Sandia
Exceptional service in the national interest @ National

Laboratories

Addressing the System Software Challenges for Converged
Simulation and Analysis on Extreme-Scale Systems

Ron Brightwell, R&D Manager
Scalable System Software Department

v::"'%‘ U.S. DEPARTMENT OF ///A ' ' DQ,’SI
] EN ERGY y/ VA'M Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
% ‘National Nuclear Security Administration Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.




System Software@Sandia

Established the functional partition

model for HPC systems

* Tailor system software to function
(compute, /0, user services, etc.)

Pioneered the research, development,

and use of lightweight kernel operating

systems for HPC

* Only DOE lab to deploy OS-level software
on large-scale production machines

* Provided blueprint for IBM BlueGene OS

Set the standard for scalable parallel

runtime systems for HPC

e Fast application launch on tens of
thousands of processors

Significant impact in the design and of

scalable HPC interconnect APIs

* Only DOE lab to deploy low-level

interconnect APl on large-scale
production machines

AWARDS
1998 Sandia Meritorious Achievement Award,
TeraFLOP Computer Installation Team
« 2006 Sandia Meritorious Achievement Award, Red
Storm Design, Development and Deployment Team
« 2006 NOVA Award Red Storm Design and
Development Team
« 2009 R&D 100 Award for Catamount N-Way
Lightweight Kernel
2010 Excellence in Technology Transfer Award,
Federal Laboratory Consortium for Technology
Transfer
2010 National Nuclear Security Administration
Defense Programs Award of Excellence

I

CM-2 nCUBE-2
1989 1990

Red Storm

ASCI Red

Paragon
1996

1993

1987 1989 1991 ’—J993 1995 1997

Cplant

1998
| -

1PSC-860
1992

2005

1996 1998 2000

ﬁH

Portals Partition Model Puma Cougar
1992 — 1993 -

Computational Plant
Cplant
1997 — 2005

SUNMOS
1991 - 1997

Catamount
1993 —




Factors Influencing OS Design

Sandia Lightweight kernels

Wicllﬁm = Applications
* USI!P“OIIH = Small set of apps
’ = Programming model
= MPI

S story = Architecture

* Distributed memory
= Usage model
= Space shared

= Shared services

= Parallel file system
= History

= None

I ——
2013 Workshop on Extreme-Scale Parallel Architectures and Systems




System Software Must Enable Co-Design

= QOperating system and runtime (OS/R) software no longer an
optimization layer between application and architecture

= Sandia LWKs were optimized for MPPs
= Evolving applications and architectures inhibit OS/R optimization

= Leveraging the agility of LWK and lightweight virtualization
approach to support co-design

= Motivations for mini-OS similar to mini-Apps — small and agile
= Virtual machine enhances simulation capability and supports legacy

appllcatlon mlgratlon SST CPU and Memory Model 8 T T T R ag0s OPU, 500 MRZNIC (158 sb0) —— L3
Implemented by Palacios VM ol e "‘5 ngfggo”ah N (105 e e //
W0OMB - 5 S e am5 CPU, 250 Mhz NIC (6416 566, /
(R ynamc ernel size
800 MB |- mmmmm Static Kernel Size SST MPI Process o500 |
700 MB | Kitten > 10x smaller Pl Fouter [T g
. Component Component L 5 = 2000 -
= 600 MB - memory fOOtprInt Comectionsto & | e
i) Other Router 2 L :
< 500 MB | Com g 1500
o ponents 5
3 acomB | OS needs to be &
D omB L hardened against
200 MB | faults, keep running for Po— 500 {
100mB | app-level resilience Rizliechie N L
0B I e A CF;%?";A";;%'[{ fhcceley 4 16 64 256 1K 4K 16K 64K 256K 1M 4M
Kitten CLE \ J MPI Message Size (Bytes)

Operating System




Extreme Scale Computing
Grand Challenge

= Attempt to unify Sandia’s physics and data analysis
environments
= How converge hardware?
= How to converge system software?

