
Introduction Probabilistic Models Conclusion

Models for fault-tolerance at very large scale

Yves Robert

ENS Lyon & Institut Universitaire de France
University of Tennessee Knoxville

yves.robert@ens-lyon.fr

http://graal.ens-lyon.fr/~yrobert/espas2013.pdf

ESPAS 2013

yves.robert@ens-lyon.fr Fault-tolerance for HPC 1/ 71

yves.robert@ens-lyon.fr
http://graal.ens-lyon.fr/~yrobert/espas2013.pdf

Introduction Probabilistic Models Conclusion

Thanks

INRIA & ENS Lyon

Frédéric Vivien

PhD students (Guillaume Aupy, Dounia Zaidouni)

UT Knoxville

George Bosilca

Aurélien Bouteiller

Jack Dongarra

Thomas Hérault

Others

Franck Cappello, UIUC-Inria joint lab

Henri Casanova, Univ. Hawai‘i

Amina Guermouche, Univ. Versailles Paris

yves.robert@ens-lyon.fr Fault-tolerance for HPC 2/ 71

Introduction Probabilistic Models Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 Probabilistic models and execution scenarios
Young/Daly’s approximation
Failure Prediction
Checkpointing protocols
Coordinated checkpointing
Hierarchical checkpointing
Replication

3 Conclusion

yves.robert@ens-lyon.fr Fault-tolerance for HPC 3/ 71

Introduction Probabilistic Models Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 Probabilistic models and execution scenarios
Young/Daly’s approximation
Failure Prediction
Checkpointing protocols
Coordinated checkpointing
Hierarchical checkpointing
Replication

3 Conclusion

yves.robert@ens-lyon.fr Fault-tolerance for HPC 4/ 71

Introduction Probabilistic Models Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 Probabilistic models and execution scenarios
Young/Daly’s approximation
Failure Prediction
Checkpointing protocols
Coordinated checkpointing
Hierarchical checkpointing
Replication

3 Conclusion

yves.robert@ens-lyon.fr Fault-tolerance for HPC 5/ 71

Introduction Probabilistic Models Conclusion

Exascale platforms (courtesy Jack Dongarra)

Potential System Architecture
with a cap of $200M and 20MW
 Systems 2011

K computer
2019 Difference

Today & 2019

System peak 10.5 Pflop/s 1 Eflop/s O(100)

Power 12.7 MW ~20 MW

System memory 1.6 PB 32 - 64 PB O(10)

Node performance 128 GF 1,2 or 15TF O(10) – O(100)

Node memory BW 64 GB/s 2 - 4TB/s O(100)

Node concurrency 8 O(1k) or 10k O(100) – O(1000)

Total Node Interconnect BW 20 GB/s 200-400GB/s O(10)

System size (nodes) 88,124 O(100,000) or O(1M) O(10) – O(100)

Total concurrency 705,024 O(billion) O(1,000)

MTTI days O(1 day) - O(10)

yves.robert@ens-lyon.fr Fault-tolerance for HPC 6/ 71

Introduction Probabilistic Models Conclusion

Exascale platforms

Hierarchical
• 105 or 106 nodes
• Each node equipped with 104 or 103 cores

Failure-prone

MTBF – one node 1 year 10 years 120 years
MTBF – platform 30sec 5mn 1h

of 106 nodes

More nodes ⇒ Shorter MTBF (Mean Time Between Failures)

yves.robert@ens-lyon.fr Fault-tolerance for HPC 7/ 71

Introduction Probabilistic Models Conclusion

Exascale platforms

Hierarchical
• 105 or 106 nodes
• Each node equipped with 104 or 103 cores

Failure-prone

MTBF – one node 1 year 10 years 120 years
MTBF – platform 30sec 5mn 1h

of 106 nodes

More nodes ⇒ Shorter MTBF (Mean Time Between Failures)

Exascale

6= Petascale ×1000

yves.robert@ens-lyon.fr Fault-tolerance for HPC 7/ 71

Introduction Probabilistic Models Conclusion

Scenario for 2015

Phase-Change memory, read 100GB/sec, write 10GB/sec

Checkpoint size 128GB

C : checkpoint save time: C = 12sec

R: checkpoint recovery time: R = 1.2sec

D: down/reboot time: D = 15sec

Steady-state job utilization of whole platform

p: total number of (multicore) nodes: p = 28 to p = 220

MTBF µ = 1 week, 1 month, 1|10|100|1000 years (per node)

yves.robert@ens-lyon.fr Fault-tolerance for HPC 8/ 71

Introduction Probabilistic Models Conclusion

Platform throughput with optimal checkpointing period

p Throughput

µ
=
1
w
ee
k 28 91.56%

211 73.75%
214 20.07%
217 2.51%
220 0.31%

p Throughput

µ
=
1
m
o
n
th 28 96.04%

211 88.23%
214 62.28%
217 10.66%
220 1.33%

p Throughput

µ
=
1
ye
ar

28 98.89%
211 96.80%
214 90.59%
217 70.46%
220 15.96%

p Throughput

µ
=
1
0
ye
ar
s 28 99.65%

211 99.00%
214 97.15%
217 91.63%
220 74.01%

p Throughput
µ
=
1
0
0
ye
ar
s 28 99.89%

211 99.69%
214 99.11%
217 97.45%
220 92.56%

p Throughput

µ
=
1
0
0
0
ye
ar
s 28 99.97%

211 99.90%
214 99.72%
217 99.20%
220 97.73%

yves.robert@ens-lyon.fr Fault-tolerance for HPC 9/ 71

Introduction Probabilistic Models Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 Probabilistic models and execution scenarios
Young/Daly’s approximation
Failure Prediction
Checkpointing protocols
Coordinated checkpointing
Hierarchical checkpointing
Replication

