
Topological Signatures for
Population Admixture

Laxmi Parida1, Filippo Utro1, Deniz Yorukoglu2, Anna Paola Carrieri3, David
Kuhn4, and Saugata Basu5

1 Computational Genomics, IBM T.J. Watson Research Center, Yorktown Heights,
NY, USA.

2 Department of Computer Science, Massachusetts Institute of Technology,
Cambridge, MA, USA.

3 Department of Computer Science, University of Milano-Bicocca, Milan, Italy.
4 USDA-ARS Subtropical Horticultural Research Station, Miami, FL, USA
5 Department of Mathematics, Purdue University, West Lafayette, IN, USA

Abstract. As populations with multi-linear transmission (i.e., mixing
of genetic material from two parents, say) evolve over generations, the
genetic transmission lines constitute complicated networks. In contrast,
uni-linear transmission leads to simpler network structures (trees). The
genetic exchange in multi-linear transmission is further influenced by mi-
gration, incubation, mixing and so on. The task we address in the paper
is to tease apart subtle admixtures from the usual interrelationships of
related populations. We present a combinatorial approach based on per-
sistence in topology to detect admixture in populations. We show, based
on controlled simulations, that topological characteristics have the po-
tential for detecting subtle admixture in related populations. We then
apply the technique successfully to a set of avocado germplasm data in-
dicating that the approach has the potential for novel characterizations
of relatedness in populations. We believe that this approach also has
the potential for not only detecting but also discriminating ancient from
recent admixture.

1 Background

Relatedness of populations is an interesting problem and has been studied ex-
tensively in the population genetics community [9, 10]. In the context of plant
breeding, this understanding is very important in gauging the diversity in the
genetic pool and using it effectively in breeding programs [13]. In the context
of humans, admixture mapping of the genome is useful for disease or complex
trait association studies [4, 16]. Various statistical models have been proposed
in literature [10, 11] to characterize admixture which build mainly on linkage
disequilibrium footprints via minimum allele frequencies of the markers. Here,
we present a combinatorial model based on persistence to model and study ad-
mixture. The authors in [5] have used a similar model to study presence/absence
of genetic exchange as recombination or reassortment in viral populations. The



problem we address here is a little more nuanced, i.e., to discern admixture from
amongst the ubiquitous recombination events. More precisely, the problem is
defined as follows.

1.1 Problem Setting

Ever since Ancestral Recombination Graph (ARG) was introduced by Griffiths
and Marjoram [6], it has become a convenient handle to analyze as well as infer
evolutionary history of populations. ARG incorporates both recombinations and
coalescence in capturing the common history of a set of extant individuals. A
combinatorial perspective of this is presented in [12] as G̃, a directed acyclic
graph (DAG) with the extant units at the leaf nodes. The internal nodes of
G̃ denote ancestors and the edges between nodes denote the transmission of
genetic material through them. Each internal node is at some depth d denoted
in generations from the leaf nodes. All the leaf nodes are at depth d = 0. The
nodes and edges are annotated with the portion of the chromosomal segments
they transmit. We assume that the populations captured by the ARG are Wright
Fisher models [9]. Hence an ARG is a random structure whose topology and
annotation is determined by the number of leaf nodes, the recombination rate r,
the mutation rate µ and population size at each generation N amongst others.
In practice, usually only a portion of the ARG, called the subARG, can be
reconstructed [7, 8]. A subARG has a lower resolution of information than G̃
and can be defined as follows: the vertex set V of a subARG is a subset of the
vertex set Ṽ of G̃. For every directed path in G̃ from v1 to v2, v1 ̸= v2 ∈ V ⊂ Ṽ ,
there is an edge in G if and only if for every vertex u( ̸= v1, v2) ∈ Ṽ in a directed
path from v1 to v2 in G̃, u ̸∈ V holds. In this paper we denote an ARG (or a
subARG) as P , where the leaf nodes have an additional population label. Fig 1
(ii) shows an example with four population labels.

