
This is a pre peer-reviewed version. The final version is published in Software: Practice and Experience.
http://onlinelibrary.wiley.com/doi/10.1002/spe.1102/abstract

A High-Performance Sorting Algorithm
for Multicore Single-Instruction Multiple-Data Processors

Hiroshi Inoue, Takao Moriyama, Hideaki Komatsu and Toshio Nakatani
IBM Research – Tokyo

Abstract
Many sorting algorithms have been studied in the past, but there are only a few algorithms that can
effectively exploit both SIMD instructions and thread-level parallelism. In this paper, we propose a
new high-performance sorting algorithm, called Aligned-Access sort (AA-sort), for exploiting both
the SIMD instructions and thread-level parallelism available on today's multicore processors. Our
algorithm consists of two phases, an in-core sorting phase and an out-of-core merging phase. The
in-core sorting phase uses our new sorting algorithm that extends combsort to exploit SIMD
instructions. The out-of-core algorithm is based on mergesort with our novel vectorized merging
algorithm. Both phases can take advantage of SIMD instructions. The key to high performance is
eliminating unaligned memory accesses that would reduce the effectiveness of SIMD instructions in
both phases. We implemented and evaluated the AA-sort on PowerPC 970MP and Cell Broadband
Engine platforms. In summary, a sequential version of the AA-sort using SIMD instructions
outperformed IBM’s optimized sequential sorting library by 1.8 times and bitonic merge sort using
SIMD instructions by 3.3 times on PowerPC 970MP when sorting 32 million random 32-bit integers.
Also, a parallel version of AA-sort demonstrated better scalability with increasing numbers of cores
than a parallel version of bitonic merge sort on both platforms.

Keywords: Sorting, Merging, SIMD, VMX, Parallel Algorithms.

1. INTRODUCTION
Many modern high-performance processors provide multiple hardware threads within one physical
processor with multiple cores and simultaneous multithreading. Many processors also provide Single
Instruction Multiple Data (SIMD) instructions, such as the SSE instruction set of the x86 or the
VMX instruction set of the PowerPC. They can operate on multiple data values in parallel to
accelerate computationally intensive programs for a broad range of applications.

An obvious advantage of the SIMD instructions is the degree of data parallelism available in one
instruction. In addition, they allow programmers to reduce the number of conditional branches in
their programs. For example, a program can select the smaller or larger value from each element’s
pair of two vectors without conditional branches. Branches can potentially incur pipeline stalls and
thus limit the performance of superscalar processors with long pipeline stages. Therefore, the benefit
of reduction in the number of conditional branches is significant for many workloads. For example,
Zhou and Ross [1] reported that SIMD instructions can accelerate many database operations, such as
scan operations and join operations, by removing branch overhead.

Sorting is one of the most important building blocks for operating systems and many commercial
and scientific applications, such as data-base management systems [2]. Hence many sequential and

This is a pre peer-reviewed version. The final version is published in Software: Practice and Experience.
http://onlinelibrary.wiley.com/doi/10.1002/spe.1102/abstract

parallel sorting algorithms have been studied in the past [3, 4]. However popular sorting algorithms,
such as quicksort, are not able to exploit SIMD instructions efficiently. For example, a VMX
instruction or a SSE instruction can load or store 128 bits of data between a vector register and
memory with one instruction, but this is effective only when the data is aligned on a 128-bit
boundary. Many sorting algorithms require unaligned or element-wise memory accesses, which
incur additional overhead and attenuate the benefits of SIMD instructions. There is no known
technique to remove unaligned memory accesses from quicksort.

In this paper†, we propose a new high-performance sorting algorithm suitable for exploiting both
the SIMD instructions and thread-level parallelism available on today's multicore processors. We call
the new algorithm Aligned-Access sort (AA-sort). The AA-sort consists of two phases: an in-core
sorting phase and an out-of-core merging phase. Both phases can take advantage of the SIMD
instructions and can also run in parallel with multiple threads.

The in-core sorting phase uses our new algorithm that extends combsort [5] for exploiting SIMD
instructions. This makes it possible to eliminate all unaligned memory accesses and fully exploit the
SIMD instructions. The key idea to improve combsort is to first sort the input data into a transposed
order using vector comparisons, and then reorder it into the desired order. The computational
complexity for both the combsort and our vectorized combsort is O(N•log(N))‡ on average, and
O(N2) in the worst case when sorting N elements. In our AA-sort, we avoid the worst case
computational time of the vectorized combsort by switching from the vectorized combsort to our
vectorized mergesort, whose complexity is O(N•log(N)) even for the worst case, when the number of
iterations exceeds a constant threshold. Thus the complexity of O(N•log(N)) is guaranteed for the
in-core sorting of the AA-sort. Disadvantages of the vectorized combsort include poor memory
access locality, so we combine it with another sorting algorithm in the out-of-core merging phase to
make it possible for the entire AA-sort to use the cache more efficiently.

The out-of-core merging phase is based on mergesort and employs our new vectorized merge
algorithm. It has better memory access locality than our in-core algorithm. Its computational
complexity is O(N•log(N)) even in the worst case.

The complete AA-sort algorithm first divides all of the data into blocks that fit in the L2 cache of
each processor core. Next it sorts each block in the in-core sorting phase. Finally it merges the sorted
blocks with our vectorized merge algorithm to complete the sorting in the out-of-core merging phase.
Both phases can be executed by multiple threads in parallel. The entire AA-sort has the
computational complexity of O(N•log(N)). Also it can be executed in parallel by multiple threads
with the complexity of O(N•log(N)/k) assuming the number of threads, k, is smaller than the number
of blocks for the in-core phase.

We implemented and evaluated the AA-sort on a system with 4 cores of the PowerPC 970MP

† A preliminary version of this paper was published in proceedings of the Sixteenth IEEE Parallel Architecture and Compilation

Techniques (PACT 2007) [6]. This paper adds more descriptions of our new algorithm. It also includes more detailed analysis of

the results of our measurements, including the effects of important parameters on performance.

‡ log refers to logarithm with base 2 unless a different value is specified.

This is a pre peer-reviewed version. The final version is published in Software: Practice and Experience.
http://onlinelibrary.wiley.com/doi/10.1002/spe.1102/abstract

processor and a system with 16 cores of the Cell Broadband Engine (Cell BE) processor [7]. In
summary, a sequential version of the AA-sort using SIMD instructions outperformed IBM’s
optimized sequential sorting library by 1.8 times and the bitonic merge sort that uses SIMD
instructions, the best existing sorting algorithm for SIMD processors, by 3.3 times on the PowerPC
970MP when sorting 32 million random 32-bit integers. The performance of the AA-sort did not
depend on key distributions of the input data by eliminating the data-dependent conditional branches.
Also, a parallel version of the AA-sort demonstrated better scalability with increasing numbers of
cores than a parallel version of the bitonic merge sort. It achieved a speed up of 12.2 for 16 cores on
the Cell BE, while the bitonic merge sort achieved a speedup of 7.1. As a result, the AA-sort was 4.2
times faster on 4 cores of the PowerPC 970MP and 4.9 times faster on 16 cores of the Cell BE
processor than the bitonic merge sort when sorting 32 million random 32-bit integers.

The main contribution of this paper is a new high-performance sorting algorithm that can
effectively exploit SIMD instructions. It consists of two algorithms: a vectorized combsort and a
vectorized mergesort. In our vectorized combsort, it is possible to eliminate all unaligned memory
accesses from combsort. For the vectorized mergesort, we proposed a novel linear-time merge
algorithm that can take advantage of the SIMD instructions. We show that our AA-sort achieves
higher performance and scalability with increasing numbers of processor cores than the best known
algorithms.

The rest of the paper is organized as follows. Section 2 gives an overview of the SIMD
instructions we use for sorting. Section 3 discusses related work. Section 4 de-scribes the AA-sort
algorithm. Section 5 discusses our experimental environment and gives a summary of our results.
Finally, Section 6 draws conclusions.

2. SIMD INSTRUCTION SET
In this paper we use the Vector Multimedia eXtension [8] (VMX, also known as AltiVec)
instructions of the PowerPC instruction set to present our new sorting algorithm. It provides a set of
128-bit vector registers, each of which can be used as sixteen 8-bit values, eight 16-bit values, or
four 32-bit values. The following VMX instructions are useful for sorting: vector compare, vector
select, and vector permutation.

The vector compare instruction reads from two input registers and writes to one output register. It
compares each value in the first input register to the corresponding value in the second input register
and returns the result of comparisons as a mask in the output register.

The vector select instruction takes three registers as the inputs and one for the output. It selects a
value for each bit from the first or second input registers by using the contents of the third input
register as a mask for the selection.

The vector permutation instruction also takes three registers as the inputs and one for the output.
The instruction can reorder the single-byte values of the input arbitrarily. The first two registers are
treated as an array of 32 single-byte values, and the third register is used as an array of indexes to
pick 16 arbitrary bytes from the input register.

