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Abstract

We consider the problem of approximating the unknown density u ∈ L2(Ω, λ) of
a measure µ on Ω ⊂ Rn, absolutely continuous with respect to some given reference
measure λ, from the only knowledge of finitely many moments of µ. Given d ∈ N
and moments of order d, we provide a polynomial pd which minimizes the mean
square error

∫
(u− p)2dλ over all polynomials p of degree at most d. If there is no

additional requirement, pd is obtained as solution of a linear system. In addition,
if pd is expressed in the basis of polynomials that are orthonormal with respect to
λ, its vector of coefficients is just the vector of given moments and no computation
is needed. Moreover pd → u in L2(Ω, λ) as d → ∞. In general nonnegativity of
pd is not guaranteed even though u is nonnegative. However, with this additional
nonnegativity requirement one obtains analogous results but computing pd ≥ 0 that
minimizes

∫
(u − p)2dλ now requires solving an appropriate semidefinite program.

We have tested the approach on some applications arising from the reconstruction
of geometrical objects and the approximation of solutions of nonlinear differential
equations. In all cases our results are significantly better than those obtained with
the maximum entropy technique for estimating u.

Keywords: Moment problems; density estimation; inverse problems; semidefinite pro-
gramming.
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1 Introduction

Estimating the density u of an unknown measure µ is a well-known problem in statistical
analysis, physics or engineering. In a statistical context, one is usually given observations
in the form of a sample of independent or dependent identically distributed random vari-
ables obtained from the unknown measure µ. And so there has been extensive research
on estimating the density based on these observations. For instance, in one of the most
popular approaches, the kernel density estimation [25], the density u is estimated via a
linear combination of kernel functions - each of them being identified with exactly one
observation. The crucial step in this method is to choose an appropriate bandwidth for
which minimizing the integrated or the mean-integrated squared error between u and its
estimate is most common. Another very popular approach uses wavelets [16, 6, 30], an
example of approximating a density by a truncated orthonormal series. The coefficients in
the truncated wavelet expansion are moment estimates derived from the given identically
distributed observations. Again, the approximation accuracy is often measured by the
mean-integrated squared error and depends on the number of observations and the degree
of the truncation. This approach provides a global density estimate satisfying both good
local and periodic approximation properties. For further details the interested reader is
referred to [7, 11, 30] and the many references therein.

In another context - arising in challenging fields such as image recognition, solving nonlin-
ear differential equations, spectral estimation or speech processing - no direct observation
is available, but rather finitely many moments of the unknown measure µ are given. Then
the issue is to reconstruct or approximate the density u based on the only knowledge of
finitely many moments, (say up to order d ∈ N), an inverse problem from moments. A
simple method due to [29] approximates the density u by a polynomial p of degree at most
d, so that the moments of the measure pdλ matches those of µ, up to order d. However,
and in contrast with more sophisticated approaches, the resulting polynomial approxi-
mation p is not guaranteed to be a density (even though u is) as it may takes negative
values on the domain of integration. One classical approach to the moment problem is
the Padé approximation [3] which is based on approximating the measure by a (finite)
linear combination of Dirac measures. The Dirac measures and their weights in the de-
composition are determined by solving a nonlinear system of equations. In the maximum
entropy estimation (another classical approach) one selects the best approximation of u
by maximizing some functional entropy, the most popular being the Boltzmann-Shannon
entropy. In general some type of weak convergence takes place as the degree increases
as detailed in [5]. Alternatively the norm of the approximate density is chosen as an
objective function [4, 28, 15, 9], which allows to show a stronger convergence in norm.
In [21], maximum entropy and Padé approximates have been compared on some numer-
ical experiments. Finally, piecewise polynomial spline based approaches have also been
proposed in [14].

Motivation. Our main motivation to study the (inverse) moment problem arises in
the context of the so-called generalized problem of moments (GPM). The abstract GPM
is a infinite-dimensional linear program on some space of Borel measures on Rn and
its applications seem endless, see e.g. [17, 18] and the many references therein. For
instance, to cite a few applications, the GPM framework can be used to help solve a weak
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formulation of some ordinary or partial differential equations, as well as some calculus of
variations and optimal control problems. The solution u of the original problem (or an
appropriate translate) is interpreted as a density with respect to the Lebesgue measure
λ on some domain and one computes (or approximates) finitely many moments of the
measure dµ := udλ by solving an appropriate finite-dimensional optimization problem.
But then to recover an approximate solution of the original problem one has to solve an
inverse problem from moments. This approach is particularly attractive when the data
of the original problem consist of polynomials and basic semi-algebraic sets. In this case
one may define a hierarchy (as the number of moments increases) of so-called semidefinite
programs to compute approximations of increasing quality.

Contribution

In this paper we consider the following inverse problem from moments: Let µ be a finite
Borel measure absolutely continuous with respect to some reference measure λ on a box
Ω of Rn and whose density u is assumed to be in L2(Ω, λ), with no continuity assumption
as in previous works. The ultimate goal is to compute an approximation ud of u, based
on the only knowledge of finitely many moments (say up to order d) of µ. In addition,
for consistency, it would be highly desirable to also obtain some “convergence” ud → u as
d→∞.

(a) Firstly, we approximate the density u by a polynomial u∗d of degree d which minimizes
the mean squared error

∫
Ω

(u−p)2dλ (or equivalently the L2(Ω, λ)-norm ‖u−p‖2
2) over all

polynomials p of degree at most d. We show that an unconstrained L2-norm minimizer u∗d
exists, is unique, and coincides with the simple polynomial approximation due to [29]; it
can be determined by solving a system of linear equations. It turns out that u∗d matches
all moments up to degree d, and it is even easier to compute if it is expressed in the
basis of polynomials that are orthonormal with respect to λ. No inversion is needed and
the coefficients of u∗d in such a basis are just the given moments. Moreover we show
that u∗d → u in L2(Ω, λ) as d → ∞, which is the best we can hope for in general since
there is no continuity assumption on u; in particular u∗dk

