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Exascale platforms (courtesy Jack Dongarra)

Potential System Architecture 
with a cap of $200M and 20MW  
 Systems 2011 

K computer 
2019  Difference 

Today & 2019 

System peak 10.5 Pflop/s 1 Eflop/s O(100) 

Power 12.7 MW ~20 MW 

System memory 1.6 PB 32 - 64 PB O(10) 

Node performance 128 GF 1,2  or 15TF O(10) – O(100) 

Node memory BW 64 GB/s 2 - 4TB/s O(100) 

Node concurrency 8 O(1k) or 10k O(100) – O(1000) 

Total Node Interconnect BW 20 GB/s 200-400GB/s O(10) 

System size (nodes) 88,124 O(100,000) or O(1M) O(10) – O(100) 

Total concurrency 705,024 O(billion) O(1,000) 

MTTI days O(1 day) - O(10) 
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Exascale platforms

Hierarchical
• 105 or 106 nodes
• Each node equipped with 104 or 103 cores

Failure-prone

MTBF – one node 1 year 10 years 120 years
MTBF – platform 30sec 5mn 1h

of 106 nodes

More nodes ⇒ Shorter MTBF (Mean Time Between Failures)
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Scenario for 2015

Phase-Change memory, read 100GB/sec, write 10GB/sec

Checkpoint size 128GB

C : checkpoint save time: C = 12sec

R: checkpoint recovery time: R = 1.2sec

D: down/reboot time: D = 15sec

Steady-state job utilization of whole platform

p: total number of (multicore) nodes: p = 28 to p = 220

MTBF µ = 1 week, 1 month, 1|10|100|1000 years (per node)
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Platform throughput with optimal checkpointing period
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Error sources (courtesy Franck Cappello)

•  Analysis of error and failure logs 

•  In 2005 (Ph. D. of CHARNG-DA LU) : “Software halts account for the most number of 
outages (59-84 percent), and take the shortest time to repair (0.6-1.5 hours). Hardware 
problems, albeit rarer, need 6.3-100.7 hours to solve.” 

•  In 2007 (Garth Gibson, ICPP Keynote): 

•  In 2008 (Oliner and J. Stearley, DSN Conf.): 
50% 

Hardware 

Conclusion: Both Hardware and Software failures have to be considered 

Software errors: Applications, OS bug (kernel panic), communication libs, File system error and other. 

Hardware errors, Disks, processors, memory, network   
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Faults and failures

A few definitions

Many types of faults: software error, hardware malfunction,
memory corruption

Many possible behaviors: silent, transient, unrecoverable

Restrict to faults that lead to application failures

This includes all hardware faults, and some software ones

Will use terms fault and failure interchangeably

Failure distributionss

Exponential (memoryless)

Weibull (account for infant mortality)
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Failure distributions: with several processors

Processor (or node): any entity subject to failures
⇒ approach agnostic to granularity

If the MTBF is µ with one processor,
what is its value with p processors?

Well, it depends whether with or without rejuvenation /
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Without rejuvenation

Rebooting only faulty processor

Platform failure distribution
⇒ superposition of p IID processor distributions

Simple formula for arbitrary distributions:

µp =
µ

p

with p processors of MTBF µ

Rejuvenation does not matter for Exponential

Rejuvenation harmful for Weibull with k < 1
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Values from the literature

MTBF of one processor: between 1 and 125 years

Shape parameters for Weibull: k = 0.5 or k = 0.7

Failure trace archive from INRIA
(http://fta.inria.fr)

Computer Failure Data Repository from LANL
(http://institutes.lanl.gov/data/fdata)
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Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working

Blocking model: while a checkpoint is taken, no computation can
be performed
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Framework

Periodic checkpointing policy of period T

Independent and identically distributed failures

Applies to a single processor with MTBF µ = µind
Applies to a platform with p processors with MTBF µ = µind

p

coordinated checkpointing
tightly-coupled application
progress ⇔ all processors available

Waste: fraction of time not spent for useful computations
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Waste in fault-free execution

