
Practical Context-Aware Permission Control for

Hybrid Mobile Applications

Kapil Singh

IBM T.J. Watson Research Center
kapil@us.ibm.com

Abstract. The rapid growth of mobile computing has resulted in the
development of new programming paradigms for quick and easy devel-
opment of mobile applications. Hybrid frameworks, such as PhoneGap,
allow the use of web technologies for development of applications with
native access to device’s resources. These untrusted third-party appli-
cations desire access to user’s data and device’s resources, leaving the
content vulnerable to accidental or malicious leaks by the applications.
The hybrid frameworks present new opportunities to enhance the secu-
rity of mobile platforms by providing an application-layer runtime for
controlling an application’s behavior.

In this work, we present a practical design of a novel framework, named
MobileIFC, for building privacy-preserving hybrid applications for mo-
bile platforms. We use information flow models to control what untrusted
applications can do with the information they receive. We utilize the
framework to develop a fine-grained, context-sensitive permission model
that enables users and application developers to specify rich policies. We
show the viability of our design by means of a framework prototype. The
usability of the framework and the permission model is further evaluated
by developing sample applications using the framework APIs. Our eval-
uation and experience suggests that MobileIFC provides a practical and
performant security solution for hybrid mobile applications.

1 Introduction

With the development of new mobile platforms, such as Android and iOS,
mobile computing has shown exponential growth in popularity in recent years. A
major factor driving this growth is the availability of a huge application market
that provides rich functionality ranging from banking to gaming to social net-
working. To benefit from the availability of a constantly growing consumer base,
new services and applications are being built from the composition of existing
ones at breakneck speed.

Most mobile operating systems currently use a capability-based permission
system that mediates applications’ access to device resources (such as camera)
or user’s data (such as contact lists). The operating system vary in the way the
permissions are granted. For example, users approve the permissions at install
time in Android while such approval is done at the time of first use in iOS.

The permission model, in the current form, suffers from two major limi-
tations. First, the model is too coarse-grained and lacks flexibility to support
rich security policies. For example, it does not allow conditional policies, such as
location-based policies, to control permissions. Moreover, the permissions cannot
be modified at runtime1 and requires an explicit reinstallation of the application
to include any changes. Second, the permission model only provides access con-
trol over the device resources by explicitly releasing corresponding capabilities to
the applications. However, access control policies are not sufficient in enforcing
the privacy of an individual: once an application is permitted access to a data
or a resource, it can freely leak this information anytime to an external entity
for personal gains.

To further facilitate quick application development, new programming frame-
works have emerged to allow web technologies to be used as building blocks for
native mobile applications. Such frameworks, such as PhoneGap [10], Sencha [11]
and Worklight [5], enable automatic portability of the application onto multiple
mobile platforms, such as Android, iOS, Blackberry, etc. A wide variety of such
hybrid applications have been developed using these frameworks including some
recent popular applications, such as BBC’s Olympic coverage application [2] and
IGN’s mobile social network Dominate [6]. The hybrid application market is “on
a hypergrowth trajectory” and is expected to continue its upward growth with
the entry of new major players into the market [23].

While these platforms are known to provide benefits of portability and eas-
ier development, their usefulness to security has not been fully understood. In
essence, they provide an interpretation layer or middleware where flexible secu-
rity policies and enforcement mechanisms can be realized to control applications’
access to device resources. The resources include personal user data such as con-
tact list, and the content generated by the use of device sensors such as camera
or GPS. The biggest advantage of hooking any security solution into this layer is
that it does not require any support from or changes to the underlying operating
system and the solution is readily portable to multiple mobile platforms.

In this work, we are concerned with protecting the user content from leaks
by untrusted (malicious or vulnerable) hybrid mobile applications. We propose
and implement a new framework, called MobileIFC (Mobile Information Flow
Control), that leverages the mediation layer of the hybrid platform to support
runtime enforcement of fine-grained, context-driven policies. MobileIFC allows
the user to provide mandatory security policies for protection of his content,
while at the same time enabling mobile applications to be more specific about
their permission requirements. For example, the user can specify context-driven
policies such as “Camera pictures taken at work should only be shared with
company’s servers”. The applications can also specify finer-grained permission
requirements such as “Camera pictures are only shared with Picasa”.

To enable context-aware policies, MobileIFC resolves the context of the device
and/or the application at runtime when resource access is requested by the

1 iOS 5+ enables control over certain permissions, such as contacts and geolocation,
after an application is installed.

application and permissions are subsequently adapted based on the resolved
context. For location-driven policies as an example, MobileIFC taps into the
geolocation API of the hybrid platform to resolve the location of the device
before deriving the associated security policies.

This paper makes the following contributions:

– We address the challenge of protecting user’s mobile data in the fast growing
hybrid application market. In contrast to the existing security solutions that
rely on OS modifications, our solution is realized at the application layer
as an extension to the hybrid frameworks and hence is readily portable to
multiple mobile platforms. To the best of our knowledge, we are the first to
provide a comprehensive permission framework for hybrid applications.

– We propose a rich permission model that enables applications and users to
specify fine-grained, context-aware policies.

– To show the viability of our design and enable rich policy enforcement, we
develop a novel framework, called MobileIFC, that redesigns applications to
support effective information flow control for hybrid applications and enables
context-dependent policy resolution at runtime. We illustrate the applica-
bility of MobileIFC by developing representative (banking, healthcare and
financial management) applications on top of the framework and analyzing
its performance and integration overheads.

2 Overview

MobileIFC is an architectural framework for executing hybrid mobile appli-
cations that enables users to share their private mobile content with untrusted

applications. The framework, in turn, prevents these applications from leaking
users’ sensitive content. MobileIFC effectively provides complete mediation for
all communication to and from these applications at runtime to enable users to
administer fine-grained, context-aware policies that satisfy their privacy require-
ments.

