
© 2017 IBM Corporation

数理・計算科学特論Ｃ

プログラミング言語処理系の最先端実装技術

Trace Compilation

IBM Research - Tokyo

© 2017 IBM Corporation

IBM Research - Tokyo

Trace JIT vs. Method JIT

2

https://twitter.com/yukihiro_matz/status/533775624486133762

© 2017 IBM Corporation

IBM Research - Tokyo

3

Background: Trace-based Compilation

§Using a Trace, a hot path identified at runtime, as a basic unit
of compilation

method fmethod entry

return

if (x != 0)

rarely
executed

while (!end)

do something

frequently
executed

© 2017 IBM Corporation

IBM Research - Tokyo

4

Background: Trace-based Compilation

§Using a Trace, a hot path identified at runtime, as a basic unit
of compilation

method fmethod entry

a hot pathreturn

if (x != 0)

frequently
executed

while (!end)

trace exit

trace exit
(side exit)

trace entry trace A

include only
a hot path

if (x != 0)

rarely
executed

while (!end)

do something

frequently
executed

Trace selection:
how to form good
compilation scope

© 2017 IBM Corporation

IBM Research - Tokyo

A Brief History of Trace-based Compilation (1)

§Trace-based compilation was first introduced by binary
translators and optimizers

–because method structures are not available in binaries
–e.g. Dynamo (PLDI’00), BOA/DAISY (MICRO’99 etc.)

§Dynamo demonstrated optimization potentials
–average 10% speedup over binaries compiled at –O level
–improvements came mostly from better code layout and

simple folding

§Trace-based compilation is still commonly used in binary
instrumentation tools, translators today

–e.g. DynamoRIO, Strata, Intel Pin
5

© 2017 IBM Corporation

IBM Research - Tokyo

A Brief History of Trace-based Compilation (2)

§Also, trace-based compilation has gained popularity in
dynamic scripting languages

–because it can potentially provide more opportunities for
type specialization

–e.g. TraceMonkey (PLDI’09), PyPy (ICOOOLPS’09),
LuaJIT, SPUR (OOPSLA’10)

§TraceMonkey (used in Firefox 3.5 - 10) is the first trace-JIT
for JavaScript

–demonstrated 2x to 20x speedups on loop-intensive
scripts

§PyPy is the first Python trace-JIT
–use trace compilation for aggressive specialization of

generic operations/data
6

© 2017 IBM Corporation

IBM Research - Tokyo

A Brief History of Trace-based Compilation (3)

§HotpathVM (VEE’06), YETI (VEE’07), Maxpath (PPPJ’10),
HotSpot-based trace-JIT (PPPJ’11), Dalvik JIT of Android
2.2+ are trace-JITs targeting Java and variants

§HotpathVM emphasizes its efficiency in resource constrained
systems where full-blown JIT compilation is not practical

§YETI showed that the trace-based compilation eased the
development of a JIT compiler by allowing incremental
implementation of JIT compiler

§HotSpot-based trace-JIT showed performance improvement
over (method-based) HotSpot client compiler (closer to
region-based compilation approach)

7

© 2017 IBM Corporation

IBM Research - Tokyo

Trace? Region?

§The definition of “trace” often differs by authors!

§Typically,
–traces are generated based on runtime path profile

information
–control flow merge is not allowed within a trace

• but, control flow divergence is sometimes allowed
(a.k.a. trace tree)

§Region-based compilation [1], is a similar approach. A region
is often a subset of a method excluding cold code. (But again
no definitive definition of “region”)

[1] R. E. Hank et al., “Region-Based Compilation: An Introduction and Motivation”, Micro95.

8

© 2017 IBM Corporation

IBM Research - Tokyo

9

Outline

§Back ground

§Overview of our trace-JIT

§Trace Selection and Performance

§Summary

© 2017 IBM Corporation

IBM Research - Tokyo

Our Trace-based Java JIT

§Problem statement
– How to optimize large-scale Java applications with deep

(>100) call chains and a flat execution profile?

