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Abstract

Wildfires cause devastation on communities, most significantly loss of life. The safety of at-risk
populations depends on accurate risk assessment and emergency planning. Evacuation modelling and
simulation systems are essential tools for such planning and decision making. During a wildfire evacua-
tion, the behaviour of people is a key factor; what people do, and when they do it, depends heavily on
the spatio-temporal distribution of events in a scenario. In this paper, we introduce an approach that
enables the behaviour of people and the timing of events to be explicitly modelled through what we term
dynamic factors. Our approach composes several simulation and modelling systems, including a wildfire
simulator, behaviour modeller, and microscopic traffic simulator, to compute detailed projections of how
scenarios unfold. The level of detail provided by our modelling approach enables the definition of a new
risk metric, the exposure count, which directly quantifies the threat to a population. Experiments for
a wildfire-prone region in Victoria, Australia, resulted in statistically significant differences in clearance
times and exposure counts when comparing our modelling approach to an approach that does not account
for dynamic factors. The approach has been implemented in a high performance and scalable system
— the architecture of which is discussed — that allows multiple concurrent scenarios to be simulated in
timeframes suitable for both planning and response use cases.

1 Introduction

Wildfires cause environmental destruction, property damage and loss of life in various parts of the world.
The magnitude of the 2009 Victorian bushfires [1] and the 2007 Southern California wildfires [2] are powerful
reminders. Global climate changes further exacerbate this risk, with the predicted increase in heatwaves
and prolonged dry periods [3,4] likely to increase occurrences of such events. In addition, population growth
continues to drive urban development further into the wilderness, increasing the number of people in wildfire
affected areas.

Enabling emergency services to better understand, plan, and prepare for wildfires is of great importance.
To this end, modelling the impact of wildfires on a population and the environment has been a focus of
substantial research in recent years [5–12]. One factor of particular importance in these models is the
departure time of evacuees — the time when they leave their point of origin — which depends on their
awareness, beliefs and priorities.

Early work assumed scenarios in which the departure of the population, as a whole, occurs at the instant
an evacuation order is issued [13]. This simultaneous evacuation approach however is not representative of
real world behaviour. Subsequent works have focused on modelling departure times that better align with
the expectations of experts. In general the departure times derived from such approaches follow certain
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Figure 1: The key factors in an evacuation scenario

distributions [8, 14, 15], as discussed further in Section 2. While these approaches offer a better model of
evacuee behaviour, they do not adequately account for the numerous dynamic factors that would notably
influence evacuation decisions of individuals. For instance, members of a family might leave while others
stay to defend, and some people choose to wait until a fire is visible before evacuating.

In this paper we propose a modelling and simulation approach that takes into account some of these
dynamic factors. We define dynamic factors as the events connecting the evolution of a fire to the warnings
issued, and consequently to the actions of people and evacuation outcomes, as shown in Figure 1. Specifically,
we attempt to answer the following research question:

What is the impact of dynamic factors on wildfire evacuation simulation and our ability to assess risk?

We model evacuation scenarios through a workflow consisting of a wildfire simulator, warning generator,
behaviour modeller, traffic simulator, and analytics engine. A new metric, exposure count, is introduced
in addition to the existing metrics, which represents the number of vehicles that were near the fire during
the evacuation (discussed further in Section 4). Our experiments provide insights into the role of dynamic
factors in modelling evacuations.

The approach described in this work has been implemented in IBM Evacuation Planner, a robust multi-
model. system offered to stakeholders as a Software as a Service (SaaS), which allows users to easily explore
and understand the risk of potential scenarios. Users can control the fire ignition location, wind veloc-
ity, shelter capacity and placement to construct hypothetical scenarios to investigate (discussed further in
Section 5). In summary, the contributions of this paper are:

• a new modelling approach accounting for dynamic factors,

• analysis of the impact of dynamic factors on wildfire evacuation simulation and our ability to assess
risk as a consequence,

• a new metric for evaluating the effectiveness of an evacuation and the risk associated with the affected
area, and

• an architecture of a system implementing the complete modelling and simulation workflow through
model composition and proof of its viability by construction.

The remainder of this paper is organised as follows. In the next section, we discuss the related work
in the area of evacuation modelling and simulation. Section 3 details our modelling approach. Section 4
discusses the risk metrics used in our analysis and formally introduces the proposed exposure count metric.
In Section 5 we present the system design and architecture. Section 6 covers our evaluation methodology
and results of experiments. We discuss our findings in Section 7 before offering some concluding remarks in
Section 8.
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2 Related Work

Evacuation modelling is a five step process involving traffic generation, traffic departure time modelling,
destination selection, route selection, and evacuation plan setup, analysis and revision [15]. The behaviour
of evacuees largely determines their departure time, destination choice, and route selection.