Typical mobile applications leverage services rendered by other applications
on the device and by network servers. As a result, they need to communicate
with entities outside the MobileIFC system, called external entities, to perform
specific tasks. For example, a social networking application may communicate
with www.cnn.com to receive a daily news feed for the user. Additionally, it may
seek the device’s camera application to click and post the user’s picture on his
profile.

Currently, applications are more-or-less monolithically installed on the mo-
bile OS and isolated from each other and from the underlying OS by default. The
OS controls access to security-sensitive device resources such as Internet access.
However, such access follows an all-or-nothing permission approach and does not
support restricting Internet access to only specific external entities. Moreover,
applications can also define their own permissions to control access to sensitive
interfaces that they expose to other applications. The application-centric permis-
sion model is not sufficient for transitive policy enforcement allowing privilege
escalation attacks as shown by the recent attacks [13, 15, 19].

Even after the current permission model is extended to make it fine-grained,
access control, by itself, is not sufficient as it does not satisfy the principle of
least privilege: even if an approved external entity, e.g. www.news.com, requires
no user’s personal information, the application can (mistakenly or maliciously)
share with the external entity any piece of user information available to the
application.

In the hybrid design, applications are hosted by the hybrid programming
platform that provides a set of APIs to expose the functionality available to
native applications. The platform itself along with the hosted hybrid application
is deployed on the underlying OS as a native application. The platform requests
the desired access or permissions from the mobile OS using the permission model
supported by the OS. This makes the platform an ideal location to hook a
reference monitor that controls all its granted permissions. As a result, it can
selectively grant or revoke a subset of these permissions to the hybrid application
based on finer-grained, context-aware policies.

The uniqueness of MobileIFC’s design is attributed to techniques that en-
able efficient information flow control within the framework, thus allowing it to
enforce fine-grained policies. We adapt some of the concepts from previous work
in the social networking domain [27] to build MobileIFC suitable for the hybrid
application environment. Information flow control in MobileIFC is enforced by
design, i.e., MobileIFC redesigns the applications in order to achieve effective and
efficient information flow control. The applications are split into a set of chunks2;
a chunk being the smallest granularity of application code on which policies are
administered by MobileIFC. A chunk is chosen based on what information the
chunk has access to and what external entity it is allowed to communicate with.

From an end user’s perspective, the applications are monolithic as the user
does not know about the chunks. At the time of adding a particular application,
the user is presented with a manifest that states what piece of user’s private
or sensor data is needed by the application and which external entity will it be
sharing this data with. For example, the social networking application’s manifest
would specify that it shares any pictures it takes using the device’s camera with
only the social network’s server. Note that the application does not need to
reveal that it communicates with www.news.com as no user information is being
sent to www.news.com. The user can now make a more informed decision before
adding the application.

In addition to the approval-based approach, MobileIFC also allows the user to
define his own privacy policies as functions of user/device resources (as input),
external entities (as output), and device or application context (as associated
condition). For example, a user can specify that the device’s camera should not
be available to any application at work, thus revoking social networking appli-
cation’s camera access at user’s work location. Such user scenarios are realistic
in the real world as shown by a recent policy change at IBM regarding iPhone
Siri’s sharing of voice data with Apple’s servers [12].

2 We use the term chunks instead of components to differentiate from the component-
based architecture in Android.

Section 3 provides a detailed description of our design and how MobileIFC
ensures that only approved flows are allowed. In this section, we present our trust
model (Section 2.1) and discuss how MobileIFC’s permission model enables rich
security policy specification using some representative examples (Section 2.2).
We use Android as the mobile OS of choice for discussions, though our cross-
platform solution for hybrid applications is independent of any OS. We also use
open-sourced PhoneGap as our representative hybrid framework; the concepts
and solutions developed in our work can be similarly applied to other frameworks.

2.1 Trust Relationships and Threat Model

In this work, we are concerned with securing a user’s private information
from leaks by malicious attackers. Consequently, our trust model is defined from
an end-user perspective. Note that in our framework, a user represents both
individuals seeking protection of their data and administrative entities, such as
corporations, which administer data for their employees and clients.

There are multiple parties that are involved in distributing and consuming
a user’s private information. First, the hybrid framework provide the necessary
enforcement for a user’s privacy policies and therefore is trusted in our framework
along with the underlying OS. Second, mobile applications that are developed
by third parties are untrusted by default. We assume that such applications can
either be developed by malicious attackers with the sole purpose of collecting
users’ sensitive information, or are benign yet vulnerable to exploits that could
result in information leaks.

For an information leak to be considered successful, the sensitive information
must be passed to an unintended external entity. In our design, we consider three
classes of external entities based on their associated trust. All external entities
are untrusted by default unless they are approved by the user for data sharing
(Section 3). Once approved, the external entity is considered semi-trusted, i.e.,
it may receive only the sensitive information for which it is approved. A trusted

entity is allowed to receive sensitive information and is furthermore expected to
filter any sensitive content from its output before providing it to the application.
In other words, a trusted entity must act as a declassifier.

Our work prevents information leak of the content provided to the untrusted
third-party applications. It cannot prevent use of outside channels by the ap-
proved external entities to share information once such entities get access to the
information. This also implies that we only consider leakage protection on the
device (client) side in case of a multi-tier application.

2.2 Policy Specification in MobileIFC

In this section, we use a representative banking application to show how
rich security policies can be defined and enforced in MobileIFC to prevent ap-
plications from leaking user content. The policies are expressed via fine-grained,
context-aware permissions along with other (possibly organization-specific) manda-
tory policies and subsequently enforced at runtime by the MobileIFC framework.

Note that while the mandatory policies allow the users to enforces their own
privacy requirements and potentially prevent malicious behavior, we anticipate

Credentials, Camera,

Geolocation, Contact List

Credentials

Camera

Account Info

Geolocation

Map

google.com

Application

bank.com

Data input

Content shown to the user

C1

Contact List

Credentials

Camera

Account Info

Geolocation

Map

google.com

Data input from MobileIFC

Content shown to the user

Application

C2

C3

Credentials

Camera

Geolocation

bank.com

(a) (b)

Fig. 1: Representative example of a banking application design for (a) current
mobile applications and (b) MobileIFC.

that tradeoffs will arise: certain policy decisions that may prevent malicious ap-
plication behavior may also disrupt the functionality of certain non-malicious
applications. Such decisions must be made by users based on their specific orga-
nization’s restrictions and requirements.