3 Conclusion

yves.robert@ens-lyon.fr Fault-tolerance for HPC 10/ 71

Introduction Probabilistic Models Conclusion

Error sources (courtesy Franck Cappello)

•  Analysis of error and failure logs

•  In 2005 (Ph. D. of CHARNG-DA LU) : “Software halts account for the most number of
outages (59-84 percent), and take the shortest time to repair (0.6-1.5 hours). Hardware
problems, albeit rarer, need 6.3-100.7 hours to solve.”

•  In 2007 (Garth Gibson, ICPP Keynote):

•  In 2008 (Oliner and J. Stearley, DSN Conf.):
50%

Hardware

Conclusion: Both Hardware and Software failures have to be considered

Software errors: Applications, OS bug (kernel panic), communication libs, File system error and other.

Hardware errors, Disks, processors, memory, network

yves.robert@ens-lyon.fr Fault-tolerance for HPC 11/ 71

Introduction Probabilistic Models Conclusion

Faults and failures

A few definitions

Many types of faults: software error, hardware malfunction,
memory corruption

Many possible behaviors: silent, transient, unrecoverable

Restrict to faults that lead to application failures

This includes all hardware faults, and some software ones

Will use terms fault and failure interchangeably

Failure distributionss

Exponential (memoryless)

Weibull (account for infant mortality)

yves.robert@ens-lyon.fr Fault-tolerance for HPC 12/ 71

Introduction Probabilistic Models Conclusion

Failure distributions: with several processors

Processor (or node): any entity subject to failures
⇒ approach agnostic to granularity

If the MTBF is µ with one processor,
what is its value with p processors?

Well, it depends whether with or without rejuvenation /

yves.robert@ens-lyon.fr Fault-tolerance for HPC 13/ 71

Introduction Probabilistic Models Conclusion

Failure distributions: with several processors

Processor (or node): any entity subject to failures
⇒ approach agnostic to granularity

If the MTBF is µ with one processor,
what is its value with p processors?

Well, it depends whether with or without rejuvenation /

yves.robert@ens-lyon.fr Fault-tolerance for HPC 13/ 71

Introduction Probabilistic Models Conclusion

Without rejuvenation

Rebooting only faulty processor

Platform failure distribution
⇒ superposition of p IID processor distributions

Simple formula for arbitrary distributions:

µp =
µ

p

with p processors of MTBF µ

Rejuvenation does not matter for Exponential

Rejuvenation harmful for Weibull with k < 1

yves.robert@ens-lyon.fr Fault-tolerance for HPC 14/ 71

Introduction Probabilistic Models Conclusion

Values from the literature

MTBF of one processor: between 1 and 125 years

Shape parameters for Weibull: k = 0.5 or k = 0.7

Failure trace archive from INRIA
(http://fta.inria.fr)

Computer Failure Data Repository from LANL
(http://institutes.lanl.gov/data/fdata)

yves.robert@ens-lyon.fr Fault-tolerance for HPC 15/ 71

http://fta.inria.fr
http://institutes.lanl.gov/data/fdata

Introduction Probabilistic Models Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 Probabilistic models and execution scenarios
Young/Daly’s approximation
Failure Prediction
Checkpointing protocols
Coordinated checkpointing
Hierarchical checkpointing
Replication

3 Conclusion

yves.robert@ens-lyon.fr Fault-tolerance for HPC 16/ 71

Introduction Probabilistic Models Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 Probabilistic models and execution scenarios
Young/Daly’s approximation
Failure Prediction
Checkpointing protocols
Coordinated checkpointing
Hierarchical checkpointing
Replication

3 Conclusion

yves.robert@ens-lyon.fr Fault-tolerance for HPC 17/ 71

Introduction Probabilistic Models Conclusion

Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working

Blocking model: while a checkpoint is taken, no computation can
be performed

yves.robert@ens-lyon.fr Fault-tolerance for HPC 18/ 71

Introduction Probabilistic Models Conclusion

Framework

Periodic checkpointing policy of period T

Independent and identically distributed failures

Applies to a single processor with MTBF µ = µind
Applies to a platform with p processors with MTBF µ = µind

p

coordinated checkpointing
tightly-coupled application
progress ⇔ all processors available

Waste: fraction of time not spent for useful computations

yves.robert@ens-lyon.fr Fault-tolerance for HPC 19/ 71

Introduction Probabilistic Models Conclusion

Waste in fault-free execution

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working Timebase: application base time

TimeFF: with periodic checkpoints
but failure-free

TimeFF = Timebase + #checkpoints × C

#checkpoints =

⌈
Timebase

T − C

⌉
≈ Timebase

T − C
(valid for large jobs)

TimeFF = Timebase
T

T − C
and Waste[FF] =

TimeFF −Timebase

TimeFF

Waste[FF] =
C

T

yves.robert@ens-lyon.fr Fault-tolerance for HPC 20/ 71

Introduction Probabilistic Models Conclusion

Waste due to failures

Timebase: application base time

TimeFF: with periodic checkpoints but failure-free

Timefinal: expectation of time with failures

Timefinal = TimeFF + Nfaults × Tlost

Nfaults number of failures during execution
Tlost: average time lost par failures

