On Determining a Viable Path to

Resilience at Exascale

Frank Mueller

Dept. of Computer Science

NC STATE UNIVERSITY

Department of Computer Science

Resilience in HPC

System # CUPs MTBF h
e HPC: 10k-100k nodes ASCI White | 8,192 5/40 hrs
— Some component failure likely Google 15000 | 20 reboots/day
— System MTBF becomes shorter [.- 212002 | 7hrs
— processor/memory/IO failures
Jaguar 300,000 5/52 hrs

e MPI widely used for scientific apps

— Problem w/ MPT: no recovery from faults in the standard

e Currently FT exist but...
— not scalable

— mostly reactive: process checkpoint/restart

— restart entire job > inefficient if only one/few node(s) fail

— overhead: re-execute some of prior work
— issues: checkpoint at what frequency?

> 100 hr job > +150 hrs for chkpt / 55%-85% time wasted [Philp'05,Daly'08]

2

Exascale Resilience

System attributes 2010 “2015” “2018”

e 1 billion cores System peak FLOPS 2 Peta 200 Peta 1Exa

e ~ 1million components ' ey TS oM
System memory 0.3PB 5PB 32-64PB

e MTBF/node 50 yrs Node performance 125 GF 0.5TF or 7 TF 1 TF or 10x

(52 hrs fOl" J aguar) Node memory BW 25GB/s 0.1TB/sor10x 0.4TBIs or 10x

Node concurrency 12 0(100) O(1k) or 10x
TotalNode Interconn BW 1.5 GB/s 20 GB/s or 10x 200GB/s or 10x

e Goal: MTBF ~ 1 dqy System size (nodes) 18,700 50,000 or 1/10x 0) or 110 x

days O(1day) (_otday)

e 10x-100x > components
e Reliability ~ # components

> need 10x-100x reliability improvement
— Hardware: 10x (or less > smaller fabs)
— Software: 10x (or more = focus of this talk) |i

e How can this be achieved?

Resilience Advances in HPC (1)

Checkpoint/restart (C/R)
e @ app: intrinsic = -high dev cost, +small footprint, -unoptimized

e @ app: API > medium dev cost, +small footprint, +optimized
— SCR (LLNL): local disk/SSD/RAM neighbor + RAID: 10X-100X
e @ process: transparent > +low dev cost, medium footprint, +opt.
— BLCR (LBNL): disk (6FS/local+GFS)

@ VM: transparent - low dev cost, -large footprint, +opt., -overhead
Fault

work M work ‘ M work Eresta

rework l work ‘ckpnt ‘ work ‘

so far coordinated: glgbal barrier, drain in-flight msgs

Uncoordinated: log msgs: +low dev cost, -large footprint, +optimized

— Send-deterministic: +low dev cost, medium footprint, +opt.
- control flow to msgs must be input agnostic

C/R: Our BLCR Job-pause Mechanism

e Integrate dynamic group communication (Open MP/LAM+BLCR)
— Add/delete nodes
— Detect node failures automatically
e Processes on live nodes remain active (roll back to last checkpoint)

e Only processes on failed nodes dynamically replaced by spares
e resumed from the last checkpoint

Old Approach New Aboroach
lamboot= =f== P Hence:
0 1 2 lamboot==pesafpacdeaada o . .
S ! ol il el no restart of entire job
dinated mpirun == === = —no staging overhead
c:hogcllr;])iiit 0)--1--@ coordinated _ g D--& —ho JOb requeue penal‘ry
l | checkpoint]
falre V failure —no MPI runtime restart
T ause =1 =——{2
lam reboot easasatasaps P ' 6
noj n v n22 migrate
restart —0@— @— @

Ok

RIDGE =<7

Contributions (1) [ics’06+1PDPs’07] A

Job-Pause C/R

e Designed for any MPT impl

e Implemented: Open MPI/LAM+BLCR
Decentralized P2P scalable membership

Job-pause/rollback for operational nodes

Restart from chkpt for failed nodes

[M Job Pause and Migrate CJLAM Reboot [Job Restart

Completely transparent

> fast ~ 10 sec.
69.6% time saved

[T O i)

= BEEEEEE

Resilience Advances in HPC (2)

Proactive Fault tolerance
e Migrate when health deteriorates - low dev cost, larger
footprint, optimized [e.g., our BLCR extensions]
— @ process: our work
— @ VM: Xen, VMWare...

