.|IIH

IBM Research — Tokyo THE UNIVERSITY OF TOKYO

SIMD- and Cache-Friendly Algorithm
for Sorting an Array of Structures p

Hiroshi Inoue’ and Kenjiro Taurat
T IBM Research — Tokyo
I University of Tokyo

September 3, 2015 © 2015 IBM Corporation

| IBM Research — Tokyo

Our Goal

= Develop a fast algorithm for sorting an array of structures

struct Record {
int32 t key;

int32_t dataX; XM key payload key payload K&
payload

int32:t dataY; N - A v J
record i record | +1

};

struct Record array[N];

Our approach:
= To use SIMD-based multiway mergesort as the basis
= To exploit SIMD instructions to accelerate mergesort kernel

= To avoid random memory accesses that cause excessive
cache misses

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

| IBM Research — Tokyo

Outline

v

= Background: SIMD multiway mergesort for integers
= Performance problems in existing approaches

= Our approach

= Performance results

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

| IBM Research — Tokyo

Background:

Mergesort with SIMD for sorting integers
[Inoue et al. PACT 2007, Chhugani et al. PVLDB 2008 etc.]

= Merge operation for 32-bit or 64-bit integers can be
efficiently implemented with SIMD by:

— merging multiple values in vector registers using SIMD min
and max instructions (i.e. without conditional branches)

— Integrating the in-register vector merge into usual
comparison-based merge operation

= SIMD min and max instructions can accelerate sorting by
— parallelizing comparisons

—avoiding unpredictable conditional branches

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

| IBM Research — Tokyo

Background:
SIMD-based merge for values in two vector registers

Input
two vector registers contain

four presorted values in each

SIMD merging
one SIMD comparison and

“shuffle” operations for
each stage without
| conditional branch

Qutput
sorted eight values in two vector

registered are now sorted

(example of odd-even merge)

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

| IBM Research — Tokyo

Background:
Integrating Odd-even merge into usual merge

sorted

o ——
sorted array 1 1 4 7 9 10 | 11 | 12 | 14 | 21 | 23 | e

sorted array 2 2 3 5 6 8 13 | 15| 16 | 17 | 18 weee
o —

sorted

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

| IBM Research — Tokyo

Background:
Integrating Odd-even merge into usual merge

sorted array 1 1 4 7 9 110 | 11 | 12 | 14 | 21 | 23 | e

sorted array 2 2 3 5 6 8 13 | 15| 16 | 17 | 18 weee

sorted sorted

i D
vector registers 1 4 7 9 2 3 5 6

) S

register-level merge

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

| IBM Research — Tokyo

Background:
Integrating Odd-even merge into usual merge

sorted array 1 1 4 7 9 110 | 11 | 12 | 14 | 21 | 23 | e

sorted array 2 2 3 5 6 8 13 | 15| 16 | 17 | 18 weee

sorted
- —
vector registers 1 2 3 4 5 6 7 9

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

| IBM Research — Tokyo

Background:

Integrating Odd-even merge into usual merge

sorted array 1

sorted array 2

vector registers

merged array

8

9%;2 —

use a scalar comparison

to select array to load from

output smaller four values

as merged array

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

| IBM Research — Tokyo

Background:

Integrating Odd-even merge into usual merge

sorted array 1 1 4 7 9

sorted array 2 2 3 5 6

vector registers 8 | 13 | 15

10 | 11 | 12 | 14 | 21 | 23 | e
8 | 13 | 15| 16 | 17 | 18 eee
16 5 6 7 9

) S

register-level merge

merged array 1 2 3 4

sorted

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures

© 2015 IBM Corporation

| IBM Research — Tokyo

Background:

Integrating Odd-even merge into usual merge

21

23 eo0e0

sorted array 1 1 4 7 9 (‘ 10 !5 1|12 | 14
sorted array 2 2 3 5 6 8 13 ‘15 Jd@ 18 oo

vector registers 9 | 13

15

16

merged array 1 2 3 4 5 6 7

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures

© 2015 IBM Corporation

| IBM Research — Tokyo

Background: Multiway mergesort

Standard (2-way) mergesort

repeat
2-way
merge
for

»sorted sorted 0.