Nfaults =
Timefinal

µ

Tlost?

yves.robert@ens-lyon.fr Fault-tolerance for HPC 21/ 71

Introduction Probabilistic Models Conclusion

Waste due to failures

Timebase: application base time

TimeFF: with periodic checkpoints but failure-free

Timefinal: expectation of time with failures

Timefinal = TimeFF + Nfaults × Tlost

Nfaults number of failures during execution
Tlost: average time lost par failures

Nfaults =
Timefinal

µ

Tlost?

yves.robert@ens-lyon.fr Fault-tolerance for HPC 21/ 71

Introduction Probabilistic Models Conclusion

Computing Tlost

T

CT − CRDTlost

P1

P0

P3

P2

Time spent working Time spent checkpointing

Recovery timeDowntime Time

Tlost = D + R +
T

2

⇒ Instants when periods begin and failures strike are independent
⇒ Valid for all distribution laws, regardless of their particular shape

yves.robert@ens-lyon.fr Fault-tolerance for HPC 22/ 71

Introduction Probabilistic Models Conclusion

Waste due to failures

Timefinal = TimeFF + Nfaults × Tlost

Timefinal = TimeFF +
Timefinal

µ
×
(
D + R +

T

2

)

Waste[fail] =
Timefinal −TimeFF

Timefinal

Waste[fail] =
1

µ

(
D + R +

T

2

)

yves.robert@ens-lyon.fr Fault-tolerance for HPC 23/ 71

Introduction Probabilistic Models Conclusion

Total waste

TimeFF =TimeFinal (1-Waste[Fail]) TimeFinal ×Waste[Fail]

TimeFinal

T -C C T -C C T -C C T -C C T -C C

Waste =
Timefinal −Timebase

Timefinal

(1−Waste[fail])(1−Waste[FF])Timefinal = Time[base]

1−Waste = (1−Waste[FF])(1−Waste[fail])

Waste =
C

T
+

(
1− C

T

)
1

µ

(
D + R +

T

2

)

yves.robert@ens-lyon.fr Fault-tolerance for HPC 24/ 71

Introduction Probabilistic Models Conclusion

Waste minimization

Waste =
C

T
+

(
1− C

T

)
1

µ

(
D + R +

T

2

)
Waste =

u

T
+ v + wT

u = C
(
1− D + R

µ

)
v =

D + R − C/2

µ
w =

1

2µ

Waste minimized for T =
√

u
w

T =
√

2(µ− (D + R))C

yves.robert@ens-lyon.fr Fault-tolerance for HPC 25/ 71

Introduction Probabilistic Models Conclusion

Comparison with Young/Daly

TimeFF =TimeFinal (1-Waste[Fail]) TimeFinal ×Waste[Fail]

TimeFinal

T -C C T -C C T -C C T -C C T -C C

(
1−Waste[fail]

)
Timefinal = TimeFF

⇒ T =
√

2(µ− (D + R))C

Daly: Timefinal =
(
1 + Waste[fail]

)
TimeFF

⇒ T =
√

2(µ+ (D + R))C + C

Young: Timefinal =
(
1 + Waste[fail]

)
TimeFF and D = R = 0

⇒ T =
√

2µC + C

yves.robert@ens-lyon.fr Fault-tolerance for HPC 26/ 71

Introduction Probabilistic Models Conclusion

Validity of the approach (1/3)

Technicalities

E (Nfaults) = Timefinal
µ and E (Tlost) = D + R + T

2
but expectation of product is not product of expectations
(not independent RVs here)

Enforce C ≤ T to get Waste[FF] ≤ 1

Enforce D + R ≤ µ and bound T to get Waste[fail] ≤ 1
but µ = µind

p too small for large p, regardless of µind

yves.robert@ens-lyon.fr Fault-tolerance for HPC 27/ 71

Introduction Probabilistic Models Conclusion

Validity of the approach (2/3)

Several failures within same period?

Waste[fail] accurate only when two or more faults do not
take place within same period

Cap period: T ≤ γµ, where γ is some tuning parameter

Poisson process of parameter θ = T
µ

Probability of having k ≥ 0 failures : P(X = k) = θk

k! e
−θ

Probability of having two or more failures:
π = P(X ≥ 2) = 1− (P(X = 0) +P(X = 1)) = 1− (1 +θ)e−θ

γ = 0.27 ⇒ π ≤ 0.03
⇒ overlapping faults for only 3% of checkpointing segments

yves.robert@ens-lyon.fr Fault-tolerance for HPC 28/ 71

Introduction Probabilistic Models Conclusion

Validity of the approach (3/3)

Enforce T ≤ γµ, C ≤ γµ, and D + R ≤ γµ

Optimal period
√

2(µ− (D + R))C may not belong to
admissible interval [C , γµ]

Waste is then minimized for one of the bounds of this
admissible interval (by convexity)

yves.robert@ens-lyon.fr Fault-tolerance for HPC 29/ 71

Introduction Probabilistic Models Conclusion

Wrap up

Capping periods, and enforcing a lower bound on MTBF
⇒ mandatory for mathematical rigor /
⇒ optimal strategy only known for Exp. distributions /

