
IBM Research – Tokyo

 September 2, 2015 © 2015 IBM Corporation

Faster Set Intersection with SIMD Instructions
by Reducing Branch Mispredictions

Hiroshi Inoue†‡, Moriyoshi Ohara†,

Kenjiro Taura‡

† IBM Research – Tokyo ‡ University of Tokyo

IBM Research – Tokyo

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions © 2015 IBM Corporation

What is Set Intersection?

 The operation to find common elements from two sets

 We think intersecting two sorted integer arrays

(e.g. std::set_intersection in STL of C++)

2

2 5

1 3

6 8

5 9

11 14

10 12

input array A

input array B

·····

·····

A[i] A[i+1] A[i+2] A[i+3] A[i+4] A[i+5]

B[i] B[i+1] B[i+2] B[i+3] B[i+4] B[i+5]

5 ····· output array 17 41

IBM Research – Tokyo

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions © 2015 IBM Corporation

Does it matter?

 Heavily used in DBMS (join operator) and information

retrieval systems (multiword AND query)

3

2 5 6 8 11 14 ····· List of document IDs

for keywordA

1 3 5 9 10 12 ····· List of document IDs

for keywordB

Multiword query

find documents including all keywords

“set intersection” of posting lists!

keywordA keywordB

IBM Research – Tokyo

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions © 2015 IBM Corporation

How can we implement this?

4

2 5

1 3

6 8

5 9

input array A

input array B

1
1. check the equality

of two elements

2. advance a pointer by 1

in each iteration

2

·····

·····

while (pA < pAend && pB < pBend) {
 if (*pA == *pB) { *pOut++ = *pA++; pB++; }
 else if (*pA < *pB) { pA++; }
 else { pB++; }
}

Merge-based approach

IBM Research – Tokyo

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions © 2015 IBM Corporation

Existing intersection algorithms

 Many techniques have been proposed for intersecting two

arrays of very different sizes (10x ~)

– based on binary search (e.g. galloping)

– based on additional data structures (e.g. skip list, hash etc)

 They focus on reducing the number of comparisons

 For arrays with similar sizes, the merge-based algorithm is

faster than these advanced algorithms our focus

5

102 511

1 3 5 9

input array A

input array B ····· 12 19 26 30
binary search

·····

IBM Research – Tokyo

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions © 2015 IBM Corporation

Key observation

 The comparison to select an input array for the next block is hard to

predict for branch prediction hardware

– It will be taken in arbitrary order

 The comparison to check equality is much easier to predict

– It is not taken frequently for many applications

We reduce the hard-to-predict conditional branches

6

while (pA < pAend && pB < pBend) {
 if (*pA == *pB) { *pOut++ = *pA++; pB++; }
 else if (*pA < *pB) { pA++; }
 else { pB++; }
}

IBM Research – Tokyo

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions © 2015 IBM Corporation

Our approach for reducing branch mispredictions

 reduce the number of the hard-to-predict conditional

branches to 1/S

 increase other (easy-to-predict) conditional branches

by S times

Based on a simple cost model, the block size of 3 is

the best when misprediction penalty is 10~22 cycles

7

2 5

1 3

6 8

5 9

input array A

input array B

1. to find any matching pairs

in blocks of S elements,

here S = 2

2. to advance a pointer by S

in each iteration:

2

·····

·····

IBM Research – Tokyo

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions © 2015 IBM Corporation

Pseudo code of our approach (with block size S = 2)

8

while (pA < pAend-1 && pB < pBend-1) {
 A0 = *pA; A1 = *(pA+1); B0 = *pB; B1 = *(pB+1);
 if (A0 == B0) { *pOut++ = A0; }
 else if (A0 == B1) { *pOut++ = A0; Bpos+=2; continue; }
 else if (A1 == B0) { *pOut++ = A1; Apos+=2; continue; }
 if (A1 == B1) { *pOut++ = A1; Apos+=2; Bpos+=2; }
 else if (A1 < B1) { Apos+=2; }
 else { Bpos+=2; }
}

S2 easy-to-predict branches per

S elements S times more

only one while processing S elements

 reduced to 1/S

increment a pointer by S

IBM Research – Tokyo

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions © 2015 IBM Corporation

Determining the best block size

9

execution

per element

mispredicti

on rate
total cost

if_equal branches S 0% S * costexec

if_greater branches 1/S 50% (costexec+ costmisp* 0.5) / S

 A simple cost model of branches for block size S

 Best block size is determined by r = costmisp / costexec

– S = 1 when r ≤ 2

– S = 2 when 2 ≤ r ≤ 10

– S = 3 when 10 ≤ r ≤ 22

– S = 4 when 22 ≤ r ≤ 38

the case for many of

recent processors

with SIMD, we use S = 4 to fully

exploit vector register size

IBM Research – Tokyo

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions © 2015 IBM Corporation

Our approach for exploiting SIMD instructions

 Existing approach: full comparison by

SIMD to find matching pairs [Lemire et al.