Departure time refers to the time when an individual or family unit leaves their point of origin for their
chosen destination. The departure time of an individual or a population has a significant impact on the
outcome of an evacuation. For instance, an individual or family unit which decides to evacuate late, would
be at a higher risk of exposure to a progressing fire. In fact, Haynes et al. [16] identified that a quarter of all
deaths between 1955 and 2008 were a result of late evacuations. On the other hand, a population evacuating
early simultaneously could lead to congestion and consequently longer evacuation times.

Accurately modelling the behavioural patterns of a population in disaster scenarios is challenging. South-
worth [15] discussed four possible approaches for capturing this information. The first involves the use of
data on past evacuations for similar disaster scenarios. This approach is limited however because of the lack
of statistically reliable data. A second approach is to conduct a survey to identify people’s intended actions
during such events. This approach is also limited due to discrepancies between people’s stated intentions
and their actions during an actual disaster. Another approach involves estimating departure times by under-
standing how warning information diffuses within the population. Despite a number of studies on this, the
process has not yet been adequately studied in the context of modelling wildfire evacuations [8]. Currently,
the most widely used approach is to base departure times of a population on the judgement of evacuation
planners or experts familiar with the area under study.

The general expectation of experts is that fewer people evacuate during the early stages of a disaster
and the number grows as the event progresses; ultimately reaching a certain peak then tapering off. This
expectation has translated in different ways in existing works. Church and Sexton [17] for instance, directly
used such advice, to gradate a population into percentages leaving in discrete time steps after an evacuation
order. Other works have assumed that this expectation can be represented as a distribution. Specifically,
Cova and Johnson [8] assume the departure events would follow a Poisson distribution, whereas Tweedie et
al. [14] assumed the events follow a Rayleigh distribution. On the other hand, research into staged evacuations
have indirectly investigated the effect of varying departure times based on the geographic location of small
clusters of a population [5, 6, 18, 19]. In contrast to simultaneous evacuations, where the entire population
of a region evacuates at the same time, staged evacuations involve the progressive evacuation of sub-regions
or ‘zones’; thus varying departure time patterns across the region as a whole.

In contrast to these approaches, this paper proposes a more representative approach to modelling depar-
ture time behaviours based on a dynamic threat model. The approach integrates three important factors:

1. Dynamic evacuation triggers based on an advancing fire front. An advancing fire front generates events
over time (proximity warnings, fire-visible event) that are perceived by a subset of the population within
the relevant proximity; this in turn triggers the evacuation behaviour of the informed residents. As
the fire advances closer to a region, further evacuation triggers are sent out which could subsequently
trigger evacuation responses from residents in the area.

2. Granularity of evacuation triggers. Unlike existing approaches, the granularity of evacuation triggers
could be different. For instance, a warning that a fire would reach a certain area in 6 hours would be
perceived by all residents of that area, whereas a fire visible event is more localized and perceived only
by individual households within proximity of the fire front.

3. Levels of severity of evacuation triggers. Traditionally, departure times are calculated from the time
evacuation orders are issued. However, these do not explicitly model how people would respond prior
to this trigger, or to events that occur after. Hence, behaviour groups are proposed in this paper to
account for the varying degrees of how people respond to warnings with different levels of severity.
For instance, while some individuals might be more cautious and choose to evacuate early (e.g., in
response to a ‘6 hour to impact’ warning), others might choose to wait until they receive a more
severe evacuation trigger (e.g., fire visible). Moreover the actions of individuals in the process of
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Figure 2: Modelling workflow

evacuating are also dynamic and may be influenced by new evacuation triggers. For instance, a family
preparing to leave in response to an initial warning, could choose to cut their preparation short and
leave immediately if a more severe evacuation trigger is perceived (e.g., fire visible).

3 Wildfire Evacuation Model

To accurately capture the effects of dynamic factors on wildfire evacuation simulation we compose a set of
specialised models and simulators. Figure 2 shows our modelling workflow and the dependencies between the
modelling components. The modelling is initiated with the configuration of a scenario, which includes such
parameters as the wildfire ignition point, environmental conditions (e.g., wind velocity), warning system
parameters, and the evacuee behaviour categorisation. Each modelling component is described in detail
below.

To aid discussion of various aspects of our modelling we introduce here some formal definitions. Consid-
ering a metric space (M,d) where d is the regular Euclidean distance, we define Xt ⊂M as the set of points
under threat at time t. Let P be the total population in a scenario. Let pit be the position of person i at
time t. We define Ak ⊂M as an area, K as the set of areas in our scenario, and Uk ∈ P as the set of people
originating from Ak. We also define T = t0, t1, . . . , tn to be the set of times over which we simulate.

3.1 Wildfire Simulation

As a part of our modelling workflow, a wildfire simulator has been implemented following the cellular
automata model for forest fire spread prediction proposed and validated by Alexandridis et al. [20]. In
particular, this model captures the effects of the type and density of vegetation, wind speed and direction,
ground elevation, and spot fires. In addition, our implementation includes models of the Forest Fire Danger
Index (FFDI)1 and fire suppression efforts.