Not needed for practical purposes ,
• actual job execution uses optimal value
• account for multiple faults by re-executing work until success

Approach surprisingly robust ,

yves.robert@ens-lyon.fr Fault-tolerance for HPC 30/ 71

Introduction Probabilistic Models Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 Probabilistic models and execution scenarios
Young/Daly’s approximation
Failure Prediction
Checkpointing protocols
Coordinated checkpointing
Hierarchical checkpointing
Replication

3 Conclusion

yves.robert@ens-lyon.fr Fault-tolerance for HPC 31/ 71

Introduction Probabilistic Models Conclusion

Framework

Predictor

Exact prediction dates (at least C seconds in advance)

Recall r : fraction of faults that are predicted

Precision p: fraction of fault predictions that are correct

Events

true positive: predicted faults

false positive: fault predictions that did not materialize as
actual faults

false negative: unpredicted faults

r =
TrueP

TrueP + FalseN
and p =

TrueP
TrueP + FalseP

yves.robert@ens-lyon.fr Fault-tolerance for HPC 32/ 71

Introduction Probabilistic Models Conclusion

Fault rates

µ: mean time between failures (MTBF)

µP mean time between predicted events (both true positive
and false positive)

µNP mean time between unpredicted faults (false negative).

µe : mean time between events (including all three event
types)

(1− r)

µ
=

1

µNP
r

µ
=

p

µP

1

µe
=

1

µP
+

1

µNP

yves.robert@ens-lyon.fr Fault-tolerance for HPC 33/ 71

Introduction Probabilistic Models Conclusion

Algorithm

1 While no fault prediction is available:
• checkpoints taken periodically with period T

2 When a fault is predicted at time t:
• take a checkpoint ALAP (completion right at time t)
• after the checkpoint, complete the execution of the period

yves.robert@ens-lyon.fr Fault-tolerance for HPC 34/ 71

Introduction Probabilistic Models Conclusion

Computing the waste

1 Fault-free execution: Waste[FF] = C
T

2 Unpredicted faults: 1
µNP

[
D + R + T

2

]
3 Predictions: 1

µP
[p(C + D + R) + (1− p)C]

Waste[fail] =
1

µ

[
(1− r)

T

2
+ D + R +

r

p
C

]

Topt ≈
√

2µC

1− r

yves.robert@ens-lyon.fr Fault-tolerance for HPC 35/ 71

Introduction Probabilistic Models Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 Probabilistic models and execution scenarios
Young/Daly’s approximation
Failure Prediction
Checkpointing protocols
Coordinated checkpointing
Hierarchical checkpointing
Replication

3 Conclusion

yves.robert@ens-lyon.fr Fault-tolerance for HPC 36/ 71

Introduction Probabilistic Models Conclusion

Background: coordinated checkpointing protocols

Coordinated checkpoints over all
processes

Global restart after a failure

P0

P1

P2

m1 m2 m3

m4 m5

, No risk of cascading rollbacks

, No need to log messages

/ All processors need to roll back

yves.robert@ens-lyon.fr Fault-tolerance for HPC 37/ 71

Introduction Probabilistic Models Conclusion

Background: message logging protocols

Message content logging (sender
memory)

Restart of the failed process

P0

P1

P2

m1 m2 m3

m4 m5

, No cascading rollbacks

, Number of processes to roll back

/ Memory occupation

/ Overhead

yves.robert@ens-lyon.fr Fault-tolerance for HPC 38/ 71

Introduction Probabilistic Models Conclusion

Background: hierarchical protocols

Clusters of processes

Coordinated checkpointing
protocol within clusters

Message logging protocols between
clusters

Only processors from failed group
need to roll back

P0

P1

P2

P3

m1

m2

m3

m4

m5

/ Need to log inter-groups messages
• Slowdowns failure-free execution
• Increases checkpoint size/time

, Faster re-execution with logged messages

yves.robert@ens-lyon.fr Fault-tolerance for HPC 39/ 71

Introduction Probabilistic Models Conclusion

Which checkpointing protocol to use?

Coordinated checkpointing

, No risk of cascading rollbacks

, No need to log messages

/ All processors need to roll back

/ Rumor: May not scale to very large platforms

Hierarchical checkpointing

/ Need to log inter-groups messages
• Slowdowns failure-free execution
• Increases checkpoint size/time

, Only processors from failed group need to roll back

, Faster re-execution with logged messages

, Rumor: Should scale to very large platforms

yves.robert@ens-lyon.fr Fault-tolerance for HPC 40/ 71

Introduction Probabilistic Models Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 Probabilistic models and execution scenarios
Young/Daly’s approximation
Failure Prediction
Checkpointing protocols
Coordinated checkpointing
Hierarchical checkpointing
Replication