Let the relationship between the m populations be defined by a DAG P ′

with m leaf nodes, called a scaffold, as shown in Fig 1 (i). The progress of time
is assumed to be from top to bottom and the m leaf nodes are annotated with
the population labels. Further, each edge e in P ′ has three characteristics: the
incubation length len(e), the number of lineages at the bottom of the edge,
lb(e), and the number of lineages at the top of the edge, lt(e). The length is a
time parameter defined in generations. Note that two parameters, an effective
population size and a recombination rate, determine the number of lineages
lt(e) for a fixed pair of values of lb(e) and len(e). We assume that the scaffold
P ′ is binary (i.e., each internal node in P ′ has exactly two ascendants or two
descendants, but not both). For each internal node, the junction constraints are
defined as follows. For a node in P ′ that has two incoming edges e1 and e2 and
an outgoing edge e3, the following relationship holds lt(e3) ≤ lb(e1)+ lb(e2), i.e.,
the lineages at v is the union of the lineages of the two incoming edges. Similarly
if node v has two outgoing edges e1 and e2 with one incoming edge e3, then
lb(e3) ≤ lt(e1) + lt(e2), i.e., the lineages at v is the union of the lineages of the
two outgoing edges. Finally, we say that P ′ defines admixture if there exists a
closed path (CP) in P ′. Each edge e of P ′ represents the evolution of a Wright
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Fig. 1. An example with four populations A, B, C, D. (i) shows the scaffold P ′. (ii)
shows a corresponding ARG P . (ii-a) shows the ARG with the “shape” of P ′ super-
imposed on it, while the (ii-b) shows some of the details of P of (ii-a). Note that in
general the structure of P ′ is not apparent from P and the ARG P simply looks like
the one shown in (ii-b). See text for more details.

Fisher population captured in a DAG say Pe. The union of each of these DAGs
by appropriately gluing the ends of the edges corresponding to the nodes of P ′

gives the ARG P that can be written as:

P =
∪
e∈P ′

Pe.

Such a P is shown in Fig 1 (ii) where the leaf nodes correspond to extant units of
each population of P ′: (ii-b) shows some of the typical details of enclosed area of
(ii-a). Each row in (ii-b) is a generation and the edges denote the flow of genetic
material towards the extant units at the leaf nodes (the arrows are not shown
to avoid clutter). A node with two incoming edges in (ii-b) denotes a genetic
exchange event such as recombination. Due to space constraints, we refer the
reader to [12] for further details of a typical ARG P . Note that a recombination
event in the evolution process leads to the occurrence of a CP in P . Now we are
ready to define the central problem as a riddle with three actors as follows.

Problem 1. Tom generates a scaffold P ′ on m populations with the three pa-
rameters len(e), lb(e) and lt(e) for each edge e ∈ P ′ satisfying the junction
constraints. Based on P ′, Dick constructs an ARG P on m populations. Can
Harry detect whether Tom’s P ′ has any CPs i.e., admits admixture, based on
the data given to him by Dick:

Scenario I: the ARG P ;
Scenario II: a subARG of P that has all leaf nodes of P ;
Scenario III: only the leaf nodes of P .



Outline of our approach to the solution. Note that given an ARG or
subARG P , its underlying scaffold P ′ is not immediately computable. Due to
recombinations, many CPs exist in P , but they do not necessarily indicate a
CP in P ′. Fig 2 shows some examples. In this paper, we resort to topology and
translate this problem into persistence homology computation in the Vietoris-
Rips complex defined by P . Notice that Scenario I is an ideal situation while
Scenarios II and III correspond to practical situations, and, we focus on the
latter.

A BDC DA C B DA C B DC BA

0 CP 1 CP 1 CP 2 CP

Fig. 2. Examples of CPs shown as solid dark closed paths in the respective ARGs. In
contrast, the dashed closed paths cannot correspond to CPs in the underlying scaffolds.