Representative Application: Banking. We use a banking application as
our running example (Figure 1). The application takes a user’s credentials to
login into his bank account. The credentials are verified at the bank’s servers
before the account details are presented to the user. The banking application
also communicates with third-party servers to present value-added services to
the user, e.g., showing nearby bank locations using a map obtained from Google
Maps. Moreover, it uses the device’s camera to capture check images that are
sent to the bank’s servers. The application also accesses the contact list to fa-
cilitate selection of recipients for peer-to-peer (P2P) payments. The contact list
information is not shared with any external entity.

The current Android permission model lists a set of pre-defined permissions
that an application can request in order to access corresponding resources on
the device. In our banking example, an Android application would need to re-
quest the INTERNET permission (to communicate with external entities) and
ACCESS FINE LOCATION (to get access to user’s geolocation to determine the
closest bank locations) using a manifest. It would further request the CAMERA

permission to have the capability to capture images with the device’s camera
and READ CONTACTS permission to have access to the device’s contact list. This
manifest must be approved by the user before the application is installed.

We now give some examples of different types of security policies, and discuss
how they can be accommodated in MobileIFC’s permission model.

Information Flow Control with Functionality-Based Least Privileges

This type of security property is concerned with protecting the user’s private
assets from leaks by untrusted applications. One security requirement for the
banking application is that a user’s bank credentials and location should be
protected from eavesdropping or leakage. At the same time, the requirement
should not break the application, i.e., the application should have enough privi-

leges to satisfy the desired functionality. This requirement leads to the following
high-level security policies:

– The user’s login credentials should only be shared with the bank’s server
bank.com.

– The device’s geolocation information should only be shared with Google.

Limitations of the current model There are two major issues with the
current access control model for Android applications. First, the resource access
is coarse grained and does not follow the principle of least privilege. For the bank-
ing application, even if the application needs to communicate over the Internet
only with its own server, it still possesses full capabilities to freely communicate
information, such as the user’s credentials, to any other external entities. Second,
there is no correlation between specific data items and the external parties to
which they are sent. As a result, there is nothing that prevents the application
from sharing the user’s banking credentials with Google.

Our permission model In our permission model, the application’s mani-
fest provides finer-grained requirements for its external communication. Specifi-
cally, it provides an input-to-output mapping, which represents what protected
user/device information (asset) is to be shared with what external entity. For the
banking application, this mapping would correspond to the set {(login creden-
tials, bank.com), (geolocation, google.com)}. Our application design will ensure
that the application conforms to the the requested (and approved) information
flows (Section 3).

Context-Aware Security Properties This security property addresses con-
ditional use of user content by the application. The conditions can be a derivative
of the device state, such as the GPS location or time of the day. As an example
of a situation where permissions depend on context, consider a scenario where an
organization such as DoD wants to impose the requirement “No images should
be captured at the Pentagon”. This property maps to the following security
policy:

– When the geolocation of the device corresponds to Pentagon’s location co-
ordinates, an application’s camera capture ability should be disabled.

Limitation of the current model The current Android model does not
consider any location-based permissions. Once the application has the CAMERA

permission, it can freely capture pictures irrespective of the location.
Our permission model MobileIFC ensures that the camera is only acti-

vated when the device’s geolocation is in a certain state. To address such a sce-
nario, MobileIFC’s design restricts the application to access the device’s camera
only through a prescribed API. MobileIFC’s mediation layer resolves the re-
quired context to identify the device’s current geolocation and then ensure that
the camera is only activated in accordance with the policy under consideration.

3 MobileIFC Design

MobileIFC shifts the bulk of the performance costs of tracking information
flows to the application development stage. Instead of using traditional taint

tracking mechanisms [17], MobileIFC exposes the security-relevant information
flows within an application by redesigning the application. It splits the appli-
cation into chunks that represent the smallest unit of flow tracking within the
MobileIFC framework. A chunk represents a piece of code that is uniquely iden-
tified by its input values and the external entities it needs to communicate with.
For instance in our representative banking example, chunk C2 takes in geolo-
cation as the input and communicates with google.com as the external entity
(Figure 1(b)).

While an ideal application design in MobileIFC would follow the principle of
least privilege, MobileIFC does not place any restriction on the developers on
how to design their application. In other words, it means that the actual function-
ality, semantics, and runtime characteristics are not of interest in MobileIFC and
are left to the developer. This provides the application developer with enough
freedom and flexibility to build rich applications. However, MobileIFC ensures
that only the flows approved by the user (or allowed by his mandatory policies)
are allowed, thus forcing the application developers to make any intended com-
munication explicit. For instance, a developer can design the banking application
in two ways. First, he can follow the current monolithic application design as
shown in Figure 1(a) and in that case, the application’s manifest would declare
that it requires user’s credentials, camera, geolocation and contact list as input
and bank.com and google.com as the external entities. It effectively means that
the complete application would act as a single blackbox and any of the input
parameters are allowed to be shared with any of the external entities. Note that
even this first design is an improvement over existing application design as it
explicitly enumerates the allowed external entities. Alternatively, he can design
the application as shown in Figure 1(b). Since the second design splits the infor-
mation flow from the input parameter to the external entity, each chunk possess
lower privileges (and only privileges that it needs) thus reducing the attack sur-
face in case of a malicious application or confining any exploit to within a chunk
in case of a vulnerability. As a result, the user would be more inclined to approve
the second design in comparison to the first.

We envision that an application can be automatically split into chunks, where
a chunk boundary is effectively decided by individual user policies. Our current
system relies on application developers to manually split the applications; we
plan to develop an automated system for application splitting as future work.

