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System Software@Sandia

Established the functional partition

model for HPC systems

* Tailor system software to function
(compute, /0, user services, etc.)

Pioneered the research, development,

and use of lightweight kernel operating

systems for HPC

* Only DOE lab to deploy OS-level software
on large-scale production machines

* Provided blueprint for IBM BlueGene OS

Set the standard for scalable parallel

runtime systems for HPC

e Fast application launch on tens of
thousands of processors

Significant impact in the design and of

scalable HPC interconnect APIs

* Only DOE lab to deploy low-level

interconnect APl on large-scale
production machines

AWARDS
1998 Sandia Meritorious Achievement Award,
TeraFLOP Computer Installation Team
« 2006 Sandia Meritorious Achievement Award, Red
Storm Design, Development and Deployment Team
« 2006 NOVA Award Red Storm Design and
Development Team
« 2009 R&D 100 Award for Catamount N-Way
Lightweight Kernel
2010 Excellence in Technology Transfer Award,
Federal Laboratory Consortium for Technology
Transfer
2010 National Nuclear Security Administration
Defense Programs Award of Excellence
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Factors Influencing OS Design

Sandia Lightweight kernels

Wicllﬁm = Applications
* USI!P“OIIH = Small set of apps
’ = Programming model
= MPI

S story = Architecture

* Distributed memory
= Usage model
= Space shared

= Shared services

= Parallel file system
= History

= None
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System Software Must Enable Co-Design

= QOperating system and runtime (OS/R) software no longer an
optimization layer between application and architecture

= Sandia LWKs were optimized for MPPs
= Evolving applications and architectures inhibit OS/R optimization

= Leveraging the agility of LWK and lightweight virtualization
approach to support co-design

= Motivations for mini-OS similar to mini-Apps — small and agile
= Virtual machine enhances simulation capability and supports legacy
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Extreme Scale Computing
Grand Challenge

= Attempt to unify Sandia’s physics and data analysis
environments
= How converge hardware?
= How to converge system software?

= System software convergence based on building blocks

approach
= Kitten lightweight operating system
= Portals network stack: networking stack with strong progress designed
to support both MPI tagged matching and PGAS

= Qthreads: User-level lightweight threading library with advanced
synchronization




Portals 4 Network Stack

= Connectionless RDMA with matching

= Provides elementary building blocks for supporting
higher-level protocols well
= MPI, RPC, Lustre, etc.
= Allows structures to be placed in user-space, kernel-
space, or NIC-space
= Receiver-managed offset allows for efficient and scalable
buffering of MPI “unexpected” messages

= Supports multiple protocols within a process
= Needed for compute nodes where everything is a message




XGC-Supported Parallel
Programming Models

Address Parallel |Asynchronous |Programming |Execution
Space Loops Tasks Interface Model

National
@ "1 Laboratories

Shared On-node On-node Library API Work Queue
Qthreads

Shared On-node On-node Compiler Fork/Join
OpenMP Directives

MPI Distributed None None Library API CSP

SPR Distributed On-node Global Library API Work Queue

Partitioned Global Global Language Global View
LT Global




Sandia
National
Laboratories

Qthreads Highlights

Lightweight User-level Threading

Registers Registers

(ta S kl n g) Signal Signal

. Vector Vector

= Platform Portability E— =
specific specific

= 1A32/64, AMD64, PPC32/64, vemary vamor

SparcV9+, SST, Tilera, ARM

Linux, BSD, Solaris, MacOSX, Cygwin Stack Stack

Locality fundamental to model
= “Shepherd” as thread-mobility

domain Process
= Fine-grained synchronization
= Full/Empty Bits (64-bit & 60-bit) o) e e e e
= Mutexes
= Atomic Operations (Integer incr, Float
incr, & CAS)
= Locality-aware Cache-aware Shepherd Shepherd Shepherd
Workstealing Scheduler - T
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Explore Revolutionary System Software
to Preserve Evolutionary Application Software