This is a pre peer-reviewed version. The final version is published in Software: Practice and Experience.
http://onlinelibrary.wiley.com/doi/10.1002/spe.1102/abstract

These instructions are not unique to the VMX instruction set and thus our algorithm can be
implemented using other SIMD instruction sets, such as the SPE instruction set of Cell BE and the
SSE4 instruction set of the x86. We show our implementation of our algorithm on Cell BE in this
paper and Chhugani et al. [9] described an implementation of a part of our algorithm using the SSE4
[10].

3. RELATED WORK
Many sorting algorithms have been proposed in the past. Quicksort is one of the fastest algorithms
used in practice, and hence there are many optimized implementations of quicksort available.
However there is no known technique to implement quicksort using existing SIMD instructions.

Radixsort is another sorting algorithm widely used today. It has a smaller computational
complexity than any comparison-based algorithms such as quicksort or our AA-sort. However its
scattered memory accesses make it difficult for radixsort to exploit SIMD instructions. The scattered
memory accesses also tend to increase the required main memory bandwidth and thus the radixsort
may suffer from a poor scalability on multicore processors because the memory bandwidth tends to
become a bottleneck in systems with multicore processors [11].

Sanders and Winkel [12] pointed out that the performance of sorting on today’s processors is often
dominated by pipeline stalls caused by branch mispredictions. They proposed a new sorting
algorithm, named super-scalar sample sort (sss-sort), to avoid such pipeline stalls by eliminating
conditional branches. They implemented the sss-sort by using the predicated instructions of the
processor and showed that the sss-sort achieves up to 2 times higher performance over the STL
sorting function delivered with gcc. Our algorithm can also avoid pipeline stalls caused by branch
miss predictions. Moreover, our algorithm makes it possible to take advantage of the data parallelism
of SIMD instructions.

There are some sorting algorithms suitable for exploiting SIMD instructions [13, 14, 15]. They
were originally proposed in the context of sorting on graphics processing units (GPUs), which were
powerful programmable processors with SIMD instruction sets.

Govindaraju et al. [15] presented a sorting algorithm called GPUTeraSort that improved on
bitonic merge sort [16]. The bitonic merge sort has computational complexity of O(N•(log(N))2) and
it can be executed by up to N processors in parallel. The GPUTeraSort improves this algorithm by
altering the order of comparisons to improve the effectiveness of the SIMD comparisons and also by
increasing the memory access locality. Comparing the AA-sort to the GPUTeraSort, both algorithms
can be effectively implemented with SIMD instructions and both can exploit thread-level parallelism.
An advantage of our AA-sort is the computational complexity of O(N•log(N)), which is the optimal
complexity for any comparison-based sorting algorithm, while the complexity for the GPUTeraSort
(or other bitonic merge sort variants) is O(N•(log(N))2).

Gedik et al. [17] presented a sorting algorithm for Cell BE called the CellSort. They also used the
bitonic merge sort as their computing kernel to exploit the SIMD instruction set and thread-level
parallelism of the processor. Thus the computational complexity of their algorithm was larger than

This is a pre peer-reviewed version. The final version is published in Software: Practice and Experience.
http://onlinelibrary.wiley.com/doi/10.1002/spe.1102/abstract

ours.
Furtak et al. [18] showed the benefits of exploiting SIMD instructions for sorting very small

arrays. They demonstrated that replacing only the last few steps of quicksort by a sorting network
implemented with SIMD instructions improved the performance of the entire sort by up to 22%.
They evaluated the performance benefits for the SSE instructions and the VMX instructions. The
AA-sort can take advantage of SIMD instructions not only in the last part of the sorting, but also for
entire stages.

Cederman and Tsigas [19] demonstrated that their quicksort implementation on recent NVIDIA
GPUs achieved much better performance than quicksort on general-purpose CPUs or the
GPUTeraSort running on the same GPUs. Their quicksort for GPUs exploits the flexible memory
access mechanisms of the recent GPUs. With these GPUs, each slot of a vector load or store
instruction can access an arbitrary memory address, while the corresponding VMX or SSE
instructions can only access properly-aligned contiguous 128-bit blocks of data. Using this flexible
memory access, each slot of the GPU’s vector instructions can act as a separate thread. NVIDIA calls
this processor architecture SIMT (single-instruction, multiple-thread) in contrast to the traditional
SIMD [20]. Our AA-sort targets the SIMD processors, which have more limitations than the SIMT
processors.

4. AA-SORT ALGORITHM
In this section, we present our new sorting algorithm called AA-sort. We use 32-bit integers as the
data type of the elements to be sorted. Hence one 128-bit vector register contains four values. Note
that our algorithm is not limited to this data type and degree of data parallelism as long as the SIMD
instructions support them. We assume the first element of the array to be sorted is aligned on a
128-bit boundary and the number of elements in the array, N, is a multiple of the degree of data
parallelism of the SIMD instructions for ease of explanation. Fig. 1 illustrates the layout of the array,
a[N]. The array of integer values a[N] is equivalent to an array of vector integers va[N/4]. A vector
integer element va[i] consists of the four integer values of a[i*4] to a[i*4+3].

AA-sort consists of two algorithms, a vectorized combsort sort and a vectorized merge sort. The
overall AA-sort executes the following phases using the two algorithms:
1. Divide all of the data into blocks that fit into the cache of the processor and sort each block with

the vectorized combsort (in-core sorting phase).
2. Merge the sorted blocks with the vectorized mergesort (out-of-core merging phase).
First we present these two vectorized sorting algorithms and then illustrate the overall sorting
scheme.

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] · · ·

va[0] va[1]

Fig. 1. Data structure of the array to be sorted.

This is a pre peer-reviewed version. The final version is published in Software: Practice and Experience.
http://onlinelibrary.wiley.com/doi/10.1002/spe.1102/abstract

4.1 Vectorized Combsort
Our vectorized combsort improves on combsort [5], an extension to bubble sort. Bubble sort
compares each element to the next element and swaps them if they are out of sorted order. Combsort
compares and swaps two non-adjacent elements. Comparing two values with large separations
improves the performance drastically, because each value moves toward its final position more
quickly. Fig. 2 shows the pseudocode of combsort. The separation (labeled gap in Fig. 2) is divided
by a number, the shrink factor, in each iteration until it becomes one. The authors used 1.3 for the
shrink factor. Then the final loop is repeated until all of the data is sorted. The computational
complexity of combsort is O(N•log(N)) on average.

The fundamental operation of many sorting algorithms including combsort and bitonic merge sort
is to compare two values and swap them if they are out of order. Each conditional branch in this
operation will be taken in arbitrary order with roughly 50% probability for random input data, and
therefore it is very hard for branch prediction hardware to predict the branches. This operation can be
implemented using vector compare and vector select instructions without conditional branches.

Combsort has two problems that reduce the effectiveness of SIMD instructions: 1) unaligned
memory accesses and 2) loop-carried dependencies. Regarding the unaligned memory accesses,
combsort requires unaligned memory accesses when the value of the gap is not a multiple of the
degree of data parallelism of the SIMD instructions. A loop-carried dependency prevents
exploitation of the data parallelism of the SIMD instructions when the value of the gap is smaller
than the degree of data parallelism.

In our vectorized combsort, we resolved these problems with combsort. The key idea of our
improvement is to first sort the values into the transposed order and reorder the sorted values into
the original order after the sorting. Fig. 3 shows the steps of our vectorization technique for combsort.
It consists of the following 3 steps:
1. sort values within each vector,
2. execute combsort to sort the values into the transposed order, and then
3. reorder the values from the transposed order into the original order.

gap = N / SHRINK_FACTOR;

while (gap > 1) {

 for (i = 0; i < N - gap; i++)
 if (a[i] > a[i+gap]) swap(a[i], a[i+gap]);

 gap /= SHRINK_FACTOR;
}

do {

 for (i = 0; i < N - 1; i++)
 if (a[i] > a[i+1]) swap(a[i], a[i+1]);

} while(not fully sorted);

Fig. 2. Pseudocode of combsort.

This is a pre peer-reviewed version. The final version is published in Software: Practice and Experience.
http://onlinelibrary.wiley.com/doi/10.1002/spe.1102/abstract

Fig. 3 shows an example for an array with 16 integers (or four vector integers).
Step 1 sorts four values in each vector integer va[i] (0 ≤ i < N/4, here N=16 in Fig 3). This step

corresponds to the loops with the gaps of N/4, N/4*2, and N/4*3 in combsort, because the gap
between consecutive elements in one vector register is N/4 in the transposed order. The sorting for
values in a vector register can be implemented as a sorting network using vector comparison and
vector permutation instructions [18].

Step 2 executes combsort on the vector integer array va[N/4] in the transposed order. Fig. 4 shows
pseudocode for our vectorized combsort algorithm. In this code, vector_cmpswap is an operation
that compares and swaps values in each element of the vector register A with the corresponding
element of the vector register B as shown in Fig. 5. This operation can be implemented using a pair
of vector minimum and maximum instructions or one vector compare instruction and two vector
select instructions. Similarly vector_cmpswap_skew is an operation that compares and swaps the
first to third elements of the vector register A with the second to fourth elements of the vector
register B. It does not change the last element of the vector register A and the first element of the
vector register B. Both operations can be implemented using SIMD instructions. Comparing the
code of Fig. 4 to the code of the original combsort in Fig. 2, the innermost loop is divided into two
loops with these two operations. With these two loops, all of the values are compared and swapped
with the values for the distance of the gap in the transposed order. The original loop was divided into
two because the pairs to be compared may reside in the same positions of the vector registers or in
different positions.