3.1 Confinement of chunks

The chunks of an application encapsulate different levels of private informa-
tion for the users. Therefore, these chunks need to be isolated from each other
in order to prevent information leaks. Since hybrid applications use webview for
all layout rendering, they are administered by the Same Origin Policy (SOP).
However, since the application’s HTML files are associated with the file://

protocol, all pages have the same origin thus neutralizing any potential benefit
of SOP. Moreover, cross-origin AJAX requests are enabled allowing the applica-
tion chunks to freely communicate with any external entities.

<div id="C1">

 <script>

 ADSAFE.id("C2");

 </script>

 <script>

 "use subset cautious";

 ADSAFE.go("C2", function (dom, moIFCLib) {

 /* Chunk code goes here */

 function geoSuccess(position) {

 ...

 moIFCLib.contactExternal("google.com", position);

 }

 var resCap = moIFCLib.getPGObject();

 resCap.geolocation.getCurrentPosition(geoSuccess, geoError);

 ...

 }

 </script>

</div>

ADSAFE = function() {

 ...

 return {

 go:function(id, f) {

 /* parse manifest and user policies to

 derive capability object 'moIFCCap' */

 ...

 /* Proxy the capability so that it can

 be mediated at runtime based on

 context-aware policies */

 var moIFCLib = ProxyWrap(moIFCCap);

 f(dom, moIFCLib);

 }

 }

}

ADsafe wrapper
for chunk C2

Fig. 2: ADsafe-based chunk confinement and monitoring in MobileIFC.

A script on a page has intimate access to all information and relationships
of the page. As a result, the chunks are free to access the Document Object
Model (DOM) objects of other chunks. Additionally, the chunks are allowed to
access the device’s resources using the APIs exposed by the hybrid platform.
Therefore, any confinement mechanism should (1) constrain a chunk to access
only its own DOM objects with no view of other chunks’ objects, and (2) limit
a chunk’s access to only approved resources on the device.

In order to constrain chunks into their own control domain, we limit the
application code to be written in an object capability language called ADsafe [1].
In an object capability language, references are represented by capabilities and
objects are accessed using these references. ADsafe defines a subset of JavaScript
that makes it safe to include guest code (such as third-party scripted advertising
or widgets) on any web page. ADsafe removes features from JavaScript that
are unsafe or grant uncontrolled access to elements on the page. Some of the
features that are removed from JavaScript are global variables and functions
such as this, eval and prototype. It is powerful enough to allow guest code
to perform valuable interactions, while at the same time preventing malicious or
accidental damage or intrusion.

To monitor and control access to the device’s resources, we modified AD-
safe to exclude any PhoneGap API calls that provide a direct handle to ac-
cess the resources and to invoke their functionality. As an example, the API
navigator.camera that is used to capture an image using the device’s camera
is banned. The access to provided indirectly by means of a chunk-specific wrap-
per object that exposes only a subset of the APIs as allowed by the approved
permissions for the chunk (Figure 2).

3.2 Realization of security policies

We developed a proxy engine that mediates all calls to PhoneGap APIs and
realizes the policy requirements of the user. The proxy engine takes as input
any mandatory security policies specified by the user. Since the mediation is

Data
External
Entity

Credentials
Camera

Geolocation
bank.com

Geolocation google.com

Information provided by

application to MobileIFC at installation

Application manifest

shown to the user

Chunk labels

used by MobileIFC

User's

mandatory

policies

User registration
with MobileIFC

Application deployment on MobileIFC Application installation by user

Chunk Data
External
Entity

C1
Credentials
Camera

bank.com

C3 Contact list -

C2 Geolocation google.com

Fig. 3: Typical life cycle of an application in MobileIFC.

done at runtime (i.e. at the time of use), any runtime modifications to the user’s
mandatory policies are also incorporated (Figure 2).

The user policies dictate the book-keeping tasks taken up by the proxy engine.
For context-aware policies (Section 2.2), the engine analyzes the input policy
to resolve any unknown contexts before verifying them against the specified
conditions. For conditional location-based policies as an example, it resolves
user’s current geolocation before checking the associated condition. Note that
the proxy engine runs within the trust domain of the hybrid platform, so it
is privileged with all the permissions that are associated with the platform,
effectively enabling it to resolve contexts by utilizing the device’s sensors.

The current design of MobileIFC maintains a mapping between permissions
and the corresponding PhoneGap APIs that require these permissions. For ex-
ample, CAMERA permission in Android corresponds to the navigator.Camera
and navigator.Capture objects in PhoneGap. Each of these objects have mul-
tiple member properties and functions that administer certain ability to the
picture capturing functionality. The permissions are specified in terms of the
labels (e.g. CAMERA) that give permission to access a particular resource (e.g.
device’s camera).

Our design also supports finer-grained permission specification, i.e., at the
level of specific APIs instead of specific resources. However, specifying such finer
policies must be done sensibly, as it increases bookkeeping and needs better
understanding of the APIs by the user, and therefore could potentially break
existing interactions if policies are specified incorrectly.

3.3 Application Lifecycle in MobileIFC

Figure 3 shows a typical life cycle of an application. The user first registers
with the MobileIFC framework by providing his mandatory privacy policies spe-
cific to his sensitive data and resources. For example, he can specify that his
contact list should never be shared with any external entity. The developer of
an application decides on the structure of the chunks for that application and
during the application’s deployment on MobileIFC, he specifies the information
required by each chunk and the external entity a particular chunk needs to com-

municate with. MobileIFC uses this information to generate the manifest for
the application. As shown in the figure, a manifest is basically a specification
of the application’s external communications (irrespective of the chunks) along
with the user’s data that is shared for each communication. This manifest needs
to be approved by the user before the application is installed for the user. Ad-
ditionally, the MobileIFC platform ensures that all of the application’s chunks
comply with the user’s mandatory privacy policies and the manifest approved
by the user. For any context-aware policies, the context is resolved at runtime
and associated conditions are verified before any access is granted.