Our significant investment in the
development and validation of

the science and engineering
application code base is a key

driver for system software
development

A key goal for system software is
to buffer the application code
base from radical changes in the
underlying hardware
System Software Drivers:
= Concurrency Management
= Power Management KittenOS
= Resilience Performance

Scalable Parallel Runtime (SPR)

Qthreads

Portals4
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Open Questions

= How to support programming models such as MPI+X
efficiently
= Today, have two separate libraries with no interlocking
= Need to co-schedule communication and work
= How do we handle network’s near-real-time needs with lightweight
cooperatively scheduled threading models

= How do we transition existing codes from MPI to MPI plus a
task-based lightweight threading model?

= How can Sandia’s applications take advantage of parallel
languages like Chapel or X107?



US DOE OS/Runtime Technical Council

= Summarize the OS/R-specific challenges

= Describe a model to integrate DOE-sponsored research
with vendor products and support

= Assess the requirements of and impact on facilities,
production support, tools, programming models, and
hardware architecture

" |dentify promising methods and novel approaches
= Write a report that can be referenced by FOA




Council Members

= Pete Beckman, ANL (co-chair)
= Ron Brightwell, SNL (co-chair)
= Bronis de Supinski, LLNL

= Maya Ghokale, LLNL

= Steven Hofmeyr, LBNL,

= Sriram Krishnamoorthy, PNNL
= Mike Lang, LANL

= Barney Maccabe, ORNL

= John Shalf, LBNL

= Marc Snir, ANL




Council Meetings

= March 21-22, 2012 — Washington, DC

= April 19, 2012 — Portland, OR (@ Exascale Planning Workshop)
= May 14-15, 2012 — Washington, DC

" June 11-12, 2012 — Washington, DC

= July 20-21, 2012 — Washington, DC (Vendor meeting)

= August 21, 2012 - VTC

= September 12-13, 2012 — Washington, DC & VTC

= QOctober 3-4, 2012 — Washington, DC Workshop

= November 14, 2012 — Salt Lake City, Supercomputing 2012
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rchitecture Drivers for ExaOSR Software Changes ide10f2)

TSVs
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Wide Data Path
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Logic Chip
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Jan 2012: “Early benchmarks show a memory cube blasting data 12 times faster than
DDR3-1333 SDRAM while using only about 10 percent of the power."

Parallelism ™

On-chip Parallelism Exploding: “The core is the Mhz”

2008: largest system had ~150K cores

Today (2012)
IBM has successfully scaled the
LLNL BG/Q 1600K cores LAMMPS application to over 3
million MPI ranks on BG/Q .
RIKEN K 705K cores Raspberry Pi: $25
Julich BG/P 295K cores = 700MHz ARM11
ORNL XT5 224K cores = /J-core versions
ANL BG/P 164K cores have been built
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Architecture Drivers for ExaOSR Software Changes iice 2o 2)

E
* Power-constrained Consistency

1 |
aulsl 14

Chien: 10x10

Tilera

Power & Heterogeneity w

IBM: BG/Q

Advanced Chip Features: In NTV range, 5 to
* Near-threshold 10 times more
* Variable Precision efficient

Intel demonstrated
chip that can go

from 3Mhz to
915Mhz

Variable Eff. & Precision &
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Key Observations for ExaOSR

= Massive Parallelism (exponential growth)
= Dynamic parallelism and decomposition

= Advanced run-time systems to manage tasks, dependencies, and messaging
linked with scheduler

= (with dynamic RTS, power and fault mgmt: “OS Noise” not an issue)

Power as a managed system resource

= Adjusting arithmetic precision, fault probability, directing power within global
view at several levels

Fault tolerance actively managed in software at many levels
= Fault management with nodes and at global view

Architecture organization (significant OS/R changes):
= Heterogeneous cores, variable precision, specialized functional units
= Deep memory hierarchies: 3D RAM, NVRAM on node

New models for deep memory hierarchy
Multi-level Parallelism within the node to hide latency