= System software convergence based on building blocks

approach
= Kitten lightweight operating system
= Portals network stack: networking stack with strong progress designed
to support both MPI tagged matching and PGAS

= Qthreads: User-level lightweight threading library with advanced
synchronization




Portals 4 Network Stack

= Connectionless RDMA with matching

= Provides elementary building blocks for supporting
higher-level protocols well
= MPI, RPC, Lustre, etc.
= Allows structures to be placed in user-space, kernel-
space, or NIC-space
= Receiver-managed offset allows for efficient and scalable
buffering of MPI “unexpected” messages

= Supports multiple protocols within a process
= Needed for compute nodes where everything is a message




XGC-Supported Parallel
Programming Models

Address Parallel |Asynchronous |Programming |Execution
Space Loops Tasks Interface Model

National
@ "1 Laboratories

Shared On-node On-node Library API Work Queue
Qthreads

Shared On-node On-node Compiler Fork/Join
OpenMP Directives

MPI Distributed None None Library API CSP

SPR Distributed On-node Global Library API Work Queue

Partitioned Global Global Language Global View
LT Global




Sandia
National
Laboratories

Qthreads Highlights

Lightweight User-level Threading

Registers Registers

(ta S kl n g) Signal Signal

. Vector Vector

= Platform Portability E— =
specific specific

= 1A32/64, AMD64, PPC32/64, vemary vamor

SparcV9+, SST, Tilera, ARM

Linux, BSD, Solaris, MacOSX, Cygwin Stack Stack

Locality fundamental to model
= “Shepherd” as thread-mobility

domain Process
= Fine-grained synchronization
= Full/Empty Bits (64-bit & 60-bit) o) e e e e
= Mutexes
= Atomic Operations (Integer incr, Float
incr, & CAS)
= Locality-aware Cache-aware Shepherd Shepherd Shepherd
Workstealing Scheduler - T

2013 Workshop on Extreme-Scale Parallel Architectures and Systems



Explore Revolutionary System Software
to Preserve Evolutionary Application Software

Our significant investment in the
development and validation of

the science and engineering
application code base is a key

driver for system software
development

A key goal for system software is
to buffer the application code
base from radical changes in the
underlying hardware
System Software Drivers:
= Concurrency Management
= Power Management KittenOS
= Resilience Performance

Scalable Parallel Runtime (SPR)

Qthreads

Portals4

2013 Workshop on Extreme-Scale Parallel Architectures and Systems



Open Questions

= How to support programming models such as MPI+X
efficiently
= Today, have two separate libraries with no interlocking
= Need to co-schedule communication and work
= How do we handle network’s near-real-time needs with lightweight
cooperatively scheduled threading models

= How do we transition existing codes from MPI to MPI plus a
task-based lightweight threading model?

= How can Sandia’s applications take advantage of parallel
languages like Chapel or X107?



US DOE OS/Runtime Technical Council

= Summarize the OS/R-specific challenges

= Describe a model to integrate DOE-sponsored research
with vendor products and support

= Assess the requirements of and impact on facilities,
production support, tools, programming models, and
hardware architecture

" |dentify promising methods and novel approaches
= Write a report that can be referenced by FOA




Council Members

= Pete Beckman, ANL (co-chair)
= Ron Brightwell, SNL (co-chair)
= Bronis de Supinski, LLNL

= Maya Ghokale, LLNL

= Steven Hofmeyr, LBNL,

= Sriram Krishnamoorthy, PNNL
= Mike Lang, LANL

= Barney Maccabe, ORNL

= John Shalf, LBNL

= Marc Snir, ANL




Council Meetings

= March 21-22, 2012 — Washington, DC

= April 19, 2012 — Portland, OR (@ Exascale Planning Workshop)
= May 14-15, 2012 — Washington, DC

" June 11-12, 2012 — Washington, DC

= July 20-21, 2012 — Washington, DC (Vendor meeting)

= August 21, 2012 - VTC

= September 12-13, 2012 — Washington, DC & VTC

= QOctober 3-4, 2012 — Washington, DC Workshop

= November 14, 2012 — Salt Lake City, Supercomputing 2012




=

3D Memory

& Integrated Interconnect 3>

rchitecture Drivers for ExaOSR Software Changes ide10f2)

TSVs

\

Wide Data Path

PO | R | S

Logic Chip

e —— T — S—

Jan 2012: “Early benchmarks show a memory cube blasting data 12 times faster than
DDR3-1333 SDRAM while using only about 10 percent of the power."