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working Timebase: application base time

TimeFF: with periodic checkpoints
but failure-free

TimeFF = Timebase + #checkpoints × C

#checkpoints =

⌈
Timebase

T − C

⌉
≈ Timebase

T − C
(valid for large jobs)

TimeFF = Timebase
T

T − C
and Waste[FF ] =

TimeFF −Timebase

TimeFF

Waste[FF ] =
C

T
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Waste due to failures

Timebase: application base time

TimeFF: with periodic checkpoints but failure-free

Timefinal: expectation of time with failures

Timefinal = TimeFF + Nfaults × Tlost

Nfaults number of failures during execution
Tlost: average time lost par failures

Nfaults =
Timefinal

µ

Tlost?
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Computing Tlost

T

CT − CRDTlost

P1

P0

P3

P2

Time spent working Time spent checkpointing

Recovery timeDowntime Time

Tlost = D + R +
T

2

⇒ Instants when periods begin and failures strike are independent
⇒ Valid for all distribution laws, regardless of their particular shape
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Waste due to failures

Timefinal = TimeFF + Nfaults × Tlost

Timefinal = TimeFF +
Timefinal

µ
×
(
D + R +

T

2

)

Waste[fail ] =
Timefinal −TimeFF

Timefinal

Waste[fail ] =
1

µ

(
D + R +

T

2

)
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Total waste

TimeFF =TimeFinal (1-Waste[Fail]) TimeFinal ×Waste[Fail ]

TimeFinal

T -C C T -C C T -C C T -C C T -C C

Waste =
Timefinal −Timebase

Timefinal

(1−Waste[fail ])(1−Waste[FF ])Timefinal = Time[base]

1−Waste = (1−Waste[FF ])(1−Waste[fail ])

Waste =
C

T
+

(
1− C

T

)
1

µ

(
D + R +

T

2

)
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Waste minimization

Waste =
C

T
+

(
1− C

T

)
1

µ

(
D + R +

T

2

)
Waste =

u

T
+ v + wT

u = C
(
1− D + R

µ

)
v =

D + R − C/2

µ
w =

1

2µ

Waste minimized for T =
√

u
w

T =
√

2(µ− (D + R))C
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Comparison with Young/Daly

TimeFF =TimeFinal (1-Waste[Fail]) TimeFinal ×Waste[Fail ]

TimeFinal

T -C C T -C C T -C C T -C C T -C C

(
1−Waste[fail ]

)
Timefinal = TimeFF

⇒ T =
√

2(µ− (D + R))C

Daly: Timefinal =
(
1 + Waste[fail ]

)
TimeFF

⇒ T =
√

2(µ+ (D + R))C + C

Young: Timefinal =
(
1 + Waste[fail ]

)
TimeFF and D = R = 0

⇒ T =
√

2µC + C
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Validity of the approach (1/3)

Technicalities

E (Nfaults) = Timefinal
µ and E (Tlost) = D + R + T

2
but expectation of product is not product of expectations
(not independent RVs here)

Enforce C ≤ T to get Waste[FF ] ≤ 1

Enforce D + R ≤ µ and bound T to get Waste[fail ] ≤ 1
but µ = µind

p too small for large p, regardless of µind
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Validity of the approach (2/3)

Several failures within same period?

Waste[fail] accurate only when two or more faults do not
take place within same period

Cap period: T ≤ γµ, where γ is some tuning parameter

Poisson process of parameter θ = T
µ

Probability of having k ≥ 0 failures : P(X = k) = θk

k! e
−θ

Probability of having two or more failures:
π = P(X ≥ 2) = 1− (P(X = 0) +P(X = 1)) = 1− (1 +θ)e−θ

γ = 0.27 ⇒ π ≤ 0.03
⇒ overlapping faults for only 3% of checkpointing segments
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Validity of the approach (3/3)

Enforce T ≤ γµ, C ≤ γµ, and D + R ≤ γµ

Optimal period
√

2(µ− (D + R))C may not belong to
admissible interval [C , γµ]