Multiway (k-way) mergesort, here k =4

BNYZEIRNYZERNT o oway
i sorted | _sorted output §

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

unsorted input

| IBM Research — Tokyo

Bac

Kground: Multiway merge with SIMD

~(system memory)

input streams

stream stream stream stream stream stream sStream Stream

- - - - -
AN y4 N\ y4 AN y4
NK NK

20D 2-way 2-way

merge merge merge

stage 1
stage 2
2-way intermediate | | S129€ 3
N buffer
—(processor's cache memory)
system memory) P
8- |

output stream - (8-way merge as an example

we used 32-way merge
SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures

in actual implementation)

© 2015 IBM Corporation

| IBM Research — Tokyo

Outline

v
v

= Performance problems in existing approaches
= Our approach
= Performance results

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

| IBM Research — Tokyo

Existing approach for sorting structures with SIMD

= For sorting structures with SIMD mergesort, a frequently
used approach (key-index approach) is
1. pack key and index for each record into an integer.

2. sort the key-index pairs with SIMD, and then

3. rearrange the records based on the sorted key-
iIndex pairs

Costly due to random
accesses for main memory

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

| IBM Research — Tokyo

Performance problems in existing approaches

= EXisting approaches for sorting structures with SIMD
Instructions have performance problems

—Key-index approach: SIMD friendly but not cache
friendly due to random memory accesses

— Direct approach: cache friendly but not SIMD friendly
because the keys are not

stored contiguously in gl Sy pavioad key payioad R
Y Y
memory record i record i +1

= Our approach takes the benefits of both approaches

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

| IBM Research — Tokyo

Our approach:
Rearranging at each multiway merge step

Key-index approach Our approach Direct approach
unsorted input unsorted input unsorted input
encode encode |~

a multiway ‘
merge merge merge
integers @ ~ stage ‘ structures

(e.g. 8-way

el | "
- SIMD
. unfrlendly

slagelala

-

cache
unfriendly
[arages

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

| IBM Research — Tokyo

Our approach:

Rearranging at each multiway merge step

Key-index approach Our approach Direct approach

unsorted input ed input

unsorted input

encode

a multiway
merge
stage

(e.g. 8-way
merge)

merge
integers

@ Number of

memory copy

per record

only once multiple
(random times:
access) log, (N)

AL

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures

merge
structures

at every
2-way
merge
step:
log,(N)

© 2015 IBM Corporation

| IBM Research — Tokyo

Our approach: Multiway Merge with SIMD

system memory)

stream stream stream stream stream stream stream stream
0 1 2 3 4 5 6 /

input streams

extract key and encode {key, streamID} pair into an integer value
N 2 N 2 N 2 N 2
NZ NZ NZ
2-way 2-way 2-way 2-way
merge merge merge merge

stage 1

srearrange records :
based on merged *move only integers
| integer values) , during merging

system memory)
I_(y y) h output stream

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

Our approach: Overall sorting scheme

IBM Research — Tokyo

unsorted input

k-way merge
W

e

k-way merge k-way merge k-way merge
\\4 V

k-way merge

\4
sorted output | 11"}

i SOrted

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures

sl Dlock by vectorized

-

Step 1: divide into
small blocks that can
fir in (L2) cache

Step 2: sort each

combsort

Step 3: repeatedly
execute multiway

merge to merge all
\ blocks

(read the paper on
vectorized combsort)

© 2015 IBM Corporation

| IBM Research — Tokyo

Performance Evaluations

= System
— 2.9-GHz Xeon E5-2690 (SandyBridge-EP) processors

» 2 sockets x 8 cores = 16 cores
* using SSE instructions (128-bit SIMD)

— 96 GB of system memory

— Redhat Enterprise Linux 6.4, gcc-4.8.2

= We compared the performance of following algorithms
— Multiway mergesort (k = 32 way)

« Our approach, key-index approach, direct approach
— Radix sort, STL std::stable sort, STL (unstable) std::sort

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

| IBM Research — Tokyo

Performance for Sorting 512M 16-byte records
with and without SIMD instructions

*QOur approach
gained largest
speed up from

SIMD
among three
approaches
It achieved
comparable

performance
radix sort

110

100 m with SIMD

0 without SIMD

(o]
o

80

Ja1se)

executiontime (sec)