3.4 The Banking Application on MobileIFC

To illustrate the application design within MobileIFC, let us revisit our bank-
ing application introduced in Section 2.2. To satisfy the user’s privacy require-
ments, two conditions should be fulfilled: (1) no banking data should be shared
with Google; and (2) user’s contact list should be kept private.

In the current application design, the application can freely leak any content
it possesses to any external entity after it has the INTERNET permission. Even if
the external entities are restricted to only bank.com and Google, the application
would be able to pass all information about the user, including the details of his
bank account and his check images, to Google (see Figure 1(a)). Moreover, his
contact list can be shared with bank.com.

The division of an application into multiple chunks allows the application
writer to develop different functionality within an application that relies on dif-
ferent pieces of the user information. In the MobileIFC framework, the banking
application would be split into three chunks as shown in Figure 1(b). Chunk
C1 can only communicate with bank.com and has access to its login informa-
tion (such as userid and password). Additionally, it also receives check images
taken from the device’s camera. Chunk C2 has no access to any of the banking
information and interacts with Google using the user’s current geolocation to
produce a map of the bank’s locations nearest to the user. Chunk C3 has access
to user’s contact list, but does not communicate with any external entity.

Since chunk C2 is given access to user’s geolocation information, this is the
only information it can communicate to an external entity. Moreover, it is re-
stricted to communicating only with Google. As per basic information flow-
control rules, information can flow from a less restricted to a more a restricted
chunk, thereby allowing one-way communication from C2 to C1. As a result, C2

can pass a user’s selected branch location on the map to C1, which, in turn, uses
the selection to show the local information of that branch. Since C3 cannot com-
municate with any external entity, it cannot leak any information outside the
MobileIFC framework. This enables C3 to receive any information from other
chunks as well as any additional user content such as the contact list.

In additional to the security benefits provided by MobileIFC, its design also
supports graceful degradation to partial usability for the applications. Taking the
case of our banking application, a user can decide not to share his geolocation
with Google by not approving that part of the manifest. This would not impact

C1

Policy

Manager

User approved

Application

Manifest

User data

Proxy Engine
(Policy Enforcement)

MobileIFC

Framework

Application

Manifest

User Policies

bank.com

Hybrid Framework (PhoneGap)

C2 C3

ADsafe object

google.com

Fig. 4: High-level view of MobileIFC implementation.

the core banking functionality of the application and if designed for graceful
degradation, it would only partially impact the overall user experience.

4 Implementation

One of the goals of our implementation is to require minimum changes to the
mobile user experience and minimum efforts from the application developers.
From the user’s perspective, the only new requirement of MobileIFC is to attach
privacy policies to his sensitive data and device’s resources. If the user opts
not to provide such mandatory policies (before application installation and/or
at runtime), MobileIFC still defaults to the install time-approval model even
though it can be more fine-grained than the current permission models. For
application developers, the additional effort means that the application has to
be structured into chunks along security-relevant boundaries, instead of strict
functionality boundaries.

In view of the aforementioned goals, MobileIFC’s implementation comple-
ments the PhoneGap framework to include several new features and functional-
ity. First, it provides an interface for users to specify their fine-grained, context-
aware privacy policies and also enable them to modify these policies even after
application installation. The policies can be made applicable to one or more
applications. Second, the implementation extends the support for application
manifests by enabling application to include fine-grained requirements. Note
that the extended manifest file is parsed by MobileIFC and not by the underly-
ing OS and hence no changes are needed in the OS. Third, it provides tools to
refine and merge user policies and application manifests. Finally, it provides the
platform for application deployment that efficiently deploy the chunks, associate
appropriate information flow labels to each chunk based on the user policies and
provides the enforcement layer to provably ensure that communication patterns
of the application always satisfy the chunk labels. The platform also resolves

<?xml version ="1.0" encoding ="utf -8"?>

<policy >

<condition name =" worklocation ">

<type value=" geolocation "></type >

<latitude >35.769915 </ latitude >

<longitude > -78.599146 </ longitude >

</condition >

<permission name =" permission .CAMERA"

condition =" worklocation " condition -match=" deny " />

</policy >

Fig. 5: Context-aware policy example in MobileIFC.

context, such as the device’s location, for administering context-aware policies
by invoking appropriate resource access APIs of the underlying OS.

Figure 4 shows a high level view of our implementation presented in regards
to our running banking example. The application chunks are contained and de-
ployed as individual ADsafe objects to achieve complete isolation between chunks
and to prevent any direct access to the device’s resources. MobileIFC provides
a set of APIs that are exposed to the application chunks to (1) access resources
and (2) support both unidirectional and bidirectional communication among the
chunks. These APIs are available as an add-on library for the application devel-
opers as part of the software development process (e.g. as an eclipse add-on) and
packaged into the PhoneGap framework to be made available to the application
code at runtime. We anticipate that packaging of the application with the hybrid
framework would be done by a trusted party, such as an app store, to prevent
malicious application developers to deploy a modified hybrid framework.

During the application’s deployment into the app store, the application de-
velopers provide their chunk requirements as part of a manifest file. For our
implementation, the manifest’s specification is build on top of Android’s man-
ifest format to include conditions for specifying fine-grained requirements. For
policy specification, we currently provide our own custom language for writing
the privacy policies (see Figure 5 for an example), however, we are in the process
of porting the standard policy language, XACML [28], to specify such policies.
The user can specify his privacy policies in the language using the interfaces
provided by MobileIFC.

At application installation, MobileIFC verifies whether the application re-
quirements detailed in the manifest satisfy the user policies and informs the user
in case of conflicts. If the user policies are not marked as mandatory, the user
has the option to resolve the conflicts before the application is added. At the
time of approval, the user can selectively choose to prevent certain flows at the
cost of degradation of functionality. The approved flows of the user manifest
are fed to the Policy Manager, which applies the mediation policies into the
Proxy Engine based on the manifest. The users can also modify their policies
using MobileIFC’s interfaces any time after the application’s installation with
the updates being handled by the Policy Manager.

