
Compiling Text Analytics Queries to FPGAs

Raphael Polig, Kubilay Atasu, Heiner Giefers
IBM Research - Zurich

Rueschlikon, Switzerland
(pol, kat, hgi)@zurich.ibm.com

Laura Chiticariu
IBM Research - Almaden

San Jose, CA, USA
chiti@us.ibm.com

Abstract—Extracting information from unstructured text data
is a compute-intensive task. The performance of general-purpose
processors cannot keep up with the rapid growth of textual
data. Therefore we discuss the use of FPGAs to perform large
scale text analytics. We present a framework consisting of a
compiler and an operator library capable of generating a Verilog
processing pipeline from a text analytics query specified in the
annotation query language AQL. The operator library comprises
a set of configurable modules capable of performing relational
and extraction tasks which can be assembled by the compiler to
represent a full annotation operator graph. Leveraging the nature
of text processing we show that most tasks can be performed in an
efficient streaming fashion. We evaluate the performance, power
consumption and hardware utilization of our approach for a set of
different queries compiled to a Stratix IV FPGA. Measurements
show an up to 79 times improvement of document-throughput
over a 64 threaded software implementation on a POWER7
server. Moreover the accelerated system’s energy efficiency is up
to 85 times better.

I. INTRODUCTION

The volume of data on our planet is increasing exponen-
tially. Every day 2.5 billion gigabytes of data is generated of
which 80% is unstructured in the form of audio/video records,
blog entries, tweets, and sensor data [1]. By using information
extraction technologies, scientists and companies are trying to
utilize the data to find valuable information. Queries used to
pinpoint the desired information are becoming more complex
and require more data to be scanned. This requires compute
systems that can efficiently execute these queries in terms of
to time and power.

Text Analytics (TA) refers to the task of information
extraction from unstructured or semi-structured text data. By
formulating extraction queries, a user can extract desired in-
formation from a set of documents. There are several software
frameworks available for text analytics, such as GATE [2],
NLTK [3], UIMA [4] or SystemT [5]. To achieve a desired
document-throughput rate, these frameworks are usually de-
ployed on compute clusters where each node operates on
a subset of documents. Although this scale-out approach
achieves the performance goal, it lacks in efficiency by nearly
doubling CPU time [6].

Text analytics involves several compute-intensive tasks,
which can be categorized into extraction and relational opera-
tors. Extraction operators operate across an entire document
and detect string patterns or regular expressions. For each
pattern detected, these operators need to report the position
within a document, referred to as span. Relational operators
operate on these spans, trying to identify a relation between
them. Using these operators, information can be created by,

e.g., assigning a telephone number to a name. For that, the
vicinity of each detected name is inspected for a phone number.
Although many improvements have been made to increase the
performance of such software frameworks they cannot keep up
with the rapid growth of data.

We present an FPGA based accelerator architecture for the
SystemT text analytics engine. It consists of a set of config-
urable hardware modules that can perform the extraction and
relational tasks of a text analytics query in a streaming fashion
by leveraging the natural ordering in text processing. The
framework allows one to build complete queries in hardware
and ensures proper operation.

The main contributions of this work are:

1) an operator library for relational tasks in the field of
text analytics

2) a compiler that combines the extraction and relational
operators in an appropriate way to represent a user
specified query

3) evaluation of the performance, power and hardware
utilization for different customer queries

The remainder of the paper is structured as follows: Sec-
tion II gives an overview of related work. A brief introduction
to the annotation query language will be given in Section III.
We present the hardware operator modules in Section IV and
the compilation process in Section V. Section VI contains our
experimental results, and we conclude in Section VII.

II. RELATED WORK

The Glacier [7] project proposes a similar architecture for
relational queries. It consists of a component library for various
query operators and a compositional compiler for combining
them into a full query. But Glacier has limited support for a
variable-length string data type which is a crucial feature as
extraction matches resulting from the text can be of arbitrary
length. Moreover, Joins are disallowed in Glacier.

