.||IH

IBM Research — Tokyo THE UNIVERSITY OF TOKYO

Faster Set Intersection with SIMD Instructions
by Reducing Branch Mispredictions >

V5

Hiroshi Inouef*, Moriyoshi Ohara,
Kenjiro Taura*
" IBM Research — Tokyo *University of To <y

September 2, 2015 © 2015 IBM Corporation

| IBM Research — Tokyo

What is Set Intersection?

= The operation to find common elements from two sets

= We think intersecting two sorted integer arrays

(e.g. std::set_intersection in STL of C++)

input array A

input array B

l

output array

Alil A[i+1] A[i+2] A[i+3] A[i+4] A[i+5]
2 | 5 6 | 8 | 11 | 14
1 | 3| 5 | 9 |10 12
B[] Bli+1] B[i+2] B[i+3] B[i+4] B[i+5]
é 17 41

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions

© 2015 IBM Corporation

| IBM Research — Tokyo

Does it matter?

= Heavily used in DBMS (join operator) and information
retrieval systems (multiword AND query)

Multiword query

—>find documents including all keywords
- “set intersection” of posting lists!

keywordA keywordB

Google Search I'm Feeling Lucky

List of document IDs I - \
2 5 0 8 11 14 | -
for keywordA S N

List of document IDs | ¢ ‘ 3 l 5 o |10 12| ...
for keywordB —

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions

© 2015 IBM Corporation

| IBM Research — Tokyo

How can we implement this?

In each iteration

1. check the equality
of two elements

input array A 2 5 6 8 | ..

|
o)

input array B 1 3

: > 2. advance a pointer by 1

Merge-based approach

while (pA < pAend && pB < pBend) {

if (*pA == *pB) { *pOut++ = *pA++; pB++; }
else if (*pA < *pB) { pA++; }
else { pB++; }

© 2015 IBM Corporation

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions

| IBM Research — Tokyo

Existing intersection algorithms

inputarrayA |102|511 -

input array B 1 3 5 9 |12 | 19| 26| 30 | -

binary search
—

= Many techniques have been proposed for intersecting two
arrays of very different sizes (10x ~)

— based on binary search (e.g. galloping)

— based on additional data structures (e.g. skip list, hash etc)
= They focus on reducing the number of comparisons

= For arrays with similar sizes, the merge-based algorithm is
faster than these advanced algorithms =» our focus

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions © 2015 IBM Corporation

| IBM Research — Tokyo

Key observation

while (pA < pAend && pB < pBend) {

if (*pA == *pB) { *pOut++ = *pA++; pB++; }
else if (xpA < *pB) { pA++; }
else { pB++; }

= The comparison to select an input array for the next block is hard to
predict for branch prediction hardware

— It will be taken in arbitrary order
= The comparison to check equality is much easier to predict

— It is not taken frequently for many applications

=»We reduce the hard-to-predict conditional branches

© 2015 IBM Corporation

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions

| IBM Research — Tokyo

Our approach for reducing branch mispredictions

input array A 2 S 6 8
w _’.
X1
input array B 1 3 S 9
— 75

In each iteration:

1. to find any matching pairs
in blocks of S elements,
here S =2

2. to advance a pointer by S

= © reduce the number of the hard-to-predict conditional

branches to 1/S

= @ increase other (easy-to-predict) conditional branches

by S times

=»Based on a simple cost model, the block size of 3 is
the best when misprediction penalty is 10~22 cycles

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions

© 2015 IBM Corporation

| IBM Research — Tokyo

Pseudo code of our approach (with block size S = 2)

S? easy-to-predict branches per

S elements = S times more

while (pA < pAend-1

< pBend-1) {
*pA; Al = %/ 1); B0 = *pB; B1 = *(pB+1);
(AQ@ == BO) { *pOut++ = AQ; }

if (A@ == B1) { *pOut++ = AQ; Bpos+=2; continue; }
if (A1 == BQ) { *pOut++ = Al; Apos+=2; continue; }
(A1 == B1) { *pOut++ = Al; Apos+=2; Bpos+=2; }