2 Topology Model

In this section we develop a theoretical model that explains the topological signal
for the presence or absence of admixtures in the populations being studied in
the persistence diagrams that we compute. We model Scenario III of the last
section as follows. Denote the leaf nodes of P , by L(P ). There exists a notion of
distance between nodes v, v′ of L(P ), denoted w(v, v′), obtained by setting

w(v, v′) = min
u∈lca(v,v′)

depth(u),

where depth(u) denotes the depth of the node u in P (measured in terms of the
number of generations), where the depth of any leaf node of P is 0 and lca(v, v′)
is the set of least common ancestors of v and v′ in P . Recall that the population
labels of the leaf nodes (see last section) partitions L(P ) into disjoint subsets,
where each subset corresponds to a population. Let the set of populations be
denoted by L̃(P ). Thus, there exists a surjective map, ϕ : L(P ) → L̃(P ). The
distance function w(·, ·) on L, induces a distance function w̃ on L̃(P ), obtained
by setting, for A,B ∈ L̃(P ) (where A,B are population labels),

w̃(A,B) = min
v∈L(P ),ϕ(v)=A,
v′∈L(P ),ϕ(v′)=B

w(v, v′). (1)

Note that in our method described later, we do not need to know explicitly
either the set P̃ or the surjective map ϕ. It is reasonable to assume that w and
w̃ defined as above satisfy the following properties. There exists c > 0, with
c ≪ depth(P ), where depth(P ) = maxv∈P depth(v), and such that



Property 1. For each pair each pair u, v ∈ L(P ),

(a) ϕ(u) = ϕ(v) implies that w((u, v)) < c;
(b) ϕ(u) ̸= ϕ(v) implies that w((u, v)) > 2c;
(c) For all u′, v′ ∈ with ϕ(u) = ϕ(u′), ϕ(v) = ϕ(v′), |w(u, v)− w(u′, v′)| < c.

In other word, Property 1 implies that the distance between two leaf nodes of
P carrying the same population label is very small, while those carrying different
labels is large, and the latter distance depends only slightly on the chosen rep-
resentatives, u, v, of the respective populations. Property 1 is an ideal property
which if satisfied by the data implies a topological result relating the induced
Vietoris-Rips complexes on L(P ), and on the set of populations L̃(P ) (using
the distance measures w and w̃) by virtue of Theorem 1 below. Normally, the
data will not satisfy this ideal property exactly – but never-the-less we observe
a behavior which is close to what the mathematical theorem suggests.

Before stating the precise topological theorem we first explain the main idea.

The topological framework. Suppose that in a given finite metric space
M = (V,w), where w : V × V → R≥0, the values of w (i.e. the distances) occur
in two scales. Suppose also that the points of V form clusters with pairwise
distances amongst pairs in each individual cluster belong to the smaller of the
two scales – while, the distance between two clusters, measured by taking the
minimum of the pairwise distances between the points of the two clusters, belong
to the larger scale. We denote the set of clusters by Ṽ and denote the induced
metric on Ṽ by w̃.

Given any d > 0 (recall that d is “time”, in generations, in P ), the Vietoris-
Rips complex of M with parameter d, which we denote by Rips(M,d) (see
Definition 1), is a certain simplicial complex on V (i.e. a family of subsets of V
closed under inclusion), and this complex grows with d. For small values of d
(i.e. closer to the smaller scale) the Vietoris-Rips complex can have complicated
topology (measured by the dimensions of the homology groups or the Betti
numbers of the complex Rips(M,d)) which depend only on the induced metric
spaces on each of the separate clusters. As d grows, the various Vietoris-Rips sub-
complexes corresponding to each cluster become contractible, and all homology
groups in dimensions > 0 vanish (and thus the higher Betti numbers which are
the dimensions of these homology groups vanish). After the value of d grows
even further (i.e. reaches the larger scale), new homology classes in dimensions
> 0 might be born and these classes correspond to those of the Vietoris-Rips
complex associated to the space M̃ = (Ṽ , w̃) obtained from M by clustering.

Persistent homology. A systematic way of understanding the birth and death
of homology cycles in the Vietoris-Rips complex is through the persistent homol-
ogy groups [3] (see Definition 2 for precise definition). Denoting by Rips(M,d)
the Vietoris-Rips complex of M at “time” d, and for all d′ > d, the inclusion
homomorphism id,d

′
: Rips(M,d) ↪→ Rips(M,d′) (which includes Rips(M,d)



in the larger complex Rips(M,d′)) induces a homomorphism

id,d
′

∗ : H∗(Rips(M,d)) → H∗(Rips(M,d′))

between their respective homology groups. Unlike, the homomorphism id,d
′
, id,d

′

∗
is not necessarily injective. A non-zero homology class in H∗(Rips(M,d)) can

map to 0 under id,d
′

∗ . The image of id,d
′

∗ – whose non-zero elements correspond to
non-zero homology classes of H∗(Rips(M,d)) that persists till time d′, is called

the (d, d′)-th persistent homology group, which we will denote by Hd,d′

∗ (M).