→ u almost-everywhere and
almost-uniformly on Ω for some subsequence (dk), k ∈ N. Even though both proofs are
rather straightforward, to the best of our knowledge it has not been pointed out before
that not only this mean squared error estimate u∗d is much easier to compute than the
corresponding maximum entropy estimate, but it also converges to u as d→∞ in a much
stronger sense. For the univariate case, in references [27] and [2] the authors address the
problem of approximating a continuous density on a compact interval by polynomials or
kernel density functions that match a fixed number of moments. In this case, convergence
in supremum norm is obtained when the number of moments increases. An extension to
the noncompact (Stieltjes) case is carried out in [8]. Notice that in [27] it was already
observed that the resulting polynomial approximation also minimizes the mean square
error and its coefficients solve a linear system of equations. In [4, 28] the minimum-norm
solution (and not the minimum distance solution) is shown to be unique solution of a
system of linear equations. In [15] the minimal distance solution is considered but it is
obtained as the solution of a constrained optimization problem and requires an initial
guess for the density estimate.
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(b) However, as already mentioned and unlike the maximum entropy estimate, the above
unconstrained L2-norm minimizer u∗d may not be a density as it may take negative values
on Ω. Of course, the nonnegative function u∗d+ := max[0, u∗d] also converges to u in L2 but
it is not a polynomial anymore. So we next propose to obtain a nonnegative polynomial
approximation u∗d by minimizing the same L2-norm criterion but now under the additional
constraint that the candidate polynomial approximations should be nonnegative on Ω.
In principle such a constraint is difficult to handle which probably explains why it has
been ignored in previous works. Fortunately, if Ω is a compact basic semi-algebraic
set one is able to enforce this positivity constraint by using Putinar’s Positivstellensatz
[26] which provides a nice positivity certificate for polynomials strictly positive on Ω.
Importantly, the resulting optimization problem is convex and even more, a semidefinite
programming (SDP) problem which can be solved efficiently by public domain solvers
based on interior-point algorithms. Moreover, again as in the unconstrained case, we
prove the convergence u∗d → u in L2(Ω, λ) as d → ∞ (and so almost-everywhere and
almost-uniform convergence on Ω as well for some subsequence (u∗dk

), k ∈ N) which is far
stronger than the weak convergence obtained for the maximum entropy estimate. Notice,
in [29, 27] methods for obtaining some non-negative estimates are discussed, however these
estimates do not satisfy the same properties in terms of mean-square error minimization
and convergence as in the unconstrained case. In the kernel density element method
[2, 8] a nonnegative density estimate for the univariate case is obtained by solving a
constrained convex quadratic optimization problem. However, requiring each coefficient
in the representation to be nonnegative as presented there seems more restrictive than
the nonnegative polynomial approximation proposed in this paper.

(c) Our approach is illustrated on some challenging applications. In the first set of prob-
lems we are concerned with recovering the shape of geometrical objects whereas in the
second set of problems we approximate solutions of nonlinear differential equations. More-
over, we demonstrate the potential of this approach for approximating densities with jump
discontinuities, which is harder to achieve than for the smooth, univariate functions dis-
cussed in [27]. The resulting L2-approximations clearly outperform the maximum entropy
estimates with respect to both running time and pointwise approximation accuracy. More-
over, our approach is able to handle sets Ω more complicated than a box (as long as the
moments of the measure udλ are available) as support for the unknown density, whereas
such sets are a challenge for computing maximum entropy estimates because integrals of
a combination of polynomials and exponentials of polynomials must be computed repeat-
edly.

Outline of the paper

In Section 2 we introduce the notation and we state the problem to be solved. In Section
3 we present our approach to approximate an unknown density u by a polynomial u∗d of
degree at most d via unconstrained and constrained L2-norm minimization, respectively;
in both cases we also prove the convergence u∗d → u in L2(Ω, λ) (and almost-uniform con-
vergence on Ω as well for some subsequence) as d increases. In Section 4 we illustrate the
approach on a number of examples - most notably from recovering geometric objects and
approximating solutions of nonlinear differential equations - and highlight its advantages
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when compared with the maximum entropy estimation. Finally, we discuss methods to
improve the stability of our approach by considering orthogonal bases for the functions
spaces we use to approximate the density. And we discuss the limits of approximating
discontinuous functions by smooth functions in connection with the well-known Gibbs
effect.

2 Notation, definitions and preliminaries

2.1 Notation and definitions

Let R[x] (resp. R[x]d) denote the ring of real polynomials in the variables x = (x1, . . . , xn)
(resp. polynomials of degree at most d), whereas Σ[x] (resp. Σ[x]d) denotes its subset of
sums of squares (SOS) polynomials (resp. SOS of degree at most 2d).

With Ω ⊂ Rn and a given reference measure λ on Ω, let L2(Ω, λ) be the space of functions
on Ω whose square is λ-integrable and let L2

+(Ω, λ) ⊂ L2(Ω, λ) be the convex cone of
nonnegative elements. Let C(Ω) (resp. C+(Ω)) be the space of continuous functions
(resp. continuous nonnegative functions) on Ω. Let P (Ω) be the space of polynomials
nonnegative on Ω.

For every α ∈ Nn the notation xα stands for the monomial xα1
1 · · ·xαn

n and for every d ∈ N,
let Nn

d := {α ∈ Nn :
∑

j αj ≤ d} whose cardinal is s(d) =
(
n+d
d

)
. A polynomial f ∈ R[x]

is written
x 7→ f(x) =

∑
α∈Nn

fα xα

and f can be identified with its vector of coefficients f = (fα) in the canonical basis (xα),
α ∈ Nn. Denote by Sn the space of real n × n symmetric matrices, and by Sn+ the cone
of positive semidefinite elements of Sn. For any A ∈ Sn+ the notation A � 0 stands for
positive semidefinite. A real sequence y = (yα), α ∈ Nn, has a representing measure if
there exists some finite Borel measure µ on Rn such that

yα =

∫
xα dµ(x), ∀α ∈ Nn.

Linear functional

Given a real sequence y = (yα) define the Riesz linear functional Ly : R[x]→ R by:

f (=
∑
α

fαx
α) 7→ Ly(f) =

∑
α

fα yα, f ∈ R[x].

Moment matrix

Given d ∈ N, the moment matrix of order d associated with a sequence y = (yα), α ∈ Nn,
is the real symmetric matrix Md(y) with rows and columns indexed by Nn

d , and whose
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entry (α, β) is yα+β, for every α, β ∈ Nn
d . If y has a representing measure µ then Md(y) � 0

because

〈f ,Md(y)f〉 =

∫
f 2 dµ ≥ 0, ∀ f ∈ Rs(d).

Localizing matrix

With y as above and g ∈ R[x] (with g(x) =
∑

γ gγx
γ), the localizing matrix of order d

associated with y and g is the real symmetric matrix Md(g y) with rows and columns
indexed by Nn

d , and whose entry (α, β) is
∑

γ gγy(α+β+γ), for every α, β ∈ Nn
d . If y has

a representing measure µ whose support is contained in the set {x : g(x) ≥ 0} then
Md(g y) � 0 because

〈f ,Md(g y)f〉 =

∫
f 2 g dµ ≥ 0, ∀ f ∈ Rs(d).