1Forest Fire Danger Index. http://en.wikipedia.org/wiki/McArthur_Forest_Fire_Danger_Index
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3.2 Evacuation Trigger Modelling

In response to the fire front progression and its projected state, several types of events are modelled and
serve as evacuation triggers to the population. In particular, three types of impact warnings are modelled:
24-hour warning, 6-hour warning, and 2-hour warning. The warnings are sent out on the per-area basis, e.g.,
if the fire front is projected to impact an area in 24 hours, all the residents of that area receive a 24-hour
impact warning. Formally, at time wτk , people in area Ak are sent a warning that the fire will impact in τ
hours:

wτk = min
t
{t : Ak ∩Xt+τ 6= ∅} , t ∈ T. (1)

Based on (1), the three warning types listed above can be modelled by setting τ to 24, 6, and 2 respectively.
People who are in the behaviour group that responds to the broadcast warnings then initiate their evacuation
procedure, as discussed in Section 3.3. Higher-priority warnings take precedence over lower-priority warnings,
e.g., a 6-hour warning is considered more urgent than a prior 24-hour warning, or similarly a 2-hour warning is
more urgent than a 6-hour warning received earlier. This is necessary since the departure time of an evacuee
responding to a 24-hour warning may be later than the departure time of the same evacuee responding to a
warning of a more imminent threat.

We also model fire visibility triggers (the priority of these triggers exceeds all warnings), which cause
affected people to evacuate when the fire front is within visible range of their initial location. Let the visibility
distance be ε, then the trigger time vh due to a threat for a household h ∈M is defined as:

vh = min
t
{t : d(h,Xt) ≤ ε} , t ∈ T. (2)

Fire visibility events have greater spatial granularity when compared to impact warnings, since they are
triggered for each household independently as opposed to the area broadcast approach used for warnings.

3.3 Behaviour Categorisation

Private vehicles are the primary form of mobility for people living in wildfire prone areas. We therefore
focus on capturing vehicle use and vehicular traffic in our modelling. Assuming the initial location of the
population within the area is known, we first assign people at addresses to vehicles. Recalling that P is our
set of people and letting V be our set of vehicles, we can then treat the vehicle assignment as a function ψ
that maps people to vehicles: ψ : P → V .

Assuming κ is the average number of people per vehicle (set to 1.5 in our experiments), we use this
parameter to transform a set of people at each address to a set of vehicles with the initial location equal
to the address location. A set of people in each vehicle forms a group that makes collaborative decisions.
Each group is assumed to make a decision regarding what events trigger the group to evacuate, where events
include warnings and fire visibility, should they occur. A set of evacuation triggers Eg that will make a
group g evacuate specifies the behaviour of that group. These behaviours are configured for a scenario by
setting a proportion of evacuee groups that will respond to each event. This proportion is referred to as the
participation rate. The participation rates used in our evaluation for each evacuation trigger are provided in
Section 6.2.

3.4 Departure Time Modelling

When an evacuation trigger is received by a group, a departure time is calculated for those members that
are responsive to the specific trigger. We model the departure time of these evacuees as a sum of two
components: decision time delay and preparation time. The decision time delay represents the interval
between an occurrence of an evacuation trigger (e.g., warning, fire visible) and the collaborative decision of
the group to evacuate. This delay is modelled as a constant specific to the event type that triggered the
group to evacuate, where a higher urgency evacuation trigger leads to a lower decision time delay.
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The preparation time component is modelled as a random variable following the Rayleigh distribution.
This distribution has been found to closely match data on the typical evacuation preparation time provided
by subject matter experts [14]. The Rayleigh cumulative distribution function with a mode of σ can be
expressed as:

F (x) = 1− exp(−x2/2σ2), x ∈ [0,∞). (3)

The parameters of the decision time delay and preparation time for each of the evacuation triggers used
in our evaluation are provided in Section 6.3.

3.5 Destination Selection

In this study we assign destinations to evacuees based on proximity. We define bi ∈M as the destination of
evacuee i. If C is a set of destinations (chosen outside the threatened areas), then:

bi = arg min
c∈C

d(pi0, c). (4)

We acknowledge the limitations of this basic destination selection model; however, it is sufficient for
answering the research question we are investigating in this study.

3.6 Traffic Simulation

An agent-based traffic simulator was used for the prediction of vehicle (and thus, people) movements for
each scenario. The particular simulator we use, SUMO (Simulation of Urban Mobility) [21], falls into the
microscopic category. In microscopic traffic simulation, the dynamics of each individual vehicle are modelled,
and results are derived from the interactions of each agent/vehicle with road conditions and other vehicles.
This contrasts with the macroscopic model where traffic can be modelled on a road-by-road basis [22].
Microscopic traffic simulation has been applied to evacuation simulation at the neighbourhood scale in the
past [8, 17]. SUMO was chosen due to the granularity of its output, which includes, for example, the exact
coordinates of each vehicle at any given time during the simulation. The path of each vehicle is computed
using Dijkstra’s shortest path algorithm.