§Why trace compilation?
– Tracing may create larger compilation scopes than

conventional inlining, especially across method boundaries
– Tracing may provide context-sensitive profiling information

§Our approach
– Develop a trace-JIT based on existing method-based Java JIT

§ 2-year effort by 3 members
– Hiroshi Inoue, Hiroshige Hayashizaki (IBM Research – Tokyo)
– Peng Wu (IBM Research – Watson)

10

© 2017 IBM Corporation

IBM Research - Tokyo

Motivating Example

§ A trace can span multiple methods
– Free from method boundaries
– In large server workloads, there are deep (>100) layers of methods

11

method 1
Web

Container

ok?

search for a
handler

error!

printlog?

method 2
JavaServer
Pages

ok?

search for a
bean

error!

printlog?

method 3
Enterprise
JavaBeans

ok?

create an
SQL

error!

printlog?

method 4
JDBC
Driver

ok?

send the
SQL to DB

error!

printlog?

© 2017 IBM Corporation

IBM Research - Tokyo

Our Questions
1. Can trace-JIT break method boundaries more effectively?
2. Can trace-JIT produce better codes?
3. Can trace-JIT compile more efficiently (i.e., compile time & code size)?
4. Can a Java trace-JIT beat a Java method-JIT?

12

© 2017 IBM Corporation

IBM Research - Tokyo

13

Trace Selection vs. Method Inlining
ASSUMPTION: when a call graph is too big to be fully inlined into

the root node

Method inlining forms

hierarchical regions

invocation

method with loop

method w/o loop

Trace selection forms
contiguous regions

– blue, brown, green

© 2017 IBM Corporation

IBM Research - Tokyo

14

Baseline Method-JIT Components

interpreter

IR generator optimizers

code generator

compiled method
dispatcher garbage collector

code cache

class libraries

Java VM

compiled code
Method-JIT

compilation request
for frequently executed methods

© 2017 IBM Corporation

IBM Research - Tokyo

15

Our Trace-JIT Architecture

Tracing runtime

interpreter

trace (Java bytecode)

trace selection
engine

IR generator optimizers

code generator

trace dispatcher garbage collector

code cache

class libraries

hash map

(e.g. compiled code address)

Java VM

Trace-JIT

modified component

unmodified component

new component

execution events

compiled code

trace side exit
elimination

© 2017 IBM Corporation

IBM Research - Tokyo

16

Our Trace-JIT Architecture

Tracing runtime

interpreter

trace (Java bytecode)

trace selection
engine

IR generator optimizers

code generator

trace dispatcher garbage collector

code cache

class libraries

hash map

(e.g. compiled code address)

Java VM

Trace-JIT

modified component

unmodified component

new component

execution events

compiled code

trace side exit
elimination

modified to call a
hook at control-flow

events

l branch
l method invoke
l method return
l exception

© 2017 IBM Corporation

IBM Research - Tokyo

17

Our Trace-JIT Architecture

Tracing runtime

interpreter

trace (Java bytecode)

trace selection
engine

IR generator optimizers

code generator

trace dispatcher garbage collector

code cache

class libraries

hash map

(e.g. compiled code address)

Java VM

Trace-JIT

modified component

unmodified component

new component

execution events

compiled code

trace side exit
elimination

A

B

exit

exit

l linear trace

A

B

exit

l cyclic trace

stub stub

identify two types of hot paths

© 2017 IBM Corporation

IBM Research - Tokyo

18

Trace Selection

1. Identify a hot trace head
§ a taken target of a backward branch
§ a bytecode that follows a exit point of an existing trace

2. Record next execution path starting from the trace head

3. Stop recording when the trace being recorded:
§ forms a cycle (loop)
§ reaches pre-defined maximum length
§ calls or returns to a JNI (native) method
§ throws an exception

© 2017 IBM Corporation

IBM Research - Tokyo

19

Our Trace-JIT Architecture

Tracing runtime

interpreter

trace (Java bytecode)

trace selection
engine

IR generator optimizers

code generator

trace dispatcher garbage collector

code cache

class libraries

Java VM

modified component

unmodified component

new component

execution events

compiled code
Trace-JIT

trace side exit
elimination

hash map

(e.g. compiled code address)

Apply simple one-pass value
propagation to exploit simple

topologies of traces

It removes potential side exits
to reduce IR tree size and

compilation time

© 2017 IBM Corporation

IBM Research - Tokyo

20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

av
ror

a
ba

tik

ec
lip

se fop h2
jyt

ho
n

lui
nd

ex

lus
ea

rch pm
d

su
nfl

ow
tom

ca
t

tra
de

be
an

s
xa

lan

ge
om

ea
n

re
la

tiv
e

pe
rfo

rm
an

ce
 o

ve
r m

et
ho

d-
JI

T .