The last do-while loop of step 2 executes bubble sort to assure the correct order of the output. In
order to guarantee against the worst case performance of O(N2) caused by the bubble sort, we cancel
the last loop in the Step 2 after executing a constant number of iterations. In our AA-sort that uses
the vectorized combsort in the in-core phase, we use 10 for the threshold and switch to the

 elements in a vector

ar
ra

y
of

 v
ec

to
rs

sorted within
each vector

114

sorting
within

each vectorunsorted
(input)

step 1

106

executing combsort on
the vector integer array

sorted in
transposed order

reordering

sorted in original order
(output)

step 2

step 3

72 08

135 143

1215 91

64 1110

20 87

53 1413

91 1512

40 128

51 139

62 1410

73 1511

10 32

54 76

98 1110

1312 1514

Fig. 3. Steps of our vectorized combsort algorithm for sorting 16 values (4 vectors).

This is a pre peer-reviewed version. The final version is published in Software: Practice and Experience.
http://onlinelibrary.wiley.com/doi/10.1002/spe.1102/abstract

vectorized mergesort, whose complexity is O(N•log(N)) even for the worst case, when the execution
of the combsort is canceled. In practice, however, we have never observed the cancellations of the
vectorized combsort in our evaluations.

Step 3 reorders the sorted values into the correct order. This step does not require data-dependent
conditional branches because it only moves each element in predefined orders, and hence the

/* Step 1 */
for (i = 0; i < N/4; i++)
 sort_within_a_vector(va[i]);

/* Step 2 */
gap = (N/4) / SHRINK_FACTOR;

while (gap > 1) {
 /* straight comparisons */
 for (i = 0; i < N/4 - gap; i++)
 vector_cmpswap(va[i], va[i+gap]);

 /* skewed comparisons when i+gap exceeds N/4 */
 for (i = N/4 - gap; i < N/4; i++)
 vector_cmpswap_skew(va[i], va[i+gap – N/4]);

 /* dividing gap by the shrink factor */
 gap /= SHRINK_FACTOR;
}

loop_count = 0;
do { /* executing bubble sort */
 for (i = 0; i < N/4 - 1; i++)
 vector_cmpswap(va[i], va[i+1]);
 vector_cmpswap_skew(va[N/4-1], va[0]);
} while(not totally sorted && loop_count++ < THRESHOLD);

/* abort and switch another algorithm when loop_count reaches threshold */
if (not totally sorted) return false;

/* Step 3 */
for (i = 0; i < N/16; i++)
 transpose_4x4_block(va[i*4], va[i*4+1], va[i*4+2], va[i*4+3]);

for (i = 0; i < N/4; i++)
 move_vector_to_desired_location(va[i]);

return true; /* completed successfully */

Fig. 4. Pseudocode of our vectorized combsort.

moving smaller values to MIN side and
larger values to MAX side

A0 A1 A2 A3

B0 B1 B2 B3

vector_cmpswap(A, B)

A0 A1 A2 A3

B0 B1 B2 B3

vector_cmpswap_skew(A, B)

vector A

vector B

vector A

vector B

MIN

MAX

MIN

MAX

Fig. 5. The vector_cmpswap and vector_cmpswap_skew operations.

This is a pre peer-reviewed version. The final version is published in Software: Practice and Experience.
http://onlinelibrary.wiley.com/doi/10.1002/spe.1102/abstract

reordering does not incur troublesome overhead. Vector permutation instructions can efficiently
execute this step when the number of vectors is a multiple of the number of elements in each vector,
four in this example. For example, the four vectors in Fig. 3 can be reordered by using only 8 vector
permutation instructions. The first four permutations swap the upper-right 2x2 block (consists of 8, 9,
12, and 13) and the lower-left one (2, 3, 6, and 7). The next four permutations swap the upper-right
value and lower-left value in each 2x2 block (such as 1 and 4). After applying this vectorized
transposition technique, all of the vectors contains four sequential values, and thus the program can
reorder the values into the original order by simply moving vectors with vector load and vector store
instructions. For the final data moves, our implementation uses a temporary memory space with the
same size as the data. This step also does not cause any unaligned memory accesses.

In summary, our vectorized combsort consists of three steps. All three of the steps can be executed
by SIMD instructions without unaligned memory accesses. Also, all of them can be implemented
with a negligible number of data-dependent conditional branches.

Let N be the total number of elements to be sorted. The computational complexity of Step1 and
Step3 is O(N), and that of Step 2 is the same as that of combsort, O(N•log(N)) on average. Thus the
computational complexity of the entire algorithm is dominated by Step 2. In Step2, we cancel the
execution of the vectorized combsort if the number of iterations exceeds a constant threshold and
switch to the vectorized merge sort to guarantee the O(N•log(N)) complexity even for the worst case.

Our vectorized combsort suffers from poor memory access locality. Thus its performance may
degrade if the data cannot fit into the cache of the processor. We propose another sorting algorithm,
the vectorized mergesort, which takes that problem into account.

4.2 Vectorized Mergesort
For the vectorized mergesort, we propose an innovative method to integrate the odd-even merge
algorithm [16] implemented with SIMD instructions into a traditional merge algorithm. Our method
makes it possible for the merge operations to take advantage of SIMD instructions while still
retaining the computational complexity of O(N). The odd-even merge and the bitonic merge, also
suitable for implementing with SIMD instructions, have the computational complexity of
O(N•log(N)) instead of the complexity of O(N) of our algorithm.

This is a pre peer-reviewed version. The final version is published in Software: Practice and Experience.
http://onlinelibrary.wiley.com/doi/10.1002/spe.1102/abstract

Fig. 6 shows the data flow of the odd-even merge operation for eight values stored in the two
vector registers, which contain four sorted values each. In the figure the boxes with inequality
symbols signify comparison operations. Each of them reads two values from the two inputs (one
each) and sends the smaller value to the left output and the larger one to the right. The odd-even
merge operation requires log(P)+1 stages to merge two vector registers, each of which contain P
elements. Here P=4 and log(P)+1=3. Each stage executes only one vector compare, two vector select,
and one or two vector permutation instructions. If an SIMD instruction set does not support a vector
permutation operation, then repeating a vector_cmpswap operation and a rotation of one vector
register can substitute for the odd-even merge. However this requires P stages instead of log(P)+1
stages.

The merge operation for two large arrays stored in memory can be implemented using this merge
operation for the vector registers. Fig. 7 shows the pseudocode for merging of two vector integer
arrays va and vb. In this code, the vector_merge operation is the merge operation for the vector
registers shown in Fig. 6. In each iteration, this code
1. executes a merge operation of two vector registers, vMin and vMax,
2. stores the contents of vMin, the four smallest values, as output,
3. compares the next element of each input array, and
4. loads four values into vMin from the array whose next element is smallest and advances the

pointer for the array.
Loading new elements from only one input array is sufficient, because at least one of the next

elements of each input array must be larger than all of the data values in vMax and hence the larger
of the two next elements must not be contained in the next four output values. There is only one
conditional branch for the output of every P elements, while the naive merge operation requires one
conditional branch for each output element.

The vectorized mergesort recursively repeats the merge operation described earlier. It does not

A0 A1 A2 A3 B0 B1 B2 B3

sorted sorted

vector register A vector register B

stage 1

sorted

stage 2

stage 3

vector register A vector register B

input

outputA0 A1 A2 A3 B0 B1 B2 B3

< < < <

< <

< <<

: no operation < : comparison
MIN MAX

Fig. 6. Data flow of odd-even merge operation for two vector registers.

This is a pre peer-reviewed version. The final version is published in Software: Practice and Experience.
http://onlinelibrary.wiley.com/doi/10.1002/spe.1102/abstract

require any unaligned memory accesses. However, it has lower performance than our vectorized
combsort for the small amounts of data that can fit in the cache because the vectorized mergesort
reduces the number of data-dependent conditional branches but still uses them while the vectorized
combsort totally eliminates them. In contrast, the vectorized merge sort achieves higher performance
than the vectorized combsort when the data cannot fit in the cache. This is because the vectorized
mergesort has much better memory access locality compared to the vectorized combsort.

In order to reduce the required memory bandwidth, which limits the performance of sorting when
using many cores, we use a multi-way merge technique [4] with the out-of-core phase in our
experimental implementation of the AA-sort. We employ a 4-way merge, so input data is read from 4
streams and output into one merged output stream. This does not change the required number of
comparisons but reduces the number of merging stages from log2(N/B) to log4(N/B). The vectorized
mergesort scans all of the elements in merging stage and thus reducing the number of stages also
reduces the required memory bandwidth by improving memory access locality. To execute the 4-way
merge using SIMD instructions, we generate two temporary arrays each having 1 K elements. At the
beginning of the merging operation, we fill the first temporary array by merging the first two input
streams and the second temporary array by merging other two input streams with the vectorized
merge operations. Then the output stream is generated by merging those two temporary arrays.
When a temporary array becomes empty while generating the final output stream, we refill the
temporary array by going back to the merging of two input arrays for the temporary array. We repeat
these operations until we hit the ends of all input streams.

aPos = bPos = outPos = 0;
vMin = va[aPos++];
vMax = vb[bPos++];

while (aPos < aEnd && bPos < bEnd) {

 /* merge vMin and vMax */
 vector_merge(vMin, vMax);

 /* store the smaller vector as output*/
 vMergedArray[outPos++] = vMin;
 /* load next vector and advance pointer */
 /* a[aPos*4] is first element of va[aPos] */
 /* and b[bPos*4] is that of vb[bPos] */
 if (a[aPos*4] < b[bPos*4])
 vMin = va[aPos++];
 else
 vMin = vb[bPos++];
}

Fig. 7. Pseudocode of the merge operation in memory.