One would expect that the the persistent homology groups of the Vietoris-
Rips complex associated to M (in dimensions > 0) will also show a separation
with respect to the two scales. (The zero-th homology groups will not show such
a separation for obvious reasons – and in fact by definition of the Vietoris-Rips
complex the zero-th Betti number is just a decreasing function of d.) Moreover,
one would expect that the homology classes of the Vietoris-Rips complex asso-
ciated to M̃ which persists over long periods (which are the ones identified with
the larger scale) already appear in the persistent homology of the Vietoris-Rips
complex associated to M̃ , while those associated to the smaller scale appear
much earlier and die earlier.

Theorem 1 assures us that provided M, M̃ satisfy certain conditions (Prop-

erty 1) any non-zero persistent homology class in Hd,d′

i (M̃), is the image of a

class in Hd+c,d′

i (M) (where c is a constant appearing in Property 1) and can be
interpreted as an upper bound on the distances of the smaller scale. Thus, even
though we do not have direct access to the Vietoris-Rips complexes of M̃ , we can
obtain information about its persistent homology from those of the Vietoris-Rips
complexes of M . In addition, Theorem 1 also assures us of the separation on the
time scale, of the homology in the Vietoris-Rips complex ofM in the smaller time
scale, from the “interesting” homology in the larger time scale which contributes
to the homology of the Vietoris-Rips complex of M̃ . Together they imply that
the persistent homology of the Vietoris-Rips complexes of M contains informa-
tion allowing us to read the persistent homology of the Vietoris-Rips complex
M̃ if the latter is non-zero.

Precise definitions and statement of the topological theorem. To state
the topological result alluded to above we first need some definition and notation.
We first recall the well known definition of the Vietoris-Rips complex of a finite
set V equipped with a distance function w : V ×V → R≥0, satisfying w(v, v) = 0
for all v ∈ V .

Definition 1 (Vietoris-Rips Complex). Let M = (V,w) be a pair, where V
is a finite set and w : V × V → R≥0 is a map (which need not be a metric on
V ) satisfying w(v, v) = 0 for all v ∈ V . Then, for any integer d > 0, we define
the chain complex of the Vietoris-Rips complex of (M,d), which we will denote
by Rips•(M,d) = (C•(M,d), ∂•) as follows. Let, V = {1, . . . , n}, and for each



p ≥ 0, define

Cp(M,d) =
⊕
U⊂V,

card(U)=p+1,∧
u,u′∈U w(u,u′)≤d

Q · U.

The boundary map ∂p is defined by setting for each U = {i0, . . . , ip} ⊂ V , with
1 ≤ i0 < · · · < ip ≤ n, where Uj = U \ {ij}:

∂p(U) =

p∑
j=0

(−1)j · Uj .

Definition 2 (Persistent homology groups of M). For d ≤ d′, the in-

clusion map id,d
′
: Rips(M,d) ↪→ Rips(M,d′) induces homomorphisms id,d

′

• :
Rips•(M,d) → Rips•(M,d′) between the corresponding chain complexes, which

in turn induces homomorphisms id,d
′

∗ : H∗(Rips•(M,d)) → H∗(Rips•(M,d′))

in homology. We call the image of id,d
′

∗ , the (d, d′)-th persistent homology group

of M (see for example [3]), and we will denote this group by Hd,d′

∗ (M).

We have the following proposition and theorem which relate the persistent
homology groups of two pairs M = (V,w) and M̃ = (Ṽ , w̃) under certain condi-
tions. 6

Proposition 1. Let M = (V,w), M̃ = (Ṽ , w̃) be as in above with V, V ′ finite,
c > 0 and ϕ : V → V ′ a surjective map, such that for each pair u, v ∈ V satisfies
Property 1. Then,

1. Hi(Rips•(M̃, d)) = 0 for i > 0, and d < c.
2. For all d, d′ ≥ 0 satisfying d′ − d > c, the homomorphism ϕ∗ induced by ϕ

satisfies

Hd,d′

∗ (M̃) ⊂ ϕ∗(H
d+c,d′

∗ (M)) ⊂ Hd+c,d′

∗ (M̃).