/\

if (A1 < B1) { Apos+=2; }
Bpos+=2; }

[increment a pointer by S

only one while processing S elements

=» reduced to 1/S

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions

© 2015 IBM Corporation

| IBM Research — Tokyo

Determining the best block size

= A simple cost model of branches for block size S

execution mispredicti
total cost
per element | on rate

if_equal branches 0% S * cost,, ..
if_greater branches 1/S 50% (COStgyect COStip* 0.5) /'S

= Best block size is determined by r = cost,;5, / COStg,e,
—~S=1when r<2
—~S=2when 2<r<10
~S=3when 10sr<22 ~
—S=4when 22<r<38

the case for many of

recent processors

with SIMD, we use S = 4 to fully
B exploit vector register size

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions © 2015 IBM Corporation

| IBM Research — Tokyo

Our approach for exploiting SIMD instructions

= Existing approach: full comparison by
SIMD to find matching pairs [Lemire et al.
2015, Schlegel et al. 2011]

— limited data parallelism
— limited element size

= Qur approach: partial comparison by
SIMD to filter out redundant comparisons

—We can enjoy higher data parallelism

—We can support larger elements
(e.g. 32-bit or 64-bit integers)

— Optimized for the common case

input 1

input 2

output

input 1

input 2

output

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions © 2015 IBM Corporation

| IBM Research — Tokyo

Partial comparison by SIMD

= We introduce partial comparison by SIMD before the scalar
comparison to reduce redundant comparisons

Al A[i+1] Ali+2] A[i+3]

input array A

N

vector register A

(128 bit) compare only a part of
compare each :
byte pair each element to increase
vector register B N parallelism
(128 bit) 3 |

input array B

BIj] B[j+1] B[j+2] B[j+3]

=»We can skip the all-pairs comparison by scalar if the no
matching pair found in the partial comparison by SIMD

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions © 2015 IBM Corporation

| IBM Research — Tokyo

Performance Evaluations

= Systems

— 2.9-GHz Xeon E5-2690 (SandyBridge-EP) processors

* using SSE instructions (128-bit SIMD)
- Redhat Enterprise Linux 6.4, gcc-4.8.2

—4.1-GHz POWER7+ processors

» using VSX instructions (128-bit SIMD)
* Redhat Enterprise Linux 6.4, gcc-4.8.3

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions

© 2015 IBM Corporation

| IBM Research — Tokyo

Performance improvements by our scalar algorithm

1,600 :
up to 2.1x and 1.8x gain over STL

LN (With block size of 3)

=
N
o
o

1,000

800

600

400

N
o
o

performance (inputentries/usec)

o

Xeon POWER7+

OSTL ONaive (block size = 1)

OOur scalar algorithm (block size =2) &Our scalar algorithm (block size =3)
B Our scalar algorithm (block size =4) ®EOQOur scalar algorithm (block size =5)
BOur SIMD algorithm (block size = 4) 0O Branchless algorithm

BV1 SIMD algorithm (Lemire et al.)

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions

Jla1se)

intersecting

two 256k random
32-bit integers,
output / input = 0%

© 2015 IBM Corporation

| IBM Research — Tokyo

1,400

=
N
o
o

1,000
lower gain
with existing
600 SIMD
algorithm
(V1 SIMD
200 algorithm,
Lemire et al.)

800

400

performance (inputentries/usec)

Xeon POWER7+

OSTL ONaive (block size = 1)

OOur scalar algorithm (block size =2) &Our scalar algorithm (block size =3)
B Our scalar algorithm (block size =4) ®EOQOur scalar algorithm (block size =5)
BOur SIMD algorithm (block size = 4) 0O Branchless algorithm

BV1 SIMD algorithm (Lemire et al.)

intersecting

two 256k random
32-bit integers,
output / input = 0%

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions © 2015 IBM Corporation

| IBM Research — Tokyo

Numbers of branch mispredictions and instructions

Branch mispredictions per input element

0.6

0.5

0.1

instructions executed per input element

0.0

block size \1

7X reduction

l

1ome(q

Instructions executed per input element

16.0

14.0

4.0

2.0

instructions executed per input element

0.0

block size \1

L

- -~ -pr

7

2 3 4

-l

1om9(q

1l B

reduction

Ny
scalar

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions

SIMD

© 2015 IBM Corporation

| IBM Research — Tokyo

Performance for arrays with different sizes

4000

3500

W
o
o
o

2500

2000

1500

1000

performance (input entries/ usec)