This is a pre peer-reviewed version. The final version is published in Software: Practice and Experience.
http://onlinelibrary.wiley.com/doi/10.1002/spe.1102/abstract

4.3 Overall Parallel Sorting Scheme of AA-Sort
The overall AA-sort executes the following phases using the two algorithms:
1. Divide all of the data to be sorted into blocks that fit in the cache or the local memory of the

processor and sort each block with the vectorized combsort in parallel using multiple threads,
where each thread processes an independent block. (in-core sorting phase)

2. Merge the sorted blocks with the vectorized mergesort using multiple threads. (out-of-core
merging phase)

/* in-core sorting phase */
numBlocks = N / B;
blockSize = B;
blocksPerThread = numBlocks / numThreads;
for (i = blocksPerThread * myThreadID; i < blocksPerThread * (myThreadID+1); i++) {
 /* parameters are a pointer to the input data, a number of elements to sort,
 and a threshold to cancel executing combsort */
 sorted = vectorized_combsort(data[blockSize*i], blockSize, 10);

 /* switch to vectorized mergesort if combsort did not completed within the predifined number of iterations */
 if (!sorted) vectorized_mergesort(data[blockSize*i], blockSize);
}

/* out-of-core merging phase */
while (numBlocks > 1) {
 blocksPerThread = numBlocks / numThreads;
 /* if there are enough blocks to execute 4-way merge by each thread */
 if (numBlocks >= numThreads * 4) {
 for (i = blocksPerThread * myThreadID; i < blocksPerThread * (myThreadID+1); i+=4)
 /* parameters are four pointers to the input data buffers, a pointer for the output buffer, */
 /* and a number of elements to merge in each input data */
 vectorized_4way_merge(data[blockSize*i], data[blockSize*i+1],
 data[blockSize*i+2], data[blockSize*i+3],
 tmp [blockSize*i], blockSize);
 numBlocks /= 4; blockSize *= 4;
 }
 /* if there are enough blocks to execute 2-way merge by each thread */
 else if (numBlocks >= numThreads * 2) {
 for (i = blocksPerThread * myThreadID; i < blocksPerThread * (myThreadID+1); i+=2)
 vectorized_2way_merge(data[blockSize*i], data[blockSize*i+1],
 tmp [blockSize*i], blockSize);
 numBlocks /= 2; blockSize *= 2;
 }
 /* if there are not enough blocks to work all thread independently */
 else {
 barrier(); /* a barrier synchronization among threads required before cooperative merge operations */
 numThreadsToCooperate = numThreads / (numBlocks / 2);
 assignedBlock = myThreadID / numThreadToCooperate;
 vectorized_merge_with_multiple_threads(data[2*assignedBlock * blockSize],
 data[(2*assignedBlock+1) * blockSize],
 tmp [2*assignedBlock * blockSize], blockSize,
 blockSize, numThreadsToCooperate, myThreadID);
 numBlocks /= 2; blockSize *= 2;
 }
 swap(data, tmp); numMergeStages++; /* swap pointers for the input and output buffers */
}
if (numMergeStages & 1) { memcpy(tmp, data, N * sizeof(element type)); }

Fig. 8. Pseudocode of the entire AA-sort algorithm

This is a pre peer-reviewed version. The final version is published in Software: Practice and Experience.
http://onlinelibrary.wiley.com/doi/10.1002/spe.1102/abstract

Fig. 8 shows the pseudocode for the entire AA-sort scheme and the Fig. 9 depicts an example of
the entire AA-sort execution with four parallel threads.

The block size for the in-core sorting phase is an important parameter. The selection of the block
size depends on bandwidth and latency for each level of memory hierarchy of the target system. On
the PowerPC 970MP processors, for example, half of the size of L2 cache was best for the block size
because its L2 cache was fast enough to keep the processor core busy even though there were many
L1 cache misses. We discuss how we chose the block size in Section 5.2.

If the total number of elements of data to sort is N and the number of elements in one block is B,
then the number of blocks for the in-core algorithm is (N/B). The computational complexity of the
in-core sorting of each block is O(B•log(B)). We avoid the worst case computational time of O(B2)
and guarantee the complexity for the in-core sorting by switching from the vectorized combsort to
vectorized mergesort. Hence the total computational complexity of the in-core sorting phase is
(N/B)•O(B•log(B)) = O(N•log(B)). The sorting of each block is independent of the other blocks, so
they can run in parallel on multiple threads up to the number of blocks. Thus the total complexity of
the in-core phase with multiple threads is O(N•log(B)/k) assuming the number of threads, k, is
smaller than the number of blocks, (N/B).

In the out-of-core merging phase, merging the sorted blocks involves log(N/B) stages and the
computational complexity of each stage is O(N), and thus the total computational complexity of this
phase is O(N•log(N/B)), even in the worst case. Note that this complexity is not changed with the
4-way merge technique. With the 4-way merge, the number of stages is reduced from log2(N/B) to
log4(N/B) = 1/2•log2(N/B), but the number of comparisons involved in one stage doubles. It only
reduced the required system memory bandwidth. The total complexity of the out-of-core merging
phase with k threads is O(N•log(N/B)/k). For parallelizing the last log(k) stages of the out-of-core
phase, the number of blocks becomes smaller than the number of threads, and hence multiple threads
must cooperate on one merge operation to fully exploit the thread-level parallelism [21].

The entire AA-sort has the computational complexity of O(N•log(N)), where O(N•log(B)) for the
in-core phase and O(N•log(N/B)) for the out-of-core phase, even for the worst case. Also it can be
executed in parallel by multiple threads with complexity of O(N•log(N)/k) assuming the number of
threads is smaller than the number of blocks, (N/B).

block1 block2 block3 block4 block5 block6 block7 block8in-core
sorting
phase

out-of-core
merging
phase

thread 1 thread 2 thread 3 thread 4

all threads

thread 1 & 2 thread 3 & 4

Fig. 9. An example of the entire AA-sort process, where number of blocks (N/B) = 8 and the number of threads (k) = 4.

This is a pre peer-reviewed version. The final version is published in Software: Practice and Experience.
http://onlinelibrary.wiley.com/doi/10.1002/spe.1102/abstract

4.4 Sorting of {Key, Data} Pairs
In real-world workloads, sorting is mostly used to reorder data structures according to their keys. We
can extend the AA-sort for such purposes. To that end, we consider sorting for pairs consisting of a
key of a 32-bit integer value and a 32-bit piece of associated data, such as a pointer to the data
structure that contains the key. Assuming the keys and the attached data are stored in distinct arrays,
the comparing and swapping operations can be implemented by using the results of the comparisons
for the key to move both the keys and the data. When the keys and attached data are stored in an
array one after another, comparing and swapping of {key, data} pairs can be implemented by adding
one vector permutation instruction after the vector compare instruction to replace the result of the
comparison of the data with the result of the comparison of the keys. Hence the data always move
with the associated keys in both cases.

5. EXPERIMENTAL RESULTS
We implemented the AA-sort and the bitonic merge sort for the PowerPC 970MP [22] and the Cell
BE [7] with and without using the SIMD instructions. We implemented the bitonic merge sort by
following the GPUTeraSort [15] for comparison because it is one of the best existing sorting
algorithms for SIMD instructions. The CellSort by Gedik [17] uses the almost same algorithm for its
sorting kernel. Our measured sorting times for the bitonic merge sort on the Cell BE were quite
comparable to the results of the CellSort on the Cell BE shown in their paper. For example, Gedik’s
paper reported that sorting 32 M random integers using 16 SPE cores took 0.746 seconds for the
CellSort (on 3.2-GHz Cell BE), while this took 0.776 seconds with our implementation of the bitonic
merge sort (on 2.4-GHz Cell BE).

We also evaluated two library functions, IBM’s Engineering and Scientific Subroutine Library
(ESSL) version 4.2 and the STL library delivered with gcc that implements the quicksort variant
called introsort [23], on the PowerPC 970MP. Table 1 summarizes the characteristics of each
algorithm.