3 Conclusion

yves.robert@ens-lyon.fr Fault-tolerance for HPC 41/ 71

Introduction Probabilistic Models Conclusion

Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working

Blocking model: checkpointing blocks all computations

yves.robert@ens-lyon.fr Fault-tolerance for HPC 42/ 71

Introduction Probabilistic Models Conclusion

Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunk

Processing the first chunk

Time

Time spent checkpointing

Time spent working

Non-blocking model: checkpointing has no impact on
computations (e.g., first copy state to RAM, then copy RAM to
disk)

yves.robert@ens-lyon.fr Fault-tolerance for HPC 42/ 71

Introduction Probabilistic Models Conclusion

Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Processing the first chunk

Time

Time spent working

Time spent checkpointing

Time spent working with slowdown

General model: checkpointing slows computations down: during
a checkpoint of duration C , the same amount of computation is
done as during a time αC without checkpointing (0 ≤ α ≤ 1)

yves.robert@ens-lyon.fr Fault-tolerance for HPC 42/ 71

Introduction Probabilistic Models Conclusion

Waste in fault-free execution

T

CT − C

P1

P0

P3

P2

Time spent working Time spent checkpointing Time spent working with slowdown

Time

Time elapsed since last checkpoint: T

Amount of computations executed: Work = (T − C) + αC

Waste[FF] = T−Work
T

yves.robert@ens-lyon.fr Fault-tolerance for HPC 43/ 71

Introduction Probabilistic Models Conclusion

Waste due to failures

P0

P3

P2

P1

Time spent checkpointingTime spent working Time spent working with slowdown

Time

Failure can happen

1 During computation phase

2 During checkpointing phase

yves.robert@ens-lyon.fr Fault-tolerance for HPC 43/ 71

Introduction Probabilistic Models Conclusion

Waste due to failures

P2

P1

P3

P0

Time spent working Time spent checkpointing Time spent working with slowdown

Time

yves.robert@ens-lyon.fr Fault-tolerance for HPC 43/ 71

Introduction Probabilistic Models Conclusion

Waste due to failures

P2

P1

P3

P0

Time spent working Time spent checkpointing Time spent working with slowdown

Time

yves.robert@ens-lyon.fr Fault-tolerance for HPC 43/ 71

Introduction Probabilistic Models Conclusion

Waste due to failures

Tlost

P1

P3

P0

P2

Time spent working Time spent checkpointing Time spent working with slowdown

Time

Coordinated checkpointing protocol: when one processor is victim
of a failure, all processors lose their work and must roll back to last
checkpoint

yves.robert@ens-lyon.fr Fault-tolerance for HPC 43/ 71

Introduction Probabilistic Models Conclusion

Waste due to failures in computation phase

D

P0

P2

P1

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Downtime Time

yves.robert@ens-lyon.fr Fault-tolerance for HPC 43/ 71

Introduction Probabilistic Models Conclusion

Waste due to failures in computation phase

R

P2

P1

P3

P0

Time spent checkpointingTime spent working Time spent working with slowdown

Recovery timeDowntime Time

Coordinated checkpointing protocol: all processors must recover
from last checkpoint

yves.robert@ens-lyon.fr Fault-tolerance for HPC 43/ 71

Introduction Probabilistic Models Conclusion

Waste due to failures in computation phase

C αC

P3

P2

P1

P0

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Redo the work destroyed by the failure, that was done in the
checkpointing phase before the computation phase

But no checkpoint is taken in parallel, hence this re-execution is
faster than the original computation

yves.robert@ens-lyon.fr Fault-tolerance for HPC 43/ 71

Introduction Probabilistic Models Conclusion

Waste due to failures in computation phase

T − C

P1

P0

P3

P2

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Re-execute the computation phase

yves.robert@ens-lyon.fr Fault-tolerance for HPC 43/ 71

Introduction Probabilistic Models Conclusion

Waste due to failures in computation phase

C

P3

P2

P1

P0

Time spent checkpointingTime spent working Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Finally, the checkpointing phase is executed

yves.robert@ens-lyon.fr Fault-tolerance for HPC 43/ 71

Introduction Probabilistic Models Conclusion

Total waste

∆

αC CT − CRDTlost

P0

P2

P1

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime

T

Time

Waste[fail] =
1

µ

(
D + R + αC +

T

2

)
Optimal period Topt =

√
2(1− α)(µ− (D + R))C

yves.robert@ens-lyon.fr Fault-tolerance for HPC 43/ 71

Introduction Probabilistic Models Conclusion

yves.robert@ens-lyon.fr Fault-tolerance for HPC 44/ 71

Introduction Probabilistic Models Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 Probabilistic models and execution scenarios
Young/Daly’s approximation
Failure Prediction
Checkpointing protocols
Coordinated checkpointing
Hierarchical checkpointing
Replication

3 Conclusion

yves.robert@ens-lyon.fr Fault-tolerance for HPC 44/ 71

Introduction Probabilistic Models Conclusion

Hierarchical checkpointing

T

α(G−g+1)C

RD G .C

T−G .C−Tlost

TlostTlost

G2

G4

Gg

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Processors partitioned into G groups

Each group includes q processors

Inside each group: coordinated checkpointing in time C (q)

Inter-group messages are logged

yves.robert@ens-lyon.fr Fault-tolerance for HPC 45/ 71

Introduction Probabilistic Models Conclusion

Accounting for message logging: Impact on work

/ Logging messages slows down execution:
⇒ Work becomes λWork, where 0 < λ < 1
Typical value: λ ≈ 0.98

, Re-execution after a failure is faster:
⇒ Re-Exec becomes Re-Exec

ρ , where ρ ∈ [1..2]
Typical value: ρ ≈ 1.5

Waste[FF] =
T − λWork

T

Waste[fail] =
1

µ

(
D(q) + R(q) +

Re-Exec

ρ

)

yves.robert@ens-lyon.fr Fault-tolerance for HPC 46/ 71

Introduction Probabilistic Models Conclusion

Accounting for message logging: Impact on checkpoint size

Inter-groups messages logged continuously

Checkpoint size increases with amount of work executed
before a checkpoint

C0(q): Checkpoint size of a group without message logging

C (q) = C0(q)(1 + βWork)⇔ β =
C (q)− C0(q)

