
IBM Research – Tokyo

September 3, 2015 © 2015 IBM Corporation

SIMD- and Cache-Friendly Algorithm
for Sorting an Array of Structures

Hiroshi Inoue†‡ and Kenjiro Taura‡

† IBM Research – Tokyo
‡ University of Tokyo

IBM Research – Tokyo

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

Our Goal

 Develop a fast algorithm for sorting an array of structures

Our approach:

 To use SIMD-based multiway mergesort as the basis

 To exploit SIMD instructions to accelerate mergesort kernel

 To avoid random memory accesses that cause excessive

cache misses
2

struct Record {

int32_t key;

int32_t dataX;

int32_t dataY;

...

};

struct Record array[N];

key payload key payload

record i record i +1

payload

IBM Research – Tokyo

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

Outline

Goal

 Background: SIMD multiway mergesort for integers

 Performance problems in existing approaches

 Our approach

 Performance results

3

IBM Research – Tokyo

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

Background:
Mergesort with SIMD for sorting integers
 [Inoue et al. PACT 2007, Chhugani et al. PVLDB 2008 etc.]

 Merge operation for 32-bit or 64-bit integers can be

efficiently implemented with SIMD by:

– merging multiple values in vector registers using SIMD min

and max instructions (i.e. without conditional branches)

– integrating the in-register vector merge into usual

comparison-based merge operation

 SIMD min and max instructions can accelerate sorting by

– parallelizing comparisons

– avoiding unpredictable conditional branches

4

IBM Research – Tokyo

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

Background:
SIMD-based merge for values in two vector registers

5

2 3

Input

two vector registers contain

four presorted values in each

Output

eight values in two vector

registered are now sorted

SIMD merging

one SIMD comparison and

“shuffle” operations for

each stage without

conditional branch

1 4 7 8

stage 1

stage 2

stage 3

input

output

< < < <

< <

< < <

2 3 5 6

1 4 7 8 5 6

sorted sorted

sorted

(example of odd-even merge)

IBM Research – Tokyo

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

21 23

17 18

Background:
Integrating Odd-even merge into usual merge

sorted array 1 1 4 7 9

sorted array 2 2 3 5 6

10 11 12 14

8 13 15 16

sorted

sorted

6

IBM Research – Tokyo

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

21 23

17 18

sorted array 1

sorted array 2

1 4 7 9 2 3 5 6 vector registers

1 4 7 9

2 3 5 6

10 11 12 14

8 13 15 16

register-level merge

Background:
Integrating Odd-even merge into usual merge

sorted sorted

7

IBM Research – Tokyo

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

21 23

17 18

1 4 7 9

2 3 5 6

Background:
Integrating Odd-even merge into usual merge

sorted array 1

sorted array 2

· · ·

· · ·

1 4 7 9 2 3 5 6 vector registers

10 11 12 14

8 13 15 16

sorted

8

IBM Research – Tokyo

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

1 4 7 9

2 3 5 6

21 23

17 18

Background:
Integrating Odd-even merge into usual merge

sorted array 1 10 11 12 14

sorted array 2

vector registers

merged array 1 4 2 3

8 13 15 16

7 9 5 6

use a scalar comparison

to select array to load from

output smaller four values

as merged array

sorted

9

IBM Research – Tokyo

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

1 4 7 9

2 3 5 6

21 23

17 18 8 13 15 16

8 13 15 16

Background:
Integrating Odd-even merge into usual merge

sorted array 1

sorted array 2

vector registers

merged array

register-level merge

7 9 5 6

1 4 2 3

10 11 12 14

sorted

10

IBM Research – Tokyo

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

1 4 7 9

2 3 5 6 8 13 15 16

10 11 12 14

13 15 16 9

8

Background:
Integrating Odd-even merge into usual merge

sorted array 1 21 23

sorted array 2 17 18

vector registers

merged array 7 5 6 1 4 2 3

sorted

11

IBM Research – Tokyo

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

Background: Multiway mergesort

12

unsorted input

sorted output

2way

2way

2way

2way

repeat

2-way

merge

for

log2(N)

stages

Standard (2-way) mergesort

sorted

unsorted input

sorted output

4way

4way

k-way

merge

logk(N)

stages

Multiway (k-way) mergesort, here k = 4

sorted

IBM Research – Tokyo

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

system memory

input streams

stream
0

stream
1

stream
2

stream
3

stream
4

stream
5

stream
6

stream
7

Background: Multiway merge with SIMD

13

intermediate

buffer

output stream

system memory

(8-way merge as an example.

