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Introduction

Exascale platforms (courtesy Jack Dongarra)

Potential System Architecture
with a cap of $200M and 20MW

Systems 2011 Difference
K computer Today & 2019

System peak 10.5 Pflop/s 1 Eflop/s 0(100)
Power 12.7 MW ~20 MW

System memory 1.6 PB 32-64PB O(10)
Node performance 128 GF 1,2 or 15TF O(10) - O(100)
Node memory BW 64 GB/s 2-4TB/s O(100)
Node concurrency 8 O(1k) or 10k O(100) — O(1000)
Total Node Interconnect BW 20 GB/s 200-400GB/s 0o(10)
System size (nodes) 88,124 O(100,000) or O(1M) O(10) - O(100)
Total concurrency 705,024 Olbillion) O(1,000)
MTTI days o(1 day) -0(10)
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Introduction
Exascale platforms

@ Hierarchical
e 10° or 10% nodes
e Each node equipped with 10* or 103 cores

o Failure-prone

MTBF — one node | 1 year | 10 years | 120 years
MTBF — platform 30sec 5mn 1h
of 10° nodes

More nodes = Shorter MTBF (Mean Time Between Failures)
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Introduction
Exascale platforms

@ Hierarchi™®
e 10° or 10% nod®

Exascale
-+ Petascale x1000
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Introduction
Scenario for 2015

Phase-Change memory, read 100GB/sec, write 10GB/sec
Checkpoint size 128GB

C: checkpoint save time: C = 12sec

R: checkpoint recovery time: R = 1.2sec

D: down/reboot time: D = 15sec

Steady-state job utilization of whole platform

p: total number of (multicore) nodes: p = 28 to p = 2%°
MTBF p = 1 week, 1 month, 1/10/100|1000 years (per node)
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Introduction

Platform throughput with optimal checkpointing period

[ p | Throughput | [ p [ Throughput | [ p [ Throughput |
~ | 28 91.56% < |2 96.04% _ |28 98.89%
g | 2" | 73.75% § |2 | 88.23% g |2 | 96.80%
22| 2007% Bl 6228% o 2] 9059%
“1 217 2.51% ] 2v 10.66% < |2 70.46%
2% 0.31% < | 2% 1.33% 2% 15.96%

[ p | Throughput | [ p [ Throughput ] [ p [ Throughput ]
o [ 28 99.65% PN 99.89% 2 99.97%
g | ou 99.00% g | 2t 99.69% N 99.90%
o | 2% 97.15% 8 | 2# 99.11% S | 2* 99.72%
| 2v 01.63% |2 97.45% ﬁ 217 99.20%
= | 2% 74.01% x| 20 92.56% 220 97.73%
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Introduction

Error sources (courtesy Franck Cappello)

« Analysis of error and failure logs

* In 2005 (Ph. D. of CHARNG-DA LU) : “Software halts account for the most number of
outages (59-84 percent), and take the shortest time to repair (0.6-1.5 hours). Hardware
problems, albeit rarer, need 6.3-100.7 hours to solve.”

* In 2007 (Garth Gibson, ICPP Keynote): um::> Hl—lﬂﬂ ——
Software
80| EINetwork
[JEnvironmend
_ EHuman
t R
& 0,
g 50%
* In 2008 (Oliner and J. Stearley, DSN Conf.): 8 "
Raw Filtered ¢
Type Count % Count % 20)
Hardware 1745805161 004 1990 | 18.78
<__ Software 144,899 0.08 6,814 | 64, o8
Indeterminate 3350044 | 1.88 | 1,832 | 17.21 Pink Blue Red Green Black Al

Relative frequency of root

cause by system type.
Software errors: Applications, OS bug (kernel panic), communication libs, File system error and other.
Hardware errors, Disks, processors, memory, network

Conclusion: Both Hardware and Software failures have to be considered
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Faults and failures

A few definitions

@ Many types of faults: software error, hardware malfunction,
memory corruption

@ Many possible behaviors: silent, transient, unrecoverable
@ Restrict to faults that lead to application failures
@ This includes all hardware faults, and some software ones

@ Will use terms fault and failure interchangeably

Failure distributionss
e Exponential (memoryless)

e Weibull (account for infant mortality)
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Introduction

Failure distributions: with several processors

@ Processor (or node): any entity subject to failures
= approach agnostic to granularity

o If the MTBF is u with one processor,
what is its value with p processors?
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Introduction

