
0

10

20

30

40

50

60

70

80

90

100

110

Our
approach

Key-index
approach

Direct
approach

Radix sort STL
stable_sort

STL sort
(unstable)

e
x
e
c
u
tio

n
 ti

m
e
 (

se
c
)

with SIMD without SIMD

multiway mergesort

fa
s
te

r

 Hiroshi Inoue (inouehrs@jp.ibm.com)† ‡ Kenjiro Taura‡

†IBM Research – Tokyo ‡University of Tokyo

SIMD- and Cache-Friendly Algorithm
for Sorting an Array of Structures

VLDB 2015 at Hawai‘i, USA

• SIMD-based multiway mergesort has been
used for in-memory sorting of integers

• We extend this for sorting structures (key +
payload)

Existing approaches

• Key-index approach:

1. encode key and index for each record
into an integer,

2. sort the key-index pairs with SIMD, and

3. rearrange the records based on the sorted
key-index pairs

SIMD friendly but NOT cache friendly

 Costly due to random accesses for memory

• Direct approach:

1. sort records directly without encoding into
an integer

Cache friendly but NOT SIMD friendly

 Inefficient with SIMD due to gather for keys

Key idea:

• to execute rearranging of records more
frequently, e.g. once per m merge stages
(m > 1), instead of only once at the last in
key-index approach

Benefits

• Cache friendly: the rearrange operation
reads from
k = 2m input streams and write to one
output stream; hence the memory
accesses are sequential unless m is too
large

• SIMD friendly: most of the merge
operations are done for integers; reading
keys from records, which is costly with
SIMD, only once per m stages

Implementation in multiway merge

We integrate key encoding and rearrange into
multiway merge operation

• multiway merge, which merges k (k > 2)
input streams into one output stream, is a
common technique to reduce memory
bandwidth in mergesort

Steps of our multiway merge operation

1. at the first stage, read records from system
memory and encode key and streamID into
an integer

2. merge integer values using SIMD

3. at the last stage, rearrange records based
on the encoded streamID

Performance results

Sorting 512M records of 16 byte

Sorting 16M records of various record sizes

processor’s cache memory

system memory

input streams

rearrange
records

stream
0

output stream

2-way
merge

2-way
merge

2-way
merge

encode {key, streamID} pair into an integer value

2-way
merge

2-way
merge

2-way
merge

2-way
merge

stream
1

stream
2

stream
3

stream
4

stream
5

stream
6

stream
7

8-way merge operation for structures

move structures move integer values

SIMD merge
operation for integers

stage 1

stage 2

stage 3

rearrange without
random accesses

unsorted input

sorted output

Direct approachKey-index approach

encode

rearrange

Our approach (m = 3)

unsorted input

sorted output

unsorted input

sorted output

encode

rearrange

encode

rearrange

merge operation

for structures

 cache

unfriendly

random

accesses

 SIMD

unfriendly

merge operation

for integers

cache

friendly

sequential

accesses

 cache

friendly

sequential

accesses

SIMD

friendly

 SIMD

friendly

Introduction

struct Record {

int32_t key;

int32_t dataX;

int32_t dataY;
...

};

struct Record array[N];

payload

key payload key payload

record i record i +1

ki i ki+1 i+1

Our approach

record i

64-bit integer encode

System

• 2.9-GHz Xeon (SandyBridge) / RHEL 6.4
/ gcc-4.8 / using SSE (128-bit SIMD)

0

1

2

3

4

5

6

7

8 16 24 32 48 64 96 128 192 256

e
x
e
c
u
ti
n
 t
im

e
 (

s
e
c
)

record size (byte)

Our approach

Key-index approach

Direct approach

Radix sort

STL stable_sort

STL sort (unstable)

cache line size

fa
s
te

r

sorted

unsorted input

sorted output

k-way merge k-way merge k-way merge k-way merge

k-way merge

Step 1: divide into small blocks that can fir in (L2) cache

Step 2: sort each block by vectorized combsort

Step 3: repeatedly execute multiway merge to merge all blocks

Optimizations and overall scheme
Optimizations:

exploiting 4-wide SIMD by encoding a {key, id}
pair into 32-bit integer

• we encode streamID (up to k) accompanied
with its key into an intermediate integer; the
streamID is much smaller than the index (up
to N) we can use more bits for the key

• we use a 32-bit integer instead of a 64-bit
integer to encode (a part of) key and
streamID to use higher data parallelism
when the number of elements to merge is
smaller than a threshold

• if we use only a part of keys for merging, we
check the order by using the entire key when
we rearrange records (without using SIMD)

vectorized combsort for initial sorting

• because mergesort is not efficient for small
amount of data, we switch to vectorized
combsort if a block to sort is small enough to
fit into L2 cache

• combsort is efficient with SIMD but shows
very poor memory access locality
 good for initial sorting of small blocks

Overall sorting scheme:

0

5

10

15

20

25

30

35

40

45

0 4 8 12 16
re

la
ti
v
e
 p

e
rf

o
rm

a
n
e
 o

v
e
r
S

T
L
's

s
td

::
s
ta

b
le

_
s
o

rt
 o

n
 1

 c
o

re
number of cores

Our approach

Key-index approach

Direct approach

Radix sort

STL stable_sort

STL sort (unstable)

fa
s
te

r

Scalability with multiple cores

0.01

0.1

1

10

100

1M 2M 4M 8M 16M 32M 64M 128M 256M 512M

e
x
e
c
u
ti
o

n
 t
im

e
 (

s
e
c
)

records

Our approach

Key-index approach

Direct approach

Radix sort

STL stable_sort

STL sort (unstable)

fa
s
te

r

Sorting various numbers of 16-byte records

0

10

20

30

40

50

60

70

80

2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
k

2
k

e
x
e
c
u
tio

n
 ti

m
e
 (

se
c
)

number of ways

fa
s
te

r

Effect of number of ways (k)