The PowerPC 970MP system used for our evaluation was equipped with two 2.5 GHz dual-core
PowerPC 970MP processors and 8 GB of system memory. In total, the system had 4 cores, each of
which had 1 MB of L2 cache memory. Linux kernel 2.6.20 was running on the system. We also
evaluated the performance of the sorting programs on a system equipped with two 2.4 GHz Cell BE
processors with 1 GB of system memory. The Cell BE is an asymmetric multicore processor that

Table 1. Comparisons of Algorithms

complexity algorithm SIMD thread
parallel average worst

AA-sort Yes Yes N•log(N) ←
bitonic merge sort Yes Yes N•(log(N))2 ←

ESSL No No N•log(N) N2
STL (introsort) No No N•log(N) ←

N: number of data items to sort

This is a pre peer-reviewed version. The final version is published in Software: Practice and Experience.
http://onlinelibrary.wiley.com/doi/10.1002/spe.1102/abstract

combines a PowerPC core with eight accelerator cores called SPEs. We used only the SPE cores for
sorting. Thus, 16 SPE cores with 256 KB local memory each were available on the system. This
system ran Linux kernel 2.6.15.

5.1 Implementation Details
The programs for the PowerPC 970 were written in C using the AltiVec intrinsics [24]. We compiled
all of the programs with the IBM XL C/C++ compiler for Linux v8. The programs for the Cell BE
were also written in C using the intrinsics for SPE. We compiled our programs with the IBM XL C
compiler for SPE. All of the programs used the memory with a 16 MB page size to reduce the
overhead of TLB handling on both platforms.

In the implementations of AA-sort, we used half of the size of the L2 cache or local memory as
the block size for the in-core sorting phase, 512 KB (128 K of 32-bit values) on the PowerPC 970MP
and 128 KB (32 K of 32-bit values) on the SPE. The shrink factor for our vectorized combsort was
1.28. We discuss how to choose the parameters in the next section.

In our parallel implementation of the AA-sort, all of the threads first execute in-core sorting and
then move onto the out-of-core merging phase after all of the blocks of input data are sorted. When
executing the out-of-core merging phase with multiple threads, each thread executes independent
merge operations as long as there are enough blocks to merge. In the last few stages, the number of
blocks becomes smaller than the number of threads, and hence multiple threads must cooperate on
one merge operation. Our implementation first divides one input stream into chunks of equal size for
each thread, and then finds a corresponding starting point and finishing point for another input
stream by executing binary search. Additionally, it executes rebalancing of the data among threads if
the data size for each thread is not balanced [21].

To achieve the best performance on multicore processors, we employed implementation
techniques to reduce the required bandwidth for system memory. The experimental implementations
of the AA-sort used the 4-way merge. Our implementation of the bitonic merge sort for the Cell BE
reduced the amount of data read from system memory by directly copying data from the local
memory of another SPE core instead of from system memory whenever possible. This technique
benefits from the huge bandwidth of the on-chip bus of the Cell BE. Those techniques do not change
the computational complexity but they reduce the system memory bandwidth by changing the order
of comparisons to improve memory locality.

This is a pre peer-reviewed version. The final version is published in Software: Practice and Experience.
http://onlinelibrary.wiley.com/doi/10.1002/spe.1102/abstract

5.2 Performance of Vectorized Combsort and Vectorized Mergesort
This section focuses on the performance of sequential implementations of each algorithm with
primary emphasis on the effects of SIMD instructions. Then we discuss how to select the parameters
including the block size and the shrink factor for in-core sorting. In this section, we separately
evaluate the two algorithms used in the AA-sort, our vectorized combsort and our vectorized
mergesort, to illustrate the effect of SIMD instructions for each algorithm. Note that the vectorized
mergesort is not used with such small amounts of data when executing the entire AA-sort.

Fig. 10 compares the performance of the sorting algorithms for 16 K of random 32-bit integers
using only one PowerPC 970MP core. All of the data to be sorted can fit into the L2 cache of the
processor. The performance of our vectorized combsort, out-of-core algorithm, and the bitonic merge
sort with SIMD instructions were drastically improved compared to the implementations without
using the SIMD instructions, and the vectorized combsort achieved the highest performance among
all of the algorithms tested.

The degrees of acceleration with the SIMD instructions for the vectorized combsort and the
bitonic merge sort were larger than the degree of parallelism available with the SIMD instructions
(4x) due to reduced number of branch mispredictions. Fig. 11 shows the branch misprediction rate
measured by using a performance monitor counter of the processor. The branch misprediction rates
were reduced by more than a factor of 10 for the combsort and the bitonic merge sort. The change of

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

combsort mergesort bitonic
merge sort

ESSL STL

ex
ec

ut
io

n
tim

e
(m

se
c)

 . without SIMD instructions

with SIMD instructions
x 7.87

x 3.71 x 7.97 sh
or

te
r

is
 fa

st
er

Fig. 10. Acceleration by SIMD instructions with our vectorization techniques for Combsort and Mergesort when sorting
16 K random integers on one PowerPC 970MP core.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

combsort mergesort bitonic merge
sort

ESSL STLbr
an

ch
 m

is
pr

ed
ic

tio
ns

 p
er

 in
st

ru
ct

io
n .

without SIMD instructions

with SIMD instructions

sh
or

te
r

is
 b

et
te

r

Fig. 11. Improvements in branch misprediction rate by using SIMD instructions.

This is a pre peer-reviewed version. The final version is published in Software: Practice and Experience.
http://onlinelibrary.wiley.com/doi/10.1002/spe.1102/abstract

misprediction rate was smaller for the mergesort because data-dependent conditional branches were
reduced but not totally eliminated.

Table 2 shows a breakdown of the performance gain with SIMD instructions shown in Fig. 10
related to two factors: reductions in the numbers of instructions and improvements in cycles per
instruction (CPI). The reductions in numbers of instructions were mainly due to the data parallelism
of the SIMD instructions and the CPI improvements were due to the reduced branch overhead. For
our vectorized combsort and bitonic merge sort, the numbers of instructions were reduced almost in
proportion to the degree of data parallelism available from the SIMD instructions, while the
reduction was not significant for the vectorized mergesort. This is because the vectorized merge
operation for the vector registers shown in Fig. 6 is more complicated and requires more instructions
than the naive merge operation for scalar values.

To determine the best value for the block size for PowerPC 970 processors, we evaluated the
performance of the vectorized combsort and the vectorized mergesort with different amounts of data.
Fig. 12 shows the relationship between the performances and the amounts of data. The x-axis shows
the number of elements to be sorted and the y-axis shows the sorting time. Both axes are displayed
as logarithmic scales. The figure shows that the vectorized combsort was the fastest for all amounts
of data smaller than the size of the L2 cache. However its performance degraded drastically when
the amount of data exceeded the L2 cache size and it was the slowest for larger amounts of data.

Table 2. Breakdown of Performance Gain

algorithm speed up
by SIMD

reduction in
instructions†

improvement
in CPI‡

combsort 7.87 4.06 1.94

mergesort 3.33 2.92 1.14

bitonic merge sort 7.97 4.69 1.70

† reduction in instructions = instruction_countscalar / instruction_countSIMD
‡ improvement in CPI = CPIscalar / CPISIMD

0.1

1

10

100

1000

16 K 32 K 64 K 128 K 256 K 512 K 1 M 2 M 4 M

data size (number of elements)

ex
ec

ut
io

n
tim

e
(m

se
c)

.

Our vectorized combsort
Our vectorized mergesort
bitonic merge sort (SIMD)
ESSL
STL

size of the L2 cache
of PowerPC 970 processor

sm
al

le
r

is
 fa

st
er

Fig. 12. Performance comparisons of our vectorized combsort and vectorized mergesort to other algorithms on one
PowerPC 970MP core for sorting random 32-bit integers with various amounts of data.

= x

This is a pre peer-reviewed version. The final version is published in Software: Practice and Experience.
http://onlinelibrary.wiley.com/doi/10.1002/spe.1102/abstract

This was due to the high cache miss ratio caused by a poor access locality in the combsort. For all
amounts of data larger than the L2 cache size, the vectorized mergesort outperformed bitonic merge
sort implemented with SIMD instructions, ESSL, and STL regardless of the amount of data. Based
on this result we selected 128 K of 32-bit integers, or 512 KB, as the block size for the in-core
sorting phase. This size corresponds to half of the size of the L2 cache of the processor.

Fig. 13 shows the average sorting time of a block of 128 K random 32-bit integers with the
vectorized combsort with different values of the shrink factor. It achieved the fastest results when the
shrink factor was 1.28 or 1.29. This result was almost consistent with the results for the original
combsort by Lacey, the originator of the algorithm. The paper empirically showed that a shrink
factor of around 1.3 gave the best results.

To quantitatively evaluate the benefit of using vectorized combsort for the in-core sorting phase,
Fig. 14 compares the performance of each algorithm for sorting a block of 128 K integers of the five
input datasets shown in the Table 3. Our vectorized combsort clearly outperformed other algorithms
for all datasets. The advantages over the second best algorithm, our vectorized mergesort, were about
40%. The three algorithms using SIMD instructions, vectorized combsort, vectorized mergesort and
the bitonic merge sort, showed much smaller dependencies on the input dataset than the other two
algorithms. This is because they did not suffer from branch mispredictions even for random inputs.
The performance of the ESSL and the STL were degraded severely in some cases. Our vectorized
combsort may also show poor performance for some datasets, since it uses a heuristic approach. But
we did not observe such significant degradations in those datasets we evaluated. Our vectorized
mergesort does not show catastrophic performance even in the worst case.