500

—%— STL

—O— Our SIMD algorithm (block size = 4 x 4)
—7/x—Our SIMD algorithm (block size = 4 x 8)
=0 =V1SIMD algorithm [9]

- < = SIMD galloping algorithm [9]

JES

X

X

1

1

1

4k/4k 4k/8k 4k/16k

4k/32k

4k/64k 4k/128k 4k/256k 4k/512k

inputarray sizes (number of elements)

intersecting two random 32-bit integer arrays

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions

4k/1M

© 2015 IBM Corporation

| IBM Research — Tokyo

Adaptive fallback to avoid pathological degradations

Our SIMD algorithm is the best with
low selectivity (common case)

Ja1se}

Our scalar algorithm is the —
best until ~65% selectivity *
—X—STL

100 —#&— Our scalar algorithm (block size = 3 x 3)

performance (input entries/ usec)

—O—Our SIMD algorithm (block size = 4 x4) —[]1-V1SIMD algorithm [9]

L 1 1 1 1 1 1 1 1 1 1 l
0
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
< — selectivity (outputsize / inputsize) _ —
lower selectivity higher selectivity
(less output) (more output)

intersecting two 256k random 32-bit integers

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions © 2015 IBM Corporation

| IBM Research — Tokyo

Adaptive fallback to avoid pathological degradations

600 :
We adaptively select the
500 best algorithm at runtime .
(&) . . QJ
2 based on output /input ratio 7]
>
w400 @
2
c
(<))
= 300
Q.
=
8 200
S
£ —X—STL —#&— Qur scalar algorithm (block size = 3 x 3)
O
5 100 | —o—oursIMD algorithm (block size = 4 x 4) =6=—Our adaptive SIMD algorithm
= - -V1SIMD algorithm [3]
O L 1 1 1 1 1 1 1 1 1 1 l
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

< — selectivity (outputsize / inputsize) _ —

lower selectivity higher selectivity

(less output) (more output)

Our SIMD algorithm = Our non-SIMD algorithm = Naive algorithm

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions © 2015 IBM Corporation

| IBM Research — Tokyo

: - : select algorithm based on the
Adaptlve algonthm Ooverview difference in the sizes of the two

Input arrays
Me—

Start of SIMD
algorithm

SIMD algorithm g SIMD algorithm gEs1LY/IsXer=1le]e]1g[e]

(block size 4x4) @ (block size 4x8) [9]
65% _—omm" | > D !
T R adaptive fallback with
/ Start of scalar & a runtime check of selectivity
/algorithm . -

scalar algorithm == scalar algorithm :
(block size 3x3) 8¢ (block size 2x4) galloping [10]

. selectivity E
\ > 65% ;

N 0
S STL (naive

merge-based) our adaptive scalar algorithm
our adaptive SIMD algorithm

© 2015 IBM Corporation

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions

faster

w\m\\\\\\\\\\\&\m\« &S\S\\\\\ w\\ﬁ\\\\\\\\\\&\\w \\\QSS\\\\ \\vﬁ\\\\\\\\\\\

SIMD algorithm

inter
8 pc

-based)
)

th existing

mtersectlng
t al

6 posting lists
IN Wi

search

re e

inary-

lower ga
V1 SIMD algorithm + SIMD galloping

(Lem

ing

(b
mtersectlng
3 posting lists

th SIMD

on wi

o
>
S
=

Our SIMD algorithm + SIMD

gallop

mtersectlng

2 posting lists
B Our adaptive SIMD algorithr

Faster Set Intersect

BV1SIMD + SIMD galloping

| IBM Research
OSTL only

r
W o) o To) o T} o
- N o\ — — o o

Performance with realistic dataset

| IBM Research — Tokyo

Summary

= We proposed a new set intersection algorithm which is
efficient on today’s processors

— by reducing branch mispredictions
— by avoiding redundant comparisons using SIMD

= Our new algorithm accelerates set intersection for artificial
dataset compared to STL

— by up to 2x without SIMD
— by up to 5x using SIMD

= It also achieves better performance in an emulated query
serving system

— by up to 2.3x with SIMD over STL
— by up to 1.5x over existing SIMD algorithms [Lemire et al. *15]

Faster Set Intersection with SIMD Instructions by Reducing Branch Mispredictions © 2015 IBM Corporation