Failure distributions: with several processors

@ Processor (or node): any entity subject to failures
= approach agnostic to granularity

o If the MTBF is u with one processor,
what is its value with p processors?

o Well, it depends whether with or without rejuvenation @
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Introduction
Without rejuvenation

@ Rebooting only faulty processor
@ Platform failure distribution
= superposition of p IID processor distributions
@ Simple formula for arbitrary distributions:
Hp = K
Pop
with p processors of MTBF p
@ Rejuvenation does not matter for Exponential
@ Rejuvenation harmful for Weibull with k <1
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Values from the literature

MTBF of one processor: between 1 and 125 years
Shape parameters for Weibull: k = 0.5 or k = 0.7

Failure trace archive from INRIA
(http://fta.inria.fr)

Computer Failure Data Repository from LANL
(http://institutes.lanl.gov/data/fdata)
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Outline

Probabilistic models and execution scenarios
@ Young/Daly's approximation
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Probabilistic Models
©0000

Checkpointing cost

Time spent working
m——Time spent checkpointing

Time

Computing the first chunk (Checkpointing
fthe first chunk

Processing the first chunk Processing the second chunk

Blocking model: while a checkpoint is taken, no computation can
be performed

yves.robert@ens-lyon.fr Fault-tolerance for HPC 1



Probabilistic Models
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Framework

Periodic checkpointing policy of period T

Independent and identically distributed failures

Applies to a single processor with MTBF p = pjpg

Applies to a platform with p processors with MTBF p = %

e coordinated checkpointing
o tightly-coupled application
e progress <> all processors available

Waste: fraction of time not spent for useful computations J

yves.robert@ens-lyon.fr Fault-tolerance for HPC 19/ 71



Probabilistic Models

00000

Waste in fault-free execution

@ TIMEp,se: application base time

m o TIMEgg: with periodic checkpoints
but failure-free

TIMEpr = TIMEpase + #checkpoints x C

(valid for large jobs)

#checkpoints = [TIME*’BSE—‘ . TTMEpase

T-C T-C

TIMEFr — TIMEp;se
TIMEEg

T
TIMEFE = TIMEpase ——— T and WASTE[FF]| =

WASTE[FF] = =
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Probabilistic Models
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Waste due to failures

@ TIMEpsse: application base time
o TIMEpg: with periodic checkpoints but failure-free

@ TIMEfna: expectation of time with failures
TIMEfinal = TIMEFF + Nfau/ts X 7_Iost

Neauies number of failures during execution
Tost: average time lost par failures
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Waste due to failures

@ TIMEpsse: application base time
o TIMEpg: with periodic checkpoints but failure-free

@ TIMEfna: expectation of time with failures
TIMEfinal = TIMEFF + Nfau/ts X 7_Iost

Neauies number of failures during execution
Tost: average time lost par failures

TIMEfinal
Nfaults =

7-|05t?
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Computing Tjest

= Time spent working —— Time spent checkpointing
—— Downtime —— Recovery time Time
Py /

U
Pl
P2
P

Tiost D R T-C C
T
Tost =D+ R+ >

= Instants when periods begin and failures strike are independent
=- Valid for all distribution laws, regardless of their particular shape
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Waste due to failures

TIMEfinaI = TKIMEFF + Nfaults X Tlost

TIMEg T
TIMEfina = TIMEFF + — " Hfinal X <D + R+ 2)
7]
TIMEfinal — TIMEEE

WASTE(fail] = TIMBr]
Ina

1 T
WaSTE[fail] = — <D + R+ 2>
1
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Probabilistic Models
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Total waste

(el rc | rc [ re [ rc [

TiMEpr =TIMEgina (1-WASTE[Fail]) TIMEFn X WASTE[Fail]

TIMEFinal

WASTE — TIMEfinal - TIMEbase
TIMEfinal

(1 — WastE[fail])(1 — WASTE[FF]) TIMEfina = Time[base]
1 — WASTE = (1 — WASTE[FF])(1 — WASTE[fail])

C C\ 1 T
WASTE= —+ (1— =) = (D+R+ —
o T+< T)u( " +2>
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Probabilistic Models
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Waste minimization