C0(q)Work

Work = λ(T − (1− α)GC (q))

C (q) =
C0(q)(1 + βλT)

1 + GC0(q)βλ(1− α)

yves.robert@ens-lyon.fr Fault-tolerance for HPC 47/ 71

Introduction Probabilistic Models Conclusion

Three case studies

Coord-IO
Coordinated approach: C = CMem = Mem

bio

where Mem is the memory footprint of the application

Hierarch-IO
Several (large) groups, I/O-saturated
⇒ groups checkpoint sequentially

C0(q) =
CMem

G
=

Mem

Gbio

Hierarch-Port
Very large number of smaller groups, port-saturated
⇒ some groups checkpoint in parallel
Groups of qmin processors, where qminbport ≥ bio

yves.robert@ens-lyon.fr Fault-tolerance for HPC 48/ 71

Introduction Probabilistic Models Conclusion

Three applications

1 2D-stencil

2 Matrix product
3 3D-Stencil

Plane
Line

yves.robert@ens-lyon.fr Fault-tolerance for HPC 49/ 71

Introduction Probabilistic Models Conclusion

Computing β for 2D-Stencil

C (q) = C0(q) + Logged Msg = C0(q)(1 + βWork)

Real n × n matrix and p × p grid
Work = 9b2

sp
, b = n/p

Each process sends a block to its 4 neighbors

Hierarch-IO:

1 group = 1 grid row

2 out of the 4 messages are logged

β =
2sp
9b3

Hierarch-Port:

β doubles

yves.robert@ens-lyon.fr Fault-tolerance for HPC 50/ 71

Introduction Probabilistic Models Conclusion

Four platforms: basic characteristics

Name Number of Number of Number of cores Memory I/O Network Bandwidth (bio) I/O Bandwidth (bport)
cores processors ptotal per processor per processor Read Write Read/Write per processor

Titan 299,008 16,688 16 32GB 300GB/s 300GB/s 20GB/s
K-Computer 705,024 88,128 8 16GB 150GB/s 96GB/s 20GB/s

Exascale-Slim 1,000,000,000 1,000,000 1,000 64GB 1TB/s 1TB/s 200GB/s
Exascale-Fat 1,000,000,000 100,000 10,000 640GB 1TB/s 1TB/s 400GB/s

Name Scenario G (C (q)) β for β for
2D-Stencil Matrix-Product

Coord-IO 1 (2,048s) / /
Titan Hierarch-IO 136 (15s) 0.0001098 0.0004280

Hierarch-Port 1,246 (1.6s) 0.0002196 0.0008561

Coord-IO 1 (14,688s) / /
K-Computer Hierarch-IO 296 (50s) 0.0002858 0.001113

Hierarch-Port 17,626 (0.83s) 0.0005716 0.002227

Coord-IO 1 (64,000s) / /
Exascale-Slim Hierarch-IO 1,000 (64s) 0.0002599 0.001013

Hierarch-Port 200,0000 (0.32s) 0.0005199 0.002026

Coord-IO 1 (64,000s) / /
Exascale-Fat Hierarch-IO 316 (217s) 0.00008220 0.0003203

Hierarch-Port 33,3333 (1.92s) 0.00016440 0.0006407

yves.robert@ens-lyon.fr Fault-tolerance for HPC 51/ 71

Introduction Probabilistic Models Conclusion

Checkpoint time

Name C

K-Computer 14,688s

Exascale-Slim 64,000

Exascale-Fat 64,000

Large time to dump the memory

Using 1%C

Comparing with 0.1%C for exascale platforms

α = 0.3, λ = 0.98 and ρ = 1.5

yves.robert@ens-lyon.fr Fault-tolerance for HPC 52/ 71

Introduction Probabilistic Models Conclusion

Plotting formulas – Platform: Titan

Stencil 2D Matrix product Stencil 3D

Waste as a function of processor MTBF µ

yves.robert@ens-lyon.fr Fault-tolerance for HPC 53/ 71

Introduction Probabilistic Models Conclusion

Platform: K-Computer

Stencil 2D Matrix product Stencil 3D

Waste as a function of processor MTBF µ

yves.robert@ens-lyon.fr Fault-tolerance for HPC 54/ 71

Introduction Probabilistic Models Conclusion

Plotting formulas – Platform: Exascale

Waste = 1 for all scenarios!!!

yves.robert@ens-lyon.fr Fault-tolerance for HPC 55/ 71

Introduction Probabilistic Models Conclusion

Plotting formulas – Platform: Exascale

Waste = 1 for all scenarios!!!

