given in Section 3.1.

(iii) a sparse SDP relaxation by applying the d-space conversion method using basis
representation given in Section 3.2.

Table 6 shows that CPU time spent by (ii) is shorter than that by (i) and (iii) for all tested
problems except for mcp500-1 and pdeEllipticNeum11. Notice that it took shorter CPU
time to solve (iii) than (i) except for maxG32 and thetaG11. We confirm that applying at
least one of the d-space conversion methods greatly reduces CPU time for the test problems.
The d-space sparsity patterns for the test problems are displayed in Figures 10 and 11.

SeDuMi CPU time (size.SC.mat., Max.size.mat.var.)
Problem (i) (ii) (iii)

mcp500-1 65.5 (500, 500) 94.5 (7222, 44) 15.9 (2878, 44)
maxG11 220.5 (800, 800) 12.1 (2432, 80) 26.8 (8333, 24)
maxG32 5373.8 (2000, 2000) 971.4 (13600, 210) Out of memory

thetaG11 345.9 (2401, 801) 23.9 (4237, 81) 458.5 (9134, 25)
qpG11 2628.5 (800, 1600) 16.0 (2432, 80) 72.5 (9133, 24)

d2n01s1000a100FSDP 5193.5 (4949, 1002) 16.9 (7260, 45) 19.5 (15691, 17)
pdeEllipticNeum11 216.1 (1453, 485) 2.2 (1483, 17) 2.1 (1574, 4)
pdeEllipticBifur20 1120.4 (2401, 801) 4.3 (2451, 17) 5.3 (2001, 3)

Table 6: Numerical results on SDPs from some applications. size.SC.mat. denotes the
size of the Schur complement matrix and Max.size.mat.var. the maximum size of matrix
variables.

31

0 500 1000 1500 2000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

nz = 10000
0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

800

nz = 5601
0 200 400 600 800 1000 1200 1400 1600

0

200

400

600

800

1000

1200

1400

1600

nz = 4800

Figure 10: The d-space sparsity pattern with the symmetric approximate minimum de-
gree permutation of rows and columns provided by the Matlab function symamd.m for
maxG32(left), thetaG11(middle) and qpG11(right)

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

nz = 9138
0 50 100 150 200 250 300 350 400 450

0

50

100

150

200

250

300

350

400

450

nz = 2421
0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

800

nz = 3201

Figure 11: The d-space sparsity pattern with the symmetric approximate minimum de-
gree permutation of rows and columns provided by the Matlab function symamd.m for
d2n01s1000a100FSDP(left), pdeEllipticNeum11(middle) and pdeEllipticBifur20(right).

32

8 Concluding discussions

Our focus has been on developing a theoretical framework consisting of the d- and r-space
conversion methods to exploit structured sparsity, characterized by a chordal graph struc-
ture, via the positive semidefinite matrix completion for an optimization problem involving
linear and nonlinear matrix inequalities. The two d-space conversion methods are provided
for a matrix variable X in objective and/or constraint functions of the problem, which
is required to be positive semidefinite. The methods decompose X into multiple smaller
matrix variables. The two r-space conversion methods are aimed at a matrix inequality in
the constraint of the problem. In these methods, the matrix inequality is converted into
multiple smaller matrix inequalities. We have also discussed how the conversion methods
enhance the correlative sparsity in linear and polynomial SDPs.

We have not described technical details of practical implementation in this paper. As
mentioned in Remarks 3.1, 5.1 and 6.1, the d-space conversion method using clique trees
and the r-space conversion method using clique trees have plenty of flexibilities in imple-
mentation. This should be explored further for computational efficiency. In addition, how
the four methods should be combined to solve a given optimization problem in practice
needs to be studied.

In the preliminary numerical experiments in Section 7, we have observed that the com-
putational performance is greatly improved by applying d- and r-space conversion methods.
Extensive numerical experiments are necessary before presenting a practical version of the
four conversion methods.

Acknowledgments

The authors would like to thank Dr. Naonori Kakimura for informing them that Theorem 4.2
was presented in the paper [1].

References

[1] J. Agler, J. W. Helton, S. McCullough, and L. Rodman (1988) Positive semidefinite
matrices with a given sparsity pattern, Linear Algebra Appl., 107, 101-149.

[2] C. Ashcraft, D. Pierce, D. K. Wah and J. Wu (1999) “The reference manual for
SPOOLES, release 2.3: An object oriented software library for solving linear systems
of equations,” Boeing Shared Services Group, Seattle, WA, January.

[3] J. R. S. Blair and B. Peyton (1993) “An introduction to chordal graphs and clique
trees,” In: A. George, J. R. Gilbert and J. W. H. Liu eds., Graph Theory and Sparse
Matrix Computation, Springer, New York, pp.1-29.