Memory logic
I ——



Other Challenges:
Business/Social/Total Cost

Preserving code base
Vendor business models
Sustainability/portability

“Scale Down” important: from the extreme scale to the
broader HPC marketplace

Must address broad range of scientific domains
DOE does not want an unsupported OS/R



The new ExaOSR will be a Global OS/R

Existing HPC Systems Have Focused on “Node” + ad hoc services/libraries

= Currently, the control systems (RAS) monitor system health
= Exascale systems need to manage power/performance and respond to health

Two Examples: Power and 1/0 Bandwidth
=  Whole System

= Power: Set budgets for each job/partition and file system; schedule jobs based on
differentiated power demands

= |/0 Bandwidth: Orchestrate/arbitrate BW sharing across jobs, schedule jobs based on
I/O mix to reduce contention
=  Within Job/Partition
= Power: Manage power across nodes within set budget; respond to system requests to
dynamically adjust power consumption
= |/0 Bandwidth: Manage NVRAM as burst buffer to reduce I/O contention

= Node

= Power: Manage functional units & dark silicon within nodes for best throughput for
given power budget; respond to requests to dynamically adjust power consumption

= |/0O Bandwidth: Use compression when power and ops are available



Application OS/R Requirements:
Feedback

= Support for:

= Desire to automate or be agnostic of power/energy and

/O

Resilience and system health

Dynamic libraries

Debugging at scale and ease of use

In situ analytics and real-time visualization
Threads: creation, management, synchronization

resilience

= Support new features (eg., non-blocking collectives,
neighborhood collectives, ..)

1)



Tool OS/R Requirements Overlap
Those of Applications

Bulk launch for scalability; mapping & affinity matter
Low overhead way to cross protection domains
Quality of service concerns for shared resources

Can have extensive I/O requirements

= Support for in-situ analysis is critical

Need OS/R support to handle heterogeneity & scale
= Synchronization for monitoring

Need well defined APIs for information about key exascale
challenges

= Power and resilience

= Asynchrony (APl needs may be distinct)

20



Tool OS/R Requirements Extend Those
of Applications

Must launch with access to application processes
Low overhead timers, counters & notifications

Monitoring, access to protected resources

Attribution mechanisms
= Aggregation and differentiation

= Process, resource and source code (including call stack)
correspondence

= Need HW support for shared activities?
Measurement conversions?

Multicast/reduction network (shared with OS/R)
Less clear where tool ends and OS/R begins

21



Facilities

= System analysis
= Log data: anonymization, mining, common formats
= Per user, per job data incl. energy and errors
= Scalable memory usage monitoring
= Live real-time fault and RAS data

= Fault management
= Offline and online system diagnostics
= Ability to run single-node tests without impacting other jobs
= Automatic handling of boot failures
= Cope with node failure (e.g. through migration)

= Workflows

= Non-traditional HPC workflows
(many small jobs e.g. bioinformatics)

22



Facilities (cont.)

System-wide energy management
= Power-capping, control and monitoring
= Job scheduling dependent on power (e.g. peak vs off-peak)

Performance
= QoS I/0O management
= Topology-aware, improved job placement (e.g. using migration)
= Fast launch time for huge jobs
= Fast booting

Maintenance
s Ease of upgrades: rolling upgrades, partial upgrades, rollback

Partitioning
= Multiple OS partitions (OS per job)
= User-specialization, multiple software stacks
= More OS functionality, e.g. syscall support

23



Vendor Input: Motivation

= |tis not feasible for DOE to be the sole maintainer or developer of an
exascale OS/R

= Want a common APIs to develop interoperating solutions across
hardware, but we need vendor cooperation to achieve this.

= Draw from existing vendor experience and current research directions.

= Vendors were chosen from their participation in past government
procurements and research programs, not all vendors contacted provided
a representative or responded to all of the questions.

= To focus the responses of the vendors we provided them with guiding
guestions focusing on technical and the business model, and a strawman
OS/R design.