The Policy Manager translates the high-level user policies into low-level,
pluggable deployment of such policies. It creates templates for the policies, where
context-based conditions are specified as informative variables that need to be
resolved by the Proxy Engine at runtime. In a simplistic representation, the
state-based policy from Section 2.2 would translate into the following:

if VAR(geolocation . getCurrentLocation) == CONST(Pentagon)

!allow Permissions .CAMERA

This directs the Proxy Engine to resolve the VAR by invoking the PhoneGap API
geolocation.getCurrentLocation and compare it with the CONST Pentagon

that is supplied as part of the high-level policy. The condition is verified before
access to any API that requires CAMERA permission is provided.

The MobileIFC framework tracks and enforces information flow using a la-
beling system based on existing models [24, 30]; we omit further details in the
paper.

5 Evaluation

The main goals for our evaluation are to determine whether the user’s pri-
vacy policies are actually enforced for an application deployed on MobileIFC and
whether the impact this architecture has on the mobile user and on the appli-
cation developer is acceptable. To determine whether the policy enforcement in
MobileIFC protects the user’s privacy, we modified our banking application such
that in addition to its normal functionality, it would also try to leak information
by creating different attack scenarios. For example, the application would try
to send the bank credentials to google.com. The privacy policies we considered
in our evaluation restricted the communication of banking credentials only to
bank.com, thus these information leaks have to be stopped by MobileIFC. To
determine whether MobileIFC is an attractive approach for the end user, we an-
alyzed the performance impact of its runtime enforcement. Finally, to determine
the impact on the application developer, we analyzed the burden on the devel-
opment process by measuring the amount of code changes necessary to adapt
the application to the MobileIFC platform. In addition to the banking applica-
tion, we also developed a healthcare application (based on Microsoft’s Health
Vault [7]) and a financial management application (based on mint.com [8]) to
show the viability of application development in MobileIFC.

5.1 Security Analysis

Our analysis aims to show that MobileIFC prevents applications from leaking
any user information. We tested the ability of our prototype by creating synthetic
exploits that attempt to break out of MobileIFC’s information flow control model
to leak user information. We enhanced the ability of our banking application to
launch these attacks against our prototype; if successful, these attacks would
allow the application to leak information to entities outside the system.

Table 1 shows the results of testing our prototype against a wide range of
these synthetic attacks. In all our experimental tests, MobileIFC successfully pre-

Attack Attack Step
Example attack in the

banking application

Prevented

by Mo-

bileIFC?

A1 One chunk creating illicit connection to
another chunk

C3 makes a connection to
C2

√

A2 Leaks via the reverse path of a unidi-
rectional inter-chunk communication

C1 leaking credentials to
C2

√

A3 Chunk retrieves unapproved user infor-
mation

C2 retrieves contact list
√

A4 Leaks to an unknown external entity
C3 leaks contact list to
evil.com

√

A5 Leaking restricted information to an al-
lowed external entity

C1 sends credentials to
google.com

√

Table 1: Prevention of information leaks against various synthetic attacks.

vented all leaks before the information could be passed outside the system. Our
ADsafe-based containment of chunks and complete mediation of communication
to external entities by MobileIFC contributed to the prevention of A1 and A4.
A2 was prevented by the one-way communication enforcement of MobileIFC. All
access to user data is administered by MobileIFC thus preventing A3. Finally,
the approved external entity for a chunk also determines the input information
it can receive (either from MobileIFC or another chunk). As a result, attack A5
is implicitly prevented at chunk creation.

5.2 Integration Overhead

An application developer tasked with developing hybrid applications for Mo-
bileIFC faces two challenges. First, the application code must be structured into
chunks and, second, the chunks need to be adapted to use MobileIFC’s APIs for
accessing data and resources, or to communicate with each other. The restruc-
turing challenge is tackled to a large degree by existing software development
methods that engineer the code into reusable and maintainable modules. In
other words, current software engineering practices would naturally lead to the
formation of natural chunks within the application code. While these chunks
are defined along functional lines (i.e., they reflect self-contained, inter-related
code and data elements), it is highly probable that they would serve as chunks
in MobileIFC, which defines chunks based on the communication requirements
with external entities.

The second challenge, of adapting chunks to use MobileIFC’s APIs, requires
understanding of the APIs on the part of the developer. While we preserve
the signature of the APIs for data/resource access from the original PhoneGap
APIs, we introduce new APIs for uni- and bi-directional communications. We
designed the MobileIFC support library to minimize the complexity of code
changes required by an application, as shown in the example below.

In a monolithic design, after the application receives the user’s selected bank
location on the map, it makes the following procedure call:

setSelectedLocation (bankLocationID);

In MobileIFC design, this call would be in the form of a inter-chunk unidirec-
tional call from C2 to C1 as follows:

MobileIFC .callRemoteFunctionNoReturn

("C1", "setSelectedLocation ", bankLocationID);

While this code transformation is currently done manually, the simplicity of the
change and its purely syntactic form means that it can be automated, possibly
as part of the software development environment.

While MobileIFC requires additional effort from the application developers
(to compensate for effective enforcement benefits at runtime), our experience
developing the three representative (banking, healthcare and financial manage-
ment) applications show that this effort is reasonably low and can be further
reduced by automating the chunking process.

5.3 Performance Estimates

With an new architectural framework and a new way of developing applica-
tions, it is difficult to accurately predict the impact of our design on the perfor-
mance of these applications. Most of the cost to provide information flow control
is amortized at application initialization as each chunk is only given access to
the capability object of the resources that are allowed for that chunk (Figure 2).
This object is modified accordingly to include any runtime policy changes. This is
sufficient for flow control if no context-aware policies are specified for a resource.