method-based JIT
our trace-based JIT

Peak Performance (DaCapo-9.12)

hi
gh

er
 is

 fa
st

er

§ Trace-JIT was almost comparable to the method-JIT on average
§ 21% slower to 19% faster

© 2017 IBM Corporation

IBM Research - Tokyo

21

Outline

§Back ground

§Overview of our trace-JIT

§Trace Selection and Performance

§Summary

© 2017 IBM Corporation

IBM Research - Tokyo

Trace Selection and Performance

§Block duplication is inherent to any trace selection algorithm
–e.g., most blocks following any join-node are duplicated on

traces

§Generating larger compilation scope by allowing more
duplication is
J key to achieve higher peak performance

• more optimization opportunities for compilers
• smaller trace transitioning overhead

L but it may yield longer compilation time
• costly source code analysis
• more duplicated code among traces

èWe observed lots of duplication that does not help the
performance

22

© 2017 IBM Corporation

IBM Research - Tokyo

23

Understanding the Causes (I): Short-Lived Traces

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

D
ayTrader

avrora

batik

eclipse

fop

h2 jython

luindex

lusearch

pm
d

sunflow

tom
cat

tradebeans

xalan

geom
ean

% traces selected by baseline algorithm with <500 execution frequency

On average, 40%
traces of DaCapo 9-12

are short lived

trace A

trace B

1. Trace A is formed before trace B, but node B
dominates node A

2. Node A is part of trace B

• Trace A is formed first
• Trace B is formed later
• Afterwards, A is no longer entered

SYMPTON

ROOT CAUSE
1

2

© 2017 IBM Corporation

IBM Research - Tokyo

Compiled code size reduced by 70%

24

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

D
ay

Tr
ad

er

av
ro

ra

ba
tik

ec
lip

se fo
p h2

jy
th

on

lu
in

de
x

lu
se

ar
ch

pm
d

su
nf

lo
w

to
m

ca
t

tra
de

be
an

s

xa
la

n

ge
om

ea
n

R
el

at
iv

e
JI

Tt
ed

 C
od

e
Si

ze
 .

baseline +exact-bb +head-opt +clear-counter +struct-trunk +prof +prof w/ trunk

sh
or

te
r i

s
be

tte
r

DaCapo 9.12DayTrader 2.0
running on

WebSphere 7

© 2017 IBM Corporation

IBM Research - Tokyo

25

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

D
ay

Tr
ad

er

av
ro

ra

ba
tik

ec
lip

se fo
p h2

jy
th

on

lu
in

de
x

lu
se

ar
ch

pm
d

su
nf

lo
w

to
m

ca
t

tra
de

be
an

s

xa
la

n

ge
om

ea
n

R
el

at
iv

e
St

ar
tu

p
Ti

m
e

baseline +exact-bb +head-opt +clear-counter +struct-trunk +prof +prof w/ trunk

sh
or

te
r i

s
be

tte
r

Startup time reduced by 45%

© 2017 IBM Corporation

IBM Research - Tokyo

Peak performance was also improved in DayTrader!

26

hi
gh

er
 is

 fa
st

er

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

D
ay

Tr
ad

er

av
ro

ra

ba
tik

ec
lip

se fo
p h2

jy
th

on

lu
in

de
x

lu
se

ar
ch

pm
d

su
nf

lo
w

to
m

ca
t

tra
de

be
an

s

xa
la

n

ge
om

ea
n

R
el

at
iv

e
Pe

ak
 P

er
fo

rm
an

ce

baseline +exact-bb +head-opt +clear-counter +struct-trunk +prof +prof w/ trunk

© 2017 IBM Corporation

IBM Research - Tokyo

Trace Selection and Performance
for Large-scale Applications
§Generating larger compilation scope by allowing more duplications

J is key to achieve higher peak performance
• more optimization opportunities for compilers
• smaller trace transitioning overhead

L but it may hurt startup performance
• longer compilation time
• more duplicated code among traces

L also it may hurt the peak performance for large applications
• Larger application tend to cause more instruction cache

misses
• ~20% of CPU cycles were wasted by I-cache misses in

DayTrader
27

© 2017 IBM Corporation

IBM Research - Tokyo

28

Generating longer trace also does not necessarily work:
Supporting a loop in a trace