For our analysis we are interested in the set of vehicle trajectories. If vjt is the position of vehicle j ∈ V
at time t, then the position pit of person i is vψ(i),t. People who do not evacuate are assumed to remain at
home (pt = p0,∀t ∈ T ).

3.7 Risk Analytics

This component computes the risk metrics as described in the next section and pre-processes the simulation
results to be used in visualisation.

4 Risk Metrics

With the detailed results produced by the simulators and models described in Section 3, it is possible to
derive more granular risk predictions. Specifically, we approximate the danger to a person by considering
their proximity to the threat. We introduce here the person-threat distance and the related exposure count
for an area or population.

4.1 Clearance time

A common metric used in estimating risk for an area is the clearance time [5, 8, 12, 17]. For the purpose of
this investigation we define the clearance time relative to the start of the scenario t0. That is, the clearance
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time ck for an area Ak is the earliest time when there are no people left within Ak. This includes both people
originating within Ak and those passing through. Recalling that P is the total population in a scenario,

ck = inf {t : Ak ∩ Ut = ∅} , where Ut =
⋃
i∈P

pit. (5)

4.2 Exposure count

Our modelling approach yields estimates of the position of people over the course of a scenario, as well as
the progression of the fire. People near or within fire-affected areas may suffer injury or loss of life. It is
therefore useful to count how many of these exposures occur in our simulated scenarios. Of the people in our
scenarios, those who remain in their home and are well prepared have a lower risk of injury than those who
are caught in their vehicle as the fire passes. With an estimate of the resiliency of sheltering options it is
possible to calculate an adjusted exposure count for people who do not evacuate. However, for the purpose
of this investigation we are primarily concerned with those who leave; the modelling of those who remain
does not change between the static and dynamic cases, which are discussed in Section 6.

Depending on the intensity of a fire and various environmental factors, the area that constitutes a direct
threat to personal safety may extend beyond the fire front. For this reason we would like to include in our
exposure count metric the ability to specify a distance threshold.

We can calculate the distance between a point p ∈ M and Xt as d(p,Xt) ≡ inf{d(p, a) : a ∈ Xt}. Both
the threat and the position of each person will vary over time. We then define the person-threat distance at
time t as:

ξit = d(pit, Xt), ∀i ∈ Q, (6)

where Q is a set of people. We also obtain a minimum person-threat distance as:

zi = min
t
ξit, t ∈ T. (7)

We define the exposure count for a population Q in a given scenario as the total number of people who
were within some distance δ of the threat at some point in time, then we can compute it as follows:

EQ =
∑
i∈Q

H(δ − zi), where H(x) =

{
0, x < 0,

1, x ≥ 0.
(8)
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5 System Design and Implementation

Simulating evacuation response as a result of a dynamic fire threat requires the integration and robust
interaction of number of different modelling and simulation components. The approach discussed in this
paper is integrated into the IBM Evacuation Planner, which is a solution offered to customers (evacuation
planners, analysts, etc.) as a SaaS. The solution presents users with a web interface through which they can
run evacuation simulations based on a number of different environmental variables such as the location and
starting time of fire(s), the placement and capacity of shelters, and the velocity of wind. This allows experts
to better understand some of the conditions that exacerbate the risk to a population, as well as investigate
possible solutions. For instance, experts can explore the following questions. What is the effect of a fire
starting at a certain area, during a hot dry day under high winds (i.e., what is the average clearance time
of the region, how many people would be exposed to the oncoming fire, what is the vehicle departure time
profile for each region)? Which road segments cause the most congestion during an evacuation? How would
evacuations improve if the behaviour profile of a population in a region were to change (e.g., if people were
more alert, prepared and cautious)?

The architecture of the system follows a Service Oriented Architecture (SOA) approach with multiple
independent services for the various modelling and simulation components, as shown in Figure 4. This
separation into multiple bounded web-services improves the ease and efficiency of development, testing,
deployment, maintenance and scalability of the system. In addition, the architecture of the system enables
easy composition of new capabilities (as services) into the platform as well as the replaceability of any module
by a functionally equivalent alternative service (e.g., a different behaviour modeller or wildfire simulator)
with minimal impact to dependent services. This is achieved through the loose coupling of services and the
standardisation of the Application Programming Interfaces (APIs) for all services. Loose coupling is achieved
by using the data requirements and outputs of modules as a point of dependency rather than specific APIs.
Additionally, all modelling, simulation and analytics services are exposed through a standardized REST API
designed around the abstract concept of a Job. A common service framework to handle job management,
request processing, data input and output validation, as well as cross-cutting concerns has been implemented
and used across all services.