Parallelism ™

On-chip Parallelism Exploding: “The core is the Mhz”

2008: largest system had ~150K cores

Today (2012)
IBM has successfully scaled the
LLNL BG/Q 1600K cores LAMMPS application to over 3
million MPI ranks on BG/Q .
RIKEN K 705K cores Raspberry Pi: $25
Julich BG/P 295K cores = 700MHz ARM11
ORNL XT5 224K cores = /J-core versions
ANL BG/P 164K cores have been built

2013 Workshop on Extreme-Scale Parallel Architectures and Systems




Architecture Drivers for ExaOSR Software Changes iice 2o 2)

E
* Power-constrained Consistency

1 |
aulsl 14

Chien: 10x10

Tilera

Power & Heterogeneity w

IBM: BG/Q

Advanced Chip Features: In NTV range, 5 to
* Near-threshold 10 times more
* Variable Precision efficient

Intel demonstrated
chip that can go

from 3Mhz to
915Mhz

Variable Eff. & Precision &

2013 Workshop on Extreme-Scale Parallel Architectures and Systems



Key Observations for ExaOSR

= Massive Parallelism (exponential growth)
= Dynamic parallelism and decomposition

= Advanced run-time systems to manage tasks, dependencies, and messaging
linked with scheduler

= (with dynamic RTS, power and fault mgmt: “OS Noise” not an issue)

Power as a managed system resource

= Adjusting arithmetic precision, fault probability, directing power within global
view at several levels

Fault tolerance actively managed in software at many levels
= Fault management with nodes and at global view

Architecture organization (significant OS/R changes):
= Heterogeneous cores, variable precision, specialized functional units
= Deep memory hierarchies: 3D RAM, NVRAM on node

New models for deep memory hierarchy
Multi-level Parallelism within the node to hide latency

Memory logic
I ——



Other Challenges:
Business/Social/Total Cost

Preserving code base
Vendor business models
Sustainability/portability

“Scale Down” important: from the extreme scale to the
broader HPC marketplace

Must address broad range of scientific domains
DOE does not want an unsupported OS/R



The new ExaOSR will be a Global OS/R

Existing HPC Systems Have Focused on “Node” + ad hoc services/libraries

= Currently, the control systems (RAS) monitor system health
= Exascale systems need to manage power/performance and respond to health

Two Examples: Power and 1/0 Bandwidth
=  Whole System

= Power: Set budgets for each job/partition and file system; schedule jobs based on
differentiated power demands

= |/0 Bandwidth: Orchestrate/arbitrate BW sharing across jobs, schedule jobs based on
I/O mix to reduce contention
=  Within Job/Partition
= Power: Manage power across nodes within set budget; respond to system requests to
dynamically adjust power consumption
= |/0 Bandwidth: Manage NVRAM as burst buffer to reduce I/O contention

= Node

= Power: Manage functional units & dark silicon within nodes for best throughput for
given power budget; respond to requests to dynamically adjust power consumption

= |/0O Bandwidth: Use compression when power and ops are available



Application OS/R Requirements:
Feedback

= Support for:

= Desire to automate or be agnostic of power/energy and

/O

Resilience and system health

Dynamic libraries

Debugging at scale and ease of use

In situ analytics and real-time visualization
Threads: creation, management, synchronization

resilience

= Support new features (eg., non-blocking collectives,
neighborhood collectives, ..)

1)



Tool OS/R Requirements Overlap
Those of Applications

Bulk launch for scalability; mapping & affinity matter
Low overhead way to cross protection domains
Quality of service concerns for shared resources

Can have extensive I/O requirements

= Support for in-situ analysis is critical

Need OS/R support to handle heterogeneity & scale
= Synchronization for monitoring

Need well defined APIs for information about key exascale
challenges

= Power and resilience

= Asynchrony (APl needs may be distinct)

20



Tool OS/R Requirements Extend Those
of Applications

Must launch with access to application processes
Low overhead timers, counters & notifications

Monitoring, access to protected resources

Attribution mechanisms
= Aggregation and differentiation

= Process, resource and source code (including call stack)
correspondence

= Need HW support for shared activities?
Measurement conversions?

Multicast/reduction network (shared with OS/R)
Less clear where tool ends and OS/R begins

21



Facilities

= System analysis
= Log data: anonymization, mining, common formats
= Per user, per job data incl. energy and errors
= Scalable memory usage monitoring
= Live real-time fault and RAS data

= Fault management
= Offline and online system diagnostics
= Ability to run single-node tests without impacting other jobs
= Automatic handling of boot failures
= Cope with node failure (e.g. through migration)

= Workflows

= Non-traditional HPC workflows
(many small jobs e.g. bioinformatics)

22



Facilities (cont.)