Proactive Resilience: Live Migration

e OpenIPMI health monitoring - predict node failure

e takes preventive action (instead of “reacting” to a failure)
— Live migration of process/OS - healthy node
— transparent to app/process/0OS)

e OS vs. process level: Abstraction vs. overhead tradeoff
— Copy pages while running |
— Then stop & copy rest
— Kill src, continue dst

S/prog;
e Implemented over

1. Xen Failing Node

2. Ours: Open MPI/LAM + BLCR + Linux kernel
- BLCR extensions
- Kernel enhancements (dirty bit tracking in PTEs)
- Add'| MPT support .

Spare/Healthy Node

PFTd: Proactive Fault-Tolerance Daemon

IPMI PFT Daemon
Baseboard Mgmt !

Controller

Runs on privileged VM (host)
OpenIPMI to read sensors
Periodic sampling of data

threshold exceeded > control
handed over to load balancing

PFTd determines migration target
contacting Ganglia > lowest load

Ganglia

Raise Alarm

Maintenance of

the system

Process vs. OS Migration [ics'o7+scos]

Speedup

Process-level Xen virtualization

e 2.6-6.5 sec live migration
e 1-1.9 sec frozen migration
e xfer subset of OS image

e 1-6.5 secs prior warning

of nodes

e 14-24 sec live migration
e 13-14 sec frozen migration
e xfer entire VM image

e 13-24 sec prior warning

4916 4916 4816 4816 4816 4816 4816 4816 4916 4916

W [oss-in-speedup g
35 u - n mClass B Inputs (Live) Class B Inputs (Stop&Copy)|
3 _ | 0 lass C Inputs (Stop&Copy)|
25

. = = 300
2 PR - = E B B b
15 0
e = BE BN gE B M N o M
0.5 100
0 Cy Cy O o o L Sl B K

2, % 0
T, Ty %, T, R Ty %, Y, Ry T o w = w -
G e, o, ey Yo Ty o, e o

Proactive FT Complements Reactive FT

T.= /2T, x T} [3.W.Young Commun. ACM '74]

Tc: time interval between checkpoints

Ts: time to save checkpoint information (mean Ts for
BT/CG/FT/LU/SP Class C on 4/8/16 nodes is 23 seconds)

Tf: MTBF, 1.25hrs [T.Philp HPCRT'05]
T. = \/2 % 23 % (1.25 % 60 x 60) = 455

70% faults [R.Sahoo et.al KDD ‘03] can be predicted and handled
proactively

T.=/2x 23 x (1.25/(1 - 0.7) x 60 x 60) = 831

Cut the number of chkpts in half: 455->831 seconds

Incremental Chkpting [Linux symp11,icPADS 11]

Nodes Nodes

® lef Since IGST Chka ‘am?wno B T i 'a”‘l?c U]] ety
mpirun mpirus
e BLCR enhancement i it
ull chkpt - < 1 Incr chkpte - - I--
. . 1 incr chkpt=«Q==(y==(»=
e Reuse dirty bit at PTE (h/w support) e 474 e G- G4
Wil chikpt p= M incr chkpte == (anin
. . ull cl | > a\urz
e Hybrid: 1 full, k incr. Chkpts i g * *F e
e Model savings [Nakisanehaboonetal.] . . 1 1 . t . ‘a””""""néi'a?"'n'z't'
1000 no| ni| n2 restart —Wk@ ’@
et =TI Y (b) New Full/incr C/R
/ i (a) Old Full G/R
100 —BTD Fig. 1: Hybrid Full/Incremental C/R Mechanism vs. Full C/R

P mpiBLAST
2 = 10D

P / P Reduced I/0O pressure
/ s — Fewer writes
: e |
: Z////,"-—’/‘ e Faster restarts
| — Fast reads, 1 pass

! : ' X ‘ ‘ e 1:9 full/incr. ratio optimal

Number of incremental checkpoints between two full checkpoints.