A

B

exit

l linear trace

A

B

l cyclic trace

exit

B

C

A

D

exit

l extended-form
trace J fewer trace transition

èL1 I$ miss: -10%
J potentially more optimization opportunity
èbut, no improvement observed

L more code duplication among traces
ètotal code size: +20%
èL3 Instruction miss: +6%

L Performance: -1% in DayTrader

+1% on average of DaCapo-9.12
(up to +2.5%)

© 2017 IBM Corporation

IBM Research - Tokyo

29

Outline

§Back ground

§Overview of our trace-JIT

§Trace Selection and Performance

§A large-scale Java application with trace-JIT

§Summary

© 2017 IBM Corporation

IBM Research - Tokyo

Questions and Our Answers
1. Can trace-JIT break method boundaries more effectively?

–Workload dependent, e.g., trace JIT produces 2X larger scope than
method-JIT for Jython, but 9% smaller scope for DayTrader

–But simply enlarge the compilation scope does not help
performance

2. Can trace-JIT produce better codes?
–Retrofitting method-JIT optimizers for trace-JIT does not yield

significant better codes beyond the benefit of larger scope
–But opportunities may exist in new trace-specific optimizations
–How to generate trace exit code is an interesting challenge unique

to trace-JIT
3. Can trace-JIT compile more efficiently (i.e., compile time & code

size)?
–Yes. The simple topology of linear and cyclic traces can be compiled

with much more efficiently
4. Can a Java trace-JIT beat a Java method-JIT?

–It is not easy to beat a mature method-JIT. We feel that a specific
type of workloads, such as Jython, respond better to trace-JIT than
method-JIT30

© 2017 IBM Corporation

IBM Research - Tokyo

How about for other languages?

§ TraceMonkey (JavaScript)
– http://hacks.mozilla.org/2010/03/improving-javascript-performance-

with-jagermonkey/
– “That the approach that we’ve taken with tracing tends to interact

poorly with certain styles of code.”
– “That when we’re able to “stay on trace” (more on this later)

TraceMonkey wins against every other engine.”

§ Pyston (Python)
– https://tech.dropbox.com/2014/04/introducing-pyston-an-upcoming-jit-

based-python-implementation/
– “Whether or not the same performance advantage holds for Python is

an open question, but since the two approaches are fundamentally
incompatible, the only way to start answering the question is to build a
new method-at-a-time JIT.”

31

© 2017 IBM Corporation

IBM Research - Tokyo

Lessons Learned

§ Trace selection algorithm has a big impact on performance and code size
– more flexible than the method inlining and hence is an interesting tool

to evaluate the effect of code duplication

§ What did not work for us
– extending trace-scope by allowing non-linear structures (e.g., trace

grouping, trace tree) does not yield any performance improvement for
DayTrader

§ Possible future steps
– opportunities may exist in new trace-specific optimizations

• e.g., allocation removal [Bolz ’10], aggressive redundancy
elimination

– improving profile accuracy
• profile accuracy is more important in trace-JIT than method-JIT

32

© 2017 IBM Corporation

IBM Research - Tokyo

33

Our Publication on trace-JIT

§ Hiroshi Inoue, Hiroshige Hayashizaki, Peng Wu, and Toshio Nakatani, "A Trace-
based Java JIT Compiler Retrofitted from a Method-based Compiler", CGO 2011

– Focus on trace-optimization aspect of the JIT, discussed the scope mismatch problem

§ Hiroshige Hayashizaki, Peng Wu, Hiroshi Inoue, Mauricio Serrano and Toshio
Nakatani, "Improving the Performance of Trace-based Systems by False Loop
Filtering", ASPLOS 2011

– Focus on trace selection algorithm, fragmentation of traces due to false loop problems

§ Peng Wu, Hiroshige Hayashizaki, Hiroshi Inoue, and Toshio Nakatani, "Reducing
Trace Selection Footprint for Large-scale Java Applications with no Performance
Loss", OOPSLA 2011

– Focus on trace selection algorithm, the code duplication problem

§ Hiroshi Inoue, Hiroshige Hayashizaki, Peng Wu, and Toshio Nakatani, "Adaptive
Multi-Level Compilation in a Trace-based Java JIT Compiler", OOPSLA 2012

– Focus on adaptive compilation of trace-JIT