System-wide energy management
= Power-capping, control and monitoring
= Job scheduling dependent on power (e.g. peak vs off-peak)

Performance
= QoS I/0O management
= Topology-aware, improved job placement (e.g. using migration)
= Fast launch time for huge jobs
= Fast booting

Maintenance
s Ease of upgrades: rolling upgrades, partial upgrades, rollback

Partitioning
= Multiple OS partitions (OS per job)
= User-specialization, multiple software stacks
= More OS functionality, e.g. syscall support

23



Vendor Input: Motivation

= |tis not feasible for DOE to be the sole maintainer or developer of an
exascale OS/R

= Want a common APIs to develop interoperating solutions across
hardware, but we need vendor cooperation to achieve this.

= Draw from existing vendor experience and current research directions.

= Vendors were chosen from their participation in past government
procurements and research programs, not all vendors contacted provided
a representative or responded to all of the questions.

= To focus the responses of the vendors we provided them with guiding
guestions focusing on technical and the business model, and a strawman
OS/R design.

24



Vendor Input: Intersection

Technical Issues
CRAY /IBM /INTEL / NVIDIA

Entire software stack must be be tightly integrated
Need to collect detailed information at all OS/R layers
Need common APIs to pass information between OS/R layers.

Need for auto tuning and auto placement but with the ability for fine-
grained control if needed by runtime.

Power: need common APIs & at different layers: Site, System, Node

Need to support processor heterogeneity & deep memory hierarchies --
Good ideas, but no clear common path

Reliability — Good ideas, but no clear common path

28



Vendor Input: Intersection

Business Engagement
CRAY /IBM /INTEL / NVIDIA

= Vendors have a track record of successfully integrating open source.

= Vendors prefer working with DOE by using open source

= Vendors require some proprietary software to differentiate solutions.
Seek patents and other protective licensing

= |In new Complex Vendor Landscape business models are diverse

= Collaborative software could be managed by a 37 party to limit
liability and provide long-term support

= Vendors must build on larger markets to survive

26



Exascale Software Architecture

= Goal:
= Create a common framework to describe software architecture and

programming interfaces
= |dentify areas where design decisions have to be made and interfaces

that are candidates for standardization

= Three levels of services:
= Node (thread scheduling, memory management...)
= Enclave (aka partition): Set of nodes dedicated to an application or a
service such as I/O (user-space communication, error recovery...)

= System-wide



System View

External Monitoring & Control I — External Services
* Operator console I * WAN Network
* Event logging Database - - . Tape Storage

* Workflow manager
* Batch scheduler

(Storage)

* Initial resource allocation
* Dynamic configuration
change

* Monitoring & event logging Global
Information
* Monitoring and control Bus
* Resource management
Discovery, Configuration Monitoring events

Configuration, power,
resilience

* Monitoring
* Diagnosis

g | SONSICABSCOR SV

2013 Workshop on Extreme-Scale Parallel Architectures and Systems




External Interfaces

AN

Parallel components
time or space partitioning

Programming model
Specific runtime system

Power
Resilience
Performance Data

ENCLAVE VIEW

~

-
Librar
Enclave y Enclave
Component Component
Runtime Library Runtime
Runtime
w Enclave Common Runtime
3
= ]
Enclave OS

2013 Workshop on Extreme-Scale Parallel Architectures and Systems



NODE-LOCAL VIEW

/

oS

-

I P |

Enclave Library / Language / Model Specific Services
Prog model(‘sT-
Common Runtime Services

- * Thread/task and messaging services

B * Memory, power, and fault services
Node — * Performance data collection
OS/R * Local instance of Enclave RT
Enclave
OS/R — | Kernel

- * Core Kernel Services

SyStem * Local instance of Enclave OS

* Proxy for SGOS /

2013 Workshop on Extreme-Scale Parallel Architectures and Systems




Evolution

= Contain services to smallest possible container
= E.g., enclave-level loader, enclave-level recovery

= Add services for energy management and recovery
Add ability to negotiate interfaces (e.g., failure reporting)

= Standardize interfaces:
= HAL->0S
= External -> System-wide OS
= System-wide OS -> Enclave OS/R
= Enclave OS/R -> application, library, language R/T



The Workshop
Position Papers (all online)

Area Count Area
Architecture/Structure 13 (3) Power
Autonomic/Adaptation 9 (6) Resilience

Core Specialization 9 (4) Unified RTS

Fine Grained/Dynamic 5 (3) Global OS
Tasks Other

= Total of 80 submissions
= Qut of Scope: 16

= https://collab.mcs.anl.gov/display/exaosr/Position+Papers

Count
6 (3)

7 (3)

3

6

6 (3)