2.2 Problem statement

We consider the following setting. For Ω ⊂ Rn compact, let µ and λ be σ-finite Borel
measures supported on Ω. Assume that the moments of λ are known and µ is absolutely
continuous with respect to λ (µ � λ) with Radon-Nikodým derivative (or density) u :
Ω→ R+, with respect to λ. The density u is unknown but we know finitely many moments
y = (yα) of µ, that is,

yα :=

∫
Ω

xαu(x)dλ(x) =

∫
Ω

xαdµ(x), ∀α ∈ Nn
d , (1)

for some d ∈ N.

The issue is to find an estimate ud : Ω→ R+ for u, such that∫
Ω

xαud(x)dλ(x) = yα, ∀α ∈ Nn
d . (2)

2.3 Maximum entropy estimation

We briefly describe the maximum entropy method due to [12, 13, 5] as a reference for
later comparison with the mean squared error approach.

If one chooses the Boltzmann-Shannon entropy H(u) := −u log u, the resulting estimate
with maximum-entropy is an optimal solution of the optimization problem

max
ud

∫
Ω

H(ud)dλ s.t.

∫
Ω

xαud(x)dλ(x) = yα, ∀α ∈ Nn
d .

It turns out that an optimal solution u∗d is of the form

x 7→ u∗d(x) := exp

∑
|α|≤d

uαx
α
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for some vector ud = (uα) ∈ Rs(d). Hence, computing an optimal solution u∗d reduces to
solving the finite-dimensional convex optimization problem

max
ud∈Rs(d)

 〈y,ud〉 −
∫

Ω

exp

∑
|α|≤d

uαx
α

 dλ(x)

 (3)

where y = (yα) is the given moment information on the unknown density u. If (u∗d),
d ∈ N, is a sequence of optimal solutions to (3), then following weak convergence occurs:

lim
d→∞

∫
Ω

ψ(x)u∗d(x) dλ(x) =

∫
Ω

ψ(x)u(x) dλ(x), (4)

for all bounded measurable functions ψ : Ω→ R continuous almost everywhere. For more
details the interested reader is referred to [5].

Since the estimate u∗d is an exponential of a polynomial, it is guaranteed to be nonnegative
on Ω and so it is a density. However, even though the problem is convex it remains hard
to solve because in first or second-order optimization algorithms, computing the gradient
or Hessian at a current iterate ud = (uα) requires evaluating integrals of the form∫

Ω

xα exp

∑
|α|≤d

uαx
α

 dλ(x), α ∈ Nn
d

which is a difficult task in general, except perhaps in small dimension n = 1 or 2.

3 The mean squared error approach

In this section we assume that the unknown density u is an element of L2(Ω, λ), and we
introduce our mean squared error, or L2-norm approach, for density approximation.

3.1 Density approximation as an unconstrained problem

We now restrict ud to be a polynomial, i.e.

x 7→ ud(x) :=
∑
|α|≤d

uαx
α

for some vector of coefficients u = (uα) ∈ Rs(d). We first show how to obtain a polynomial
estimate u∗d ∈ R[x]d of u satisfying (2) by solving an unconstrained optimization problem.

Let z denote the sequence of moments of λ on Ω, i.e., z = (zα), α ∈ Nn, with

zα =

∫
Ω

xαdλ, ∀α ∈ Nn,

and let Md(z) denote the moment matrix of order d of λ. This matrix is easily computed
since the moments of λ are known.

7



Consider the unconstrained optimization problem

min
ud∈R[x]d

‖u− ud‖2
2

(
=

∫
Ω

(u− ud)2dλ

)
. (5)

Proposition 1 Let Ω ⊂ Rn have a nonempty interior and let λ(O) > 0 for some open
set O ⊂ Ω. A polynomial u∗d ∈ R[x]d is an optimal solution of problem (5) if and only if
its vector of coefficients u∗d ∈ Rs(d) is an optimal solution of the unconstrained quadratic
optimization problem

min
ud∈Rs(d)

{ uTd Md(z) ud − 2 uTd y }. (6)

Then u∗d := M−1
d (z)y is the unique solution of (6), and u∗d ∈ R[x]d satisfies:∫

Ω

xα u∗d dλ = yα =

∫
Ω

xα u dλ, ∀α ∈ Nn
d . (7)

Proof: Observe that for every ud ∈ R[x]d with vector of coefficients ud ∈ Rs(d),∫
Ω

(u− ud)2 dλ =

∫
Ω

u2
d dλ− 2

∫
Ω

ud u dλ︸ ︷︷ ︸
uddµ

+

∫
Ω

u2dλ

= uTdMd(z)ud − 2 uTd y +

∫
Ω

u2 dλ.

The third term on the right handside being constant, it does not affect the optimization
and can be ignored. Thus, the first claim follows.

The second claims follows from the well-known optimality conditions for unconstrained,
convex quadratic programs and the fact that Md(z) is nonsingular because Md(z) � 0
for all d ∈ N. Indeed, if qTMd(z)q = 0 for some 0 6= q ∈ Rs(d) then necessarily the
polynomial q ∈ R[x]d with coefficient vector q vanishes on the open set O, which implies
that q = 0, in contradiction with q 6= 0.

Finally, let eα ∈ Rs(d) be the vector of coefficients associated with the monomial xα,
α ∈ Nn

d . from Md(z)u∗d = y we deduce

yα = eTαMd(z)u∗d =

∫
Ω

xαu∗d dλ

which is the desired result. �

Thus the polynomial u∗d ∈ R[x]d minimizing the L2-norm distance to u coincides with
the polynomial approximation due to [29] defined to be a polynomial which satisfies all
conditions (2). Note that this is not the case anymore if one uses an Lp-norm distance
with p > 2.

Next, we obtain the following convergence result for the sequence of minimizers of problem
(5), d ∈ N.

Proposition 2 Let Ω be compact with nonempty interior and let λ be finite with λ(O) > 0
for some open set O ⊂ Ω. Let (u∗d), d ∈ N, be the sequence of minimizers of problem (5).
Then ‖u − u∗d‖2 → 0 as d → ∞. In particular there is a subsequence (dk), k ∈ N, such
that u∗dk

→ u, λ-almost everywhere and λ-almost uniformly on Ω, as k →∞.
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Proof: Since Ω is compact, R[x] is dense in L2(Ω, λ). Hence as u ∈ L2(Ω, λ) there exists a
sequence (vk) ⊂ R[x], k ∈ N, with ‖u− vk‖2 → 0 as k →∞. Observe that if dk = deg vk
then as u∗dk

solves problem (5), it holds that ‖u − vk‖2 ≥ ‖u − u∗dk
‖2 for all k, which

combined with ‖u − vk‖2 → 0 yields the desired result. The last statement follows from
[1, Theorem 2.5.2 and 2.5.3]. �

Note that computing the L2 norm minimizer u∗d is equivalent to solving a system of
linear equations, whereas computing the maximum entropy estimate requires solving the
potentially hard convex optimization problem (3). Moreover, the L2-convergence ‖u∗d −
u‖2 → 0 in Proposition 2 (and so almost-everywhere and almost-uniform convergence
for a subsequence) is much stronger than the weak convergence (4). On the other hand,
unlike the maximum entropy estimate, the L2-approximation u∗d ∈ R[x]d is not guaranteed
to be nonnegative on Ω, hence it is not necessarily a density. Methods to overcome this
shortcoming are discussed in §3.2.