Four services, a wildfire simulator, behaviour modeller, traffic simulator, and analytics engine, collectively
compose the system’s core capabilities as shown in Figure 4. The four modelling and simulation services
shown in the diagram map to the model composition flow diagram in Figure 2 discussed in Section 3 as
follows: the wildfire simulator and traffic simulator components directly map to the wildfire simulation and
traffic simulation steps in Figure 2. The behaviour modelling service is responsible for the evacuation trigger
modelling, departure time modelling, behaviour categorisation, and destination modelling aspects. Finally,
the analytics engine is responsible for computing risk analytics.

In addition to the core services, ancillary services: a workflow manager, an orchestrator, and a data
service, drive the computation and data flow of these systems. The workflow manager service, specifically, is
responsible for reactively driving the sequence of computations that are outlined in Figure 2. The orchestrator
service is responsible for managing a registry of services and data event notifications (data inputs and outputs
of modules) across modules. Finally, the data service component is responsible for both storing and serving
the simulation outputs as they are generated by individual modelling components.

6 Evaluation

To quantify the impact of dynamic factors on wildfire evacuation simulation, we investigate two modelling
approaches. The first approach, which we will refer to as the static model, links the wildfire to the behaviour
through a single impact time for the region. Evacuee departure times are sampled from a global probability
distribution designed to capture the variation of behaviours among all evacuees.

The second approach, which we will call the dynamic model, implements the procedures described in
Section 3. The dynamic model captures the time-dependent interactions between the fire front evolution,
evacuation triggers, and behavioural characteristics.
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Figure 5: The Dandenong Ranges

We have conducted our experiments for a region called The Dandenong Ranges, which is a wildfire-prone
part of Victoria, Australia. Figure 5 presents the features of the region subdivided into 28 areas following the
Statistical Areas Level 1 (SA1) classification as defined by the Australian Bureau of Statistics (ABS)2. These
areas are designed to contain an average population of approximately 400 people. There are around fifty-five
thousand such areas covering Australia. In particular, Figure 5a shows the areas we use in our experiments
labelled A, . . . , Z3 ordered by decreasing population size. Areas Z1, Z2 and Z3 have no registered residential
population. Figure 5b shows the location of all the addresses within the areas considered, where each dot
represents one or more registered addresses. Finally, Figure 5c highlights the major roads in and around the
region. The detailed data on the region and population are provided in A.

Both the static and dynamic modelling approaches are applied to three independent evacuation scenar-
ios defined by wildfire simulation with different ignition points and environmental conditions within The
Dandenong Ranges as discussed in the next section.

2Australian Bureau of Statistics. http://abs.gov.au/
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6.1 Ignition Points and Environmental Conditions

We have selected three wildfire scenarios typical for The Dandenong Ranges based on historical records and
discussions with local experts. We refer to these scenarios by the names of suburbs where the ignition points
are located: The Basin, Montrose, and Tremont. The environmental conditions corresponding to each of the
simulated ignition points are shown in Table 1.

Ignition FFDI Wind direction Wind speed (km/h)

The Basin 80 SE 60
Montrose 80 SSE 60
Tremont 75 NNE 40

Table 1: Fire ignition points and environmental conditions

Figure 6a shows the raw output of the wildfire simulator for the wildfire ignited in The Basin, where
darker cells represent the earlier fire impact time. Figure 6b shows the corresponding simplified outline-based
representation of the wildfire evolution, which we use in further visualisations for the sake of clarity. The
outline-based simulation outputs of the Montrose and Tremont wildfires are shown in Figures 6c and 6d
respectively. These particular wildfire scenarios were selected to represent a range of patterns in which a
wildfire may impact the region.

6.2 Behaviour Categorisation Parameters

As discussed in Section 3.3, groups of evacuees make collaborative decisions on whether to respond to an
evacuation trigger. In our experiments, the behaviour is assigned to groups according to participation rates
listed in Table 2. The total participation rate over the complete set of evacuation triggers is 85%, which
means 15% of evacuee groups are assumed to stay at home (shelter in place / defend).

Evacuation trigger Participation rate Decision time delay (min) Preparation time mode (min)

Fire visible 40% 0 10
2-h warning 30% 10 20
6-h warning 10% 20 30
24-h warning 5% 30 60

Table 2: Evacuee behaviour parameters for each evacuation trigger

6.3 Departure Time Distributions

The departure time parameters (i.e., decision time delay and preparation time mode) used in the dynamic
model are presented in Table 2. Since in the static model evacuees leave according to a global departure
time distribution, in order to obtain an accurate estimate of distribution we have taken an approach of first
conducting a simulation of the corresponding dynamic case and then estimating the distribution from the
sample of the simulated departure times. Based on a biased estimator of the Rayleigh scale parameter,
Siddiqui [23] derived an unbiased estimator:

σ = σ̂
Γ(N)