In [8] another component library for SQL queries is pro-
posed for using dynamic partial reconfiguration. This allows
on-the-fly compilation of queries to the FPGA without running
the full synthesis flow. Although our compilation times can be
multiple hours long, they are negligible compared with the
runtimes of the compiled system.

A commercial product using FPGAs to accelerate queries
is IBM’s PureData System [9]. The accelerator is directly
attached to the disks and prefilters the queried data before
sending it to the main memory.

Fig. 1. Example of a query written in the annotation query language (AQL).

LINQits [10] is a flexible hardware template that can
be configured using the language integrated query language
LINQ. The compiled accelerators are tightly coupled to the
processor and support various operations on data collections
such as Select, Aggregate or Join.

Jean et al. [11] present an FPGA design to accelerate
queries on databases that contain text and images. It supports
Select statements that use text keywords or image templates to
find appropriate entries in the database. Joins are accelerated
by using a binary search step on the FPGA which only supports
integer keys.

Wu et al. [12] present a GPU-based accelerator to improve
the performance of relational database operations. By fusing
code bodies of multiple kernels, they reduce the execution time
spent on data movement and allow the compiler to perform
more optimization. Another approach to query acceleration is
the use of systolic arrays as proposed by Kung et al. [13]. It
allows the operations to be pipelined in two dimensions: per
tuple and per field. Although this is an efficient architecture for
many relational operations, it is cumbersome for implementing
textual operations.

In our complementary work [14], we show how an ac-
celerator architecture can be integrated into the SystemT
runtime environment. In this work, we introduce the hardware
compilation process for relational algebra operations and show
how they can benefit from the nature of text analytics to be
executed in a streaming fashion. This allows the use of Joins
and complex conditional statements, such as regular expression
matching for Select operators

III. ANNOTATION QUERY LANGUAGE

We base our work on the information extraction software
SystemT [5]. SystemT uses a declarative rule language called
Annotation Query Language (AQL) to define the information
to be extracted from a text source. AQL combines classic
text-based tasks, such as regular expression matching or string
matching with relational tasks like Select or Join known from
database applications. This permits queries to be written in
a modular way using simpler text-based operations and to

Fig. 2. Example of an annotation operator graph (AOG).

combine their results later on. Figure 1 shows an example of
an extraction rule written in AQL for exctracting full names.

The compiler transforms an AQL query into an annotation
operator graph (AOG), which can be executed by the soft-
ware. The AOG represents the data dependency between the
individual operators used in a query. A cost-based optimizer
will choose the best execution plan of an AOG based on a
set of reference documents. This allows the software to skip
whole parts of the AOG if a certain operator does not produce
any outputs. Figure 2 shows the AOG representing the AQL
query seen in Figure 1.

The main datatype used in SystemT is called span and
defines a region of interest within a text document. A span is
a combination of two integer values comprising a character-
based start- and end-offset. All text-based extraction operators
produce a set of spans indicating the position of their matches.
Relational operators mainly use spans as inputs, but can also
refer back to the actual string data defined by the span.

For the hardware implementation, we have extended the
definition of a span by two 16-bit integers defining the token-
based start and end of a span. Here a token is a predefined
segment of the input document, such as a word or a punctua-
tion character.

SystemT operates on a document-per-thread execution
model. This means a single thread runs the complete AOG
on a full document. The operators in an AOG are therefore
executed in a serial fashion. For our hardware accelerator we
choose a streaming execution model in which all operators
run in parallel forming a large pipeline. Each pipeline operates
on an individual document, thus providing a further level of
parallelism.

IV. RELATIONAL ALGEBRA OPERATORS

The following section describes some of the hardware
operators available and how they can be interconnected. The
hardware operators for extraction tasks have been described in

Fig. 3. An elastic interface is used to interconnect the operator modules. The
data width depends on the producer’s schema and is mainly composed of a
number of spans each consisting of a character-based start and end offset and
a start and end token index.