Remark 1 In general the support K := suppµ of µ may be a strict subset of Ω = suppλ.
In the case where K is not known or its geometry is complicated, one chooses a set Ω ⊃ K
with a simple geometry so that moments of λ are computed easily. As demonstrated on
numerical examples in Section 4, choosing an enclosing frame Ω as tight as possible is
crucial for reducing the pointwise approximation error of u∗d when the degree d is fixed.
In the maximum entropy method of §2.3 no enclosing frame Ω ⊃ K is chosen. In the
L2-approach, choosing Ω ⊃ K is a degree of freedom that sometimes can be exploited for
a fine tuning of the approximation accuracy.

Remark 2 From the beginning we have considered a setting where an exact truncated
moment vector y of the unknown density u ≥ 0 is given. However, usually one only
has an approximate moment vector ỹ and in fact, it may even happen that ỹ is not
the moment vector of a (nonnegative) measure. In the latter case, the maximum of
the convex problem (3) is unbounded, whereas the L2-norm approach always yields a
polynomial estimate u∗d ∈ R[x]d.

Remark 3 If ỹ is a slightly perturbed version of y, the resulting numerical error in ud
and side effects caused by ill conditioning may be reduced by considering the regularized
problem

min
ud

∫
Ω

(u− ud)2dλ+ ε‖ud‖2 (8)

where ‖ud‖2 is the Euclidean norm of the coefficient vector ud ∈ Rs(d) of ud ∈ R[x]d, and
ε > 0 (fixed) is a regularization parameter approximately of the same order as the noise
in ỹ. The coefficient vector of an optimal solution u∗d(ε) of (8) is then given by

u∗d(ε) = (Md + εI)−1 ỹ. (9)

The effect of small perturbations in y on the pointwise approximation accuracy of u∗d for u
is demonstrated on some numerical examples in Section 4. However, a more detailed anal-
ysis of the sensitivity of our approach for noise or errors in the given moment information
is beyond the scope of this paper.
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3.2 Density approximation as a constrained optimization prob-
lem

As we have just mentioned, the minimizer u∗d of problem (5) is not guaranteed to yield
a nonnegative approximation even if u ≥ 0 on Ω. As we next see, the function x 7→
u∗d+(x) := max[0, u∗d(x)] also converges to u for the L2-norm but

• it does not satisfy the moments constraints (i.e., does not match the moments of
dµ = udλ up to order d);

• it is not a polynomial anymore (but a piecewise polynomial).

In the sequel, we address the second point by approximating the density with a poly-
nomial nonnegative on Ω, which for practical purposes, is easier to manipulate than a
piecewise polynomial. We do not address explicitly the first point, which is not as cru-
cial in our opinion. Note however that at the price of increasing its degree and adding
linear constraints, the resulting polynomial approximation may match an (a priori) fixed
number of moments.

Adding a polynomial nonnegativity constraint to problem (5) yields the constrained op-
timization problem:

min
ud∈R[x]d

{‖u− ud‖2
2 : ud ≥ 0 on Ω} (10)

which, despite convexity, is untractable in general. We consider two alternative opti-
mization problems to enforce nonnegativity of the approximation; the first one considers
necessary conditions of positivity whereas the second one considers sufficient conditions
for positivity.

Necessary conditions of positivity

Consider the optimization problem:

min
ud∈R[x]d

{‖u− ud‖2
2 : Md(ud z) � 0 }, (11)

where z = (zα) is the moment sequence of λ and Md(ud z) is the localizing matrix associ-
ated with ud and z. Observe that problem (11) is a convex optimization problem because
the objective function is convex quadratic and the feasible set is defined by linear matrix
inequalities (LMIs).

The rationale behind the semidefiniteness constraint Md(ud z) � 0 in (11) follows from a
result in [19] which states that if suppλ = Ω and Md(ud z) ≥ 0 for all d then ud ≥ 0 on
Ω.

Lemma 1 If Ω is compact then P (Ω) is dense in L2(Ω, λ)+ with respect to the L2-norm.

Proof: As Ω is compact the polynomials are dense in L2(Ω, λ). Hence there exists a
sequence (ud) ⊂ R[x], d ∈ N, such that ‖u− ud‖2 → 0 as d→∞. But then the sequence
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(u+
d ), d ∈ N, with u+

d (x) := max[0, ud(x)] for all x ∈ Ω, also converges for the L2-norm.
Indeed, ∫

Ω

(u− ud)2dλ =

∫
Ω∩{x:ud(x)<0}

(u− ud)2dλ+

∫
Ω∩{x:ud(x)≥0}

(u− ud)2dλ

≥
∫

Ω∩{x:ud(x)<0}
u2dλ+

∫
Ω∩{x:ud(x)≥0}

(u− ud)2dλ

=

∫
Ω

(u− u+
d )2dλ = ‖u− u+

d ‖
2
2.

So let k ∈ N and dk ∈ N be such that ‖u − udk
‖2 < k−1 and so ‖u − u+

dk
‖2 < k−1.

As u+
dk

is continuous and Ω is compact, by the Stone-Weierstrass theorem there exists

a sequence (vdk`) ⊂ R[x], ` ∈ N, that converges to u+
dk

for the supremum norm. Hence

supx∈Ω |u+
dk
− vdk`| < k−1 for all ` ≥ `k (for some `k). Therefore, the polynomial wdk

:=
vdk`k + k−1 is positive on Ω and

‖u− wdk`k‖2 ≤ ‖u− u+
dk
‖2︸ ︷︷ ︸

<k−1

+‖u+
dk
− wdk`k‖2

≤ k−1 + ‖u+
dk
− vdk`k‖2︸ ︷︷ ︸

<k−1λ(Ω)1/2

+ ‖vdk`k − wdk`k‖2︸ ︷︷ ︸
=k−1λ(Ω)1/2

≤ k−1 + 2k−1λ(Ω)1/2.

Therefore we have found a sequence (wdk`k) ⊂ P (Ω), k ∈ N, such that ‖u− wdk`k‖2 → 0
as k →∞. �

Proposition 3 Let Ω be compact with nonempty interior. Then problem (11) has an
optimal solution u∗d for every d ∈ N, and ‖u− u∗d‖2 → 0 as d→∞.