2002 OS/R Issues and Challenges

Fault tolerance / resilience
Programming models

OS structure

APIs

Specific functionality
Scalability

Interactivity

Future hardware
Hardware support for Oses
Application requirements
Metrics

Programmatic challenges
Heterogeneity

Degree of transparency

Infrastructure support for multiple OS/Rs

Vendor proprietary components
Tools support/requirements
Desktop integration

Dynamic resource management

Vendors

Testbeds

Adaptation

Usage models

Memory hierarchy

Security

Standards

Portability

Culture

Non-traditional architectures
Multiple management policies
Mainstream technology overlap
Support for introspection
Interface to RAS

Testing

Application requirements
Intellectual property
Sustainability

Energy/power



DOE LAB 13-02 FOA

Exascale Operating and Runtime Systems Program

=  S7M of funding for OS/R research at DOE labs

= Focus areas
= Power management
Adaptive power management to meet 20 MW goal
= Support for dynamic programming environments
Manage billions of threads
= Programmability and tuning support
Dynamic adaptation and debugging
= Resilience
Predict, detect, contain, and recover from faults
= Heterogeneity
Hierarchical process and memory systems
= Memory management
Use of new memory technologies
= Global optimization

Manage resources with a system-wide view
I ——



Exascale OS/R Focus is on Hardware

= Reliability/Resilience

= Power/Energy

= Heterogeneity

= Memory hierarchy

= Cores, cores, and more cores

= Risk
= Hardware advancements and investments can provide orders of
magnitude improvement

= (OS/R advancements can provide double-digit percentage
improvement



Everything | Know About Resiliency
| Learned in Kindergarten

= Clean up your own mess

= Hardware is largely responsible for the increased need for resiliency, so the hardware community
needs to (help) solve it

= Play fair
= Hardware should do its part to enable low-overhead approaches
= Share everything
= Need hardware-level interfaces for examining and recovering state
= Shouldn’t have to try to guess about whether a component is about to fail
= Don't take things that aren't yours
= Need more protection mechanisms
= Sayyou're sorry when you hurt somebody
= Be explicit when a hardware component has failed
= Put things back where you found them
= There’s some analogy to virtual addresses and memory here...
=  Flush
= Don’t leave unwanted state lying around for software to clean up
= Take a nap every afternoon
= Ok, maybe not everything....



What About Applications?

= Focus is on parallel (multi-core) programming model

Advanced runtime systems

Node-level resource allocation and management
Managing locality

Extracting parallelism

Introspective, adaptive capabilities
This is really hard

= Risk

Incremental approach (OpenMP) wins

Advanced runtime capabilities are overkill

= No clear on-node parallel programming model winner

Difficult to optimize OS/R




Application Composition is Key

= Little attention focused on how applications are constructed
= Clunky interfaces like mmap, ptrace, python etc. for sharing data
= Tools stress OS functionality because of these legacy APIs and services
= |ntegrating simulation and analysis is important
= Both from a marketing and technical perspective ©
= Advanced workflows are driving capability
= Lots of use cases
= Ensemble calculations for UQ
=  Multi-x simulations
= |n-situ analysis
= Graph analytics
=  Performance and correctness tools
= Burst buffers for 1/0?
= Requirements are driven by applications
= Not necessarily by parallel programming model
= |nsulated from hardware advancements



CTH Analysis using ParaView

Comparing In-Situ with In-Transit Analysis

Motivation for In-Transit
= Analysis code may not scale as well as HPC code

= Direct integration may be fragile (e.g., large binaries)

= “Fat” nodes may be available on Exascale
architectures (e.g., burst-buffer nodes)

CTH fragment detection service
» Extra nodes provide in-line processing (overlap

In-Situ Analysis

Client Application

Fragment
Data

S —
analysis
CTH code

fragment detection with time step calculation)
= Only output results to storage (reduce 1/0)
= Non-intrusive — Looks like in-situ (pvspy API)

Issues to Address
= Number of nodes for service
Based on memory requirements
Based on computational requirements
= Placement of nodes

Blocks/Second

20000 —

Fragment Detection Processing Rate

10000 -

T

Data Sets
1.5m blocks
== 219k blocks
33k blocks

I I I I I I
128 256 512 1024 2048 4096
Client Ranks

I I I
8192 16384 32768




Time (sec)

Strong Scaling Results
CTH Analysis 1.5m AMR Blocks

Execution Time for 10 Cycles (1.5m blocks)

| S Experiments
200 - ;
PN “®- In-Situ
-l In-Transit (100 internal nodes)
A In-Transit (128 extra nodes)