In cases where context-aware policies are defined, the context needs to be
resolved at runtime at the time when resource access is requested. This results
in runtime performance overhead associated with mediation of resource access
and resolution of context. To get a rough estimate of the cost of supporting the
MobileIFC design and the overhead involved in our system, we conducted ex-
periments against our sample banking application, measuring overhead imposed
by the mediating design of MobileIFC.

The experiments were performed on Motorola Atrix phone with dual-core
1GHz processor and 1 GB RAM running Android 2.3.4. Each test was run 10
times and values were averaged. The results show that the overhead introduced
by MobileIFC’s mediated checks is negligible with a each check amounting to
5.2ms. The cost of context resolution was dependent on the sensor being queried,
with values of 1.3 seconds for geolocation resolution, 3.5 seconds for access point
lookups and 5.2 seconds for Bluetooth device discovery.

While these performance numbers may vary considerably based on the hard-
ware sensors available in the mobile device, they still provide an intuition that
the user’s runtime experience of the application would potentially be impacted
by context resolution. These numbers can be amortized by caching the results

of sensor queries across applications and by intelligent sampling. We plan to
consider such options as part of our future work.

6 Discussion

In this section, we discuss limitations of the application design in MobileIFC
and address some of the challenges originating from the new requirements im-
posed by our design.

MobileIFC’s containment mechanism uses ADsafe to limit access of the appli-
cation code to within chunk boundaries. ADsafe only applies to web technologies
that are primarily used to develop hybrid applications. However, certain hybrid
frameworks such as PhoneGap also support an ability to add plugin code in the
native programming language of the underlying OS (e.g. Java for Android and
Objective-C for iOS). Such code also needs to be constrained to control access
to the APIs exposed by the OS. There are multiple approaches to address this
challenge. The plugin code inherits the permissions given to the hybrid frame-
work and therefore, the first approach is to limit the permissions given to the
hybrid platform that would also constrain the plugin. However, support of a
new permission model would need modifications to the underlying OS. The sec-
ond approach would be to limit the plugin to use safe subsets of the plugin’s
programming language (such as Joe-E for Java [20]). Once the plugin code is
constrained, mediation similar to MobileIFC can be applied to enforce specific
policies. We plan to evaluate some of these approaches as part of future work.

In the current MobileIFC implementation, the application developers are
vested with the additional responsibility to partition their applications along
security-relevant boundaries. MobileIFC’s design, of only allowing flows that are
approved, ensures that an application cannot cheat about its requirements. From
the application developer’s perspective, our design has the additional benefit of
isolating bugs or vulnerabilities within a chunk, giving them another incentive to
adopt MobileIFC. As part of our future work, we plan to automate the process
of creating logical boundaries within existing applications in order to partition
them into chunks based on their input and output requirements. We will explore
ways to leverage source and binary analysis techniques to partition the applica-
tions, thereby reducing the burden on the application developers, while at the
same time preserving the privacy guarantees. Such solutions can be integrated
into development tools such as Worklight Studio [5] to facilitate application de-
velopment for MobileIFC.

While our design goal is to limit the burden on the users, MobileIFC does
impose new usability requirements. The users need to understand the risk as-
sociated with sharing their data with various external entities and formulate
appropriate policies as per their individual requirements. While corporate ad-
ministrators can be expected to be better informed and to develop suitable poli-
cies for corporate users, regular users can use external resources such as Norton
Safe Web [9] to make trust decisions about external entities. Moreover, our pol-
icy language is simple (Figure 5) and can be further complimented by a usable
interface for improved usability.

7 Related Work

Mobile application security has been a major research focus in recent years.
Research has analyzed the security issues of mobile applications for different
mobile platforms, mostly focused on Android [17,19,31] with some work target-
ing iOS [16]. These works mostly target offline analysis of mobile applications
looking for malicious behavior [31], or security evaluation of mobile platforms
and their permission models [18, 19]. Other research target runtime analysis of
the applications and the underlying platforms [13, 17].

TaintDroid [17] is one of the first systems to address IFC for mobile platforms.
TaintDroid exploits dynamic taint analysis in order to label privately declared
data with a taint mark, audit on-track tainted data as it propagates through the
system, and warn the user if tainted data aims to leave the system at a taint sink
(e.g., network interface). However, TaintDroid is limited in its tracking of control
flows due to high performance penalties. AppFence [21] is another system that
extends the TaintDroid framework by allowing users to enable privacy control
mechanisms to help difference between authorized data sharing and malicious
data leakage. While MobileIFC shares a common goal of detecting unauthorized
leakage of sensitive data, its approach is orthogonal to the one taken by Taint-
Droid. Since it pushes the bulk of design decisions before runtime and does not
require low-level taint tracking, MobileIFC successfully improves efficiency and
simplifies enforcement at runtime. Moreover, we are addressing the IFC for hy-
brid applications and hence MobileIFC’s IFC does not require any changed to
the underlying operating system. To the best of our knowledge, we are the first
to provide an IFC solution for hybrid applications.

Saint [26] introduces a fine-grained access control model that enforces secu-
rity decisions based on signatures, configurations and contexts (e.g., phone state
or location). Saint relies on on application developers to define security policies,
therefore, it suffers from the issue of malicious applications intentionally leaking
user data. By contrast, MobileIFC’s permission model is user-centric and pro-
tects against both vulnerable and malicious applications. Moreover, we believe
that users are better suited to understand the value of their own personal data or
resources. As previously mentioned, users also include system administrators of
corporations, therefore MobileIFC also enables enforcement of corporate security
policies in BYOD setups.