Goodbye Exascale?!

yves.robert@ens-lyon.fr Fault-tolerance for HPC 55/ 71

Introduction Probabilistic Models Conclusion

Plotting formulas – Platform: Exascale with C = 1, 000

Stencil 2D Matrix product Stencil 3D
E

xa
sc

al
e-

S
lim

E
xa

sc
al

e-
F

at

Waste as a function of processor MTBF µ, C = 1, 000

yves.robert@ens-lyon.fr Fault-tolerance for HPC 56/ 71

Introduction Probabilistic Models Conclusion

Plotting formulas – Platform: Exascale with C = 100

Stencil 2D Matrix product Stencil 3D
E

xa
sc

al
e-

S
lim

E
xa

sc
al

e-
F

at

Waste as a function of processor MTBF µ, C = 100

yves.robert@ens-lyon.fr Fault-tolerance for HPC 57/ 71

Introduction Probabilistic Models Conclusion

Simulations – Platform: Titan

Stencil 2D Matrix product

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100
M

ak
es

p
an

 (
d
ay

s)
MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k
e
s
p
a
n

(
d
a
y
s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k
e
s
p
a
n

(
d
a
y
s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

Makespan (in days) as a function of processor MTBF µ

yves.robert@ens-lyon.fr Fault-tolerance for HPC 58/ 71

Introduction Probabilistic Models Conclusion

Simulations – Platform: Exascale with C = 1, 000

Stencil 2D Matrix product

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d

ay
s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

E
xa

sc
al

e-
S

lim

 0

 50

 100

 150

 200

 250

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 50

 100

 150

 200

 250

 300

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

E
xa

sc
al

e-
F

at

 0

 50

 100

 150

 200

 250

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 50

 100

 150

 200

 250

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

Makespan (in days) as a function of processor MTBF µ, C = 1, 000

yves.robert@ens-lyon.fr Fault-tolerance for HPC 59/ 71

Introduction Probabilistic Models Conclusion

Simulations – Platform: Exascale with C = 100

Stencil 2D Matrix product

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d

ay
s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

E
xa

sc
al

e-
S

lim

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

E
xa

sc
al

e-
F

at

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated Daly
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

Makespan (in days) as a function of processor MTBF µ, C = 100

yves.robert@ens-lyon.fr Fault-tolerance for HPC 60/ 71

Introduction Probabilistic Models Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 Probabilistic models and execution scenarios
Young/Daly’s approximation
Failure Prediction
Checkpointing protocols
Coordinated checkpointing
Hierarchical checkpointing
Replication

3 Conclusion

yves.robert@ens-lyon.fr Fault-tolerance for HPC 61/ 71

Introduction Probabilistic Models Conclusion

Process replication

• • • • • • . . . �

1 2 3 4 5 6 . . . N

⇓

•
•

•
•

•
• . . .

•
•

1 2 3 . . . nrg

Each process replicated g ≥ 2 times → replica-group

nrg = number of replica-groups (g × nrg = N)

Study for g = 2 by Ferreira et al., SC’2011

yves.robert@ens-lyon.fr Fault-tolerance for HPC 62/ 71

Introduction Probabilistic Models Conclusion

Number of failures to bring down application

MNFTI ah Count each failure hitting any of the g · nrg initial
processors, including those already hit by a failure

MNFTI rp Count failures that hit running processors, and thus
effectively kill replicas.

MNFTI ah = 1 + MNFTI rp

yves.robert@ens-lyon.fr Fault-tolerance for HPC 63/ 71

Introduction Probabilistic Models Conclusion

Number of failures to bring down application

MNFTI ah Count each failure hitting any of the g · nrg initial
processors, including those already hit by a failure

MNFTI rp Count failures that hit running processors, and thus
effectively kill replicas.

MNFTI ah = 1 + MNFTI rp

yves.robert@ens-lyon.fr Fault-tolerance for HPC 63/ 71

Introduction Probabilistic Models Conclusion

Analogy with birthday problem

November 21st, 2011 Sixth workshop of the Joint Laboratory 7

yves.robert@ens-lyon.fr Fault-tolerance for HPC 64/ 71

Introduction Probabilistic Models Conclusion

Analogy with birthday problem

November 21st, 2011 Sixth workshop of the Joint Laboratory 8

...

1 2 365

365/365 * 364/365 * 363/365 * … n = nrg bins, throw balls until one bin gets two balls

yves.robert@ens-lyon.fr Fault-tolerance for HPC 64/ 71

Introduction Probabilistic Models Conclusion

Analogy with birthday problem

November 21st, 2011 Sixth workshop of the Joint Laboratory 8

...

1 2 365

365/365 * 364/365 * 363/365 * … n = nrg bins, throw balls until one bin gets two balls

Expected number of balls to throw:
Birthday(n) = 1 +

∫ +∞
0 e−x(1 + x/n)n−1dx

yves.robert@ens-lyon.fr Fault-tolerance for HPC 64/ 71

Introduction Probabilistic Models Conclusion

Analogy with birthday problem

November 21st, 2011 Sixth workshop of the Joint Laboratory 9

...

1 2 365

365/365 * 364/365 * 363/365 * …
But second failure may hit already struck replica /

yves.robert@ens-lyon.fr Fault-tolerance for HPC 64/ 71

Introduction Probabilistic Models Conclusion

Analogy with birthday problem

� � � � . . . �
1 2 3 4 . . . n

⇑

• • • • • • • • • • • . . .
n = nrg bins, red and blue balls

MNFTI ah = expected number of balls to throw
until one bin gets one ball of each color

yves.robert@ens-lyon.fr Fault-tolerance for HPC 64/ 71

Introduction Probabilistic Models Conclusion

Exponential failures, g = 2

Theorem MNFTI ah = E(NFTI ah|0) where

E(NFTI ah|nf) =

{
2 if nf = nrg ,

2nrg
2nrg−nf +

2nrg−2nf
2nrg−nf E

(
NFTI ah|nf + 1

)
otherwise.