C C\1 T

WASTE:%—i—v—I—WT

D+Ry , _D+R-C/2 1

! ( % % 2p

WASTE minimized for T = \/%

T=2(u—(D+R))C

yves.robert@ens-lyon.fr Fault-tolerance for HPC



Probabilistic Models
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Comparison with Young/Daly

[ c|d 7c | 7c |d 7 |d 7< |c_

TIMEgg =TIMEEjna (1-WASTE[Fail]) TIMEFiha X WASTE[Fail]

TIMEFinal

(1 — WASTE[fail]) TIMEfina = TIMEFf
=T= \/2(/L —(D+R))C

Daly: TIMEfina = (1 4+ WASTE[fail]) TIMEF¢
= T=V2u+(D+R)C+C

Young: TIMEfina = (1 + WASTE[fail]) TIMEFr and D =R =0
=T =2uC+C
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Validity of the approach (1/3)

Technicalities

° IE(Nr’aults) = % and IE(Tlost) =D+R+ g
but expectation of product is not product of expectations
(not independent RVs here)

@ Enforce C < T to get WASTE[FF] <1

@ Enforce D + R < ;1 and bound T to get WASTE[fail] <1
but u = % too small for large p, regardless of fijng
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Validity of the approach (2/3)

Several failures within same period?

e WasTE[fail] accurate only when two or more faults do not
take place within same period

@ Cap period: T < ~vpu, where v is some tuning parameter
e Poisson process of parameter 0 = %
Probability of having k > 0 failures : P(X = k) = %e‘e
Probability of having two or more failures:
T=P(X>2)=1-(P(X=0)+P(X=1))=1—(1+60)e""
e 7v=0.27 = 7<0.03
= overlapping faults for only 3% of checkpointing segments

yves.robert@ens-lyon.fr Fault-tolerance for HPC



Probabilistic Models
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Validity of the approach (3/3)

@ Enforce T <~u, C<~u,and D+ R < ~vypu

e Optimal period 1/2(u — (D + R))C may not belong to
admissible interval [C, ypu]

@ Waste is then minimized for one of the bounds of this
admissible interval (by convexity)

yves.robert@ens-lyon.fr Fault-tolerance for HPC
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Wrap up

e Capping periods, and enforcing a lower bound on MTBF
= mandatory for mathematical rigor @
= optimal strategy only known for Exp. distributions ®

@ Not needed for practical purposes ©
e actual job execution uses optimal value
e account for multiple faults by re-executing work until success

e Approach surprisingly robust ©
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e Probabilistic models and execution scenarios

@ Failure Prediction
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Probabilistic Models
o

Framework

Predictor
e Exact prediction dates (at least C seconds in advance)
@ Recall r: fraction of faults that are predicted

@ Precision p: fraction of fault predictions that are correct

Events
@ true positive: predicted faults
@ false positive: fault predictions that did not materialize as
actual faults

e false negative: unpredicted faults

Truep Truep

and

r= Truep + Falsey p= Truep + Falsep

yves.robert@ens-lyon.fr Fault-tolerance for HPC



Probabilistic Models
°

Fault rates

@ p: mean time between failures (MTBF)

@ up mean time between predicted events (both true positive
and false positive)

@ uyp mean time between unpredicted faults (false negative).

@ (e mean time between events (including all three event
types)

He Hp HUNP

yves.robert@ens-lyon.fr Fault-tolerance for HPC 33/ 71



Probabilistic Models
o

Algorithm

© While no fault prediction is available:
e checkpoints taken periodically with period T
@ When a fault is predicted at time t:
e take a checkpoint ALAP (completion right at time t)
e after the checkpoint, complete the execution of the period

yves.robert@ens-lyon.fr Fault-tolerance for HPC 34/ 71



Probabilistic Models
o

Computing the waste

@ Fault-free execution: WASTE[FF] = %
@ Unpredicted faults: [D + R+ g]

KNP

© Predictions: #% [P(C+D+R)+(1—p)C]

WASTE[fail] = [(1 - r)g +D+R+ ;C]

1
1

Fault-tolerance for HPC 35/ 71
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Outline

e Probabilistic models and execution scenarios

@ Checkpointing protocols
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Probabilistic Models

