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Trace JIT vs. Method JIT
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https://twitter.com/yukihiro_matz/status/533775624486133762
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Background: Trace-based Compilation

§Using a Trace, a hot path identified at runtime, as a basic unit 
of compilation
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Background: Trace-based Compilation
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Trace selection: 
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A Brief History of Trace-based Compilation (1)

§Trace-based compilation was first introduced by binary 
translators and optimizers

–because method structures are not available in binaries
–e.g. Dynamo (PLDI’00), BOA/DAISY (MICRO’99 etc.)

§Dynamo demonstrated optimization potentials
–average 10% speedup over binaries compiled at –O level
–improvements came mostly from better code layout and 

simple folding

§Trace-based compilation is still commonly used in binary 
instrumentation tools, translators today

–e.g. DynamoRIO, Strata, Intel Pin
5
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A Brief History of Trace-based Compilation (2)

§Also, trace-based compilation has gained popularity in 
dynamic scripting languages

–because it can potentially provide more opportunities for 
type specialization

–e.g. TraceMonkey (PLDI’09), PyPy (ICOOOLPS’09), 
LuaJIT, SPUR (OOPSLA’10)

§TraceMonkey (used in Firefox 3.5 - 10) is the first trace-JIT 
for JavaScript 

–demonstrated 2x to 20x speedups on loop-intensive 
scripts

§PyPy is the first Python trace-JIT
–use trace compilation for aggressive specialization of 

generic operations/data
6
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A Brief History of Trace-based Compilation (3)

§HotpathVM (VEE’06), YETI (VEE’07), Maxpath (PPPJ’10), 
HotSpot-based trace-JIT (PPPJ’11), Dalvik JIT of Android 
2.2+ are trace-JITs targeting Java and variants

§HotpathVM emphasizes its efficiency in resource constrained 
systems where full-blown JIT compilation is not practical

§YETI showed that the trace-based compilation eased the 
development of a JIT compiler by allowing incremental 
implementation of JIT compiler

§HotSpot-based trace-JIT showed performance improvement 
over (method-based) HotSpot client compiler (closer to 
region-based compilation approach)

7
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Trace? Region?

§The definition of “trace” often differs by authors!

§Typically,
–traces are generated based on runtime path profile 

information
–control flow merge is not allowed within a trace

• but, control flow divergence is sometimes allowed 
(a.k.a. trace tree)

§Region-based compilation [1], is a similar approach. A region 
is often a subset of a method excluding cold code. (But again 
no definitive definition of “region”)

[1] R. E. Hank et al., “Region-Based Compilation: An Introduction and Motivation”, Micro95.

8



© 2017 IBM Corporation

IBM Research - Tokyo

9

Outline

§Back ground

§Overview of our trace-JIT

§Trace Selection and Performance

§Summary
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Our Trace-based Java JIT

§Problem statement
– How to optimize large-scale Java applications with deep 

(>100) call chains and a flat execution profile?

§Why trace compilation?
– Tracing may create larger compilation scopes than 

conventional inlining, especially across method boundaries
– Tracing may provide context-sensitive profiling information

§Our approach
– Develop a trace-JIT based on existing method-based Java JIT

§ 2-year effort by 3 members
– Hiroshi Inoue, Hiroshige Hayashizaki (IBM Research – Tokyo)
– Peng Wu (IBM Research – Watson)

10
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Motivating Example

§ A trace can span multiple methods
– Free from method boundaries
– In large server workloads, there are deep (>100) layers of methods

11

method 1
Web

Container

ok?

search for a 
handler

error!

printlog?

method 2
JavaServer
Pages

ok?

search for a 
bean

error!

printlog?

method 3
Enterprise
JavaBeans

ok?

create an 
SQL

error!

printlog?

method 4
JDBC
Driver

ok?

send the 
SQL to DB

error!

printlog?



© 2017 IBM Corporation

IBM Research - Tokyo

Our Questions
1. Can trace-JIT break method boundaries more effectively?
2. Can trace-JIT produce better codes?
3. Can trace-JIT compile more efficiently (i.e., compile time & code size)?
4. Can a Java trace-JIT beat a Java method-JIT?

12
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Trace Selection vs. Method Inlining
ASSUMPTION: when a call graph is too big to be fully inlined into 

the root node

Method inlining forms 

hierarchical regions

invocation

method with loop

method w/o loop

Trace selection forms 
contiguous regions

– blue, brown, green
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Baseline Method-JIT Components
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Our Trace-JIT Architecture
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execution events

compiled code

trace side exit
elimination
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Our Trace-JIT Architecture

Tracing runtime
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trace (Java bytecode)
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code cache
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modified to call a 
hook at control-flow 

events

l branch
l method invoke
l method return
l exception
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Our Trace-JIT Architecture

Tracing runtime

interpreter

trace (Java bytecode)

trace selection
engine

IR generator optimizers

code generator

trace dispatcher garbage collector

code cache

class libraries

hash map

(e.g. compiled code address)

Java VM

Trace-JIT

modified component

unmodified component

new component

execution events

compiled code

trace side exit
elimination

A

B

exit

exit

l linear trace

A

B

exit

l cyclic trace

stub stub

identify two types of hot paths
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Trace Selection 

1. Identify a hot trace head 
§ a taken target of a backward branch
§ a bytecode that follows a exit point of an existing trace

2. Record next execution path starting from the trace head

3. Stop recording when the trace being recorded:
§ forms a cycle (loop)
§ reaches pre-defined maximum length
§ calls or returns to a JNI (native) method 
§ throws an exception
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Our Trace-JIT Architecture