[15] and [16]. Our main goal is to achieve a streaming oper-
ation for the relational tasks to avoid any backpressure to the
extraction operators as they define the document-throughput
rate. The relational operator designs leverage the fact that the
extraction tasks produce results sorted by either the start or
end offset. Configuring the producing operators appropriately
or using simple sorting buffers allows the receiving operator
modules to get the input in their required ordering.

To connect the various operators, a common communica-
tion scheme and interface need to be defined that are flexible
in the number of parallel streams and their individual data
width. Also bi-directional flow control must be supported to
allow back pressure from operators that require multiple cycles
of processing. We have chosen an elastic interface to be the
top-level interface for all operators.

The interface consists of four signals: valid, ready, data and
end. For each stream/edge, valid, ready and end are single-bit-
wide signals, whereas the width of data is determined by the
schema of the producing operator. The producer presents new
data on the data bus and signals that to the consumer by raising
the valid signal. The consumer acknowledges the transmission
by keeping the ready signal high. If the consumer’s ready
signal is low the producer needs to keep valid high and
maintain the data steady until the consumer becomes available
again.

A. Select

The Select operator is a filter operation on a single input
stream. It evaluates a condition expression for each tuple it
receives and outputs only the ones for which the condition
becomes true. This operator works independently of the order
of the incoming tuples but needs to be individually compiled
as the condition may be a complex expression composed
of pattern matches, comparisons and boolean functions. The
condition expression is represented in the AOG as a set of

Fig. 4. Select top-level architecture containing a FIFO, a read control unit,
and the custom-compiled condition-evaluation module.

secondary nodes attached to the Select operator shown on the
top right of Fig. 4.

The top-level hardware module seen in Fig. 4 is composed
of three main components: a FIFO to buffer the incoming
tuples, a read control unit, and the custom-compiled condition-
evaluation module. Once data is available in the FIFO, the
read control unit will read a single tuple and pass it on to
the condition evaluation. Processing can take multiple clock
cycles and will return two bits indicating that the evaluation
has finished and whether the condition is true or false. The
read control will then validate or invalidate the output data
and continue with the next tuple in the buffer.

The condition may require the operator to access the actual
document data again when checking for a string compare or
regular expression. If that is the case the operator module is
extended with a document buffer that holds a portion of the
text document and can be accessed directly from the condition-
evaluation module. The incoming span defines the location and
amount of text data to be fetched from the document buffer,
which leads to arbitrary processing times for the condition
evaluation.

Although the condition evaluation is a blocking operation,
it is sufficiently fast to keep the tuple buffer from overflowing.
Profiling information shows the average number of input tuples
to the operator for a set of reference documents. Typical
numbers range from less than 0.1 to about 16 tuples for an
average document size of 251.5 bytes. This means a tuple
enters the operator every 16 characters, on average.

The profiling information is available to the compiler and
allows it to set the depth of the tuple buffer appropriately.
Furthermore the compiler sets the buffer’s width according
to the input schema and connects the necessary fields to the
condition evaluation unit.

B. Consolidation

Consolidation is another filter operation applied to a single
stream of inputs that handles duplicates or overlaps. Each
operator instance can have a different consolidation predicate
defining its functionality. Examples are ExactMatch, which
will discard all spans that are equal to a previous one or

ContainedWithin, which discards all spans that are wholly
contained within another one. In contrast to the Select operator,
this requires the evaluation of more than a single input tuple.

The hardware module leverages the fact that the input
can be sorted for little or no cost by the producer. For the
ExactMatch predicate, the module will only validate output
data when consecutive spans are not equal or the end of a
stream is reached. In this case, the input data can be sorted by
end first and then by start offset or vice versa, but needs to be
fully sorted. A 64-bit comparator is used to check equality on
the character start and end offsets. There is no need to check
also the token indices as they are derived by the character
offsets.