2015, Schlegel et al. 2011]

– limited data parallelism

– limited element size

 Our approach: partial comparison by

SIMD to filter out redundant comparisons

– We can enjoy higher data parallelism

– We can support larger elements

(e.g. 32-bit or 64-bit integers)

– Optimized for the common case

10

== == == ==

input 1

input 2

output

== == == == == == == ==

input 1

input 2

output

== == == == == == == ==

IBM Research – Tokyo

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions © 2015 IBM Corporation

Partial comparison by SIMD

 We introduce partial comparison by SIMD before the scalar

comparison to reduce redundant comparisons

We can skip the all-pairs comparison by scalar if the no

matching pair found in the partial comparison by SIMD
11

input array A

input array B

A[i] A[i+1] A[i+2] A[i+3]

B[j] B[j+1] B[j+2] B[j+3]

compare each

byte pair

vector register A

(128 bit)

vector register B

(128 bit)

compare only a part of

each element to increase

parallelism

IBM Research – Tokyo

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions © 2015 IBM Corporation

Performance Evaluations

 Systems

– 2.9-GHz Xeon E5-2690 (SandyBridge-EP) processors

• using SSE instructions (128-bit SIMD)

• Redhat Enterprise Linux 6.4, gcc-4.8.2

– 4.1-GHz POWER7+ processors

• using VSX instructions (128-bit SIMD)

• Redhat Enterprise Linux 6.4, gcc-4.8.3

12

IBM Research – Tokyo

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions © 2015 IBM Corporation

0

200

400

600

800

1,000

1,200

1,400

1,600

Xeon POWER7+

p
e

rf
o

rm
a

n
c
e

 (
in

p
u

t e
n

tr
ie

s
 /

u
s
e

c
)

STL Naive (block size = 1)

Our scalar algorithm (block size = 2) Our scalar algorithm (block size = 3)

Our scalar algorithm (block size = 4) Our scalar algorithm (block size = 5)

Our SIMD algorithm (block size = 4) Branchless algorithm

V1 SIMD algorithm (Lemire et al.)

Performance improvements by our scalar algorithm

13

up to 2.1x and 1.8x gain over STL

(with block size of 3)

up to 2.1x and 1.8x gain over STL

(with block size of 3)

fa
s
te

r

intersecting

two 256k random

32-bit integers,

output / input = 0%

IBM Research – Tokyo

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions © 2015 IBM Corporation

0

200

400

600

800

1,000

1,200

1,400

1,600

Xeon POWER7+

p
e

rf
o

rm
a

n
c
e

 (
in

p
u

t e
n

tr
ie

s
 /

u
s
e

c
)

STL Naive (block size = 1)

Our scalar algorithm (block size = 2) Our scalar algorithm (block size = 3)

Our scalar algorithm (block size = 4) Our scalar algorithm (block size = 5)

Our SIMD algorithm (block size = 4) Branchless algorithm

V1 SIMD algorithm (Lemire et al.)

Performance improvements with SIMD instructions

up to 2.1x and 1.8x gain over STL

(with block size of 3)

further 2x gain over our scalar

algorithm (about 5x over STL)

lower gain

with existing

SIMD

algorithm

(V1 SIMD

algorithm,

Lemire et al.)

fa
s
te

r

intersecting

two 256k random

32-bit integers,

output / input = 0%

IBM Research – Tokyo

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions © 2015 IBM Corporation

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

in
s
tr

u
c
ti
o
n
s
 e

x
e
c
u
te

d
 p

e
r

in
p
u
t

e
le

m
e
n
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

in
s
tr

u
c
ti
o
n
s
 e

x
e
c
u
te

d
 p

e
r

in
p
u
t

e
le

m
e
n
t

Numbers of branch mispredictions and instructions

15

Branch mispredictions per input element Instructions executed per input element

b
e
tte

r

b
e
tte

r

7x reduction

1.54x

reduction

block size 1 2 3 4 5 4 block size 1 2 3 4 5 4

scalar SIMD scalar SIMD

IBM Research – Tokyo

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions © 2015 IBM Corporation

Performance for arrays with different sizes

16

0

500

1000

1500

2000

2500

3000

3500

4000

4k/4k 4k/8k 4k/16k 4k/32k 4k/64k 4k/128k 4k/256k 4k/512k 4k/1M

p
e

rf
o

rm
a

n
c
e

 (
in

p
u

t
e

n
tr

ie
s
 /

u
s
e

c
)

input array sizes (number of elements)