Proof: Fix d and consider a minimizing sequence (u`) ⊂ R[x]d with ‖u − u`‖2
2 mono-

tonically decreasing and converging to a given value as ` → ∞. We have ‖u`‖2 ≤
‖u‖2 + ‖u− u`‖2 ≤ ‖u‖2 + ‖u− u0‖2 for all ` ∈ N. Therefore as ‖ · ‖2 defines a norm on
the finite dimensional space R[x]d (Ω has nonempty interior) the whole sequence (u`) is
contained in the ball {v : ‖v‖2 ≤ ‖u‖2 +‖u−u0‖2}. As the feasible set is closed, problem
(11) has an optimal solution.

Let (u∗d) ⊂ R[x] be a sequence of optimal solutions of problem (11). By Lemma 1, P (Ω) is
dense in L2(Ω)+. Thus there exists a sequence (vk) ⊂ R[x]≥0, k ∈ N, with ‖u− vk‖2 → 0
as k →∞. As vk ≥ 0 on Ω then necessarily Md(vk z) � 0 for all d and all k. In particular
Md(vkd

z) � 0 where kd := max{k : deg vk ≤ d}. Therefore vkd
∈ R[x]d is a feasible

solution of problem (11) which yields ‖u − vkd
‖2

2 ≥ ‖u − u∗d‖2
2 for all d. Combining with

‖u− vkd
‖2 → 0 yields the desired result. �

Via sufficient conditions of positivity

Let bd(x) := (1, x1, . . . , xn, x
2
1, x1x2, . . . , x

d
n)T denote the standard monomial basis of

R[x]d. Let Ω be a basic compact semi-algebraic set defined by Ω = {x ∈ Rn | gj(x) ≥
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0, j = 1, . . . ,m} for some polynomials gj ∈ R[x], j = 1, . . . ,m with dj = d(deg gj)/2e.
Then, with d ≥ maxj dj, consider the optimization problem:

min
ud∈R[x]d

‖u− ud‖2
2

s.t. ud(x) = bd(x)TA0bd(x) +
∑m

j=1 bd−dj
(x)TAjbd−dj

(x)gj(x),

A0 ∈ Ss(d)
+ , Aj ∈ Ss(d−dj)

+ , j = 1, . . . ,m.

(12)

Since the equality constraints are linear in ud and the entries of Aj, j = 0, . . . ,m, the
feasible set of (12) is a convex LMI set. Moreover, the objective function is convex
quadratic.

Note that whereas the semidefinite constraint Md(ud z) � 0 in (11) was a relaxation of
the nonnegativity constraint ud ≥ 0 on Ω, in (12) a feasible solution ud is necessarily
nonnegative on Ω because the LMI constraint on ud is a Putinar certificate of positivity
on Ω. However, in problem (12) we need to introduce m + 1 auxiliary matrix variables
Aj, whereas (11) is an optimization problem in the original coefficient vector ud and does
not require such a lifting. Thus, problem (11) is computationally easier to handle than
problem (12), although both are convex SDPs, which are substantially harder to solve
than problem (6).

Proposition 4 Let Ω be compact with nonempty interior. For every d ≥ maxj dj, prob-
lem (12) has an optimal solution u∗d and ‖u− u∗d‖2

2 → 0 as d→∞.

Proof: With d ≥ maxj dj fixed, consider a minimizing sequence (u∗d) ⊂ R[x]d for problem
(12). As in the proof of Proposition 3 one has ‖u∗d‖1 ≤ ‖u∗d‖2 ≤ ‖u‖2 + ‖u− u∗0‖2. As u∗d
is feasible,

u∗d(x) = bd(x)TAd
0bd(x) +

m∑
j=1

bd−dj
(x)TAd

jbd−dj
(x)gi(x),

for some real symmetric matrices Ad
j � 0, j = 0, . . . ,m. Rewriting this as

u∗d(x) = 〈Ad
0,bd(x)bd(x)T 〉+

m∑
j=1

〈Ad
j ,bd−dj

(x)bd−dj
(x)T 〉,

and integrating with respect to λ yields

〈Ad
0,Md(z)〉+

m∑
j=1

〈Ad
j ,Md−dj

(gj z)〉 =

∫
Ω

u∗d dλ ≤ ‖u∗d‖1 ≤ a,

with a := ‖u∗d‖1 ≤ ‖u‖2 + ‖u− u∗0‖2. Hence, for every d,

〈A0,Md(z)〉 ≤ a and 〈Ad
j ,Md−dj

(gj z)〉 ≤ a, j = 1, . . . ,m.

As Md(z) � 0, Md−dj
(gj z) � 0, and Ad

j � 0, j = 1, . . . ,m, we conclude that all
matrices Ad

j are bounded. Therefore the minimizing sequence (u∗d, (A
d
j )) belongs to a

closed bounded set and as the mapping v 7→ ‖u− v‖2
2 is continuous, an optimal solution

exists.
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From Lemma 1 there exists (vk) ⊂ R[x]≥0, k ∈ N, such that ‖u − vk‖2
2 → 0 as k → ∞.

Using properties of norms, ‖u− vk‖2 − k−1 ≤ ‖u− (vk + k−1)‖2 ≤ ‖u− vk‖2 + k−1, and
so ‖u − (vk + k−1)‖2 → 0 as k → ∞. Moreover, as vk + k−1 is strictly positive on Ω, by
Putinar’s Positivstellensatz [26], there exists dk such that

vk(x) = bdk
(x)TA0bdk

(x) +
m∑
j=1

bdk−dj
(x)TAjbdk−dj

(x)gj(x), ∀x,

for some real matrices Aj � 0, j = 0, . . . ,m. So letting d+
k = max[deg vk, dk], the

polynomial vk+k−1 is a feasible solution of problem (12) whenever d ≥ d+
k and with value

‖u− (vk + k−1)‖2
2 ≥ θd+k

. Hence ‖u− vd+k ‖
2
2 → 0 as k →∞, and by monotonicity of the

sequence (‖u− u∗d‖2
2), d ∈ N, the result follows. �

Remark 4 Since Ω is compact, Proposition 3 and 4 imply that minimizers of the two
constrained L2 norm minimization problems (11) and (12) converge almost uniformly to
the unknown density u as in the unconstrained case.

Remark 5 Our approach can handle quite general sets Ω and K as support and frame
for the unknown measure in the unconstrained and constrained cases, the only restriction
being that (i) Ω and K are basic compact semi-algebraic sets, and (ii) one can compute
all moments of λ on Ω. In contrast, to solve problem (3) by local minimization algorithms
using gradient and possibly Hessian information, integrals of the type∫

Ω

xα exp

(∑
β

uβx
β

)
dλ(x)

must be evaluated. Such evaluations may be difficult as soon as n ≥ 3. In particular
in higher dimensions, cubature formulas for approximating such integrals are difficult to
obtain if Ω is not a box or a simplex.