Moreover, if ĩd,d
′

∗ : H∗(Rips•(M̃, d)) −→ H∗(Rips•(M̃, d′)) is an isomor-
phism, then

(a) ϕ∗|Hd+c,d′
∗ (M)

: Hd+c,d′

∗ (M) is a surjection on to Hd,d′

∗ (M̃).

(b) ϕ∗|Hd,d′
∗ (M)

: Hd+c,d′

∗ (M) is an injection in to Hd,d′

∗ (M̃).

Proof: The first claim immediately follows from Part (c) of Property 1. We now
prove the second claim. We first check that for any d > 0, the map ϕ induces
a simplicial map ϕ : Rips(M,d) → Rips(M̃, d). To see this let U ⊂ V such
that

∧
u,u′∈U w(u, u′) ≤ d. We claim that for each u, u′ ∈ U , w̃(ϕ(u), ϕ(u′)) ≤

d. This follows immediately from the definition of w̃ (see Eqn 1). Notice that

6 We change slightly the formulation of Proposition 1 and Theorem 1 from the pub-
lished version. We thank Jose Maria Ibarra Rguez and Victor Prez Abreu from
CIMAT, Mexico for bringing an issue with the previous formulation to our attention
and helpful discussions.



the min function used in the definition of w̃ is crucial here. This proves that
the induced map of ϕ is simplicial i.e. it carries simplices to simplices. Now
suppose that d′ − d > c, and consider a simplex in the Vietoris-Rips complex
Rips(M̃, d) spanned by Ũ ⊂ Ṽ . Since, Ũ is a simplex in the Vietoris-Rips
complex, Rips(M̃, d), by definition

∧
ũ,ũ′∈Ũ w̃(ũ, ũ′) ≤ d. Then, for all u ∈

ϕ−1(ũ), u′ ∈ ϕ−1(ũ′), w(u, u′) ≤ d + c, (using Parts (a) and (b) of Property
1 ). Thus, the inverse image of the simplex spanned by Ũ in Rips(M̃, d), is
contractible inside Rips(M,d+ c) ↪→ Rips(M,d′).

Let f : Rips(M,d+ c) → Rips(M̃, d′) denote the simplicial map defined by
f = ϕ◦i, and let K = f−1(Rips(M̃, d′) noting that Rips(M̃, d) is a subcomplex
of Rips(M̃, d′). Note that since ϕ is surjective, we have the inclusion (of sub-
complexes)

Rips(M,d) ↪→ K ↪→ Rips(M,d+ c).

We thus have the following commutative diagram of simplicial maps.

Rips(M,d)
� � i //

ϕ

''OO
OOO

OOO
OOO

K
� � i // Rips(M,d+ c)

� � i //

ϕ

��

Rips(M,d′)

ϕ

��

Rips(M̃, d) �
� ĩ // Rips(M̃, d+ c) �

� ĩ // Rips(M̃, d′)

We have the following diagram in homology. The vertical isomorphism is
by the Vietoris-Begle theorem (see for example [14, page 344]) and the fact
that inverse image under f of each simplex in Rips(M̃, d), is contractible inside
Rips(M,d+ c) proved above.

H∗(Rips•(M,d))
i∗ // H∗(K)

i∗ //

∼=
��

H∗(Rips•(M,d+ c))
i∗ // H∗(Rips•(M,d′))

ϕ∗
��

H∗(Rips•(M̃, d))
ĩ∗ // H∗(Rips•(M̃, d′))

From the above diagram it is clear that Hd,d′
(M̃) ⊂ Im(ϕ∗|Hd+c,d′

(M)
).

The inclusion Im(ϕ∗|Hd+c,d′
∗ (M)

) ⊂ Hd+c,d′

∗ (M̃) is also clear from the diagram

H∗(Rips•(M,d+ c))
i∗ //

ϕ∗
��

H∗(Rips•(M,d′))

ϕ∗
��

H∗(Rips•(M̃, d+ c))
i∗ // H∗(Rips•(M̃, d′))

Thus, we have

Hd,d′

∗ (M̃) ⊂ Im(ϕ∗|Hd+c,d′
∗ (M)

) ⊂ Hd+c,d′

∗ (M̃).