24



Vendor Input: Intersection

Technical Issues
CRAY /IBM /INTEL / NVIDIA

Entire software stack must be be tightly integrated
Need to collect detailed information at all OS/R layers
Need common APIs to pass information between OS/R layers.

Need for auto tuning and auto placement but with the ability for fine-
grained control if needed by runtime.

Power: need common APIs & at different layers: Site, System, Node

Need to support processor heterogeneity & deep memory hierarchies --
Good ideas, but no clear common path

Reliability — Good ideas, but no clear common path

28



Vendor Input: Intersection

Business Engagement
CRAY /IBM /INTEL / NVIDIA

= Vendors have a track record of successfully integrating open source.

= Vendors prefer working with DOE by using open source

= Vendors require some proprietary software to differentiate solutions.
Seek patents and other protective licensing

= |In new Complex Vendor Landscape business models are diverse

= Collaborative software could be managed by a 37 party to limit
liability and provide long-term support

= Vendors must build on larger markets to survive

26



Exascale Software Architecture

= Goal:
= Create a common framework to describe software architecture and

programming interfaces
= |dentify areas where design decisions have to be made and interfaces

that are candidates for standardization

= Three levels of services:
= Node (thread scheduling, memory management...)
= Enclave (aka partition): Set of nodes dedicated to an application or a
service such as I/O (user-space communication, error recovery...)

= System-wide



System View

External Monitoring & Control I — External Services
* Operator console I * WAN Network
* Event logging Database - - . Tape Storage

* Workflow manager
* Batch scheduler

(Storage)

* Initial resource allocation
* Dynamic configuration
change

* Monitoring & event logging Global
Information
* Monitoring and control Bus
* Resource management
Discovery, Configuration Monitoring events

Configuration, power,
resilience

* Monitoring
* Diagnosis

g | SONSICABSCOR SV
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External Interfaces

AN

Parallel components
time or space partitioning

Programming model
Specific runtime system

Power
Resilience
Performance Data

ENCLAVE VIEW

~

-
Librar
Enclave y Enclave
Component Component
Runtime Library Runtime
Runtime
w Enclave Common Runtime
3
= ]
Enclave OS
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NODE-LOCAL VIEW

/

oS

-

I P |

Enclave Library / Language / Model Specific Services
Prog model(‘sT-
Common Runtime Services

- * Thread/task and messaging services

B * Memory, power, and fault services
Node — * Performance data collection
OS/R * Local instance of Enclave RT
Enclave
OS/R — | Kernel

- * Core Kernel Services

SyStem * Local instance of Enclave OS

* Proxy for SGOS /
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Evolution

= Contain services to smallest possible container
= E.g., enclave-level loader, enclave-level recovery

= Add services for energy management and recovery
Add ability to negotiate interfaces (e.g., failure reporting)

= Standardize interfaces:
= HAL->0S
= External -> System-wide OS
= System-wide OS -> Enclave OS/R
= Enclave OS/R -> application, library, language R/T



The Workshop
Position Papers (all online)

Area Count Area
Architecture/Structure 13 (3) Power
Autonomic/Adaptation 9 (6) Resilience

Core Specialization 9 (4) Unified RTS

Fine Grained/Dynamic 5 (3) Global OS
Tasks Other

= Total of 80 submissions
= Qut of Scope: 16

= https://collab.mcs.anl.gov/display/exaosr/Position+Papers

Count
6 (3)

7 (3)

3

6

6 (3)




2002 OS/R Issues and Challenges

Fault tolerance / resilience
Programming models

OS structure

APIs

Specific functionality
Scalability

Interactivity

Future hardware
Hardware support for Oses
Application requirements
Metrics

Programmatic challenges
Heterogeneity

Degree of transparency

Infrastructure support for multiple OS/Rs

Vendor proprietary components
Tools support/requirements
Desktop integration

Dynamic resource management

Vendors

Testbeds

Adaptation

Usage models

Memory hierarchy

Security

Standards

Portability

Culture

Non-traditional architectures
Multiple management policies
Mainstream technology overlap
Support for introspection
Interface to RAS