Tracing runtime

interpreter

trace (Java bytecode)

trace selection
engine

IR generator optimizers

code generator

trace dispatcher garbage collector

code cache

class libraries

Java VM

modified component

unmodified component

new component

execution events

compiled code
Trace-JIT

trace side exit
elimination

hash map

(e.g. compiled code address)

Apply simple one-pass value 
propagation to exploit simple 

topologies of traces

It removes potential side exits 
to reduce IR tree size and 

compilation time 
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Outline

§Back ground

§Overview of our trace-JIT

§Trace Selection and Performance

§Summary
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Trace Selection and Performance 

§Block duplication is inherent to any trace selection algorithm
–e.g., most blocks following any join-node are duplicated on 

traces

§Generating larger compilation scope by allowing more 
duplication is
J key to achieve higher peak performance

• more optimization opportunities for compilers
• smaller trace transitioning overhead

L but it may yield longer compilation time
• costly source code analysis
• more duplicated code among traces

èWe observed lots of duplication that does not help the 
performance

22
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Understanding the Causes (I): Short-Lived Traces
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Compiled code size reduced by 70%
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Peak performance was also improved in DayTrader!
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Trace Selection and Performance 
for Large-scale Applications 
§Generating larger compilation scope by allowing more duplications

J is key to achieve higher peak performance
• more optimization opportunities for compilers
• smaller trace transitioning overhead

L but it may hurt startup performance
• longer compilation time
• more duplicated code among traces

L also it may hurt the peak performance for large applications
• Larger application tend to cause more instruction cache 

misses
• ~20% of CPU cycles were wasted by I-cache misses in 

DayTrader
27
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Generating longer trace also does not necessarily work:
Supporting a loop in a trace

A

B

exit

l linear trace

A

B

l cyclic trace

exit

B

C

A

D

exit

l extended-form
trace J fewer trace transition

èL1 I$ miss: -10%
J potentially more optimization opportunity
èbut, no improvement observed

L more code duplication among traces
ètotal code size: +20%
èL3 Instruction miss: +6%

L Performance: -1% in DayTrader

+1% on average of DaCapo-9.12
(up to +2.5%) 
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Outline

§Back ground

§Overview of our trace-JIT

§Trace Selection and Performance

§A large-scale Java application with trace-JIT

§Summary
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Questions and Our Answers
1. Can trace-JIT break method boundaries more effectively?

–Workload dependent, e.g., trace JIT produces 2X larger scope than 
method-JIT for Jython, but 9% smaller scope for DayTrader

–But simply enlarge the compilation scope does not help 
performance

2. Can trace-JIT produce better codes?
–Retrofitting method-JIT optimizers for trace-JIT does not yield 

significant better codes beyond the benefit of larger scope
–But opportunities may exist in new trace-specific optimizations
–How to generate trace exit code is an interesting challenge unique 

to trace-JIT
3. Can trace-JIT compile more efficiently (i.e., compile time & code 

size)?
–Yes. The simple topology of linear and cyclic traces can be compiled 

with much more efficiently
4. Can a Java trace-JIT beat a Java method-JIT?

–It is not easy to beat a mature method-JIT. We feel that a specific 
type of workloads, such as Jython, respond better to trace-JIT than 
method-JIT30
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How about for other languages?

§ TraceMonkey (JavaScript)
– http://hacks.mozilla.org/2010/03/improving-javascript-performance-

with-jagermonkey/
– “That the approach that we’ve taken with tracing tends to interact 

poorly with certain styles of code.”
– “That when we’re able to “stay on trace” (more on this later) 

TraceMonkey wins against every other engine.”

§ Pyston (Python)
– https://tech.dropbox.com/2014/04/introducing-pyston-an-upcoming-jit-

based-python-implementation/
– “Whether or not the same performance advantage holds for Python is 

an open question, but since the two approaches are fundamentally 
incompatible, the only way to start answering the question is to build a 
new method-at-a-time JIT.”

31
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Lessons Learned

§ Trace selection algorithm has a big impact on performance and code size
– more flexible than the method inlining and hence is an interesting tool 

to evaluate the effect of code duplication 

§ What did not work for us
– extending trace-scope by allowing non-linear structures (e.g., trace 

grouping, trace tree) does not yield any performance improvement for 
DayTrader

§ Possible future steps
– opportunities may exist in new trace-specific optimizations

• e.g., allocation removal [Bolz ’10], aggressive redundancy 
elimination

– improving profile accuracy
• profile accuracy is more important in trace-JIT than method-JIT 

32
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Our Publication on trace-JIT

§ Hiroshi Inoue, Hiroshige Hayashizaki, Peng Wu, and Toshio Nakatani, "A Trace-
based Java JIT Compiler Retrofitted from a Method-based Compiler", CGO 2011

– Focus on trace-optimization aspect of the JIT, discussed the scope mismatch problem

§ Hiroshige Hayashizaki, Peng Wu, Hiroshi Inoue, Mauricio Serrano and Toshio 
Nakatani, "Improving the Performance of Trace-based Systems by False Loop 
Filtering", ASPLOS 2011

– Focus on trace selection algorithm, fragmentation of traces due to false loop problems

§ Peng Wu, Hiroshige Hayashizaki, Hiroshi Inoue, and Toshio Nakatani, "Reducing 
Trace Selection Footprint for Large-scale Java Applications with no Performance 
Loss", OOPSLA 2011

– Focus on trace selection algorithm, the code duplication problem

§ Hiroshi Inoue, Hiroshige Hayashizaki, Peng Wu, and Toshio Nakatani, "Adaptive 
Multi-Level Compilation in a Trace-based Java JIT Compiler", OOPSLA 2012

– Focus on adaptive compilation of trace-JIT