For the ContainedWithin predicate, the input data needs to
be sorted by start offset only. In a first stage, the longest span
for each unique start offset is detected as this contains all other
spans with the same start. The resulting spans are passed to
a second stage which removes all spans having an equal or
smaller end as they are contained within an earlier span that
had a smaller start offset.

The compiler selects the appropriate module and configures
it with the according data width. It then identifies the field in
the schema the consolidation operates on and wires the input
appropriately.

C. Adjacent Join

The Adjacent Join operator takes two streams (A and B) of
spans as input. It then calculates the distance from a span from
A to a span from B either as number of characters or number
of tokens. If the distance is within the configured range of the
operator the two tuples are joined to form a single new tuple
at the output.

The hardware implementation of this operator profits from
the ordering of the two input streams where stream A is sorted
by end offset and stream B is sorted by start offset. Fig. 5
shows the top-level of the operator module with some example
input on the left. The R/W control unit waits until it receives
valid inputs from both buffers A and B. It then calculates the
distance between the two spans to determine the next action. If
the distance is within the configured range the joined tuple is
written to the output and the tuple of B is stored to a temporary
buffer T. New tuples are read from buffer B and checked until
the maximum distance is exceeded. If the distance is exceeded
a new tuple from A is read and is checked against all tuples
stored in buffer T, discarding all tuples from T that fall below
the minimum distance. Once buffer T is fully checked the
control unit moves on to buffer B again.

The compiler evaluates the join predicate, which can either
be Follows or FollowedBy. In the case of FollowedBy, it swaps
the two input streams before wiring them to the input buffers
and then swaps the joined output to keep the correct ordering
of the fields. It then sets the maximum and minimum distance
values and wether the module needs to calculate a character-
based or token-based distance.

This architecture is not suitable for a generic Join, as the
size of buffer T limits the maximum number of Joins that can
be performed for a single tuple of stream A. Furthermore if one
of the input buffers is full the operator may put the entire query

Fig. 5. Adjacent Join can be performed in a streaming fashion if stream A
is sorted by end offset and stream B by start offset.

into a deadlock situation. If a malformed document causes this
situation an exception is signaled to the software to rerun the
document in software. To avoid this situation, the compiler
uses the profiling information to appropriately size the input
buffers.

D. Union

A Union operator takes any number of input streams
greater than two and combines them into a single output
stream. The inputs need to have the same schema as there will
be only one output schema. In hardware design this translates
into any kind of arbiter that serializes multiple input busses
onto a single output bus. If the downstream operators do not
require the data to be sorted a round-robin arbitration scheme
is used. If a subsequent operator needs the data to be sorted
a specialized sorting union is used which keeps a sorted order
between different inputs. It will not sort the individual input
streams.

E. Difference

The Difference operator is similar to an ExactMatch con-
solidation, but operates on two input streams. It will remove
any tuples from input stream A that are also present in stream
B. For this operator to work in a single pass, both inputs need
to be fully sorted regardless whether first by start or end offset.

The hardware module consists of two input FIFO buffers
and a read control unit. As soon as both buffers contain valid
data, the read control unit will compare the two tuples. If the
tuple from A is smaller than the tuple from B, it gets passed
to the output and the next tuple is read from the A FIFO. If
the tuples match, the tuple from A gets discarded and FIFO
A advances. If A is larger than B, FIFO B advances.

As the Difference operator needs to synchronize two
streams, it can put the query pipeline into a deadlock situation
similar to the AdjacentJoin operator. The mechanism to avoid
this situation is also the same as for AdjacentJoin.

F. Apply Function

The ApplyFunc operator receives a single input stream
and applies a secondary function to it. It is similar to the
Select operator but instead of forming a selection criterion, the

Fig. 6. Bumper node to synchronize the dataflow for multiple receivers.

result of the secondary function is added to the input schema,
resulting in a wider output than input schema.