Testing

Application requirements
Intellectual property
Sustainability

Energy/power



DOE LAB 13-02 FOA

Exascale Operating and Runtime Systems Program

=  S7M of funding for OS/R research at DOE labs

= Focus areas
= Power management
Adaptive power management to meet 20 MW goal
= Support for dynamic programming environments
Manage billions of threads
= Programmability and tuning support
Dynamic adaptation and debugging
= Resilience
Predict, detect, contain, and recover from faults
= Heterogeneity
Hierarchical process and memory systems
= Memory management
Use of new memory technologies
= Global optimization

Manage resources with a system-wide view
I ——



Exascale OS/R Focus is on Hardware

= Reliability/Resilience

= Power/Energy

= Heterogeneity

= Memory hierarchy

= Cores, cores, and more cores

= Risk
= Hardware advancements and investments can provide orders of
magnitude improvement

= (OS/R advancements can provide double-digit percentage
improvement



Everything | Know About Resiliency
| Learned in Kindergarten

= Clean up your own mess

= Hardware is largely responsible for the increased need for resiliency, so the hardware community
needs to (help) solve it

= Play fair
= Hardware should do its part to enable low-overhead approaches
= Share everything
= Need hardware-level interfaces for examining and recovering state
= Shouldn’t have to try to guess about whether a component is about to fail
= Don't take things that aren't yours
= Need more protection mechanisms
= Sayyou're sorry when you hurt somebody
= Be explicit when a hardware component has failed
= Put things back where you found them
= There’s some analogy to virtual addresses and memory here...
=  Flush
= Don’t leave unwanted state lying around for software to clean up
= Take a nap every afternoon
= Ok, maybe not everything....



What About Applications?

= Focus is on parallel (multi-core) programming model

Advanced runtime systems

Node-level resource allocation and management
Managing locality

Extracting parallelism

Introspective, adaptive capabilities
This is really hard

= Risk

Incremental approach (OpenMP) wins

Advanced runtime capabilities are overkill

= No clear on-node parallel programming model winner

Difficult to optimize OS/R




Application Composition is Key

= Little attention focused on how applications are constructed
= Clunky interfaces like mmap, ptrace, python etc. for sharing data
= Tools stress OS functionality because of these legacy APIs and services
= |ntegrating simulation and analysis is important
= Both from a marketing and technical perspective ©
= Advanced workflows are driving capability
= Lots of use cases
= Ensemble calculations for UQ
=  Multi-x simulations
= |n-situ analysis
= Graph analytics
=  Performance and correctness tools
= Burst buffers for 1/0?
= Requirements are driven by applications
= Not necessarily by parallel programming model
= |nsulated from hardware advancements



CTH Analysis using ParaView

Comparing In-Situ with In-Transit Analysis

Motivation for In-Transit
= Analysis code may not scale as well as HPC code

= Direct integration may be fragile (e.g., large binaries)

= “Fat” nodes may be available on Exascale
architectures (e.g., burst-buffer nodes)

CTH fragment detection service
» Extra nodes provide in-line processing (overlap

In-Situ Analysis

Client Application

Fragment
Data

S —
analysis
CTH code

fragment detection with time step calculation)
= Only output results to storage (reduce 1/0)
= Non-intrusive — Looks like in-situ (pvspy API)

Issues to Address
= Number of nodes for service
Based on memory requirements
Based on computational requirements
= Placement of nodes

Blocks/Second

20000 —

Fragment Detection Processing Rate

10000 -

T

Data Sets
1.5m blocks
== 219k blocks
33k blocks

I I I I I I
128 256 512 1024 2048 4096
Client Ranks

I I I
8192 16384 32768




Time (sec)

Strong Scaling Results
CTH Analysis 1.5m AMR Blocks

Execution Time for 10 Cycles (1.5m blocks)

| S Experiments
200 - ;
PN “®- In-Situ
-l In-Transit (100 internal nodes)
A In-Transit (128 extra nodes)