Now suppose that ĩ∗
d,d′

is an isomorphism. Then,

H∗(Rips•(M̃, d)) ∼= Hd+c,d′

∗ (M̃) = Hd,d′

∗ (M̃),

and it follows that

1. ϕ∗|Hd+c,d′
∗ (M)

is a surjection to Hd,d′

∗ (M̃), and

2. ϕ∗|Hd,d′
(M)

is an injection to Hd,d′

∗ (M̃).

2

Theorem 1. Let M = (V,w), M̃ = (Ṽ , w̃) be as in above with V, V ′ finite,
c > 0 and ϕ : V → V ′ a surjective map, such that for each pair u, v ∈ V satisfies
Property 1.

Then, for all d, d′ ≥ 0 satisfying d′ − d > 2c, if ĩd,d
′

∗ : H∗(Rips•(M̃, d)) −→
H∗(Rips•(M̃, d′)) is an isomorphism, then

ϕ∗|Hd+c,d′
∗ (M)

: Hd+c,d′

∗ (M) → Hd,d′

∗ (M̃)

is an isomorphism.

Proof: Apply Proposition 1 twice, second time with d replaced by d+ c. 2

Theorem 1 is applicable in the context of Scenario III as follows. Take M =
(L(P ), w) and M̃ = (L̃(P ), w̃). Further suppose that for A,B ∈ L̃(P ), A ̸=
B, |w̃(A) − w̃(B)| > 2c (say), that is distinct populations are separated by a
larger distance than individuals within the same population.

In this case the surjection given in Theorem 1 implies that the presence
of persistent homology (i.e. homology cycles that are born after d = 2c and
that persists for intervals of length > c) in the Vietoris-Rips complex of M̃ can
be detected from that of the Vietoris-Rips complex of M . Hence, for all small

values of d, d′, i.e. 0 < d < d′ < c, the persistent homology groups, Hd,d′

∗ (M)
reflect the topology of the ARG P , created by the recombination events. For
c < d < d+ 3c < d′ by Theorem 1, there is a surjection

Hd+c,d′

∗ (M) → Hd,d′

∗ (M̃).

which is an isomorphism if ĩd,d
′

∗ is an isomorphism, and any persistent homology
(in dimension > 0) in this range can be attributed to the cycles in the population
graph P ′ which are caused by admixture.

Topological Signatures. The theorem thus predicts that the presence of ad-
mixtures should be detectable from the persistent homology diagrams of the
Vietoris-Rips complex of M itself. This is indeed seen in the experimental re-
sults. In Figs 3-7, we display the results of computing the homology groups of
the Rips complexes obtained from both simulated as well as real data. We take
M = (L(P ), w) where P is an ARG obtained either from simulated or real data.



Fig 4 shows results for real data while the others are for simulated data. The
horizontal axis corresponds to the values of d, and for each fixed d, the number
of horizontal lines above is the dimension of homology group of the Vietoris-Rips
complex corresponding to this value of d. Thus, each horizontal line depicts the
“life” of a non-zero homology cycle. The x-coordinate of its left end point is the
time of its “birth” and the right end point the time of its “death”. We see a clear
separation between persistent cycles in dimensions > 1, in the case of admixed
populations – which can be seen as a signal indicating presence of admixture.

3 Experiments

We first describe the simulation experiments. The populations were simulated
using SimRA [2]. Once the set of haplotypes were generated for all three pop-
ulations, we created a distance matrix between all pairs of haplotypes using
Hamming distance metric. The Vietoris-Rips complex was constructed on the
graph embedding of the distance matrix (a complete graph with each vertex
corresponding to an individual haplotype and edge weights corresponding to the
Hamming distance between the pair of haplotypes). We computed homology
groups on the Vietoris-Rips complex for zero and one dimensions using Javaplex
v4.2.0 [15]. Recall that the dimension of the zero-dimensional homology group of
a simplicial complex counts the number of connected components of the simpli-
cial complex, while the dimension of the one-dimensional homology group counts
the number of independent one-dimensional cycles which do not bound.