Background: coordinated checkpointing protocols

Py O e
e Coordinated checkpoints over all m /m2 \m3 <

processes P b SO __N--
. mgy ms
@ Global restart after a failure
P> O n

© No risk of cascading rollbacks
© No need to log messages

® All processors need to roll back

yves.robert@ens-lyon.fr Fault-tolerance for HPC 37/ 71



Probabilistic Models
Background: message logging protocols

Po O 0
@ Message content logging (sender mi /m2 \

m3
memory) PO -
@ Restart of the failed process \
P> O 0

b ¢

/n714- msg

© No cascading rollbacks

© Number of processes to roll back
® Memory occupation

® Overhead

yves.robert@ens-lyon.fr Fault-tolerance for HPC 38/ 71



Probabilistic Models
Background: hierarchical protocols

@ Clusters of processes Po —O /

@ Coordinated checkpointing

pOtOCOIWItIH CUStels ﬂ e T A e U

clusters 2 N S A
@ Only processors from failed group P, /M

need to roll back

@ Need to log inter-groups messages
e Slowdowns failure-free execution
e Increases checkpoint size/time

© Faster re-execution with logged messages

yves.robert@ens-lyon.fr Fault-tolerance for HPC 39/ 71



Probabilistic Models
Which checkpointing protocol to use?

Coordinated checkpointing
© No risk of cascading rollbacks
© No need to log messages
® All processors need to roll back

® Rumor: May not scale to very large platforms

Hierarchical checkpointing

@ Need to log inter-groups messages
e Slowdowns failure-free execution
e Increases checkpoint size/time

Only processors from failed group need to roll back

Faster re-execution with logged messages

© OO

Rumor: Should scale to very large platforms

yves.robert@ens-lyon.fr Fault-tolerance for HPC
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e Probabilistic models and execution scenarios

@ Coordinated checkpointing

yves.robert@ens-lyon.fr
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Checkpointing cost

—T'ime spent working

Probabilistic Models

Time spent checkpointing

Time

Computing the first chunk

Checkpointing
fthe first chunk

Processing the first chunk

Processing the second chunk

Blocking model: checkpointing blocks all computations

yves.robert@ens-lyon.fr
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Probabilistic Models
°

Checkpointing cost

—T'ime spent working

Time spent checkpointing

Time

Computing the first chunk Checkpointing
fthe first chunk

Processing the first chunk

Processing the second chunk

Non-blocking model: checkpointing has no impact on
computations (e.g., first copy state to RAM, then copy RAM to
disk)

yves.robert@ens-lyon.fr Fault-tolerance for HPC



Probabilistic Models
°

Checkpointing cost

—T'ime spent working

Time spent checkpointing

=== ===== Time spent working with slowdown Time

Computing the first chunk Checkpointing
fthe first chunk

Processing the first chunk

General model: checkpointing slows computations down: during
a checkpoint of duration C, the same amount of computation is
done as during a time aC without checkpointing (0 < o < 1)

yves.robert@ens-lyon.fr Fault-tolerance for HPC



Probabilistic Models
o

Waste in fault-free execution

= Time spent working === Time spent checkpointing === Time spent working with slowdown
Time

Pi c———
Pl —
P2 —
P e——

Time elapsed since last checkpoint: T

Amount of computations executed: WORK = (T — C) + aC

WASTE[FF] = T={orK

Fault-tolerance for HPC 43/ 71
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Probabilistic Models
o

Waste due to failures

== Time spent working ===== Time spent checkpointing ==='Time spent working with slowdown

Time
[ mpp————|
[ R mpp————
[ npp————
[ QS mpp———|

Failure can happen
© During computation phase
@ During checkpointing phase

yves.robert@ens-lyon.fr Fault-tolerance for HPC 43/ 71



Probabilistic Models
o

Waste due to failures

= Time spent working ===== Time spent checkpointing ==='Time spent working with slowdown

Time
Po
Py
[ R pp——
[ QS p———

ult-tolerance for HPC
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Probabilistic Models
o

Waste due to failures

= Time spent working ===== Time spent checkpointing ==='Time spent working with slowdown

Time
Po
7
Py L
[ R pp——
[ QS p———

ult-tolerance for HPC
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Probabilistic Models
o

Waste due to failures

= Time spent working === Time spent checkpointing === Time spent working with slowdown
Time

Pi | c———
Py
Pa
Ps

=T

Tiost

Coordinated checkpointing protocol: when one processor is victim
of a failure, all processors lose their work and must roll back to last

checkpoint

yves.robert@ens-lyon.fr Fault-tolerance for HPC 43/ 71
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O