STL

Our SIMD algorithm (block size = 4 x 4)

Our SIMD algorithm (block size = 4 x 8)

V1 SIMD algorithm [9]

SIMD galloping algorithm [9]

fa
s
te

r

intersecting two random 32-bit integer arrays

IBM Research – Tokyo

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions © 2015 IBM Corporation

0

100

200

300

400

500

600

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

p
e

rf
o

rm
a

n
c
e

 (
in

p
u

t
e

n
tr

ie
s
 /

u
s
e

c
)

selectivity (output size / input size)

STL Our scalar algorithm (block size = 3 x 3)

Our SIMD algorithm (block size = 4 x 4) V1 SIMD algorithm [9]

Adaptive fallback to avoid pathological degradations

17

higher selectivity

(more output)

lower selectivity

(less output)

Our SIMD algorithm is the best with

low selectivity (common case)

Our scalar algorithm is the

best until ~65% selectivity

fa
s
te

r

intersecting two 256k random 32-bit integers

IBM Research – Tokyo

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions © 2015 IBM Corporation

Adaptive fallback to avoid pathological degradations

18

Our SIMD algorithm Our non-SIMD algorithm Naive algorithm

0

100

200

300

400

500

600

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

p
e

rf
o

rm
a

n
c
e

 (
in

p
u

t
e

n
tr

ie
s
 /

u
s
e

c
)

selectivity (output size / input size)

STL Our scalar algorithm (block size = 3 x 3)

Our SIMD algorithm (block size = 4 x 4) Our adaptive SIMD algorithm

V1 SIMD algorithm [9][3]

higher selectivity

(more output)

lower selectivity

(less output)

on

Xeon
We adaptively select the

best algorithm at runtime

based on output /input ratio

fa
s
te

r

IBM Research – Tokyo

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions © 2015 IBM Corporation

Adaptive algorithm overview

19

SIMD algorithm
(block size 4x4)

SIMD algorithm
(block size 4x8)

SIMD galloping
[9]

scalar algorithm
(block size 3x3)

scalar algorithm
(block size 2x4)

galloping [10]

STL (naive
merge-based)

our adaptive SIMD algorithm

our adaptive scalar algorithm

selectivity > 35% selectivity
> 15%

selectivity
> 65%

selectivity
> 65%

select algorithm based on the

difference in the sizes of the two

input arrays

< 1:2 1:2~1:32 > 1:32

< 1:2 1:2~1:32 > 1:32

adaptive fallback with

a runtime check of selectivity

Start of SIMD

algorithm

Start of scalar

algorithm

IBM Research – Tokyo

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions © 2015 IBM Corporation

0.0

0.5

1.0

1.5

2.0

2.5

2-word query 3-word query 6-word query 8-word queryre
la

ti
v
e

 p
e

rf
o

rm
a

n
c
e

 o
v
e

r
(S

T
L
 +

 g
a

ll
o

p
in

g
)

Our adaptive SIMD algorithm Our adaptive scalar algorithm

V1 SIMD + SIMD galloping [9] STL + galloping (baseline)

STL only

Performance with realistic dataset
(multiword queries in Wikipedia)

20

Our SIMD algorithm + SIMD

galloping (binary-search-based)

fa
s
te

r

on

Xeon

intersecting

2 posting lists
intersecting

3 posting lists

intersecting

6 posting lists

intersecting

8 posting lists

lower gain with existing SIMD algorithm

V1 SIMD algorithm + SIMD galloping

(Lemire et al. [3])

IBM Research – Tokyo

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions © 2015 IBM Corporation

Summary

 We proposed a new set intersection algorithm which is
efficient on today’s processors

– by reducing branch mispredictions

– by avoiding redundant comparisons using SIMD

 Our new algorithm accelerates set intersection for artificial
dataset compared to STL

– by up to 2x without SIMD

– by up to 5x using SIMD

 It also achieves better performance in an emulated query
serving system

– by up to 2.3x with SIMD over STL

– by up to 1.5x over existing SIMD algorithms [Lemire et al. ’15]

21