111

\approach approach approach,

Y
multiway mergesort

to

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures

Our Key-index Direct Radix sort

STL STL sort

stable_sort (unstable)

© 2015 IBM Corporation

| IBM Research — Tokyo

Performance Scalability with multiple cores

relative performane over STL's

45

= N N w W H
ol (@) ol o ol o

std::stable sorton1core

=
o

==& Qur approach

—fi= Key-index approach
=== Direct approach

* Our approach

— © —Radix sort

achieved the

-=X=-STL stable_sort
-=x--STL sort (unstable)

best

performance
with multiple
cores up to 16

cores
* |t showed

better scalability

than radix sort

number of cores

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures

A 4

16

using 512M 16-byte records

© 2015 IBM Corporation

Performance with various sizes of a record

executin time (sec)

| IBM Research — Tokyo

cache line size

=& Our approach)

—l— Key-index approach
=== Direct approach ¥
= © —Radix sort ’

-=¥=-STL stable_sort)K’

-=%--STL sort (unstable) | .’

data copy

8 16 24 32 48 64 96 128
record size (byte)

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures

192

256

J91s8)

« Key-index
approach
performed well
for very large
record sizes
due to smaller
number of

Y,

using 16 million records on 1 core

© 2015 IBM Corporation

IBM Research — Tokyo

Summary

= We developed a new algorithm for sorting an array of
structures, that enables

— efficient use of SIMD instructions

— efficient use of cache memory (no random accesses)

= Our new algorithm outperformed the key-index
approaches in multiway mergesort especially when
each record is smaller than a cache line

= It outperformed the radix sort for records larger than 16
byte and showed better scalability with multiple cores

=» Read the paper for more detalil:
efficient 4-wide SIMD exploitation, results with 10-byte
ASCII key, sorting for variable-length strings

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

| IBM Research — Tokyo

backup

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

| IBM Research — Tokyo

Optimization techniques: partial key comparison

= To use 4-wide SIMD (32 bit x 4) instead of 2-wide SIMD
(64 bit x 2)

—Increasing data parallelism and giving the higher
performance
— Sorting based on a partial key

- We confirm that the sorted order is correct using the entire
key when rearranging records using scalar comparison

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures © 2015 IBM Corporation

| IBM Research — Tokyo

Sorting for variable-length strings

256M 12-byte to 20-byte records

64M 12-byte to 84-byte records

(16 bytes on average) (48 bytes on average)
100 30

90 5,"
S 80 52 2
3 3 ®
0 70 N -
E’ B’ 20
£ 60 £
.5 50 .5 15
5 0 3
< 30 ¢ 10
))

20 5

10

O 1 1 1 O 1 1 1]

Our Key-index Direct Radix sort Our Key-index Direct Radix sort
approach approach approach approach approach approach
L) L)
Y Y
multiway mergesort multiway mergesort

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures

© 2015 IBM Corporation

| IBM Research — Tokyo

Performance with various numbers of records

100

—
o

—h

execution time (sec)

0.1

e=@== Qur approach

= © = Radix sort

=== Key-index approach
==fe==Direct approach

==}=-STL stable_sort

~=)=-STL sort (unstable)

loweris faster

-

4M 8M 16M 32M 64M 128M 256M
records

912M

using 16-byte records on 1 core

SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures

© 2015 IBM Corporation

| IBM Research — Tokyo

Effect of number of ways in multi-way merge

on 1 core

on 16 cores

using 512M
16-byte record:

30 number of ways - IBM Corporation

execution time (sec)

execution time (sec)

O ~ N W » U1 O

80
70
60
50
40
30
20
10

0

J915%8)

* Larger ways
reduced path
length but
increased
| cache misses

1 1 1 1 1 1 1 1 1
AN <t 0 © AN < (o0} O N
— o O (q\] Lo —
— AN Lo
number of wavs
| | | | | | | | | |
o~ < 0 O o < (oo} O ~ X ~
—i o™ (o] N LN i — (@\l
i N LN

J91se)