There are many secondary functions, and currently the
compiler supports a set of commonly used ones, such as the
CombineSpans function, which takes two spans and generates a
new span by selecting the smallest start offset and the largest
end offset. Similarly, SpanBetween selects the smallest end
offset as a new start and the largest start offset as a new end
to create a new span. All functions supported do not require
special ordering to work properly.

G. Project

The project operator reorders the schema of an input tuple
or selects only a subset of fields from it. This operator is
implemented as special wiring between other operators and
causes no costs in terms of logic resources. Resulting dangling
operator pins from removed fields are not specially handled
by the compiler, but we rely on the synthesis tools to remove
unnecessary logic.

V. COMPILATION

The compilation process starts by iterating over all operator
nodes and deriving the ordering requirements for the input
edges. In a second pass, the compiler detects all edges with
the same ordering requirements that are shared as inputs by
multiple operators. These edges are replaced by so-called
bumper nodes that combine the backpressure signals of mul-
tiple receivers. If one of the receivers is not ready to accept
new data, the bumper node will invalidate the data for the
other receivers and lowers the ready flag for the producer.
This is realized using two AND structures to produce the final
signaling as shown in Fig. 6.

Once all requirements have been determined the compiler
starts generating the individual operators. With the exception
of Project, all operators are generated as individual Verilog
modules. As a last step, the compiler assembles the top-
level by instantiating all operator modules and connects them
accordingly. At this stage all Project operators are applied to
the wiring between the modules. The routing code takes into
account special interface properties of the operator modules,
e.g., a single Dictionary module processes four document
streams and thus only a single instance is required as opposed
to a Select module.

The compilation process takes up to a minute to generate
the full Verilog description from an AQL query. This includes
compiling the AQL to an AOG and running the profiler to

obtain the necessary information. Once the Verilog files are
generated the synthesis tools are launched to generate the
FPGA configuration bitstream. Depending on the complexity
of the query, this step may take a few hours. This is acceptable
for text analytics queries as they are in place for multiple days
or even continuously.

VI. EXPERIMENTS & RESULTS

In this section we explore the performance and scalability
of the system presented, as well as it’s power consumption.
For this purpose we selected a set of customer queries and
processed them with the compiler. Table I summarizes the
query profiles showing the various operator and output counts.

TABLE I. NUMBER OF OPERATORS FOR DIFFERENT QUERIES.

Query Query Query Query Query Query
Operator A B C D E F

Dictionary 1 4 4 5 8 23

RegExp 3 6 6 9 17 26

AdjacentJoin 0 4 9 9 18 0

Select 4 0 0 4 4 0

Consolidate 1 0 2 3 3 0

Union 2 1 5 7 8 0

Difference 2 0 0 2 2 0

ApplyFunc 0 4 9 9 12 0

Project 35 56 88 125 202 32

Total 48 75 123 173 274 81

of outputs 3 10 1 4 28 55

The Verilog designs were synthesized for an Altera
Stratix R© IV GX530 FPGA using the Quartus R© 13.1.3 tool
chain. All queries were implemented to support processing of
four documents in parallel. The necessary load/store and con-
trol units are included in the numbers reported and remained
constant for all queries. Table II shows the hardware charac-
teristics for the different queries and four parallel streams.

The strong use of buffers in many operators resulted
in a high utilization of M9K RAMs. Besides the operators
themselves, also the output arbiter that serializes the required
outputs to the DMA module has a resource utilization. Its
size is determined by the number of outputs that need to
be reported. The strong impact can be seen when comparing
queries E and F. The resource utilization is similar for the two
queries although the operator count for query F is less than a
third of that of E. But as the output count doubles, the arbiter
contributes more strongly to the overall resource utilization.
The maximum achievable frequency stays above 200 MHz for
queries A through D and then drops to about 187 MHz for
query E.