√
N

Γ(N + 1/2)
, where σ̂ ≈

√√√√ 1

2N

N∑
i=1

x2i . (9)

We used this estimator to estimate the parameters of the departure time distributions for each of the
static cases—The Basin (σ = 148), Montrose (σ = 204) and Tremont (σ = 160). Figures 7a, 7c, and 7e show
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(a) Ignition in The Basin (raw output) (b) Ignition in The Basin (outline view)

(c) Ignition in Montrose (d) Ignition in Tremont

Figure 6: Wildfire simulation output for the ignition points and environmental conditions shown in Table 1

the departure times obtained from the dynamic scenario simulations. These figures also show the proba-
bility density functions of the corresponding Rayleigh distributions estimated from the samples using (9).
Figures 7b, 7d, and 7f show departure times sampled from the estimated Rayleigh distributions for each of
the corresponding static cases.

6.4 Data Sources

Our experiments make use of several public data sources along with input from subject matter experts. In
particular, the road network model used in this study takes input from the OpenStreetMap (OSM) project3.
The project creates and distributes free and open geographic data, licensed under the Open Data Commons
Open Database License (ODbL)4. This study utilises the OSM road network data current for April 2013.

3OpenStreetMap. http://openstreetmap.org/
4OpenStreetMap: Copyright and License. http://openstreetmap.org/copyright
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(c) Montrose scenario (dynamic case)
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Figure 7: Departure time distributions

Demographic data were obtained from the ABS. In particular, a subset of the data collected during the
Census of Population and Housing conducted by the ABS on 9 August 2011, which was Australia’s sixteenth
national Census5. We make use of addresses and population data sets for the areas shown in Figure 5. The
provided data sets are of the highest quality available on the demographics of Australia. Prior to being
released, the data pass through a confidentiality process, which results in small introduced errors; however,
the information value of the data set as a whole is not affected.

Through the Victorian Government Data Directory6, elevation7 and vegetation8 data sets have been
obtained to use as inputs to the wildfire simulator. Transformation of these data sets was carried out using
PostgreSQL with the PostGIS extension to obtain regular gridded data as required by the wildfire simulator.

6.5 Population Assignment

The publicly available data sets described in Section 6.4 contain data on the locations of addresses and
population counts per area. Since the modelling requires input data on the initial locations of people within
the area, an additional step of assigning population to address locations is required. Taking into account
performance and scalability, the following procedure has been adopted. Let n be the population size that
needs to be assigned to m addresses. First, each address is assigned bn/mc people, then an address subset of
size n−bn/mc is randomly selected and assigned one extra person each (assuming n ≤ 2m). This procedure
can be efficiently implemented using PostgreSQL.

5Australian Census of Population and Housing. http://abs.gov.au/websitedbs/censushome.nsf/home/census
6Victorian Government Data Directory. https://www.data.vic.gov.au
7Elevation data set. https://www.data.vic.gov.au/data/dataset/vicmap-elevation-1-5-contours-relief
8Vegetation data set. https://www.data.vic.gov.au/data/dataset/vicmap-vegetation--25-000
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6.6 Assumptions

The scenarios presented are not necessarily representative of all possible scenarios and care should be taken
when attempting to generalise from any findings. Furthermore, the following assumptions need to be taken
into account when interpreting the results:

• Vehicle numbers are derived from residential data and do not depend on the time of day. However,
in reality, the number of people in an area may vary with time. For example, during the week many
people leave the region during the day because their workplace is located elsewhere. Conversely, on
weekends the number of people in the area can significantly increase as the area is a population tourist
destination.

• Route selection is static; drivers do not change their route even when encountering significant delays.

• People drive to their nearest exit, and obey the speed limits.

• Residents all receive warnings when they are sent. We assume authorities will use a variety of channels
(SMS, radio, television, social media, etc.) to communicate with the public and that this provides
sufficient coverage to reach all the relevant people.

• Weather conditions are constant throughout the scenario, i.e., FFDI, wind velocity.

• There are no car accidents. In real wildfire emergencies car accidents are a common occurence.

6.7 Results

Our stated objective is to assess the impact of dynamic factors on wildfire evacuation simulation. And we are
particularly interested in the implications this might have for quantifying risk in regions subject to wildfires.
To this end, we simulated scenarios using the static model and the dynamic model for each of the three fire
ignition points: The Basin, Montrose, and Tremont.

The clearance times computed for each scenario are shown in Figure 8. Through visual inspection it is
apparent that there is a significant difference in how the evacuation progressed when comparing the static
models with the corresponding dynamic model. In particular, in the dynamic model the clearance time of
the areas closer to the fire ignition point are lower and increase towards the boundary of the final fire shape.
This is explained by the fact that areas closer to the fire ignition point get triggered earlier allowing the
evacuees to leave while the roads are not yet congested. The clearance times increase in the farther areas
as more vehicles appear on the roads following the fire progression. By contrast, in the static models the
clearance times do not follow such a pattern due to the single global departure time distribution which does
not account for the spatial distribution of people in relation to the dynamic evolution of the wildfire.