4 Numerical experiments

In this section, we demonstrate the potential of our method on a range of examples. We
measure the approximation error between a density u and its estimate ud by the average
error

ε̄d :=

∫
Ω

|u(x)− ud(x)|dλ(x)

and the maximum pointwise error

ε̂d := max
x∈Ω
|u(x)− ud(x)|.

In some examples we also consider ε̄od and ε̂od, the respective errors on particular segments
of the interior of Ω. We compare the performance of our approach to the maximum
entropy estimation from §2.3. Both methods are encoded in Matlab. We implemented
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the mean squared error (L2) minimization approach for the standard monomial basis,
which results in solving a linear system in the unconstrained case. In the constrained
case we apply SeDuMi to solve the resulting SDP problem. In both cases, the numerical
stability can be improved by using an orthogonal basis (such as Legendre or Chebychev
polynomials) for R[x]. In order to solve the unconstrained, concave optimization problem
(3), we apply the Matlab Optimization Toolbox command fminunc as a black-box solver.
The observed performance of the maximum entropy estimation (MEE) method may be
improved when applying more specialized software.

Figure 1: Degree 10 approximation of the density from exact moment vector (left) vs.
perturbed moment vector (right).

Example 1 First we consider the problem of retrieving the density u(x) = x1 + x2 on
[0, 1]2 given its moments yα =

∫
Ω

xαu(x)dx = 1
(α1+1)(α2+2)

+ 1
(α1+2)(α2+1)

, which was con-

sidered as a test case in [24]. This example is a priori very favorable for our technique
since the desired u is a polynomial itself. When solving problem (5) for d ∈ {3, 5, 10}
we do obtain the correct solution u∗d = (0, 1, 1, 0, . . .)T in less than 0.1 secs. Thus, the
pointwise approximation is much better than the one achieved in [24]. Moreover, u∗d ≥ 0
without adding LMI constraints.
The question arises of how the polynomial approximation behaves if the moment vector
contains some noise, i.e. if it does not exactly coincide with the moment vector of the
desired u. We solve problem (5) for ỹ := y + ε where the maximal relative componentwise
perturbation ε between y and ỹ is less than 3%. The pointwise error between u∗10(y) and
the solution for the perturbed moment vector u∗10(ỹ) is sufficiently small, as pictured in
Figure 1.

Example 2 Next we consider recovering the function u : [−1, 1]→ R with u(x) = |x| as
a first example of a nondifferentiable function. In a first step we solve problem (5) for the

exact moment vector with entries yk :=
∫ 1

−1
|x|xkdx = 1+(−1)k

k+2
, k = 0, . . . , d corresponding

to the density u. The resulting estimates u∗d for d ∈ {20, 30, 50} provide a highly accurate
pointwise approximation of u on the entire domain, as reported in Table 1 and pictured
in Figure 2 (left).
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d problem ε̄d ε̂d
20 (5) 0.0031 0.0296
30 (5) 0.0022 0.0265
50 (5) 0.0021 0.0251

Table 1: Estimating the density u(x) = |x| from an exact moment vector.

d problem ε̄d ε̂d ε̄od ε̂od
10 (5) 0.0252 0.2810 0.0207 0.1358
20 (5) 0.0244 0.7934 0.0142 0.0952
30 (5) 0.0237 1.0956 0.0112 0.1024
30 (12) 0.0176 0.4705 0.0106 0.0937
50 (5) 0.0236 1.4591 0.0088 0.1023
50 (12) 0.0206 0.6632 0.0118 0.0979

Table 2: Estimating the density u(x) = |x| from a perturbed moment vector.

In a second step we consider a perturbed moment vector ỹ as input. When solving problem
(5), we observe that both errors ε̂d, ε̄d on the interior of [−1, 1] – in particular at the
nondifferentiable point x = 0 – decrease for increasing d, whereas the pointwise error
increases at the boundary of the domain. Although providing good approximations for u
on the entire interior of [−1, 1], the estimates u∗30 and u∗50 take negative values at the
boundary {−1, 1}. This is circumvented by solving problem (12). The new estimates are
globally nonnegative while their approximation accuracy is only slightly worse than in the
unconstrained case, as reported in Table 2 and pictured in Figure 2 (right).

Example 3 Consider the functions u1, u2 : [−1, 1]→ R, u1(x) = |x| 12 , u2(x) = |1
4
−x2| 12 ,

which are both not locally Lipschitz. Applying mean squared error minimization for d ∈
{20, 50} to the exact moment vectors yields accurate polynomial approximations for both
functions on their entire domains, even at the boundary and at the points where the
functions are not locally Lipschitz, cf. Figure 3.

4.1 Recovering geometric objects

One of the main applications of density estimation from moments is the shape recon-
struction of geometric objects in image analysis. There has been extensive research on
this topic, c.f. [29, 20] and the references therein. The reconstruction of geometric ob-
jects is a particular case of density estimation when u = IK , i.e. the desired density
u is the indicator function of the geometric object K ⊂ Ω ⊂ Rn. Its given moments
yα =

∫
Ω

xαIK(x)dλ(x) =
∫
K

xαdλ(x) do not depend on the frame Ω. However, Ω does
enter when computing the matrix Md(z) in problem (6). As indicated in Remark 1 and
demonstrated below, the choice of the enclosing frame Ω for K is crucial for the pointwise
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Figure 2: Mean squared error minimizers for u(x) = |x| from exact (left) and perturbed
(right) moments. Blue: u, green: u20, red: u30, cyan: u50.

Figure 3: Mean squared error minimizers for u1 (left) and u2 (right) from exact moments.
Blue: u, green: u20, cyan: u50.

approximation accuracy for a fixed order d. Since u has a special structure, we derive an
estimate Kd for K by choosing a superlevel set of u∗d as proposed in [29]:

Kd := {x ∈ Rn | u∗d(x) ≥ 1

2
}.

Example 4 A first object we recover is shaped like the letter E as in [29]. We determine
the mean squared error minimizer for the same moment vector y with d ∈ {3, 5, 8, 10},
but for three different frames Ω. As pictured in Figure 4, we are able to reconstruct the
estimates Kd derived in [29] when Ω is chosen tight. Moreover, we observe that this good
approximation of the severely nonconvex set K and its discontinuous indicator function for
a small number of moments d depends heavily on the choice for Ω. The wider the frame,
the worse gets the approximation accuracy of the truncated estimate. Applying maximum
entropy estimation for d ∈ {3, 5, 8} yields density estimates of comparable accuracy than
mean squared error minimization, cf. Figure 5. However, the computational effort is

16



Figure 4: Recovering the letter E with mean squared error minimization; tight frames
(top) vs. loose frames (bottom); original (left) vs. estimates for degrees d ∈ {3, 5, 8, 10}
(from left to right).