we used 32-way merge

in actual implementation)

processor’s cache memory

2-way
merge

2-way
merge

2-way
merge

2-way
merge

2-way
merge

2-way
merge

2-way
merge

stage 1

stage 2

stage 3

IBM Research – Tokyo

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

Outline

Goal

Background: SIMD multiway mergesort for integers

 Performance problems in existing approaches

 Our approach

 Performance results

14

IBM Research – Tokyo

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

Existing approach for sorting structures with SIMD

 For sorting structures with SIMD mergesort, a frequently

used approach (key-index approach) is

1. pack key and index for each record into an integer.

2. sort the key-index pairs with SIMD, and then

3. rearrange the records based on the sorted key-

index pairs

15

 Costly due to random

accesses for main memory

IBM Research – Tokyo

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

Performance problems in existing approaches

 Existing approaches for sorting structures with SIMD

instructions have performance problems

– Key-index approach: SIMD friendly but not cache

friendly due to random memory accesses

– Direct approach: cache friendly but not SIMD friendly

 Our approach takes the benefits of both approaches

16

key payload key payload

record i record i +1

because the keys are not

stored contiguously in

memory

IBM Research – Tokyo

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

unsorted input

sorted output

Direct approach Key-index approach

encode

rearrange

unsorted input

sorted output

Our approach:
Rearranging at each multiway merge step

17

Our approach

unsorted input

sorted output

a multiway

merge

stage

(e.g. 8-way

merge)

encode

rearrange

encode

rearrange

merge

integers

merge

structures

cache

unfriendly

SIMD

unfriendly

IBM Research – Tokyo

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

unsorted input

sorted output

Direct approach Key-index approach

encode

rearrange

unsorted input

sorted output

Our approach:
Rearranging at each multiway merge step

18

Our approach

unsorted input

sorted output

a multiway

merge

stage

(e.g. 8-way

merge)

encode

rearrange

encode

rearrange

merge

integers

merge

structures

multiple
times
logk(N)

multiple
times:
logk(N)

at every
2-way
merge
step:
log2(N)

Number of
memory copy
per record

only once
only once
(random
access)

IBM Research – Tokyo

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

system memory

input streams

stream
0

stream
1

stream
2

stream
3

stream
4

stream
5

stream
6

stream
7

Our approach: Multiway Merge with SIMD

19

output stream
system memory

2-way
merge

2-way
merge

2-way
merge

2-way
merge

2-way
merge

2-way
merge

2-way
merge

stage 1

stage 2

stage 3

processor’s cache memory

extract key and encode {key, streamID} pair into an integer value

decode streamID and copy records

•move only integers

during merging

•rearrange records

based on merged

integer values

IBM Research – Tokyo

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

Our approach: Overall sorting scheme

20

sorted

unsorted input

sorted output

k-way merge k-way merge k-way merge k-way merge

k-way merge

Step 1: divide into

small blocks that can

fir in (L2) cache

Step 2: sort each

block by vectorized

combsort

Step 3: repeatedly

execute multiway

merge to merge all

blocks

(read the paper on

vectorized combsort)

IBM Research – Tokyo

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

Performance Evaluations

 System

– 2.9-GHz Xeon E5-2690 (SandyBridge-EP) processors

• 2 sockets x 8 cores = 16 cores

• using SSE instructions (128-bit SIMD)

– 96 GB of system memory

– Redhat Enterprise Linux 6.4, gcc-4.8.2

 We compared the performance of following algorithms

– Multiway mergesort (k = 32 way)