We can confirm these observations through statistical tests on the clearance times. One appropriate
technique is the paired t-test, where the pairs are naturally formed by the clearance times of the same region
computed from the static and dynamic models respectively for each of the fire ignition points. This results
in the total of 84 value pairs, that is, 28 areas for each of the 3 fire ignition points. To meet the assumptions
of the paired t-test, the differences between the values of each pair are required to be normally distributed.
The Shapiro-Wilk normality test [24] on the differences results in a p-value of 0.237, which means we accept
the null hypothesis of the differences coming from a normal distribution. A paired t-test on the pairs of the
corresponding clearance times results in a p-value < 0.001, which means there is a statistically significant
difference between the clearance times from the static and dynamic models.

Another risk metric we use to compare the two modelling approaches is the exposure count introduced
in Section 4. Figure 9 visualises the exposure counts for each scenario. As with the clearance times, it is
clear that the exposure counts differ significantly between the static and dynamic models. In particular, the
exposures in the scenarios employing the static model are higher. This can be attributed to the fact that
the evacuees leave their homes based on a global departure time distributions rather than responding to
evacuation triggers as in the dynamic cases.
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(a) Basin: static model (b) Basin: dynamic model (c) Montrose: static model (d) Montrose: dynamic model

(e) Tremont: static model (f) Tremont: dynamic model

Figure 8: Clearance times

We can confirm these observations using statistical tests. Applying the Shapiro-Wilk normality test on the
differences between the pairs of exposure counts predicted by the corresponding static and dynamic scenarios
yields a p-value of 0.01, which means the null hypothesis of the differences being normally distributed must
be rejected. This also means that the assumptions of the paired t-test are not satisfied. Therefore, we resort
to a non-parametric Wilcoxon signed-rank test [25] for comparing two related samples. This test results in
a p-value < 0.001, which means that the difference between the two samples is statistically significant. The
detailed scenario results are presented in B.

7 Discussion

As was shown in Section 6.7, incorporating dynamic factors into our modelling approach creates a statistically
significant difference, when compared with the static modelling approach. This also means that the static
modelling approach is not able to capture the dynamics of a complex wildfire evacuation scenario involving
dynamic threat evolution and multiple evacuation triggers, which happen in reality.

It is not, in general, surprising to see models with greater representational capacity producing more
realistic predictions of complex phenomena. And the model we have presented is by no means the most
sophisticated model conceivable. But developing models of arbitrary complexity should not be our aim. We
are primarily concerned with the suitability of a model for some purpose, and this should take into account
other factors such as data requirements, ease-of-use and computational complexity. The assumptions and
simplifications we have made were chosen for these reasons.

The model presented here is typically solved in under five minutes on a cluster of mid-tier Virtual Machines
(VMs). For our experiments, the instances provisioned were mostly dual-core Linux machines with 4GB of
RAM. The only exceptions were the VMs hosting our database (quad-core, 16GB) and traffic-simulator
(8-core, 8GB), owing to their more advanced computational requirements. It should also be noted that the
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(a) Basin: static case (b) Basin: dynamic case (c) Montrose: static case (d) Montrose: dynamic case

(e) Tremont: static case (f) Tremont: dynamic case

Figure 9: Exposure counts (δ = 0)

architecture we have designed is suited to concurrent execution of scenarios and can scale horizontally by
adding more VMs.

The initial data required as inputs (e.g., road networks, vegetation, population statistics) are readily
available for most parts of the world, and again, this is where the modularity of our approach eases the
task of integrating variable sources of data. There would, of course, be some work required to correctly
apply streams of data into the system. However, this is neither an onerous nor complex task. Moreover,
the modelling and general approach we employ can be understood by non-experts, which is an important
feature for some real-world applications.

For an area the size of the one we have studied (68 km2) there is a significant difference in the timing of
the events considered, as experienced by the people distributed throughout. For larger areas this will also be
the case, but for smaller areas this may be less critical. Thus the importance of the dynamic factors we have
studied here is expected to increase with the size of the region being studied. One should also consider the
distribution of people in the region. These factors can be accounted for in the subdivision of the population.
The manner in which we group people was influenced by our model of how warnings are delivered. More
complex models of the information flowing to people might need to consider alternatives to the geographic
categorisation strategy, e.g., social groups.

The exposure count metric, which we have introduced here, provides a more direct estimate of the severity
of a scenario. By comparison, the clearance time can mask anything between inconvenient traffic congestion
and a multi-fatality tragedy. Clearance times are also sensitive to small changes in vehicle trajectories. For
this reason we believe the exposure count is a more useful metric.