Figure 5: Recovering the letter E with maximum entropy estimation; original (left) vs.
estimates for degrees d ∈ {3, 5, 8} (from left to right).

much larger: for d ∈ {3, 5, 8}, the computational times for maximum entropy estimation
are 82, 902 and 4108 seconds, respectively, whereas the mean squared error minimizer can
be determined in less than one second for these values of d.

Example 5 Secondly we consider recovering an F-shaped set, a less symmetric example
than the E-shaped set of Example 4. As previously, we observe that the approximation
accuracy of Kd relies heavily on the frame Ω. Even though the set K has a complicated
geometry, K10 approximates K accurately if Ω is chosen sufficiently tight, cf. Figure 6.

Example 6 Consider approximating K := {x ∈ R2 | x1(x2
1 − 3x2

2) + (x2
1 + x2

2)2 ≥ 0},
a nonconvex region enclosed by a trefoil curve. Since this curve is of genus zero, its
moment vector y can be determined exactly. Again, we need to choose an appropriate
frame Ω ⊃ K. The results for Ω = B(0, 1) and d ∈ {3, 5, 8, 10} are pictured in Figure 7.
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Figure 6: Recovering the letter F with mean squared error minimization; tight frames
(top) vs. loose frames (bottom); original (left) vs. estimates for degrees d ∈ {3, 5, 8, 10}
(from left to right).

.

Figure 7: Trefoil region K (left) and ((Kd \K) ∪ (K \Kd)) for d ∈ {3, 5, 8, 10} (from left
to right).

4.2 Approximating solutions of differential equations

Another important class of moment problems arises from the numerical analysis of ordi-
nary and partial differential equations. Solutions of certain nonlinear differential equa-
tions can be understood as densities of measures associated with the particular differential
equation. We obtain an approximate solution from the moment vector of this measure by
solving an SDP problem. Approaches for deriving moment vectors associated with solu-
tions of nonlinear differential equations have been introduced in [22, 10] and are omitted
here. We assume that the moment vector of a measure whose density is a solution of the
respective differential equation is given in the following examples.

Example 7 Given the moment vectors of a solution (u, v) of the following reaction-
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Figure 8: Estimates for u (left) and v (right) of the reaction-diffusion equation via max-
imum entropy estimation (above) and mean squared error minization (below). Blue: u,
green: u∗10, red: u∗20, cyan: u∗30, magenta: u∗50.

diffusion equation [23]:

1
20
u′′ + 1

9
(35 + 16u− u2) u− u v = 0,

4v′′ −
(
1 + 2

5
v
)
v + u v = 0,

u′(0) = u′(5) = v′(0) = v′(5) = 0,
0 ≤ u, v ≤ 14 on [0, 5],

we apply both maximum entropy estimation and mean squared error minimization to ap-
proximate the desired solution. For the numerical results, see Table 3 and Figure 8. We
observe that the mean squared error minimizers provide accurate pointwise approximations
for (u, v) on the entire domain, whereas the maximum entropy estimates provides a fairly
accurate pointwise approximation on some segment of the domain only. Moreover, the
mean squared error minimizers are obtained extremely fast as solutions of linear systems
compared with the maximum entropy estimates. Thus, in this example, mean squared er-
ror minimization is clearly superior to maximum entropy when estimating densities from
moments.

Example 8 Given the moment vector of the nontrivial, positive solution of the Allen-
Cahn bifurcation PDE:

uxx + uyy + 22u(1− u2) = 0 on [0, 1]2,
u = 0 on ∂[0, 1]2,
0 ≤ u ≤ 1 on [0, 1]2,

(13)

19



d function method ε̄d(M) ε̂d ε̄od ε̂od time (sec.)
10 u MEE 2.0536 4.1063 2.1679 4.1063 38
30 u MEE 1.7066 3.4775 1.7974 3.4775 2
50 u MEE 1.6978 3.3858 1.7792 3.3858 820
10 u L2 0.4611 1.4506 0.4619 1.4506 0.1
30 u L2 0.3942 1.2431 0.4101 1.2431 0.1
50 u L2 0.3941 1.2173 0.4004 1.2173 0.1
10 v MEE 0.5782 2.0982 0.5205 1.0806 221
30 v MEE 0.5978 9.6060 0.4592 1.2356 645
50 v MEE 0.6853 23.5993 0.4117 1.2973 3306
10 v L2 0.3429 5.4767 0.1765 0.5617 0.1
30 v L2 0.3286 12.4501 0.1024 0.6253 0.1
50 v L2 0.3744 14.2223 0.1454 0.5907 0.1

Table 3: Approximation accuracy of maximum entropy estimation (MEE) and mean
squared error (L2) optima for the reaction-diffusion equation.

d method ε̄d ε̄od time (sec.)
4 MEE 1.3e-2 1.1e-2 566
6 MEE 9.7e-3 8.9e-3 2489
4 L2 1.8e-3 1.4e-3 0.1
6 L2 4.6e-4 2.8e-4 0.1
10 L2 5.5e-4 2.1e-4 0.1
12 L2 5.7e-4 2.1e-4 0.1

Table 4: Approximation accuracy of maximum entropy estimation (MEE) and mean
squared error (L2) optima for the Allen-Cahn bifurcation PDE.
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Figure 9: Estimates for solution of the Allen-Cahn bifuraction PDE by maximum entropy
estimation (above) and mean squared error minization (below). Exact solution (left) vs
estimates for d ∈ {4, 6} and d ∈ {4, 6, 10, 12}, respectively.

we apply both maximum entropy and mean squared error minization. The numerical re-
sults are reported in Table 4. The approximation accuracy for both methods is comparable,
with mean squared error minimization being slightly more precise. However, applying max-
imum entropy estimation is limited for this problem as the cases d > 6 are numerically too
heavy to be solved in reasonable time. Mean squared error minimization yields increasingly
better estimates for the desired solution within seconds, as pictured in Figure 9.