From those results, we composed our AA-sort by combining the vectorized combsort for the
in-core sorting and the vectorized mergesort for the out-of-core merging phase with the block size
for in-core sorting of 128 K 32-bit integers, or 512 KB, and the shrink factor of 1.28 to achieve the
best performance in sorting.

3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.30 1.31 1.32 1.33

shrink factor

ex
ec

ut
io

n
tim

e
(m

se
c)

 .

sm
al

le
r

is
 fa

st
er

Fig. 13. Average execution time of sorting 128 K random integers by our vectorized combsort with different shrink
factors.

This is a pre peer-reviewed version. The final version is published in Software: Practice and Experience.
http://onlinelibrary.wiley.com/doi/10.1002/spe.1102/abstract

5.3 Performance for 32-bit Integers and Floating-Point Values
In this section, we discuss the performance of sorting for large 32-bit integer and floating-point
arrays. Fig. 15 compares the performance of sequential versions of four algorithms to sort random
32-bit integers on the PowerPC 970MP. The AA-sort and the bitonic merge sort were implemented
with SIMD instructions. The x-axis shows the number of elements up to 128 million elements (512
MB) and the y-axis shows the execution time. The AA-sort achieved the best result among all of the
algorithms for all amounts of data. It was 1.8 times faster than the ESSL and 3.0 times faster than the
STL when sorting 32 million integers. It also surpassed the performance of the bitonic merge sort by
3.3 times. The performance advantage of the AA-sort over the bitonic merge sort became larger with
larger amounts of data because of the larger computational complexity of the bitonic merge sort.

Fig. 16 shows the execution time of parallel versions of the AA-sort and the bitonic merge sort on

Table 3. Description of Datasets.
dataset description pseudocode of initialization

A uniform random for (i=0; i<N; i++) { data[i] = uniform_random(); }
// uniform random values in the range from 0 to 0xFFFFFFFF

B Gaussian random for (i=0; i<N; i++) { data[i] = gaussian_random(); }
// Gaussian random values with standard deviation of 224

C almost presorted for (i=1; i<N; i++) { data[i] = i; } data[0] = N;
D presorted

(forward) for (i=0; i<N; i++) { data[i] = i; }
E presorted

(reversed) for (i=0; i<N; i++) { data[i] = N-i; }

0
1
2
3
4
5
6
7
8
9

10
11
12

Our vectorized
combsort

Our vectorized
mergesort

bitonic merge
sort (SIMD)

ESSL STL

ex
ec

ut
io

n
tim

e
(m

se
c)

 .

dataset A: uniform random
dataset B: Gaussian random
dataset C: almost presorted
dataset D: presorted forward
dataset E: presorted reverse

22.4 sec

sh
or

te
r

is
 fa

st
er

Fig. 14. Average execution time of sorting for various input datasets with 128 K integers on one PowerPC
970MP core.

0.01

0.1

1

10

100

1 M 2 M 4 M 8 M 16 M 32 M 64 M 128 M
data size (number of elements)

ex
ec

ut
io

n
tim

e
(s

ec
)

Our AA-sort
bitonic merge sort
ESSL
STL

sm
al

le
r

is
 fa

st
er

Fig. 15. Performance of sequential version of each algorithm on a PowerPC 970MP core for sorting uniform
random 32-bit integers with various data sizes.

This is a pre peer-reviewed version. The final version is published in Software: Practice and Experience.
http://onlinelibrary.wiley.com/doi/10.1002/spe.1102/abstract

1, 2, and 4 PowerPC 970MP cores for various amount of uniform random integers. The results
showed that both algorithms benefited from multiple cores and our AA-sort outperformed the bitonic
merge sort regardless of the amount of data using the same number of cores.

Fig. 17 compares the speed ups by using multiple cores. It also shows the performance of the
ESSL and the STL on only one core. The AA-sort achieved larger speed ups compared to bitonic
merge sort. As a result, the performance of the AA-sort was 4.2 times higher than the performance of
the bitonic merge sort when using 4 PowerPC 970MP cores. The better scalability of the AA-sort
was because the bitonic merge sort has a higher communication/computation ratio than the AA-sort
and the memory bandwidth was a bottleneck that limited the scalability.

Fig. 18 illustrates how the performance of each algorithm depends on the five input datasets
described in Table 3 when sorting a block of 32 million integers using up to four cores of PowerPC
970MP. The results were consistent with the results for a smaller block that fitted into the L2 cache
shown in the Fig. 14. The AA-sort and the bitonic merge sort implemented with SIMD instructions
showed much smaller dependencies on the input dataset than the other two algorithms. The
performance invariance of the AA-sort and the bitonic merge sort were unchanged even with the
multiple cores.

0.01

0.1

1

10

100

1 M 2 M 4 M 8 M 16 M 32 M 64 M 128 M
data size (number of elements)

ex
ec

ut
io

n
tim

e
(s

ec
)

0.01

0.1

1

10

100

1 M 2 M 4 M 8 M 16 M 32 M 64 M 128 M
data size (number of elements)

ex
ec

ut
io

n
tim

e
(s

ec
)

sm
al

le
r

is
 fa

st
er

bitonic merge
sort

Our AA-sort

number of cores
1 core
2 cores
4 cores

1 core
2 cores
4 cores

Fig. 16. Performance of parallel versions of our AA-sort and GPUTeraSort using up to 4 cores of PowerPC 970MP
for sorting uniform random 32-bit integers with various data sizes.

0.0
0.5
1.0
1.5
2.0
2.5

3.0
3.5
4.0
4.5
5.0

AA-sort bitonic merge
sort

ESSL STL

ex
ec

ut
io

n
tim

e
(s

ec
)

with 1 core
with 2 cores
with 4 cores

x 2.7
by 4 cores

x 2.1
by 4 cores

sh
or

te
r

is
 fa

st
er

Fig. 17. The execution times of parallel versions of AA-sort and GPUTeraSort for sorting 32 million uniform
random integers on up to 4 cores of PowerPC 970MP.

This is a pre peer-reviewed version. The final version is published in Software: Practice and Experience.
http://onlinelibrary.wiley.com/doi/10.1002/spe.1102/abstract

Fig. 19 shows the sorting time for 32 million of Gaussian random integers with different standard
deviations. The AA-sort and the bitonic merge sort showed almost constant sorting times regardless
of the standard deviations of the input dataset. ESSL and STL achieved the fastest results with the
smallest standard deviations. Even in the best case for those algorithms, the AA-sort outperformed
ESSL by 36% and STL by 65% using only one core. Hereinafter, we use the uniform random values
for the input datasets.

Fig. 20 compares the sorting time for 32 million uniform random 32-bit integers and 32-bit
(single-precisions) floating point values. The AA-sort took 4.8% longer to sort the floating point
values compared to the sorting of the same number of integers using one core. The performance
difference between integers and floating-point values was much larger for the two scalar sorting
algorithms, while it was only 0.4% for the bitonic merge sort. This is because floating-point values
have longer compare-to-branch latency than integers for scalar comparisons on the PowerPC 970MP,
while both data types have the same latency for vector comparisons. The bitonic merge sort uses
only vector comparisons and hence its performance did not depend on the data type being sorted.
The AA-sort uses scalar comparisons in addition to vector comparisons in the out-of-core merging
phase, and thus its performance differs slightly for integers and floating-point values. The
differences reduced with increasing number of cores because the system memory bandwidth limited
the performance when using multiple cores and hence the effects of the longer instruction latency

0

1

2

3

4

5

6

ex
ec

ut
io

n
tim

e
(s

ec
) .

dataset A: uniform random
dataset B: Gaussian random
dataset C: almost presorted
dataset D: presorted forward
dataset E: presorted reverse

357 sec 8.6 sec

1 core 2 cores 4 cores

sh
or

te
r

is
 fa

st
er

AA-so
rt

bit
on

ic
merg

e

so
rt

ESSL
STL

AA-so
rt

bit
on

ic
merg

e

so
rt AA-so

rt

bit
on

ic
merg

e

so
rt

Fig. 18. Performance comparison for various input datasets with 32 million integers on up to four PowerPC 970MP
cores.

sm
al

le
r

is
 fa

st
er

0

1

2

3

4

5

ex
ec

ut
io

n
tim

e
(s

ec
)

24 26 28 210 212 214 216 218 220 222 224

standard deviation

AA-sort

ESSL
STL

AA-sort

AA-sort

bitonic merge
sort

bitonic merge
sort

1 core

2 cores

4 cores

bitonic merge
sort

Fig. 19. The effect of the standard deviation on the performance of each algorithm when sorting 32 million Gaussian
random integers.

This is a pre peer-reviewed version. The final version is published in Software: Practice and Experience.
http://onlinelibrary.wiley.com/doi/10.1002/spe.1102/abstract

were less significant.
Fig. 21 shows how the block size for the in-core sorting phase affected the performance of the

AA-sort when sorting 32 million uniform random integers using one PowerPC 970MP core. As
shown in Fig. 14, the vectorized combsort was faster than the vectorized mergesort for in-core
sorting and thus the larger block size brought the larger speed up while the size of a block was
smaller than the size of the L2 cache of the processor, 256 K elements (or 1 MB). However, the
block sizes larger than the size of the L2 cache drastically increased the execution time of the in-core
sorting phase due to frequent L2 cache misses. Because we used 128 K elements as the block size,
the AA-sort outperformed the vectorized mergesort by 24.2%.