In the results, irreducible cycles computed from the simulation experiments
are presented as barcode plots, which display when individual cycles representing
non-zero one-dimensional homology classes are born and when they disappear.
The upper half of each barcode plot for the simulation experiments display the
persistence of zero-dimensional homology, while the lower half display barcode
line segments indicate the persistence of one-dimensional homology. While short
cycles can be due to noise, longer (persistent) cycles represent fundamental topo-
logical structures within the genetic distance matrix.

Fig 3 shows the topological signatures in the context of presence and absence
of admixture. The persistent cycles for dimension > 0 clearly separate into two
groups. Figs 6-7 in the appendix show the results of experiments with different
simulation parameters, including stochasticity of the ARGs.

3.1 Experiments on avocado germplasm

We consider three main avocado cultivars: West Indian (W), Guatamelan (G)
and Mexican (M). Moreover, we also consider an F1 population WxG. Each of
the group is composed of 19 samples, from which we have 3348 markers. The
genotype data were phased using Beagle [1] and both haplotypes are used in our
experiments. In particular, using these four groups, we created two datasets to
match our simulation study set-up: one composed of W, G and WxG samples
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Fig. 3. Topology signatures embedded in the ARGs, on simulated data. There is an
absence of admixture in the top while a presence in the bottom panel. This proof-of-
concept experimental setting shows that, in ideal scenarios of simulations, topological
signatures for recombinations and admixture can be differentiated (notice, in particu-
lar, the separation of the persistent cycles of dimension > 0). In the simulations, the
effective population size is N = 10K. See text for further details.
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Fig. 4. Haplotypes from three groups of avocado germplasm data: West Indian (W),
Mexican (M), and Guatemalan (G). The top plot corresponds to the populations with
no admixture, while the bottom admits admixture in the populations. Notice the sep-
aration of the persistent cycles in both dimension 1 and 2 for the latter scenario, while
the former shows no clear separation.



and the other of G, M and W. The former set admits admixture while the latter
does not.

In order to compute the persistent homology groups on the avocado germplasm
data, we concatenated SNP loci from all 12 chromosomes into a single sequence
for each haplotype and computed the distance matrix based on the Hamming
distance metric as described above. For the two avocado germplasm datasets, we
computed zero, one and two-dimensional cycles representing non-zero elements
of the persistent homology groups on the Vietoris-Rips complex using Javaplex.
Fig 4 shows barcode plots describing zero, one and two-dimensional topological
signatures on these two avocado germplasm data sets with and without admix-
ture present. Further analysis of the persistent cycles in terms of their mean
length and variances again shows distinguishing characteristics: see Fig 5 in the
appendix.

4 Conclusion

We present the first combinatorial approach to characterizing admixture in popu-
lations, based on ARGs. Traditionally admixture has been addressed by studying
linkage disequilibrium distributions. In this study, we show through controlled
simulations that it is feasible to detect admixture by topological signatures.
Moreover, when the model was applied on avocado germplasm data, we ob-
served similar signatures of the persistent cycles, as was seen in the simulation
experiments. Due to noise and other unknown factors in real data, the signatures
may be require to be calibrated (i.e., values of c in Section 2) based on training
data. This preliminary work is promising and in our future work, we plan to ex-
plore more complex admixture models, both in terms of complex topology of P ′

as well as complex characterizations of admixture. We believe that the topolog-
ical signatures have the potential for not only detecting but also discriminating
ancient from recent admixture in multiple populations.
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Appendix: Additional Experiments
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Fig. 5. Analysis of the persistent cycles of avocado germplasm data: It shows that
the admixed samples have larger cycle lengths (> 100). The mean length for the 3
admixed populations is larger than the other cases. Also, the individuals for the G and
W cultivars are the same in both the experiments, and they have comparable mean
length (the red and black lines in the plot), while the total cycle lengths are different.
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Fig. 6. In the simulations recombination rate r = 0.1×10−8. Notice that in the absence
of recombinations, no particular separation of persistent cycles is observed. In the
simulations, the effective population size is N = 10K.
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Fig. 7. Six simulations, each with effective population size N = 10K; with recombina-
tion (r = 0.3 × 10−8) as well as admixture to show that stochasticity does not affect
the topological signature, i.e. the separation of the persistent cycles into roughly two
groups.