150 -

S x... .
B8 e N~
2 100 - [P
E —
50 - «
Sweet Spot”... balanced compute
and analysis (small idle time)
0_
4096 32768
In-Situ Timings In-Transit Timings (128 exiyé nodes) n-Transit Timings (100 internal nodes)
250 — 250 — 250
m Viz /IZI Wait O Wait
200 — @ CTH 200 — W Xfer Data 200 — B Xfer Data
5 ~ @ CTH
150 — g 150 g 150
() [}
100 £ 100 £ 100
= =
0 - 0 - 0 -

4096
8192
16384
32768
14784
31168
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Memory Issues

Analysis libs requires substantial memory

= Offloading analysis allows for larger
simulations

Client binary size (static binaries)
= CTH with ParaView Lib (360 MB)
= CTH with In-Transit Lib (32 MB)

Memory Requirements for In-Transit

= One node can manage ~16K AMR blocks

from CTH.

= 4:1-16:1 ratio of compute nodes to
service nodes (depending on problem
size)

= Current ParaView implementation has

leak issues (being addressed)

Memory (MiB)

Memory Used by Visualization Service
256 clients, 8 servers (1 node), 5500 blocks

32,000
<1
30,000 T P
R
R
-
NP R
25,000 T e f“?f A o
\]\Q\k\N” - \if Pad
g P\ ," {‘ ’O
\((\3 - <@ 'o'
o ¢ ’\
20,000 ,‘/ @( o"
R ol . @Q‘ .
"/ R ¢'|| e
U SV
15,000+ #5874 ’ PR R A—— s
’ Kot el AMR (timing only)
10,000 1
Baseline (Nessie+Block Management)
5000 /T
O 1 1 1 1
200 400 600 800 1000

Cycle/Timesteps



Load Balancing Issues

Reduce wait time on the client by adding cores to srvr

B Wait for Server " Transfer Data

Ten Cycles of 128-core job (1 srvr)

hpctraceviewer: mpicth.hpc

W Toace view| Beeti- €[ H=E —O|—

Time Range: [136.901s ,174.324s] Rank Range: [0,127] Cross Hair: (155.346s, 64)

= 2 server cores—64:1
= 10 cyclesin 37 secs

= (Client idle waiting for server to _— N
complete (also affects transfers) |

View Bt €S0 E =0
.072s)] J Hair: (128.065s, 64)

= 4 server cores—32:1

= 10 cyclesin 23 secs

|| 103mof2om [@ | = @ ER

= 8 servercores—16:1 —— X AT X AL R

Time Range: [107.4625 ,126.436s] Rank Range: [0,121] Cross Hair: (109.46s, 66)

= 10 cyclesin 19 secs
= Less than 1% time waiting

[ 12Mof2om [ | & W ER

Adding cores can reduce analysis time, but increase memory requirements... it's a
balancing act.
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Impact of Placement on Performance
Work In-Progress...

=  We know placement is important from previous study

= Goalis to place nodes within given allocation to avoid network contention
= App-to-app (MPI), app-to-svc (NTTI), svc-to-svc (MPI), svc-to-storage (PFS)
= Graph partitioning based on network topology and application network traffic

8:1 ratio of application to staging nodes
2400

Default allocation —+—

* X andom allocation i
2200 _>I( X % % % % Rand focat i
1800 % >I( E
1600 i
] |
1200

1000 I } .

800 L - ——— :
1 10 100

Number of staging nodes

2000 ~

T

RMA Get Bandwidth (MiB/s)

T
—t—
1

I ——
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OS/R is Enabling Technology

= Need to support advanced run-time systems and approaches
to resilience and energy, not necessarily provide solutions
= Follow BASF mantra
= We don’t make it, we make it possible

= OS/R should focus on providing capability, not just
overcoming limitations of current hardware

= Application composition is the responsibility of the OS/R

= Capability will be required regardless of underlying hardware or
overlying parallel programming model
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