Waste is then minimized for one of the bounds of this
admissible interval (by convexity)
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Wrap up

Capping periods, and enforcing a lower bound on MTBF
⇒ mandatory for mathematical rigor /
⇒ optimal strategy only known for Exp. distributions /

Not needed for practical purposes ,
• actual job execution uses optimal value
• account for multiple faults by re-executing work until success

Approach surprisingly robust ,
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Framework

Predictor

Exact prediction dates (at least C seconds in advance)

Recall r : fraction of faults that are predicted

Precision p: fraction of fault predictions that are correct

Events

true positive: predicted faults

false positive: fault predictions that did not materialize as
actual faults

false negative: unpredicted faults

r =
TrueP

TrueP + FalseN
and p =

TrueP
TrueP + FalseP
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Fault rates

µ: mean time between failures (MTBF)

µP mean time between predicted events (both true positive
and false positive)

µNP mean time between unpredicted faults (false negative).

µe : mean time between events (including all three event
types)

(1− r)

µ
=

1

µNP
r

µ
=

p

µP

1

µe
=

1

µP
+

1

µNP
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Algorithm

1 While no fault prediction is available:
• checkpoints taken periodically with period T

2 When a fault is predicted at time t:
• take a checkpoint ALAP (completion right at time t)
• after the checkpoint, complete the execution of the period
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Computing the waste

1 Fault-free execution: Waste[FF ] = C
T

2 Unpredicted faults: 1
µNP

[
D + R + T

2

]
3 Predictions: 1

µP
[p(C + D + R) + (1− p)C ]

Waste[fail ] =
1

µ

[
(1− r)

T

2
+ D + R +

r

p
C

]

Topt ≈
√

2µC

1− r
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Background: coordinated checkpointing protocols

Coordinated checkpoints over all
processes

Global restart after a failure

P0

P1

P2

m1 m2 m3

m4 m5

, No risk of cascading rollbacks

, No need to log messages

/ All processors need to roll back
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Background: message logging protocols

Message content logging (sender
memory)

Restart of the failed process

P0

P1

P2

m1 m2 m3

m4 m5

, No cascading rollbacks

, Number of processes to roll back

/ Memory occupation

/ Overhead
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Background: hierarchical protocols

Clusters of processes

Coordinated checkpointing
protocol within clusters

Message logging protocols between
clusters

Only processors from failed group
need to roll back

P0

P1

P2

P3

m1

m2

m3

m4

m5

/ Need to log inter-groups messages
• Slowdowns failure-free execution
• Increases checkpoint size/time

, Faster re-execution with logged messages
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Which checkpointing protocol to use?

Coordinated checkpointing

, No risk of cascading rollbacks

, No need to log messages

/ All processors need to roll back

/ Rumor: May not scale to very large platforms

Hierarchical checkpointing

/ Need to log inter-groups messages
• Slowdowns failure-free execution
• Increases checkpoint size/time

, Only processors from failed group need to roll back

, Faster re-execution with logged messages

, Rumor: Should scale to very large platforms
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Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working

Blocking model: checkpointing blocks all computations
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Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunk

Processing the first chunk

Time

Time spent checkpointing

Time spent working

Non-blocking model: checkpointing has no impact on
computations (e.g., first copy state to RAM, then copy RAM to
disk)
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Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Processing the first chunk

Time

Time spent working

Time spent checkpointing

Time spent working with slowdown

General model: checkpointing slows computations down: during
a checkpoint of duration C , the same amount of computation is
done as during a time αC without checkpointing (0 ≤ α ≤ 1)
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Waste in fault-free execution

T

CT − C

P1

P0

P3

P2

Time spent working Time spent checkpointing Time spent working with slowdown

Time

Time elapsed since last checkpoint: T

Amount of computations executed: Work = (T − C ) + αC

Waste[FF ] = T−Work
T
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Waste due to failures