Example 9 Given the moment vector of the viscosity solution of the classical eikonal

d method ε̄d ε̄od time (sec.)
3 MEE 5.4e-2 5.1e-2 20
6 MEE 1.9e-2 1.9e-2 2192
3 L2 2.8e-2 2.6e-2 0.1
6 L2 2.8e-2 2.6e-2 0.1
10 L2 1.4e-2 1.4e-2 0.2

Table 5: Approximation accuracy of maximum entropy estimation (MEE) and mean
squared error (L2) minization for the eikonal PDE.
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Figure 10: Estimates for solution (left) of eikonal PDE by maximum entropy estimation
(center) for d = 6 and mean squared error minimization (right) for d = 10.

d problem ε̄d ε̂d time (sec.)
10 (5) 0.08 0.50 0.1
10 (12) 0.11 0.56 0.9
50 (5) 0.05 0.50 0.1
50 (12) 0.08 0.54 2.7
100 (5) 0.05 0.50 0.3
100 (12) 0.07 0.55 37.5

Table 6: Mean squared error minimization for u(x) = I[0.5,1](x).

PDE:
u2
x + u2

y − 1 = 0 on [0, 1]2,
u = 0 on ∂[0, 1]2,

(14)

we apply both maximum entropy and mean squared error minization. Both methods pro-
vide better pointwise approximates for increasing degrees d, cf. Table 5 and Figure 10.
Again, the advantage of using mean squared error minimization is its negligible computa-
tion time.

4.3 Approximating indicator functions

In all examples discussed so far, the polynomial approximates u∗d of solution u obtained
by solving the unconstrained problem (5) have been nonnegative on Ω. It was therefore
not necessary to solve the constrained problems (11) or (12).

Example 10 As a first simple example where solving one of the constrained problems is
required, consider u : [0, 1] → R, u(x) = I[0.5,1](x) and its given vector of moments. We
solve problems (5) and (12) for d ∈ {10, 50, 100}. As illustrated in Figure 11, solving
problem (12) provides globally nonnegative estimates for u. This comes at the price of
decreasing approximation accuracy compared to solving the unconstrained problem, since
the feasible set of problem (12) is a subset of the feasible set of (5), cf. Table 6.
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Figure 11: Unconstrained and constrained mean squared error minimization estimates.
Blue: u, green: u∗10 unconstrained, red: u∗10 constrained, cyan: u∗100 unconstrained, ma-
genta: u∗100 constrained.

5 Orthogonal bases and the Gibbs effect

Density estimation via L2 norm minimization over the truncated space of polynomials is
a special case of approximating a function belonging to a complicated functional space
by a linear combination of basis elements of an easier, well-understood functional space.
This general setting has been considered for both real and complex functional spaces. In
the following we discuss the particular case when the basis of the easier functional space
is orthogonal, and also effects resulting from truncating the infinite dimensional series
expansion of the unknown function.

5.1 The complex case

The classic, complex analogue of the real, inverse moment problem discussed in the pre-
vious sections is the problem of approximating a periodic function u by a trigonometric
polynomial. An orthonormal basis for the space of trigonometric polynomials is given by
(e−ikx)k∈Z. It provides the Fourier series expansion:

u(x) =
∑
k∈Z

yke
ikx,

where yk = 1
2π

∫ π
−π u(x)e−ikxdx in the univariate case, or

u(x, y) =
∑
k,l∈Z

yk,le
ikxeily,

23



where yk,l = 1
4π2

∫ π
−π

∫ π
−π u(x, y)e−ikxe−ilydx dy in the bivariate case. One obtains a trigono-

metric polynomial approximation for u when truncating this series expansion at some
d ∈ N,

ud(x) =
d∑

k=−d

yke
ikx.

It is a well-known fact in Fourier theory that∫ 2π

0

(u− ud)2dx→ 0 for d→∞.

The Fourier approximation for a periodic function is therefore the trigonometric analogue
of the real polynomial approximation for a function obtained by mean squared error min-
imization in our approach. As in the real case we have almost uniform convergence.
However, ud does not converge to u uniformly if u piecewise continuously differentiable
with jump discountinuities, due to an effect known as the Gibbs phenomenon. It states
that the truncated approximation shows a near constant overshoot and undershoot near
a jump discontinuity. This overshoot does not vanish, it only moves closer to the jump
for increasing d. Since the truncated Fourier series is the trigonometric analogue of un-
constrained mean squared norm minimizer of problem (5), the question arises of how
the trigonometric estimate behaves for a periodic functions when adding nonnegativity
constraints as in problems (11) and (12) which aim at preventing the estimate from over-
or undershooting near jump discontinuities. In order to derive a tractable SDP prob-
lem, the nonnegativity constraints for the trigonometric polynomial need to be relaxed or
tightened to LMI constraints. The difference with the real case will be the moment and
localizing matrices being of Toeplitz type in contrast with the Hankel type matrices in
the constraints of problem (11).

5.2 The real case

In our discussions in the previous sections we approximated an unknown density by a
linear combination of elements of the monomial basis of the space of real polynomials.
This choice of a basis for R[x] has several theoretical and practical shortcomings. For
once, it is not an orthogonal basis with respect to the Lebesgue measure, and moreover the
moment matrix Md(z) in problem (5), whose inverse needs to be computed to determine
u∗d, is severely ill-conditioned [4, 29]. As already pointed out in [29], when choosing
an orthogonal basis such as Legendre or Chebychev polynomials for R[x], the L2 norm
minimizer u∗d can be determined according to a closed-form formula. Thus, we do not
even have to solve a linear system of equations. This is essentially the real analogue of
the closed form formula for the coefficients in the Fourier series approximation of periodic
functions.

In §5.1 we discussed the Gibbs phenomenon. For reasons outlined there, we expect to
observe this effect in the real case as well, when approximating an L2 integrable func-
tion with jump discontinuities. In fact, the function from Example 10 illustrates that.
As shown in Figure 11, we observe an over- and undershoot on both sides of the dis-
continuity. The amplitude of this overshoot does not decrease for increasing d, but the
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overshoot moves closer to the jump. When adding the global nonnegativity constraint
for the polynomial estimate, the undershoot at the left side disappears. However, it is
compensated for by a weaker, overall pointwise approximation accuracy of the estimate.
This observation is a first, partial answer to the question raised in the complex case.

6 Conclusion

We introduced an approach for estimating the density of a measure given a finite number
of its moments only. As an estimate we choose the polynomial minimizing the L2 norm
distance, or mean squared error to the unknown density. We have shown that this esti-
mate is easy to determine by solving a linear system of equations. Moreover, it converges
almost uniformly towards the desired density. By minimizing the mean squared error
subject to additional linear matrix inequality constraints, which translates to solving a
semidefinite program, we obtain a density estimate guaranteed to be nonnegative on the
support of the measure. Also in the constrained case, we have shown almost uniform con-
vergence of the nonnegative mean squared error minimizer towards the unknown density.
Mean squared error minimization is often superior to maximum entropy estimation in
terms of approximation accuracy and computation time, as demonstrated for a number
of examples. Moreover, it is able to handle general, basic, compact semialgebraic sets
as support for the unknown measure, which present a challenge to maximum entropy
estimation in higher dimension.
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