Fig. 22 illustrates the execution time breakdown of the AA-sort into the in-core sorting phase and
the out-of-core merging phase with various numbers of uniform random integers to sort. To show the
importance of the in-core sorting phase, the figure also illustrates the relative performance of the
vectorized mergesort. As discussed in Section 4, the computational complexity of the in-core sorting
phase is O(N•log(B)), while that of the out-of-core merging phase is O(N•log(N/B)). Here, the block
size, B, is a constant during the experiments. Hence the out-of-core merging phase consumed larger
parts of the total execution time with larger amounts of data. However even with the largest amount
of data we tested, 128 million 32-bit integers or 512 MB, more than half of the total execution time

0

1

2

3

4

5

6

AA-so
rt

bit
on

ic
merg

e

so
rt

ESSL
STL

AA-so
rt

AA-so
rt

ex
ec

ut
io

n
tim

e
(s

ec
)

. 32-bit integer
32-bit floating point

+4.8%

+0.4%

+14.0%

+25.0%

+1.8%
+1.2%

+0.0%
+0.7%

1 core 2 cores 4 cores

sh
or

te
r

is
 fa

st
er

bit
on

ic
merg

e

so
rt

bit
on

ic
merg

e

so
rt

Fig. 20. Performance comparisons for 32-bit integer arrays and 32-bit floating point arrays with 32 million values
using up to four cores of PowerPC 970MP.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 K 8 K 32 K 128 K 256 K 512 K

block size (number of elements)

ex
ec

ut
io

n
tim

e
(s

ec
)

in-core sorting phase
out-of-core merging phase

sh
or

te
r

is
 fa

st
er

24.2% faster
than vectorized
mergesort only

vectorized
mergesort

only
Fig. 21. Average execution time of sorting 32 million uniform random integers for AA-sort with different block
size.

This is a pre peer-reviewed version. The final version is published in Software: Practice and Experience.
http://onlinelibrary.wiley.com/doi/10.1002/spe.1102/abstract

was consumed by the in-core sorting phase and thus the performance of the in-core sorting phase
mattered. The AA-sort improved the performance by up to 25.6% compared to the vectorized
mergesort. Though the performance advantage of the AA-sort became smaller for larger data size,
the benefit was still significant even for sorting 128 million integers.

By considering the computational complexity of the two phases, we can estimate the ratio in
computation time in the AA-sort for much larger amount of data. For example, the in-core sorting
phase still shares more than 40% of the total computation time for sorting 8 billion 32-bit integers, or
32 GB.

Fig. 23 shows the execution time breakdown of the AA-sort for sorting 32 million uniform
random integers with up to 4 PowerPC 970MP cores. The fraction of execution time for the
out-of-core merging phase increased with increasing numbers of processor cores. This was due to the
poorer scalability of the out-of-core merging phase compared to the in-core sorting phase, which
scaled almost linearly with number of cores. In the in-core sorting phase, most memory accesses
were served by the L2 cache because this phase sorted blocks that fitted into the L2 cache. The
out-of-core merging phase generated more L2 cache misses and hence the bandwidth to the system

0%

20%

40%

60%

80%

100%

120%

140%

re
la

tiv
e

ex
ec

ut
io

n
tim

e
ov

er
 th

e
to

ta
l s

or
tin

g
tim

e
of

 A
A

-s
or

t (
%

) .

vectorized combsort
vectorized mergesort

2 M 8 M 32 M 128 M
data size (number of elements)

ve
ct

or
iz

ed
m

er
ge

so
rt

on
ly

ve
ct

or
iz

ed
m

er
ge

so
rt

on
ly

ve
ct

or
iz

ed
m

er
ge

so
rt

on
ly

ve
ct

or
iz

ed
m

er
ge

so
rt

on
ly

AA
-s

or
t (

ve
ct

or
iz

ed
co

m
bs

or
t

+
ve

ct
or

iz
ed

m
er

ge
 s

or
t)

A
A-

so
rt

(v
ec

to
riz

ed
co

m
bs

or
t

+
ve

ct
or

iz
ed

m
er

ge
 s

or
t)

A
A-

so
rt

(v
ec

to
riz

ed
co

m
bs

or
t

+
ve

ct
or

iz
ed

m
er

ge
 s

or
t)

AA
-s

or
t (

ve
ct

or
iz

ed
co

m
bs

or
t

+
ve

ct
or

iz
ed

m
er

ge
 s

or
t)

sm
al

le
r

is
 fa

st
er

Fig. 22. Performance improvements by using the vectorized combsort for the in-core sorting phase over the sorting
only using the vectorized mergesort on one PowerPC 970MP core.

0%

20%

40%

60%

80%

100%

120%

140%

re
la

tiv
e

ex
ec

ut
io

n
tim

e
ov

er
 th

e
to

ta
l s

or
tin

g
tim

e
of

 A
A

-s
or

t (
%

) .

vectorized combsort
vectorized mergesort

ve
ct

or
iz

ed
m

er
ge

so
rt

on
ly

ve
ct

or
iz

ed
m

er
ge

so
rt

on
ly

AA
-s

or
t (

ve
ct

or
iz

ed
co

m
bs

or
t

+
ve

ct
or

iz
ed

m
er

ge
 s

or
t)

AA
-s

or
t (

ve
ct

or
iz

ed
co

m
bs

or
t

+
ve

ct
or

iz
ed

m
er

ge
 s

or
t)

ve
ct

or
iz

ed
m

er
ge

so
rt

on
ly

AA
-s

or
t (

ve
ct

or
iz

ed
co

m
bs

or
t

+
ve

ct
or

iz
ed

m
er

ge
 s

or
t)

number of cores
1 core 2 cores 4 cores

sm
al

le
r

is
 fa

st
er

Fig. 23. Execution time breakdown of parallel version of AA-sort with 32 million uniform random integers on up
to 4 cores of PowerPC 970MP.

This is a pre peer-reviewed version. The final version is published in Software: Practice and Experience.
http://onlinelibrary.wiley.com/doi/10.1002/spe.1102/abstract

memory became a significant scalability bottleneck. Fig. 23 also shows the performance advantage
of the AA-sort over the vectorized mergesort. The advantages were not significantly affected by the
number of cores used.

To see the performance scalability with larger numbers of cores, Fig. 24 shows the scalability of
the AA-sort and the bitonic merge sort on the Cell BE up to 16 cores when sorting 32 million 32-bit
integers. Both algorithms showed almost linear speed up for up to 4 cores, since Cell BE provides
more memory bandwidth than PowerPC 970MP. With more than 4 cores, our AA-sort demonstrated
better scalability than the bitonic merge sort. For example, the AA-sort achieved a speed up of 12.2
for 16 cores while the bitonic merge sort achieved 7.1. This was because the bitonic merge sort has a
higher communication/computation ratio than the AA-sort and the memory bandwidth was a
bottleneck that limited the scalability. As a result, the performance of the AA-sort was better than the
bitonic merge sort by 4.9 times with 16 Cell BE cores.

Our implementation of the AA-sort and bitonic merge sort used techniques to reduce the required
system memory bandwidth as described in Section 5.2, the 4-way merge for the AA-sort and the
inter-SPE data transfer for the bitonic merge sort. Fig. 25 depicts how those techniques affected the
overall sorting performance. The techniques improved the performance when using 16 SPE cores by
16.6% for the AA-sort and by 36.9% for the bitonic merge sort while they degraded the performance
using only one SPE core. This was because those techniques incurred additional computation
overhead as a trade-off for reduced memory bandwidth and thus they did not improved the

0

2

4

6

8

10

12

14

1 2 4 8 16
number of processor cores

sp
ee

d
up

AA-sort

bitonic merge sort

0.158 sec

0.776 sec

with 1 core
AA-sort: 1.92 sec
GPUTeraSort: 5.54 sec

ESSL and STL are
not supporting Cell BE

la
rg

er
 is

 fa
st

er

Fig. 24. Scalability with increasing number of cores on Cell BE for 32 million random integers.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 core 16 cores
number of cores

ex
ec

ut
io

n
tim

e
(s

ec
)

4-way merge

2-way merge

16.6% faster

0

1

2

3

4

5

6

1 core 16 cores
number of cores

ex
ec

ut
io

n
tim

e
(s

ec
)

with inter-SPE
data transfer

without inter-SPE
data transfer

sh
or

te
r

is
 fa

st
er

AA-sort bitonic merge sort

36.9% faster

Fig. 25. Average execution time of sorting for 32 million random integers with and without techniques to reduce
system memory bandwidth on Cell BE.

This is a pre peer-reviewed version. The final version is published in Software: Practice and Experience.
http://onlinelibrary.wiley.com/doi/10.1002/spe.1102/abstract

performance with small number of cores, where the memory access latency were totally hidden
behind the computation by double buffering technique and thus the system memory bandwidth was
not a limiting factor of the performance.