P0

P3

P2

P1

Time spent checkpointingTime spent working Time spent working with slowdown

Time

Failure can happen

1 During computation phase

2 During checkpointing phase
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Waste due to failures

P2

P1

P3

P0

Time spent working Time spent checkpointing Time spent working with slowdown

Time
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Waste due to failures

P2

P1

P3

P0

Time spent working Time spent checkpointing Time spent working with slowdown

Time
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Waste due to failures

Tlost

P1

P3

P0

P2

Time spent working Time spent checkpointing Time spent working with slowdown

Time

Coordinated checkpointing protocol: when one processor is victim
of a failure, all processors lose their work and must roll back to last
checkpoint
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Waste due to failures in computation phase

D

P0

P2

P1

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Downtime Time
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Waste due to failures in computation phase

R

P2

P1

P3

P0

Time spent checkpointingTime spent working Time spent working with slowdown

Recovery timeDowntime Time

Coordinated checkpointing protocol: all processors must recover
from last checkpoint
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Waste due to failures in computation phase

C αC

P3

P2

P1

P0

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Redo the work destroyed by the failure, that was done in the
checkpointing phase before the computation phase

But no checkpoint is taken in parallel, hence this re-execution is
faster than the original computation
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Waste due to failures in computation phase

T − C

P1

P0

P3

P2

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Re-execute the computation phase
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Waste due to failures in computation phase

C

P3

P2

P1

P0

Time spent checkpointingTime spent working Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Finally, the checkpointing phase is executed
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Total waste

∆

αC CT − CRDTlost

P0

P2

P1

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime

T

Time

Waste[fail ] =
1

µ

(
D + R + αC +

T

2

)
Optimal period Topt =

√
2(1− α)(µ− (D + R))C
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Hierarchical checkpointing

T

α(G−g+1)C

RD G .C

T−G .C−Tlost

TlostTlost

G2

G4

Gg

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Processors partitioned into G groups

Each group includes q processors

Inside each group: coordinated checkpointing in time C (q)

Inter-group messages are logged
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Accounting for message logging: Impact on work

/ Logging messages slows down execution:
⇒ Work becomes λWork, where 0 < λ < 1
Typical value: λ ≈ 0.98

, Re-execution after a failure is faster:
⇒ Re-Exec becomes Re-Exec

ρ , where ρ ∈ [1..2]
Typical value: ρ ≈ 1.5

Waste[FF ] =
T − λWork

T

Waste[fail ] =
1

µ

(
D(q) + R(q) +

Re-Exec

ρ

)
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Accounting for message logging: Impact on checkpoint size

Inter-groups messages logged continuously

Checkpoint size increases with amount of work executed
before a checkpoint

C0(q): Checkpoint size of a group without message logging

C (q) = C0(q)(1 + βWork)⇔ β =
C (q)− C0(q)

C0(q)Work

Work = λ(T − (1− α)GC (q))

C (q) =
C0(q)(1 + βλT )

1 + GC0(q)βλ(1− α)
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Three case studies

Coord-IO
Coordinated approach: C = CMem = Mem

bio

where Mem is the memory footprint of the application

Hierarch-IO
Several (large) groups, I/O-saturated
⇒ groups checkpoint sequentially

C0(q) =
CMem

G
=

Mem

Gbio

Hierarch-Port
Very large number of smaller groups, port-saturated
⇒ some groups checkpoint in parallel
Groups of qmin processors, where qminbport ≥ bio
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Three applications

1 2D-stencil

2 Matrix product
3 3D-Stencil

Plane
Line
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Computing β for 2D-Stencil

C (q) = C0(q) + Logged Msg = C0(q)(1 + βWork)

Real n × n matrix and p × p grid
Work = 9b2

sp
, b = n/p

Each process sends a block to its 4 neighbors

Hierarch-IO:

1 group = 1 grid row

2 out of the 4 messages are logged

β =
2sp
9b3

Hierarch-Port:

β doubles

yves.robert@ens-lyon.fr Fault-tolerance for HPC 50/ 71



Introduction Probabilistic Models Conclusion

Four platforms: basic characteristics

Name Number of Number of Number of cores Memory I/O Network Bandwidth (bio) I/O Bandwidth (bport)
cores processors ptotal per processor per processor Read Write Read/Write per processor