12

Back Migration [sppc12]

Node fails - migrate

Node recovers -> migrate back
Why?
— Heterogeneous nodes
— MPTI task sharing on nodes
— Increased hop counts (torus)

£

——FT.C.16
=*=BT.C.16
-+-CG.C.16
==LU.C.16
—e-SP.C.16

Experiments
— slower spare nodes:
CPU freq. nearly cut in half
Benefits
— Lower MPI cost
— Reduced I/0 bandwidth ‘

A i
Wins when >10 % work | efT Time Steps of the Benchmarks Remained

2 B
3 3

Savings by Back Migration (Seconds)

OAK =~
Rge <21

BERKELEY LAB

Contributions (2)

National Laboratory

e Reactive FT
e Save restart cost: 70% < job queuing, MPT startup
e Novel, proactive fault resilient scheme w/ process live migration
e Provides transparent & automatic FT for arbitrary MPI apps
Less overhead than reactive

Also complements reactive - lower checkpoint frequency

Process-level: + overhead of OS-level
% the chkpts when 70% faults handled proactively
e Incr.Chkpt - less overhead & I/0 pressure, 1:9 full/incr. is opt.

e Back migration - original performance, wins if >10% work left

Resilience Advances in HPC (3)

Redundancy: double/triple each MPI task
e Either need 2x/3x more nodes (and 2x/3x # msgs) [our work]
e Or need 2x/3x more bandwidth [SNL]

o Why? (*)[Ferreira at al. SC11]

No. of Nodes | Work Checkpoint | Re-computation | Restart
100 96% 1% 3% 0%
1,000 92% 7% 1% 0%
10,000 75% 15% 6% 4%
100000 | (35%) 20% 10% 35%

e C/R not scalable:> 50% of time spent in C/R
— (maybe less due to C/R optimizations)

Sandia
'I'l National

Laboratories

Design of Redundancy: RedMPI [sc'12]

e RedMPI library, related to
— MR-MPI [Engelmann&Boehm PDCN'11] Applica'l'ion
— rMPI [Ferreira et al. SC'11]

RedMPI

Works at profiling layer MPI

Goal: guard faults that leak into msgs (IO)
— file IO also handled [Engelmann PDP'12]

Intercepts MPI function calls

Each redundant copy needs to receive same messages in same order

Each message is sent/received r number of times
— opt. hashes to detect silent data corruption (SDC)
— Why?Multi-bit flips,DRAM err in 2% of DIMMs/year [Schroeder11]

16

RedMPI — MsgPlusHash Protocol [sc'12]

e optimization for critical path : msg not corrupt

e Send rmsgs +r small hash messages: (rgutq* hash)
Sender send Buffer Recv Buffer O .
Replica: 0 * Eec?“’ero
Hash Buffer 2 "€P''c®:
e faster than r2 msgs ;
Send ¥
e Patches fGUITY nodes R‘:’;"g: L Send Buffer N RecvBufferl oo
e SDC: detect&correct b Hash Buffer 0 Replica:1
Fuiled Recv Buffer 2 Receiver
. Hash Buffer 1 Replica:2
Full Message (Solid)
Hash Only (Dashed)
e Main objective: catch memory errors (interconnects have CRC)