Waste due to failures in computation phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown
Time

=== Downtime

Po
Py
Pa
Ps

yves.robert@ens-lyon.fr Fault-tolerance for HPC



Probabilistic Models
o

Waste due to failures in computation phase

== Time spent working ===== Time spent checkpointing ==='Time spent working with slowdown

=== Downtime === Recovery time Time

Po
Py
Py
P3

Coordinated checkpointing protocol: all processors must recover
from last checkpoint

yves.robert@ens-lyon.fr Fault-tolerance for HPC 43/ 71



Probabilistic Models
o

Waste due to failures in computation phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown
—— Re-exccuting slowed-down work Time

—— Downtime —— Recovery time

S g /
Y
L e — L
S vy
P; —
.
c aC

Redo the work destroyed by the failure, that was done in the
checkpointing phase before the computation phase

But no checkpoint is taken in parallel, hence this re-execution is
faster than the original computation

yves.robert@ens-lyon.fr Fault-tolerance for HPC 43/ 71



Probabilistic Models
o

Waste due to failures in computation phase

= Time spent working ===== Time spent checkpointing ==='Time spent working with slowdown

=== Downtime === Recovery time = Re-executing slowed-down work Time
[ QS mpuypn—— y
7
P —fmmeann !
P, mlaummum
P; eauumnm
T-C

Re-execute the computation phase

yves.robert@ens-lyon.fr Fault-tolerance for HPC



Probabilistic Models
o

Waste due to failures in computation phase

= Time spent working ===== Time spent checkpointing ==='Time spent working with slowdown

=== Downtime === Recovery time = Re-executing slowed-down work Time
[ QS mpuypn—— | —————————————————
7
P —fmmeann AR e ——
P o e — .
P o e e — e .
C

Finally, the checkpointing phase is executed

yves.robert@ens-lyon.fr Fault-tolerance for HPC
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Total waste

= Time spent working === Time spent checkpointing === Time spent working with slowdown
—— Downtime —— Recovery time —— Re-executing slowed-down work Time

2 pepepepeyeyn o T
v

Pl — e e
P2 —————
P3 ——— -

1 T
WastE[faill] = = D+ R+ aC + 5
i

Optimal period T, = \/2(1 —a)(p — (D + R))C

yves.robert@ens-lyon.fr Fault-tolerance for HPC
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QOutline

e Probabilistic models and execution scenarios

@ Hierarchical checkpointing
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Probabilistic Models
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Hierarchical checkpointing

=== Time spent working === Time spent checkpointing === Time spent working with slowdown

=== Downtime === Recovery time == Re-executing slowed-down work Time
Gl -----------------------
Gi timmmmmaaa- S — o meeeeee
]
Gy i mmmmm mm ———————————————— -
G4 -----------------------
S e — e I [ S Ry ——
Tex D R ‘( Tios I G.C
a(G—g+1)C T—G.C—Tist
T

@ Processors partitioned into G groups
@ Each group includes g processors
@ Inside each group: coordinated checkpointing in time C(q)

@ Inter-group messages are logged

yves.robert@ens-lyon.fr
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Accounting for message logging: Impact on work

o ® Logging messages slows down execution:
= WORK becomes A\WORK, where 0 < A <1
Typical value: A ~ 0.98

o © Re-execution after a failure is faster:
= RE-EXEC becomes @ where p € [1..2]
Typical value: p~ 1.5

T —
WASTE[FF] — M
T
1 RE-E
WaASTE[fail] = " <D(q) + R(q) + EPXEC>

yves.robert@ens-lyon.fr Fault-tolerance for HPC
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Accounting for message logging: Impact on checkpoint size

@ Inter-groups messages logged continuously

@ Checkpoint size increases with amount of work executed
before a checkpoint

@ Co(q): Checkpoint size of a group without message logging

C(q) — Go(q)

C(q) = Co(q)(]. + BWORK) & [ = Co(q)VVORK

WOoRK = \(T — (1 — a)GC(q))

~ Go(q)(1+BAT)
¢la) =17 GGCo(q)BA(1 — )

yves.robert@ens-lyon.fr Fault-tolerance for HPC 47/ 71
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Three case studies

Coord-10
Coordinated approach: C = Cyem = 'Vt'%
where Mem is the memory footprint of the application

Hierarch-10
Several (large) groups, I/O-saturated
= groups checkpoint sequentially