• Our approach, key-index approach, direct approach

– Radix sort, STL std::stable_sort, STL (unstable) std::sort

21

IBM Research – Tokyo

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

0

10

20

30

40

50

60

70

80

90

100

110

Our
approach

Key-index
approach

Direct
approach

Radix sort STL
stable_sort

STL sort
(unstable)

e
x
e
c
u
tio

n
 ti

m
e
 (

se
c
)

with SIMD without SIMD

multiway mergesort

Performance for Sorting 512M 16-byte records
with and without SIMD instructions

22

•Our approach

gained largest

speed up from

SIMD

among three

approaches

•It achieved

comparable

performance to

radix sort

fa
s
te

r

IBM Research – Tokyo

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

Performance Scalability with multiple cores

23

0

5

10

15

20

25

30

35

40

45

0 4 8 12 16

re
la

ti
v
e
 p

e
rf

o
rm

a
n
e
 o

v
e
r
S

T
L
's

s
td

::
s
ta

b
le

_
s
o

rt
 o

n
 1

 c
o

re

number of cores

Our approach

Key-index approach

Direct approach

Radix sort

STL stable_sort

STL sort (unstable)

using 512M 16-byte records

• Our approach

achieved the

best

performance

with multiple

cores up to 16

cores

• It showed

better scalability

than radix sort

fa
s
te

r

IBM Research – Tokyo

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

Performance with various sizes of a record

24

cache line size

0

1

2

3

4

5

6

7

8 16 24 32 48 64 96 128 192 256

e
x
e
c
u
ti
n
 t
im

e
 (

s
e
c
)

record size (byte)

Our approach

Key-index approach

Direct approach

Radix sort

STL stable_sort

STL sort (unstable) • Key-index

approach

performed well

for very large

record sizes

due to smaller

number of

data copy

fa
s
te

r

using 16 million records on 1 core

IBM Research – Tokyo

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

Summary

 We developed a new algorithm for sorting an array of

structures, that enables

– efficient use of SIMD instructions

– efficient use of cache memory (no random accesses)

 Our new algorithm outperformed the key-index

approaches in multiway mergesort especially when

each record is smaller than a cache line

 It outperformed the radix sort for records larger than 16

byte and showed better scalability with multiple cores

Read the paper for more detail:

efficient 4-wide SIMD exploitation, results with 10-byte

ASCII key, sorting for variable-length strings

25

IBM Research – Tokyo

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

backup

26

IBM Research – Tokyo

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

Optimization techniques: partial key comparison

 To use 4-wide SIMD (32 bit x 4) instead of 2-wide SIMD

(64 bit x 2)

– Increasing data parallelism and giving the higher

performance

– Sorting based on a partial key

• We confirm that the sorted order is correct using the entire

key when rearranging records using scalar comparison

27

IBM Research – Tokyo

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

Sorting for variable-length strings
256M 12-byte to 20-byte records

(16 bytes on average)

64M 12-byte to 84-byte records

(48 bytes on average)

28

fa
s
te

r

0

10

20

30

40

50

60

70

80

90

100

Our
approach

Key-index
approach

Direct
approach

Radix sort

e
x
e
c
u
tio

n
 ti

m
e
 (

se
c
)

0

5

10

15

20

25

30

Our
approach

Key-index
approach

Direct
approach

Radix sort

e
x
e
c
u
tio

n
 ti

m
e
 (

se
c
)

multiway mergesort multiway mergesort

IBM Research – Tokyo

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

Performance with various numbers of records

0.1

1

10

100

4M 8M 16M 32M 64M 128M 256M 512M

e
x
e
c
u
ti
o
n
 t

im
e
 (

s
e
c
)

records

Our approach

Key-index approach

Direct approach

Radix sort

STL stable_ sort

STL sort (unstable)

lo
w

e
r
is

fa

s
te

r

29

using 16-byte records on 1 core

IBM Research – Tokyo

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

Effect of number of ways in multi-way merge

30

using 512M

16-byte records

0

10

20

30

40

50

60

70

80

2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
k

2
k

e
x
e
c
u
tio

n
 ti

m
e
 (

se
c
)

number of ways

0

1

2

3

4

5

6

2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
k

2
k

e
x
e
c
u
ti
o
n
 t
im

e
 (
s
e
c
)

number of ways

• Larger ways

reduced path

length but

increased

cache misses

on 1 core

on 16 cores

fa
s
te

r
fa

s
te

r