RedMPI Overhead & Benefit
+ Overhead: 1-11% fime

NPB CG 6% 11%
NPB LU 8% 10%
e Benefit: SWEEP3D 0% 1%
at 2X # nodes s Tégiﬂgﬂi jgg. {00%
- run 45X as many jobs 24-hor fob 0%
8000 .4 i s
_— 43X jobs
/ ;,' 350%
E 600! S o 9." 0% 2
Caveat: 5 \§?< - w g
SlmPIISTIC model § 4008 // \: e - 200% §
- fixed next (-~ U — ‘{i\\ 150%
20 =5 ~A 100%
\6}0%

10% B W b B, B, B B B B 2§Z°n0des

Level of Redundancy

e Exascale: capacity computing v capatitycomputing

Fault Injection: SDC Correction (TMR)

Message Count

e Inject 1bit flip / 5M msgs

1. Keep on running: single, corrected msg > 90% of cases, others:
2. > 1sent corrupt msgs simultaneously > detected & job failed
3. Tainted buffer reuse, propagates

corrupt messages (left axis) +
Indirectly Tainted Nodes (right axis)
Directly Tainted Nodes (right axis) mm
Injection Points and Count ==
lu C 64 mrmpi 10000 O - Total Injections: 1
35000 T T T T
30000
25000
20000

15000 S0
10000 20
5000 10
0 0
0 50 100 150 200 250

Timestep

Tainted Nodes

lu C 84 mrmpi 10000 0 - Timestamp 29 of 250

60 |
100

50 |

w0 L 100

30 1 100

20 |

10
10

0 L I I I I L 1
0 10 20 30 40 50 60

Modeling Preliminaries [icocs'12]

e A physical process (node) follows an exponential failure

distribution

— 0 - Mean Time Between Failures (MTBF)
e A system of virtual processes has an exponential failure

distribution
— O - system MTBF
— r - Degree of Redundancy

— o - Communication fo Computation ratio

e Failures arrive following a Poisson process

e Redundancy increases the system reliability.

20

Modeling Preliminaries

e Effect of Redundancy on Execution Time
— Application execution time > base execution time
— Dependent upon many factors

- Placement of processes, communication o computation
ratio, degree of redundancy, relative speed, etc.

— Consider ideal execution environment:

t = at + (L—a)t
—~— —~ N

Total time Communication Computation

treq = (at)r+ (1 —a)t

21

System Reliability Model

e Probability of failure of a physical node:
Pr(Node FRifu¥o)le=Railuit)=1—d=t/0) =t/0
e Probability of survival of a virtual node with some integer k
degree of redundancy k
Pr(Virtual Node Survival) =1 — Ht/& =1—(t/0)%
i=1
e Partition N virtual processes into sets of

real-world redundancy levels
N =Nz + N

e Reliability of the system may be expressed as
Pr(All Virtual Processes Survive)

Pr(All Ny, Processes Survive and All Ny, Processes Survive)

MR R 711NV
Roys = [1 = (trea/O) | x (1= (tnea/)"]

22

System Reliability Model

e Assuming an Exponential distribution,
Rsys — e_AsystH,ed
e The system failure rate is
)\Mjs =—1In Rsys/tde
e System MTBF is

23

Effect of Redundancy on Reliability icocs'12)

o increased by 3x

o
o

S ¢
~

Reliability (R)
o

=5 yr, N=20k, (=128 hr, a=0.005

0.2
———0=5yr, N=100k, t=128 hr, =0.200
0.1 ——0=5yr, N=100k, t=128 hr, «=0.600
0=2.5 yr, N=100k, t=128 hr, «=0.200
ol i T T

. - . ;)
1 15 2 25 3 35 4 45 5
Degree of Redundancy (r)

Quantify how redundancy increases system reliability
e Reliability spikes at whole number redundancy levels
e Reliability now depends on a = communicate/compute ratio
— Time is a function of alpha N
11N P11
Roys = [1= (trea/O) | % [1 = (trea/0)"