An extension to the exposure count metric which may better account for the dynamics of these scenarios
would be to look not only at the minimum person-threat distance, but at some aggregate of their threat
proximity over the duration of the scenario. For example, one could define a function f that quantifies the in-
stantaneous level of threat in terms of distance and integrate this with respect to time:

∫
f(d(p(t), X(t))) dt.
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8 Conclusions

In this paper we presented a new model for predicting the outcome of wildfire evacuation scenarios. The
model extends existing approaches by including dynamic evacuation triggers as determined by an evolving
wildfire simulation. The actions of evacuees are dependent on their location relative to the threat. Thus,
dynamic triggers enable us to model departure times with greater location sensitivity. In addition, the
combination of a microscopic traffic simulator with a dynamic fire spread simulator has enabled the use of a
new metric, the exposure count, which provides a more direct estimate of the threat to a population in an
evacuation scenario.

Through our experiments we have shown that the dynamic modelling approach produces a statistically
significant difference in the predicted outcome of evacuation scenarios compared with the static model.
Specifically with respect to the area-wise clearance times and exposure counts. Finally, the approach we
propose was enabled by the model composition architecture we discussed. This architecture supports the
seamless integration of modelling and simulation components in a way that is both efficient and scalable.

The work we have described is part of the IBM Evacuation Planner which is a decision support system
targeted at emergency service personnel. We envision this system being used in both the planning and
response stages of wildfire emergencies.
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A Region and Population Data

Area Population Addresses SA1 ID

A 575 273 2128220
B 547 250 2125214
C 540 176 2126311
D 539 201 2125202
E 529 225 2125213
F 498 187 2125250
G 498 358 2128223
H 492 282 2128232
I 485 219 2128222
J 467 207 2125215
K 459 149 2128013
L 431 185 2128218
M 396 222 2128219
N 347 199 2128216

Area Population Addresses SA1 ID

O 347 187 2128224
P 322 153 2128228
Q 285 123 2128202
R 265 134 2128210
S 230 113 2128226
T 229 125 2127711
U 228 105 2128225
V 214 102 2128206
W 181 107 2128221
X 18 35 2128217
Y 10 103 2128230
Z1 0 1 2126328
Z2 0 45 2128227
Z3 0 67 2128231
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B Detailed Scenario Results

The Basin Montrose Tremont

Area
Clearance Exposures Clearance Exposures Clearance Exposures

Stat. Dyn. Stat. Dyn. Stat. Dyn. Stat. Dyn. Stat. Dyn. Stat. Dyn.

A 9:51 5:28 241 54 11:25 8:53 30 78 9:59 5:18 175 24
B 8:06 5:58 25 11 – – – – 9:21 5:04 44 0
C 8:59 6:52 – – 7:14 8:40 – – 7:43 8:47 – –
D 8:24 6:51 – – 7:15 8:41 – – 7:42 8:45 – –
E 7:18 3:20 69 0 – – – – 9:08 4:47 58 0
F 8:44 6:50 182 78 7:16 8:43 – – 10:15 8:45 5 0
G 11:39 5:13 121 2 11:11 8:16 87 1 9:10 6:17 79 38
H 11:04 8:54 31 1 – – – – 9:50 4:33 356 89
I 9:31 7:52 70 0 11:16 6:17 73 20 9:16 8:45 16 74
J 7:32 3:30 67 0 – – – – 10:16 5:31 17 0
K 7:59 5:06 – – 10:05 7:35 – – – – – –
L 10:56 8:52 0 0 – – – – 9:54 2:41 236 59
M 11:40 5:15 103 0 11:25 8:51 72 1 9:59 5:36 92 10
N 10:37 8:16 5 35 12:53 6:01 141 0 8:32 8:57 0 0
O 8:35 3:28 149 2 5:15 7:55 0 33 9:55 3:02 204 75
P 11:05 8:54 0 0 – – – – 9:48 2:23 262 88
Q 8:15 4:37 58 0 – – – – 9:50 2:39 150 33
R 7:11 5:51 15 2 10:06 8:05 0 2 11:02 5:24 46 0
S 10:37 5:21 53 0 10:13 6:15 41 23 9:10 8:57 4 8
T 10:14 7:59 – – 8:06 8:43 – – 7:50 9:58 – –
U 8:36 4:37 48 16 8:31 8:47 0 8 9:49 2:52 126 56
V 6:09 5:33 12 21 9:32 7:29 0 0 7:20 5:18 26 2
W 9:31 7:52 3 2 11:45 6:17 48 2 9:16 8:44 0 0
X 7:59 5:17 9 2 10:07 8:48 0 9 7:40 9:45 2 1
Y 8:31 6:02 0 0 10:41 7:38 5 7 9:11 7:22 0 0
Z1 10:14 7:59 – – 8:06 8:40 – – 6:31 9:57 – –
Z2 8:36 8:26 – – – – – – 8:28 4:27 – –
Z3 8:15 6:04 – – 10:05 7:56 – – 9:51 4:55 – –
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