Titan 299,008 16,688 16 32GB 300GB/s 300GB/s 20GB/s
K-Computer 705,024 88,128 8 16GB 150GB/s 96GB/s 20GB/s

Exascale-Slim 1,000,000,000 1,000,000 1,000 64GB 1TB/s 1TB/s 200GB/s
Exascale-Fat 1,000,000,000 100,000 10,000 640GB 1TB/s 1TB/s 400GB/s

Name Scenario G (C (q)) β for β for
2D-Stencil Matrix-Product

Coord-IO 1 (2,048s) / /
Titan Hierarch-IO 136 (15s) 0.0001098 0.0004280

Hierarch-Port 1,246 (1.6s) 0.0002196 0.0008561

Coord-IO 1 (14,688s) / /
K-Computer Hierarch-IO 296 (50s) 0.0002858 0.001113

Hierarch-Port 17,626 (0.83s) 0.0005716 0.002227

Coord-IO 1 (64,000s) / /
Exascale-Slim Hierarch-IO 1,000 (64s) 0.0002599 0.001013

Hierarch-Port 200,0000 (0.32s) 0.0005199 0.002026

Coord-IO 1 (64,000s) / /
Exascale-Fat Hierarch-IO 316 (217s) 0.00008220 0.0003203

Hierarch-Port 33,3333 (1.92s) 0.00016440 0.0006407
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Checkpoint time

Name C

K-Computer 14,688s

Exascale-Slim 64,000

Exascale-Fat 64,000

Large time to dump the memory

Using 1%C

Comparing with 0.1%C for exascale platforms

α = 0.3, λ = 0.98 and ρ = 1.5
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Plotting formulas – Platform: Titan

Stencil 2D Matrix product Stencil 3D

Waste as a function of processor MTBF µ

yves.robert@ens-lyon.fr Fault-tolerance for HPC 53/ 71



Introduction Probabilistic Models Conclusion

Platform: K-Computer

Stencil 2D Matrix product Stencil 3D

Waste as a function of processor MTBF µ
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Plotting formulas – Platform: Exascale

Waste = 1 for all scenarios!!!
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Plotting formulas – Platform: Exascale

Waste = 1 for all scenarios!!!

Goodbye Exascale?!
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Plotting formulas – Platform: Exascale with C = 1, 000

Stencil 2D Matrix product Stencil 3D
E

xa
sc

al
e-

S
lim

E
xa
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al

e-
F

at

Waste as a function of processor MTBF µ, C = 1, 000
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Plotting formulas – Platform: Exascale with C = 100

Stencil 2D Matrix product Stencil 3D
E
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S
lim
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F

at

Waste as a function of processor MTBF µ, C = 100
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Simulations – Platform: Titan

Stencil 2D Matrix product
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Simulations – Platform: Exascale with C = 1, 000

Stencil 2D Matrix product
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Simulations – Platform: Exascale with C = 100

Stencil 2D Matrix product
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Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 Probabilistic models and execution scenarios
Young/Daly’s approximation
Failure Prediction
Checkpointing protocols
Coordinated checkpointing
Hierarchical checkpointing
Replication

3 Conclusion
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Process replication

• • • • • • . . . �

1 2 3 4 5 6 . . . N

⇓

•
•

•
•

•
• . . .

•
•

1 2 3 . . . nrg

Each process replicated g ≥ 2 times → replica-group

nrg = number of replica-groups (g × nrg = N)

Study for g = 2 by Ferreira et al., SC’2011
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Number of failures to bring down application

MNFTI ah Count each failure hitting any of the g · nrg initial
processors, including those already hit by a failure

MNFTI rp Count failures that hit running processors, and thus
effectively kill replicas.

MNFTI ah = 1 + MNFTI rp
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Analogy with birthday problem

November 21st, 2011 Sixth workshop of the Joint Laboratory 7
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Analogy with birthday problem

November 21st, 2011 Sixth workshop of the Joint Laboratory 8

...