24

Mathematical Analysis

e Using system MTBF, optimal checkpoint interval may be
calculated from Daly (Daly 2003)
e Cost function to compute total wallclock time derived by
— Computing expected lost work
— Computing amount of rework using lost work.
— Total time = t + num_chkpts*chkpt_overhead + rework

e Formally,
— ¢ - time to write a checkpoint to storage
— R - time to load a checkpoint from storage
— & - optimal checkpoint interval

biea X
tRea + “H4=<

1- /\sys X tRch’k

Ttotal =

25

Model Evaluation

Base Configuration Increased node MTBF

400 240
MTBE /node, § = 5 years MTBF/node, 6 = 15 years
Number of parallel processes, N' = 100,000 = Number of parallel processes, N = 100,000
< 350 Plain execution time, # = 128 hours [Plain execution time, ¢ = 128 hours
E Checkpoint overhead, ¢ = 10 min. & Checkpoint overhead, ¢ = 10 min.
= Restart overhead, R = 10 min. =240 Restart overhead, R = 10 min.
g 30 Comm/computation ratio, & = 0.2 ER Comm/computation ratio, a = 0.2
= = \
E H Z 190
£ 250 Tmln ~ 1 63 & \ .
3 \ e \ Tmin ~ 157
E e E \
3 ~ S 1
200
°© \ g °© R IE
\ e o1 Chkpts — 265 A — 0.0002 160
b— < Chikpts = 158; A = 0.0381
1 15 2 25 3 35 4 45 5 1 15 2 25 3 35 4 4.5 5
Degree of Redundancy (r) Degree of Redundancy (r)

Minimum runtime similar, even though components are 3x less
reliable.

26

Experiments Redundancy + C/R

Optimal: Depends on MTBF
e Lower MTBF - 3x optimal redundancy

e Higher MTBF - 2x optimal redundancy

Redundancy
degree
MTBF per node

6 hrs 275 279 212 189 146 158 139 132 123
12 hrs 201 207 167 143 103 113 98 111 125
18 hrs 184 179 148 120 2 126 88 80 84
24 hrs 159 143 133 100 67 92 78 84 83
30 hrs 136 128 110 101 66 73 80 82 84

27

Results — Model vs. Experiment

300
l +—0— Modeled with MTBF 6 hrs.
'=0- Modeled with MTBF 18 hrs.
+=0-- Modeled with MTBF 30 hrs.
2501 -0 Observed with MTBF 6 hrs.
~. ¢ Observed with MTBF 18 hrs.
~. "o 8- Observed with MTBF 30 hrs.

Completion Time in min.(Tiotar)

50 I L L L I I
1 12 1.4 1.6 1.8 2 22 24 2.6 2.8 3

Degree of Redundancy (r)
e Experiments agree with model (+ additive const)

> minimum runtime always achieved at 2x redundancy

28

Results — Extrapolation based on Jaguar

e Jaguar: node MTBF ~ 50 years (on 18,688 nodes)
e K-Computer: has 2.3X more components (equiv. 44,064)
e Exascale lane 1: ~100k nodes

v W fworse N -0 & - 12608
200t Y T =154 T =154 Tiotar = 174 Tiotat =179 |,

& Degree of Redundancy r
[—ix e 18x ——-2% -—— 3x]

eJaguar: No redundancy neé'é‘??gﬁffvé“‘? |
e Titan maintains node count/component
eincreases core count by 33%, adds GPUs~>effect?
® K- . -
e Exascale: 12% faster under dual redundancy than single,
eclose to triple redundancy for free (free SDC correction)

29

Results — Extrapolation based on Jaguar

e Jaguar: node MTBF ~ 50 years (on 18,688 nodes)
e K-Computer: has 2.3X more components (equiv. 44,064)
e Exascale lane 1: ~100k nodes

210 3
Wi e Ty o =
2

at)

@ 80k components:

4 Dual redundancy best,

schedule twice # jobs
h (= detailed model)

v
L] | e =5

Completion Time (T},

eJaguar: No redundancy necessary yet

e Titan maintains node count/component
eincreases core count by 33%, adds GPUs->effect?