TABLE II. RESOURCE UTILIZATION AND MAXIMUM FREQUENCY FOR
DIFFERENT QUERIES WHEN USING FOUR PARALLEL STREAMS.

Query ALUTs (%) Registers (%) M9K (%) fmax

Query A 51384 (12) 74694 (18) 374 (29) 219.68 MHz

Query B 52246 (12) 84673 (20) 307 (24) 230.20 MHz

Query C 67700 (16) 119564 (28) 392 (31) 202.35 MHz

Query D 109806 (26) 158086 (37) 519 (41) 206.95 MHz

Query E 181874 (43) 270008 (64) 675 (53) 187.13 MHz

Query F 142703 (34) 203853 (48) 258 (20) 199.16 MHz

For a performance comparison, we ran all queries using
SystemT on a POWER7 R© server running at 3.55 GHz capable
of 64 threads. The same machine is used for the FPGA
measurements. The query processing pipelines on the FPGA
are running at 200 or 166 MHz depending on the fmax of the
query. The device is attached to the host via a peripheral bus
capable of 3.4 GB/s throughput. The host prepares a large set
of documents in a buffer and then calls the FPGA to process
it.

Table III shows the peak throughput rates measured to-
gether with energy efficiency in terms of MB per Joule.
Although the software threads operate on different documents
independently from each other, the maximum throughput rate
is very limited with up to 32.4 MB/s for query A. Also the
complexity of the query impacts the software performance as
document-throughput degrades with an increasing number of
operators. The FPGA is able to reach the peak throughput rates
defined by the maximum achievable frequency of the compiled
query. The peak throughput rate can always be achieved when
sending work packages that are only 1-2 kB large.

TABLE III. MAXIMUM THROUGHPUT AND ENERGY EFFICIENCY
NUMBERS FOR DIFFERENT QUERIES.

1 SW thread 64 SW threads FPGA
Query MB/s MB/J MB/s MB/J MB/s MB/J

Query A 3.8 0.02 32.4 0.14 800.0 3.60

Query B 2.4 0.01 26.7 0.11 799.6 3.60

Query C 2.5 0.01 26.4 0.11 800.0 3.60

Query D 1.6 0.008 19.9 0.08 799.6 3.62

Query E 0.4 0.002 8.5 0.036 664.0 2.98

Query F 0.4 0.002 8.4 0.035 664.0 2.98

We have evaluated the system’s power consumption by
looking at the information provided by the EnergyScale power
management system [17]. For the measurements, we have
activated dynamic voltage and frequency scaling (DVFS).
While idle, the system consumed 199 W without the FPGA
accelerator attached. When running the single software thread
experiments, we observed a power consumption of 202 W
whereas consumption went up to 236 W when running with
64 threads. When plugging in the FPGA card, the baseline
power consumption increased to 214-216 W, depending on
the query programmed on the FPGA. During processing of the
documents the overall system power consumption was about
220-222 W which is 6% lower than during pure software
processing.

VII. CONCLUSION

We have presented a framework to compile and run text
analytics queries on FPGAs. By leveraging the natural order
of results produced by extraction tasks processing a document,
we show that many relational operations can be performed
in a streaming fashion. We have shown that our framework
is capable of compiling and running real-life queries while
achieving up to 79 times throughput improvement over a
two socket POWER7 server running with 64 parallel threads.
Moreover the overall power consumption of the accelerated
system is 6% less during processing, resulting an up to 85
times higher energy efficiency for processing text analytics
queries.

We will continue our work by adding support for more rela-
tional operators such as aggregation functions. Furthermore we
will analyze the effective utilization of the operator modules
during operation. Also we will investigate the possibility and
effect of operator clustering and hardware sharing.

REFERENCES

[1] “IBM: What is Big Data? Bringing Big Data to enterprise.” http://www-
01.ibm.com/software/data/bigdata/, accessed: 2014-03-21.