1 2 365

365/365 * 364/365 * 363/365 * … n = nrg bins, throw balls until one bin gets two balls
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Introduction Probabilistic Models Conclusion

Analogy with birthday problem

November 21st, 2011 Sixth workshop of the Joint Laboratory 8

...

1 2 365

365/365 * 364/365 * 363/365 * … n = nrg bins, throw balls until one bin gets two balls

Expected number of balls to throw:
Birthday(n) = 1 +

∫ +∞
0 e−x(1 + x/n)n−1dx
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Analogy with birthday problem

November 21st, 2011 Sixth workshop of the Joint Laboratory 9

...

1 2 365

365/365 * 364/365 * 363/365 * … 
But second failure may hit already struck replica /
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Analogy with birthday problem

� � � � . . . �
1 2 3 4 . . . n

⇑

• • • • • • • • • • • . . .
n = nrg bins, red and blue balls

MNFTI ah = expected number of balls to throw
until one bin gets one ball of each color
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Exponential failures, g = 2

Theorem MNFTI ah = E(NFTI ah|0) where

E(NFTI ah|nf ) =

{
2 if nf = nrg ,

2nrg
2nrg−nf +

2nrg−2nf
2nrg−nf E

(
NFTI ah|nf + 1

)
otherwise.

E(NFTI ah|nf ): expectation of number of failures to kill
application, knowing that
• application is still running
• failures have already hit nf different replica-groups
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Exponential failures, g = 2 (cont’d)

Proof

E
(
NFTI ah |nrg

)
=

1

2
× 1 +

1

2
×
(

1 + E
(
NFTI ah |nrg

))
.

E
(
NFTI ah|nf

)
=

2nrg − 2nf
2nrg

×
(

1 + E
(
NFTI ah|nf + 1

))
+

2nf
2nrg

×
(

1

2
× 1 +

1

2

(
1 + E

(
NFTI ah|nf

)))
.

MTTI = systemMTBF (2nrg)× MNFTI ah
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Exponential failures, g = 2 (cont’d)

Proof
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(
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Failure distribution

R(t) probability that application still running at time t
• All replica-groups have at least one replica running

• Exponential: R(t) =
(
1−

(
1− e−λt

)g)nrg
• Weibull: R(t) =

(
1−

(
1− e−( t

λ)
k
)g)nrg

• Can use dynamic programming algorithms for
sequential/parallel jobs

MTTI
• MTTI =

∫ +∞
0 R(t)dt → closed-form formulas

• Assess the impact of replication for various scenarios ,
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Failure distribution
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(b) Weibull, k = 0.7

Crossover point for replication when µ = 125 years
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Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 Probabilistic models and execution scenarios
Young/Daly’s approximation
Failure Prediction
Checkpointing protocols
Coordinated checkpointing
Hierarchical checkpointing
Replication

3 Conclusion
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Conclusion

Multiple approaches to Fault Tolerance

Application-specific FT will always provide more benefits

General-purpose FT will always be needed

Not every computer scientist needs to learn how to write
fault-tolerant applications
Not all parallel applications can be ported to a fault-tolerant
version

Faults are a feature of the platform. Why should it be the role
of the programmers to handle them?
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Conclusion

Software/hardware techniques to reduce checkpoint, recovery,
migration times and to improve failure prediction

Multi-criteria scheduling problem
execution time/energy/reliability
add replication
best resource usage (performance trade-offs)

Need combine all these approaches!

Several challenging algorithmic/scheduling problems ,

Extended version of this talk: see SC’12 tutorial

yves.robert@ens-lyon.fr Fault-tolerance for HPC 71/ 71


	Introduction
	Large-scale computing platforms
	Faults and failures

	Probabilistic models and execution scenarios
	Young/Daly's approximation
	Failure Prediction
	Checkpointing protocols
	Coordinated checkpointing
	Hierarchical checkpointing
	Replication

	Conclusion