5.4 Performance for {Key, Data} Pairs
This section focuses on sorting for pairs of a key and associated data such as a pointer to the
structure having that key value. Fig. 26 shows the sorting times of the AA-sort and the bitonic merge
sort for sorting pairs with various data types for keys while using 16 Cell BE cores. The x-axis
shows the number of elements up to 16 million pairs (128 MB). In the measurements the keys and
the attached data are stored in distinct arrays. The tested data types of the keys included
single-precision floating-point values, 64-bit integers, and 10-byte ASCII strings. The floating point
keys and the integer keys were initialized using uniform random numbers. For the ASCII string keys,
we used the input data generator of the Sort Benchmark (http://sortbenchmark.org/) to initialize the
keys, and sorted them into order with the strnicmp() function.

Our implementations for wider keys, 64-bit integers and 10-byte ASCII strings, employed the
hybrid approach of our algorithm and radixsort. Govindaraju et al. [15] also used a similar hybrid
approach for the improved bitonic merge sort and radixsort in the bitonic merge sort. First it extracts
the first few bytes from the keys and encodes them into 32-bit integer values, then sorts the pairs
according to the encoded keys. After sorting by the first few bytes, when and only when multiple
pairs have the same encoded keys, the pairs having the same encoded key are sorted using the next
few bytes. The results shown in Fig. 26 include the time for key extraction and encoding. The input
for our sorting function was pairs of {key, pointer}, and the output was a sorted array of pointers.
The performance of the AA-sort for sorting 16 million pairs with random integer keys was about 1.6
times slower than that for sorting 16 million simple 32-bit integer values. However the AA-sort
achieved up to 5.0 times faster results than the bitonic merge sort for the {key, pointer} pairs with
32-bit integer keys. For the wider keys, the performance was slightly degraded due to the overhead
of the key encoding and repeated sorting. Even the slowest case with the AA-sort, for the keys of

0.001

0.01

0.1

1

1 M 2 M 4 M 8 M 16 M
data size (number of {key, data} pairs)

ex
ec

ut
io

n
tim

e
(s

ec
)

sh
or

te
r

is
 fa

st
er

32-bit integer
32-bit floating point
64-bit integer
10-byte ASCII

32-bit integerbitonic merge
sort

AA-sort

data type of keys

Fig. 26. Performance comparisons of the data type of the key for sorting {key, data} pairs on the Cell BE using 16
cores.

This is a pre peer-reviewed version. The final version is published in Software: Practice and Experience.
http://onlinelibrary.wiley.com/doi/10.1002/spe.1102/abstract

10-byte ASCII strings, was much faster than the bitonic merge sort for the pairs with 32-bit integer
keys.

6. CONCLUSION
This paper describes a new high-performance sorting algorithm that we call Aligned-Access sort
(AA-sort). The AA-sort is suitable for exploiting both the SIMD instructions and thread-level
parallelism available on today's multicore processors. The AA-sort does not involve any unaligned
memory accesses that attenuate the benefit of SIMD instructions, and hence it can effectively exploit
the SIMD instructions. We implemented and evaluated the AA-sort on PowerPC 970MP and Cell
Broadband Engine processors. In summary, a sequential version of the AA-sort using SIMD
instructions outperformed that of IBM’s ESSL by 1.8 times and the bitonic merge sort using SIMD
instructions by 3.3 times on the PowerPC 970MP when sorting 32 million random 32-bit integers.
Also, a parallel version of the AA-sort demonstrated better scalability with increasing numbers of
cores than a parallel version of the bitonic merge sort. The AA-sort achieved speed up of 12.2 for 16
cores on the Cell BE, while the bitonic merge sort achieved 7.1. As a result the AA-sort was 4.2
times faster on 4 PowerPC 970MP cores and 4.9 times faster on 16 Cell BE cores compared to the
bitonic merge sort.

REFERENCES

1. Zhou J, Ross KA. 2002. Implementing database operations using SIMD instructions. In Proceedings of the ACM

SIGMOD international conference on Management of data, ACM Press, New York, 145–156. 2002. DOI:

10.1145/564691.564709.

2. Graefe G. Implementing sorting in database systems, ACM Computing Surveys; 38(3). 2006. DOI:

10.1145/1132960.1132964.

3. Martin WA. Sorting. ACM Computing Surveys; 3(4): 147–174. 1971. DOI: 10.1145/356593.356594.

4. Knuth DE. The Art of Computer Programming. Vol. 3: Sorting and Searching. 1973.

5. Lacey S, Box R. A Fast, Easy Sort. In Byte Magazine (April), 315–320. 1991.

6. Inoue H, Moriyama T, Komatsu H, Nakatani T. AA-Sort: A New Parallel Sorting Algorithm for Multi-Core SIMD

Processors. In Proceedings of the IEEE International Conference on Parallel Architectures and Compilation

Techniques. IEEE Computer Society, Los Alamitos, 189–198. 2007. DOI: 10.1109/PACT.2007.12.

7. Pham D, Asano S, Bolliger M, Day MN, Hofstee HP, Johns C, Kahle J, Kameyama A, Keaty J, Masubuchi Y, Riley

M, Shippy D, Stasiak D, Suzuoki M, Wang M, Warnock J, Weitzel S, Wendel D, Yamazaki T, and Yazawa K. The

Design and Implementation of a First–Generation CELL Processor. In Proceedings of the IEEE International

Solid–State Circuits Conference. IEEE Computer Society, Los Alamitos, 184–185. 2005.

8. IBM Corp. PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology Programming

Environments Manual. 1998.

9. Chhugani J, Nguyen AD, Lee VW, Macy W, Hagog M, Chen Y, Baransi A, Kumar S, Dubey P. Efficient

implementation of sorting on multi–core SIMD CPU architecture. In Proceedings of International Conference on

Very Large Data Bases. VLDB Endowment inc., 1313–1324. 2008. DOI: 10.1145/1454159.1454171.

This is a pre peer-reviewed version. The final version is published in Software: Practice and Experience.
http://onlinelibrary.wiley.com/doi/10.1002/spe.1102/abstract

10. Intel Corp. IA–32 Intel Architecture Software Developer's Manual.

11. Inoue H, Komatsu H, Nakatani T. A Study of Memory Management for Web–based Applications on Multicore

Processors. In Proceedings of the ACM SIGPLAN 2009 Conference on Programming Language Design and

Implementation. ACM Press, New York, 386–396. 2009. DOI: 10.1145/1542476.1542520.

12. Sanders P, Winkel S. Super Scalar Sample Sort. In Proceedings of the European Symposium on Algorithms.

Springer–Verlag (LNCS vol. 3221), Berlin, 784–796. 2004.

13. Purcell T, Donner C, Cammarano M, Jensen H, Hanrahan P. Photon mapping on programmable graphics hardware.

In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Workshop On Graphics Hardware. ACM Press, New

York, 41–50. 2003.

14. Govindaraju NK, Raghuvanshi N, Manocha D. Fast and Approximate Stream Mining of Quantiles and Frequencies

Using Graphics Processors. In Proceedings of the ACM SIGMOD International Conference on Management of Data,

ACM Press, New York, 611–622. 2005. DOI: 10.1145/1066157.1066227.

15. Govindaraju NK, Gray J, Kumar R, Manocha D. GPUTeraSort: High Performance Graphics Coprocessor Sorting for

Large Database Management. In Proceedings of the ACM SIGMOD International Conference on Management of

Data. ACM Press, New York, 325–336. 2006. DOI: 10.1145/1142473.1142511.

16. Batcher KE. Sorting networks and their applications. In Proceedings of the AFIPS Spring Joint Computer

Conference 32. AFIPS, 307–314. 1968.

17. Gedik B, Bordawekar RR., Yu PS. CellSort: high performance sorting on the cell processor, In Proceedings of the

ACM International Conference on Very Large Data Bases. VLDB Endowment inc., 1286–1297. 2007.

18. Furtak T, Amaral JN, Niewiadomski R. Using SIMD Registers and Instructions to Enable Instruction–Level

Parallelism in Sorting Algorithms. In Proceedings of the ACM Symposium on Parallelism in Algorithms and

Architectures. ACM Press, New York, 348–357. 2007. DOI: 10.1145/1248377.1248436.

19. Cederman D, Tsigas P. A Practical Quicksort Algorithm for Graphics Processors. In Proceedings of the European

Symposium on Algorithms. Springer–Verlag (LNCS vol. 5193), Berlin, 246–258. 2008. DOI:

10.1007/978-3-540-87744-8_21.

20. Nickolls J, Buck I, Garland M. Scalable Parallel Programming with CUDA. ACM Queue; 6(2): 40–53. 2008.

21. Francis R, Mathieson I. A Benchmark Parallel Sort for Shared memory Multiprocessors. IEEE Transactions on

Computers; 37(12): 1619–1626. 1988. DOI: 10.1145/1365490.1365500.

22. IBM Corp. 2005. IBM PowerPC 970MP RISC Microprocessor User's manual.

23. Musser DR. Introspective Sorting and Selection Algorithms. Software Practice and Experience; 27(8): 983–993.

1997.

24. Freescale Semiconductor Inc. AltiVec Technology Programming Interface Manual. 1999.