[2] H. Cunningham, “GATE, a general architecture for text engineering,”
Computers and the Humanities, vol. 36, no. 2, pp. 223–254, 2002.

[3] S. Bird, “NLTK: The natural language toolkit,” in Proceedings of the
COLING/ACL on Interactive Presentation Sessions. Association for
Computational Linguistics, 2006, pp. 69–72.

[4] D. Ferrucci and A. Lally, “UIMA: An architectural approach to unstruc-
tured information processing in the corporate research environment,”
Natural Language Engineering, vol. 10, no. 3-4, pp. 327–348, 2004.

[5] R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss, S. Vaithyanathan, and
H. Zhu, “SystemT: A system for declarative information extraction,”
ACM SIGMOD Record, vol. 37, no. 4, pp. 7–13, 2009.

[6] V. Tablan, I. Roberts, H. Cunningham, and K. Bontcheva, “GATECloud.
net: A platform for large-scale, open-source text processing on the
cloud,” Philosophical Transactions of the Royal Society A: Mathemat-
ical, Physical and Engineering Sciences, vol. 371, no. 1983, 2013.

[7] R. Mueller, J. Teubner, and G. Alonso, “Streams on wires: A query
compiler for FPGAs,” Proceedings of the VLDB Endowment, vol. 2,
no. 1, pp. 229–240, 2009.

[8] C. Dennl, D. Ziener, and J. Teich, “On-the-fly composition of FPGA-
based SQL query accelerators using a partially reconfigurable module
library,” in IEEE 20th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2012. IEEE,
2012, pp. 45–52.

[9] Datasheet, “IBM PureData system for Analyt-
ics N2001,” 2013. [Online]. Available: http://www-
01.ibm.com/software/data/puredata/analytics/

[10] E. S. Chung, J. D. Davis, and J. Lee, “LINQits: Big data on little
clients,” in Proceedings of the 40th Annual International Symposium
on Computer Architecture. ACM, 2013, pp. 261–272.

[11] J. S. Jean, G. Dong, H. Zhang, X. Guo, and B. Zhang, “Query
processing with an FPGA coprocessor board,” in Proc. 1st Int. Conf.
Engineering of Reconfigurable Systems and Algorithms, 2001.

[12] H. Wu, G. Diamos, S. Cadambi, and S. Yalamanchili, “Kernel weaver:
Automatically fusing database primitives for efficient GPU computa-
tion,” in Proceedings of the 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Computer Society, 2012, pp.
107–118.

[13] H. Kung and P. L. Lehman, “Systolic (VLSI) arrays for relational
database operations,” in Proceedings of the 1980 ACM SIGMOD
International Conference on Management of Data. ACM, 1980, pp.
105–116.

[14] R. Polig, K. Atasu, L. Chiticariu, C. Hagleitner, H. P. Hofstee, F. R.
Reiss, E. Sitaridi, and H. Zhu, “Giving Text Analytics a Boost (to be
published),” IEEE Micro, vol. 34, 2014.

[15] K. Atasu, R. Polig, C. Hagleitner, and F. R. Reiss, “Hardware-
accelerated regular expression matching for high-throughput text ana-
lytics,” in 23rd International Conference on Field Programmable Logic
and Applications (FPL), 2013. IEEE, 2013, pp. 1–7.

[16] R. Polig, K. Atasu, and C. Hagleitner, “Token-based dictionary pattern
matching for text analytics,” in 23rd International Conference on Field
Programmable Logic and Applications (FPL), 2013. IEEE, 2013, pp.
1–6.

[17] H. Y. McCreary, M. A. Broyles, M. Floyd, A. Geissler, S. P. Hartman,
F. Rawson, T. Rosedahl, J. Rubio, and M. Ware, “EnergyScale for IBM
POWER6 microprocessor-based systems,” IBM Journal of Research and
Development, vol. 51, no. 6, pp. 775–786, Nov 2007.