. CMem . Mem

Co(q) C Cbr

Hierarch-Port

Very large number of smaller groups, port-saturated
= some groups checkpoint in parallel

Groups of q,,;, processors, where q;,bport > bio

yves.robert@ens-lyon.fr Fault-tolerance for HPC 48/ 71
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Three applications

Q@ 2D-stencil

© Matrix product
© 3D-Stencil

o Plane
e Line

yves.robert@ens-lyon.fr Fault-tolerance for HPC 49/ 71
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Computing [ for 2D-Stencil

C(q) = Co(q) + Logged-Msg = Co(q)(1 + BWORK)

Real n x n2matrix and p x p grid
Work = %, b=n/p

S
Each process sends a block to its 4 neighbors

HIERARCH-1O: i

@ 1 group = 1 grid row

@ 2 out of the 4 messages are logged

oﬁ:2j !

9p3
HIERARCH-PORT:

@ (3 doubles

yves.robert@ens-lyon.fr Fault-tolerance for HPC 50/ 71
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Four platforms: basic characteristics

Name Number of Number of Number of cores Memory 1/0 Network Bandwidth (bj,) 1/0 Bandwidth (bport)
cores processors protal | _per processor | per processor | Read Write Read,/Write per processor
Titan 299,008 16,688 16 32GB 300GB/s 300GB/s 20GB/s
K-Computer 705,024 88,128 B 16GB 150GB/s 96GB/s 20GB/s
Exascale-Slim | 1,000,000,000 1,000,000 1,000 64GB 1TB/s 1TB/s 200GB/s
Exascale-Fat 1,000,000,000 100,000 10,000 640GB 1TB/s 1TB/s 400GB/s
Name Scenario G (C(q)) 3 for 3 for
2D-STENCIL | MATRIX-PRODUCT
COORD-10 1 (2,048s) / /
Titan HIERARCH-IO 136 (15s) 0.0001098 0.0004280
HIERARCH-PORT 1,246 (1.6s) 0.0002196 0.0008561
COORD-10 1 (14,688s)
K-Computer HIERARCH-IO 296 (50s) 0.0002858 0.001113
HIERARCH-PORT | 17,626 (0.83s) 0.0005716 0.002227
CoORD-IO 1 (64,000s)
Exascale-Slim HIERARCH-IO 1,000 (64s) 0.0002599 0.001013
HIERARCH-PORT | 200,0000 (0.32s) 0.0005199 0.002026
COORD-10 1 (64,000s)
Exascale-Fat HIERARCH-IO 316 (217s) 0.00008220 0.0003203
HIERARCH-PORT | 33,3333 (1.92s) 0.00016440 0.0006407
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Checkpoint time

Name C
K-Computer | 14,688s
Exascale-Slim | 64,000
Exascale-Fat | 64,000

Large time to dump the memory

Using 1%C

Comparing with 0.1%C for exascale platforms
a=03,A2=09and p=1.5
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Plotting formulas — Platform: Titan

Stencil 2D Matrix produc Stencil 3D

Part

o 20 S0 oo T 3 3 T 20 S0 100 T 3 3 o 20 S0 oo

Waste as a function of processor MTBF p
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Platform: K-Computer

Stencil 2D Matrix product Stencil 3D

T 3 3 o 20 S0 oo T 3 3 T 20 S0 100 T 3 3 o 20 S0 oo

Waste as a function of processor MTBF p
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Plotting formulas — Platform: Exascale

WASTE = 1 for all scenarios!!!
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Plotting formulas — Platform: Exascale

Goodbye Exascale?!
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Plotting formulas — Platform: Exascale with C = 1,000

Stencil 2D Matrix product Stencil 3D
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Waste as a function of processor MTBF p, C = 1,000
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Plotting formulas — Platform: Exascale with C = 100

Exascale-Slim

Exascale-Fat

Stencil 2D

Matrix product Stencil 3D
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Simulations — Platform: Titan

Stencil 2D Matrix product
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Simulations — Platform: Exascale with C = 1,000

Exascale-Slim

Exascale-Fat
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Simulations — Platform

Probabilistic Models
00000®

: Exascale with C = 100
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Outline

e Probabilistic models and execution scenarios

@ Replication
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PROCESS REPLICATION