E(NFTI ah|nf): expectation of number of failures to kill
application, knowing that
• application is still running
• failures have already hit nf different replica-groups

yves.robert@ens-lyon.fr Fault-tolerance for HPC 65/ 71

Introduction Probabilistic Models Conclusion

Exponential failures, g = 2 (cont’d)

Proof

E
(
NFTI ah |nrg

)
=

1

2
× 1 +

1

2
×
(

1 + E
(
NFTI ah |nrg

))
.

E
(
NFTI ah|nf

)
=

2nrg − 2nf
2nrg

×
(

1 + E
(
NFTI ah|nf + 1

))
+

2nf
2nrg

×
(

1

2
× 1 +

1

2

(
1 + E

(
NFTI ah|nf

)))
.

MTTI = systemMTBF (2nrg)× MNFTI ah

yves.robert@ens-lyon.fr Fault-tolerance for HPC 66/ 71

Introduction Probabilistic Models Conclusion

Exponential failures, g = 2 (cont’d)

Proof

E
(
NFTI ah |nrg

)
=

1

2
× 1 +

1

2
×
(

1 + E
(
NFTI ah |nrg

))
.

E
(
NFTI ah|nf

)
=

2nrg − 2nf
2nrg

×
(

1 + E
(
NFTI ah|nf + 1

))
+

2nf
2nrg

×
(

1

2
× 1 +

1

2

(
1 + E

(
NFTI ah|nf

)))
.

MTTI = systemMTBF (2nrg)× MNFTI ah

yves.robert@ens-lyon.fr Fault-tolerance for HPC 66/ 71

Introduction Probabilistic Models Conclusion

Exponential failures, g = 2 (cont’d)

Proof

E
(
NFTI ah |nrg

)
=

1

2
× 1 +

1

2
×
(

1 + E
(
NFTI ah |nrg

))
.

E
(
NFTI ah|nf

)
=

2nrg − 2nf
2nrg

×
(

1 + E
(
NFTI ah|nf + 1

))
+

2nf
2nrg

×
(

1

2
× 1 +

1

2

(
1 + E

(
NFTI ah|nf

)))
.

MTTI = systemMTBF (2nrg)× MNFTI ah

yves.robert@ens-lyon.fr Fault-tolerance for HPC 66/ 71

Introduction Probabilistic Models Conclusion

Failure distribution

R(t) probability that application still running at time t
• All replica-groups have at least one replica running

• Exponential: R(t) =
(
1−

(
1− e−λt

)g)nrg
• Weibull: R(t) =

(
1−

(
1− e−(t

λ)
k
)g)nrg

• Can use dynamic programming algorithms for
sequential/parallel jobs

MTTI
• MTTI =

∫ +∞
0 R(t)dt → closed-form formulas

• Assess the impact of replication for various scenarios ,

yves.robert@ens-lyon.fr Fault-tolerance for HPC 67/ 71

Introduction Probabilistic Models Conclusion

Failure distribution

221218 219216 217 220215

number of processors

0

50

100

150

200

av
er

ag
e

m
ak

es
pa

n
(i

n
da

ys
)

BestPeriod-g = 2
BestPeriod-g = 1
Daly-g = 2
Daly-g = 1

(a) Exponential

221218 219216 217 220215

number of processors

0

50

100

150

200

av
er

ag
e

m
ak

es
pa

n
(i

n
da

ys
)

BestPeriod-g = 2
BestPeriod-g = 1
Daly-g = 2
Daly-g = 1

(b) Weibull, k = 0.7

Crossover point for replication when µ = 125 years

yves.robert@ens-lyon.fr Fault-tolerance for HPC 68/ 71

Introduction Probabilistic Models Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 Probabilistic models and execution scenarios
Young/Daly’s approximation
Failure Prediction
Checkpointing protocols
Coordinated checkpointing
Hierarchical checkpointing
Replication

3 Conclusion

yves.robert@ens-lyon.fr Fault-tolerance for HPC 69/ 71

Introduction Probabilistic Models Conclusion

Conclusion

Multiple approaches to Fault Tolerance

Application-specific FT will always provide more benefits

General-purpose FT will always be needed

Not every computer scientist needs to learn how to write
fault-tolerant applications
Not all parallel applications can be ported to a fault-tolerant
version

Faults are a feature of the platform. Why should it be the role
of the programmers to handle them?

yves.robert@ens-lyon.fr Fault-tolerance for HPC 70/ 71

Introduction Probabilistic Models Conclusion

Conclusion

Software/hardware techniques to reduce checkpoint, recovery,
migration times and to improve failure prediction

Multi-criteria scheduling problem
execution time/energy/reliability
add replication
best resource usage (performance trade-offs)

Need combine all these approaches!

Several challenging algorithmic/scheduling problems ,

Extended version of this talk: see SC’12 tutorial

yves.robert@ens-lyon.fr Fault-tolerance for HPC 71/ 71

	Introduction
	Large-scale computing platforms
	Faults and failures

	Probabilistic models and execution scenarios
	Young/Daly's approximation
	Failure Prediction
	Checkpointing protocols
	Coordinated checkpointing
	Hierarchical checkpointing
	Replication

	Conclusion