[4] P. Biswas and Y. Ye (2004) “Semidefinite programming for ad hoc wireless sensor net-
work localization,” in Proceedings of the third international symposium on information
processing in sensor networks, ACM press, 46–54.

33

[5] B. Borchers (1999) “SDPLIB 1.2, A library of semidefinite programming test prob-
lems,” Optim. Methods Softw., 11-12, 683-689.

[6] M. Fukuda, M. Kojima, K. Murota and K. Nakata (2000) “Exploiting sparsity in
semidefinite programming via matrix completion I: General framework,” SIAM J.
Optim., 11, 647-674.

[7] R. Grone, C. R. Johnson, E. M. Sá and H. Wolkowitz (1984) “Positive definite com-
pletions of a partial hermitian matrices,” Linear Algebra Appl., 58, 109-124.

[8] D. Henrion and J. B. Lasserre (2006) “Convergent relaxations of polynomial matrix
inequalities and static output feedback,” IEEE Trans. Automatic Control, 51, 192-202.

[9] C. W. J. Hol and C. W. Scherer, “Sum of squares relaxations for polynomial semidef-
inite programming,” Proc. Symp. on Mathematical Theory of Networks and Systems
(MTNS), Leuven, Belgium, 2004.

[10] G. Karypis and V. Kumar (1998), “METIS — A software package for partitioning un-
structured graphs, partitioning meshes, and computing fill-reducing ordering of sparse
matrices, version 4.0 —,” Department of Computer Science/Army HPC Research Cen-
ter, University of Minnesota, Minneapolis, MN, September.

[11] S. Kim, M. Kojima and H. Waki (2009) ”Exploiting Sparsity in SDP Relaxation for
Sensor Network Localization,” SIAM J. Optim., 20, 1, 192-215.

[12] S. Kim, M. Kojima H. Waki and M. Yamashita (2009) “SFSDP: a Sparse Version
of Full Semidefinite Programming Relaxation for Sensor Network Localization Prob-
lems,” Research Report B-457, Dept. of Mathematical and Computing Sciences, Tokyo
Institute of Technology, Meguro, Tokyo 152-8552.

[13] K. Kobayashi, S. Kim and M. Kojima (2008) “Correlative sparsity in primal-dual
interior-point methods for LP, SDP and SOCP,” Appl. Math. Optim., 58, 69-88.

[14] M. Kojima, ”Sums of Squares Relaxations of Polynomial Semidefinite Programs,” Re-
search Report B-397, Department of Mathematical and Computing Sciences, Tokyo In-
stitute of Technology, Oh-Okayama, Meguro, Tokyo 152-8552, Japan, November 2003.

[15] M. Kojima and M. Muramatsu (2007) ”An Extension of Sums of Squares Relaxations
to Polynomial Optimization Problems over Symmetric Cones, ” Math. Program., 110,
315-336.

[16] M. Kojima and M. Muramatsu (2009) “A note on sparse SOS and SDP relaxations for
polynomial optimization problems over symmetric cones ,” Comput. Optim. Appl., 42,
31-41.

[17] J. B. Lasserre (2001) “Global optimization with polynomials and the problems of
moments,” SIAM J. Optim., 11, 796–817.

[18] J. B. Lasserre (2006) “Convergent SDP-relaxations in polynomial optimization with
sparsity,” SIAM J. Optim., 17, 3, 822-843.

34

[19] M. Mevissen, M. Kojima, J. Nie and N. Takayama (2008) “Solving partial differential
equations via sparse SDP relaxations,” Paci. J. Optim., 4, 2, 213-241.

[20] K. Nakata, K. Fujisawa, M. Fukuda, M. Kojima and K. Murota (2003) “Exploiting
sparsity in semidefinite programming via matrix completion II: Implementation and
numerical results,” Math. Program., 95, 303-327.

[21] Ju. E. Nesterov and A. S. Nemirovski (1994) Interior Point Polynomial Methods in
Convex Programming: Theory and Applications, SIAM, Philadelphia, PA.

[22] J. F. Strum (1999) “SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones,” Optim. Methods Softw., 11 & 12, 625-653.

[23] H. Waki, S. Kim, M. Kojima and M. Muramatsu (2006) “Sums of Squares and Semidef-
inite Programming Relaxations for Polynomial Optimization Problems with Structured
Sparsity,” SIAM J. Optim., 17, 218–242.

[24] H. Waki, S. Kim, M. Kojima, M. Muramatsu and H. Sugimoto (2008) “SparsePOP : a
Sparse Semidefinite Programming Relaxation of Polynomial Optimization Problems,”
ACM Trans. Math. Software, 35, 2, 15.

35