° K- : -

e Exascater 12% faster under dual redundancy Than singte,
eclose to triple redundancy for free (free SDC correction)

30

LIBSDC —Protect Memory from SDC [subm,

e Page-level on-demand memory verification
e Memory model: Set of locked/unlocked pages

e Locked = memory protected
— infercepts reads/writes
1. SDC Detection: Hashes provide verification only
2. SDC Correction: ECC/Hamming codes correct SDCs

— Then unlock page S _
. 72/64 Hamming Codes
Hashing (ECC)
(4KB pages)
1l 2 3 4 2 6 7 0.49% 12.5%
7 // Overhead

// Locked/Protected Page - LIBSDC must validate before next use

Access pattern: Pages 2,3,2,2,!

E Unlocked/Unprotected Page - Recently validated - may be read/written

31

Experimental Results

e HPCCG - A Sandia Natl. Labs kernel conjugate gradient solver
from the Mantevo Miniapps

25

/\——-—\ ------ Runtime without hashing
20

e RUNtiMe with hashing
............... . Double modular redundancy
» - \
10)

5 \

0

Normalized runtime

4096 4224 4352 4480 4608 4736 4864 4992 5120
locked value (ber of pages)

e Ideal max-unlocked around 4096-5120 to match working-set size
e On average, about 15% of overhead spent on page hashing

32

Quantify Impact of SDC on FP Ops [subm]

e Model likelihood of bit flip to affect results
— Mantissa vs. exponent
e For vector dot PI"OdUCT (DP) u-7= Zc,;‘. where ¢; = w;v;.

=1
e Plot for same |vector|: '

Expected relative error [y axis] =
over vector magnitude [x axis]:
— (DP - flipped DP) / DP
e Flip lower 10 bits of exponent
— Spikes due to patterns:
1023 vs. 1024
many 1s, few Os vs. ...

> Model fits experiments N R .

33
Quantify Impact of SDC on FP Ops (2)
e Monte-Carlo sampling e Slice across
— via random # gen. — Similar magnitudes
— Expected # flips (front to back)
-4 i . oy
> Pr(Error>10-4) [y axis] e Shows bit position of error
> Should scale # to max precision->few flips affect you
1X1 0,000 Vactor size 1 » 10000, bit location Pr(fail)
- 1
Mean: 0125580, Sample Sandord Deviadon: 50136473510 g% R N
60
0.16 gg na
i 57 1 unmn
B 0 i e i "
L 015 = 56 T AT W W £
1“3 1|| L1 [T 06 E
2 014 BES i
E 21 0.13 ;ig 042
: | i :
g o1 .12 . o3t
= 45
= o : 011 e o
50 i E 42 0.1
E e i SR n
M ? 0 P R tistive magnitudes of vastors: 26and 29
Vetor Magnitude 2 %50 500

Vector Magnitude 2° 34

Quantify Impact of SDC on FP Ops (3)

e Order-one iterative methods:

— Always converges after bit flip

— How about stationary methods?

e Case study: Jacobi unscaled e Jacobi max. scaled
— No fault > 98 iterations — Anomaly > flips can help !
— Bit fliped @ iteration X — Converges
- converges but 2000+ iters (20x) > 0-65 more iterations (1x-1.6x)
> always converges, scaling helps a lot > reduces overhead after flip
) No Scaling: Iteration count given a flip at a specific iteration 0 __ Max Scaling; Iteration count given a flip at a specific teration
X e: 100 x 100 Matrix e: 100 x 100 7
2100 C wber: 14140, perturbed Cond: 1.844674e-+019 /,// | 1% Condition Number: 14140, perturbed Cond: 14115 /
Min [2006, Max Iterations: 2109 _— 1501 Min Iterations: 71, Max Iterations: 162 /
Z /// £ 140}
S 2080 1 5
H P _— E130 /
Z 2000 -] 2w e
: _— ° -
H _— 1m0 ;
22040 // b Ewc v N‘V
2020] " or W\‘J
“W 80 ‘\‘
" |
o0 2 w0 4 s e 70 @ e qo 0 10 2 0 4 s & 70 8 % 0