° ° ° ° ° (]
1 2 3 4 5 6 N
\
° ° °
°
2 3 Nrg

@ Each process replicated g > 2 times — replica-group
® n,g = number of replica-groups (g x n,g = N)
@ Study for g = 2 by Ferreira et al., SC'2011

yves.robert@ens-lyon.fr Fault-tolerance for HPC



Probabilistic Models
®0

Number of failures to bring down application

e MNFTI?® Count each failure hitting any of the g - Nrg initial
processors, including those already hit by a failure

o MNFTI™ Count failures that hit running processors, and thus
effectively kill replicas.
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Probabilistic Models
®0

Number of failures to bring down application

e MNFTI?® Count each failure hitting any of the g - Nrg initial
processors, including those already hit by a failure

o MNFTI™ Count failures that hit running processors, and thus
effectively kill replicas.

MNFTI™" = 1+ MNFT/™
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Analogy with birthday problem
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Analogy with birthday problem

1 2 365

n = nyg bins, throw balls until one bin gets two balls
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Probabilistic Models
00

Analogy with birthday problem

1 2 365

n = ng bins, throw balls until one bin gets two balls

Expected number of balls to throw:

Birthday(n) = 1+ [,/ e™(1 + x/n)"dx
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Analogy with birthday problem

e T

1 2 365

But second failure may hit already struck replica @
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Analogy with birthday problem

OO 0O O
1 2 3 4
1)
0000000000 .

n = nyg bins, red and blue balls

MNFTI*" = expected number of balls to throw
until one bin gets one ball of each color
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Exponential failures, g = 2

Theorem MNFT/®® = E(NFTI*|0) where

if nf = nyg,
E (NFTI*™|ns + 1) otherwise.

2
E(NFTI* ng) = { 2ng | 2neg =20y

2ng—ng 2n,g—n¢

E(NFTI*|ng): expectation of number of failures to kill
application, knowing that

e application is still running

e failures have already hit ns different replica-groups
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Exponential failures, g = 2 (cont'do).

Proof

E (NFTI™ ng ) = % x 1 +% x (1+E (NFTI™ |ng ) ).
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Exponential failures, g = 2 (cont'do).

Proof

E (NFTI™ ng ) = % x 1 +% x (1+E (NFTI™ |ng ) ).

2y, — 2
E <NFTIah]nf) - % X (1 +E (NFTlah|nf n 1))
rg

2 1 1
4y 7x1+f(1+E(NFT/ah|nf)) .
2ny " \2 2

yves.robert@ens-lyon.fr Fault-tolerance for HPC



Probabilistic Models

Exponential failures, g = 2 (cont'do).

Proof

E (NFTI™ ng ) = % x 1 +% x (1+E (NFTI™ |ng ) ).

2y, — 2
E <NFTIah|nf) - % X (1 +E (NFTlah|nf n 1))
rg

2 1 1
4y 7x1+f(1+E(NFT/ah|nf)) .
2ny " \2 2

MTTI = systemMTBF(2n,;)x MNFT/™
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Failure distribution

R(t) probability that application still running at time t
e All replica-groups have at least one replica running

e Exponential: R(t) = (1 — (1 - ef)‘t)g)nrg

o Weibull: R(t) = (1 - (1 - e_(;)k>g> e

e Can use dynamic programming algorithms for
sequential /parallel jobs

MTTI
e MTTI = 0+°° R(t)dt — closed-form formulas
e Assess the impact of replication for various scenarios ©

yves.robert@ens-lyon.fr Fault-tolerance for HPC



Probabilistic Models

Failure distribution
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(a) Exponential (b) Weibull, k =0.7

Crossover point for replication when p = 125 years
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Conclusion

Outline

e Conclusion
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Conclusion

Conclusion

@ Multiple approaches to Fault Tolerance

@ Application-specific FT will always provide more benefits

@ General-purpose FT will always be needed
o Not every computer scientist needs to learn how to write
fault-tolerant applications
o Not all parallel applications can be ported to a fault-tolerant
version
@ Faults are a feature of the platform. Why should it be the role
of the programmers to handle them?
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Conclusion

e Software/hardware techniques to reduce checkpoint, recovery,
migration times and to improve failure prediction
o Multi-criteria scheduling problem
execution time/energy/reliability
add replication
best resource usage (performance trade-offs)

@ Need combine all these approaches!

Several challenging algorithmic/scheduling problems @ J

Extended version of this talk: see SC’12 tutorial
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