Both Apex [25] and CRePE [14] focus on enabling/disabling functionalities
and enforcing runtime constraints on mobile applications. While Apex provides
the user with the means to selectively choose the permissions and runtime con-
straints each application has, CRePE enables the enforcement of context-related
policies similar to MobileIFC. However, their enforcement is too coarse-grained
and is limited to only access control. For instance, networking would be disabled
for all applications, not just particular ones. Moreover, it requires rooting of the
device for enable enforcement in the Android OS, while our solution provides
the enforcement in the application’s hybrid runtime. Aurasium [29] and Dr. An-
droid [22] use application repackaging to enable policy enforcement at runtime
and does not require any OS modifications. Even though both systems support

finer-grained policies, such as allowing access to specific external IPs, they still
do not provide information flow control. However, MobileIFC can benefit from
some of these repackaging techniques to automatically modularize applications
into chunks. We will explore this as future work.

New mobile OSes, such as ChromeOS [3] and FirefoxOS [4], enable web appli-
cations to have native access to device’s resources. These new platforms provide
alternatives to the traditional mobile OSes (such as Android and iOS), and re-
quire explicit installation. In contrast, hybrid platforms enable web technologies
to be used for application development in traditional OSes. While our current
solution is built for hybrid platforms, some of the techniques, such as context-
aware permission control, can be applied to the new OSes; one difference being
that MobileIFC has to be built into the OS itself.

8 Conclusions

We presented a practical design of a novel framework, called MobileIFC, that
considerably improves privacy control in the presence of untrusted hybrid mobile
applications. Our design allows the applications to access sensitive user data
while preventing them from leaking such data to external entities. MobileIFC
redesigns the applications to achieve efficient information flow control over user
content passed through these applications.

We also introduced a flexible permission model that enables the users to spec-
ify fine-grained, context-aware policies. Our model supplements user approved
policies with an ability to specify generic, high-level, mandatory policies. We
developed a working prototype of our MobileIFC system and used it for devel-
oping representative applications to demonstrate viability of MobileIFC and its
applicability to real-world scenarios.

With portability and ease of application development driving the evolution
of new hybrid frameworks, the number of hybrid applications will continue to
rise. With their increased reliance on new code (via JavaScript) available at
runtime, hybrid applications will stretch the limits of the current solutions to
mobile application security. We believe that MobileIFC provides a practical di-
rection for the development of efficient security and privacy solutions for mobile
applications.

References

1. ADSafe. http://www.adsafe.org.

2. Apps Created with PhoneGap. http://phonegap.com/app/.

3. Chrome OS. http://www.chromium.org/chromium-os.
4. Firefox OS. https://developer.mozilla.org/Firefox_OS.

5. IBM Worklight. http://www-03.ibm.com/software/products/us/en/

worklight/.

6. IGN Dominate. http://wireless.ign.com/articles/116/1167824p1.html.
7. Microsoft HealthVault. http://www.microsoft.com/en-us/healthvault/.

8. Mint. https://www.mint.com/.

9. Norton Safe Web. http://safeweb.norton.com/.
10. PhoneGap. http://www.phonegap.com.

11. Sencha. http://www.sencha.com.
12. B. Bergstein. IBM Faces the Perils of “Bring Your Own De-

vice”, May 2012. http://www.technologyreview.com/news/427790/

ibm-faces-the-perils-of-bring-your-own-device/.
13. S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and B. Shastry.

Towards Taming Privilege-Escalation Attacks on Android. In NDSS, San Diego,
CA, Feb. 2012.

14. M. Conti, V. T. N. Nguyen, and B. Crispo. CRePE: Context-related Policy En-
forcement for Android. In ISC, Boca Raton, FL, Oct. 2011.

15. L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy. Privilege Escalation
Attacks on Android. In ISC, Boca Raton, FL, Oct. 2011.

16. M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS: Detecting Privacy Leaks in
iOS Applications. In NDSS, San Diego, CA, Feb. 2011.

17. W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N.
Sheth. TaintDroid: An Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones. In OSDI, Vancouver, Canada, Oct. 2010.

18. W. Enck, M. Ongtang, and P. McDaniel. On Lightweight Mobile Phone Applica-
tion Certification. In CCS, Chicago, IL, Nov. 2009.

19. A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin. Permission Re-
Delegation: Attacks and Defenses. In USENIX Security Symposium, San Fransisco,
CA, Aug. 2011.

20. M. Finifter, A. Mettler, N. Sastry, and D. Wagner. Verifiable Functional Purity in
Java. In CCS, Alexandria, VA, Oct. 2008.

21. P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall. “These Aren’t the
Droids You’re Looking For”: Retrofitting Android to Protect Data from Imperious
Applications. In CCS, Chicago, IL, Oct. 2011.

22. J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster, and
T. Millstein. Dr. Android and Mr. Hide: Fine-grained Permissions in Android
Applications. In SPSM Workshop, Raleigh, NC, Oct. 2012.

23. P. McDougall. IBM Acquires Mobile Specialist Worklight. http://www.

informationweek.com/news/development/mobility/232500829.
24. A. C. Myers and B. Liskov. A Decentralized Model for Information Flow Control.

In SOSP, Saint Malo, France, Oct. 1997.
25. M. Nauman, S. Khan, and X. Zhang. Apex: Extending Android Permission Model

and Enforcement with User-defined Runtime Constraints. In ASIACCS, Beijing,
China, Apr. 2010.

26. M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel. Semantically Rich
Application-Centric Security in Android. In ACSAC, Honolulu, HI, Dec. 2009.

27. K. Singh, S. Bhola, and W. Lee. xBook: Redesigning Privacy Control in Social
Networking Platforms. In USENIX Security Symposium, Montreal, Canada, Aug.
2009.

28. M. Verma. XML Security: Control information access with XACML. http://www.
ibm.com/developerworks/xml/library/x-xacml/.

29. R. Xu, H. Sadi, and R. Anderson. Aurasium: Practical Policy Enforcement for
Android Applications. In USENIX Security Symposium, Bellevue, WA, Aug. 2012.

30. N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making Information
Flow Explicit in HiStar. In OSDI, Seattle, WA, November 2006.

31. Y. Zhou and X. Jiang. Dissecting Android Malware: Characterization and Evolu-
tion. In IEEE S&P, San Fransisco, CA, May 2012.