150 -

S x... .
B8 e N~
2 100 - [P
E —
50 - «
Sweet Spot”... balanced compute
and analysis (small idle time)
0_
4096 32768
In-Situ Timings In-Transit Timings (128 exiyé nodes) n-Transit Timings (100 internal nodes)
250 — 250 — 250
m Viz /IZI Wait O Wait
200 — @ CTH 200 — W Xfer Data 200 — B Xfer Data
5 ~ @ CTH
150 — g 150 g 150
() [}
100 £ 100 £ 100
= =
0 - 0 - 0 -

4096
8192
16384
32768
14784
31168

2013 Workshop on Extreme-Scale Parallel Architectures and Systems



Memory Issues

Analysis libs requires substantial memory

= Offloading analysis allows for larger
simulations

Client binary size (static binaries)
= CTH with ParaView Lib (360 MB)
= CTH with In-Transit Lib (32 MB)

Memory Requirements for In-Transit

= One node can manage ~16K AMR blocks

from CTH.

= 4:1-16:1 ratio of compute nodes to
service nodes (depending on problem
size)

= Current ParaView implementation has

leak issues (being addressed)

Memory (MiB)

Memory Used by Visualization Service
256 clients, 8 servers (1 node), 5500 blocks

32,000
<1
30,000 T P
R
R
-
NP R
25,000 T e f“?f A o
\]\Q\k\N” - \if Pad
g P\ ," {‘ ’O
\((\3 - <@ 'o'
o ¢ ’\
20,000 ,‘/ @( o"
R ol . @Q‘ .
"/ R ¢'|| e
U SV
15,000+ #5874 ’ PR R A—— s
’ Kot el AMR (timing only)
10,000 1
Baseline (Nessie+Block Management)
5000 /T
O 1 1 1 1
200 400 600 800 1000

Cycle/Timesteps



Load Balancing Issues

Reduce wait time on the client by adding cores to srvr

B Wait for Server " Transfer Data

Ten Cycles of 128-core job (1 srvr)

hpctraceviewer: mpicth.hpc

W Toace view| Beeti- €[ H=E —O|—

Time Range: [136.901s ,174.324s] Rank Range: [0,127] Cross Hair: (155.346s, 64)

= 2 server cores—64:1
= 10 cyclesin 37 secs

= (Client idle waiting for server to _— N
complete (also affects transfers) |

View Bt €S0 E =0
.072s)] J Hair: (128.065s, 64)

= 4 server cores—32:1

= 10 cyclesin 23 secs

|| 103mof2om [@ | = @ ER

= 8 servercores—16:1 —— X AT X AL R

Time Range: [107.4625 ,126.436s] Rank Range: [0,121] Cross Hair: (109.46s, 66)

= 10 cyclesin 19 secs
= Less than 1% time waiting

[ 12Mof2om [ | & W ER

Adding cores can reduce analysis time, but increase memory requirements... it's a
balancing act.

2013 Workshop on Extreme-Scale Parallel Architectures and Systems




Impact of Placement on Performance
Work In-Progress...

=  We know placement is important from previous study

= Goalis to place nodes within given allocation to avoid network contention
= App-to-app (MPI), app-to-svc (NTTI), svc-to-svc (MPI), svc-to-storage (PFS)
= Graph partitioning based on network topology and application network traffic

8:1 ratio of application to staging nodes
2400

Default allocation —+—

* X andom allocation i
2200 _>I( X % % % % Rand focat i
1800 % >I( E
1600 i
] |
1200

1000 I } .

800 L - ——— :
1 10 100

Number of staging nodes

2000 ~

T

RMA Get Bandwidth (MiB/s)

T
—t—
1

I ——
2013 Workshop on Extreme-Scale Parallel Architectures and Systems




OS/R is Enabling Technology

= Need to support advanced run-time systems and approaches
to resilience and energy, not necessarily provide solutions
= Follow BASF mantra
= We don’t make it, we make it possible

= OS/R should focus on providing capability, not just
overcoming limitations of current hardware

= Application composition is the responsibility of the OS/R

= Capability will be required regardless of underlying hardware or
overlying parallel programming model



Acknowledgments

= Sandia
= Ron Oldfield
= Brian Barrett
= Kyle Wheeler

= OS Technical Council
= Pete Beckman, ANL
= Marc Snir, ANL
= Mike Lang, LANL

2013 Workshop on Extreme-Scale Parallel Architectures and Systems