Iteration where bit is flipped Tteration where bit is flipped

OAK s
Saqdia reeeee A
Contributions i) Natora RIDGE

National Laboratory

1. Scalable network overlay (ICS'06)
— track live nodes, group communication
2. Reactive fault tolerance (IPDPS'07, Linux'11l, ICPADS'11)
— job pause » 70% reduced resubmit overhead
— Incr. Chkpts > 1.9 full/incr. Ratio best, reduce I/0
3. Proactive fault tolerance (ICS'07, SC'08, JPDC'12)
— process virt. > 3 overhead of OS, health monitor
— live migration > 3 # chkpts
— back migration > wins if >10% work left
4. Redundancy + SDC Handling (ICDCS'12, SC'12)
— 2x # nodes > 2x # jobs: capacity not capability comp.
— dual for SDC check / triple SDC correction (msgs, RAM, I/0)
5. Algorithm-based Fault tolerance (Chen & others, subm.)
— Complements above, sign. less overhead, only dense linear algebra
— Modeling of SDC for numerical algorithms
> Code contributed to BLCR, available for Open MPI, later RedMPI

36

Acknowledgement

Supp. in part by DOE/NFS grants, Humboldt fellowship

DOE DE-FG02-05ER25664, DE-FG02-08ER25837, DE-AC05-000R22725, NFS 0237570, 0410203, 0429653, 1058779, 0958311, 0937908
DOE DE-AC04-94AL85000 (SNL) , DOE DE-AC05-000R22725 (ORNL) , LBL-6871849 (LBL)

e NCSU: J. Varma, (_"
A. Nagarajan, ‘
., Chao Wang (ORNL),
41 M. Vasavada,

K. Kharbas,

D. Fiala, J. Elliott

e ORNL collaborators:
OAK Christian Engelmann,

RIDGE Stephen L. Scott

Vauona.lLabomton e LBL: Paul HGI"gI"OVC

~

n @ SNL: Kurt Ferreira, Ron Brlgh'rwell Sandia
M o IBM: RolF R ';h Lo
J : Rolf Riesen
.

(4) Availability: Fault Tolerance for YOU

e BLCR: Collaboration w/ Paul Hargrove, Eric Roman... (LBL)

e BLCR (in repository / partly released):

—Job Pause/Rollback - merged into V0.8.0, next BLCR release
—Incremental checkpoints - in progress

- Dirty vs. write-protect bits

- Challenges: copy-on-write (fork), mprotect, map/unmap

- Assess overheads of alternatives
— Differential checkpoints > next release
—Region-delimited checkpoints (semi-transparent) - next rel.
—OpenMPI, MVAPICHZ2, Cray MPI, SLURM support, LSF plugin
—Accepted by Debian + Fedora

e Open MPI support (not in repository yet):
—Job pause, incremental chkpt, fault detector, live migration

38

Discussion

e Need CS cluster resources w/ root access for scaling
— Later production deployment

e Job scheduler support for FT
— Spare node pooling
e Chkpt PFS and I/0 requirements
e Need studies on potential to detect health deterioration

— Anomaly detection / threshold derivation
-In progress: transparent fault detector for MPI

39

Discussion (cont.)

e MPI wish list:

— Coordinated checkpointing:

— MPI_QUIESCE_START/END(comm, info) > drain comm. Qs
-Low-level control, MPTI integrated
—htfps://svn.mpi—for‘um.or'g/fr'ac/mpi—forum—web/wiki/Quiescence

— MPI_CHKPT(bool force) > optional trigger
-Higher-level abstraction
-User/runtime defined, opt. MPTI integrated

— Just like MVAPICH2 Sync Checkpoint();

e Checkpt in ho more than m / every m minutes
— MPI_NEXT_CHKPT(struct timespec abstime)
— MPI_CHKPT_FREQ(struct timespec reltime)

40

