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Introduction 

• Set intersection is the operation to find 
common elements from two sets; we 
cover intersecting two sorted integer 
arrays in this work 

• Heavily used in DBMS (merge join) or in 
search engines (multi-word AND query) 

Key observation 

while (pA < pAend && pB < pBend) { 
  if      (*pA==*pB) { *pOut++ = *pA++;pB++; } 
  else if (*pA <*pB) { pA++; } 
  else               { pB++; } 
} 

In a merge-based implementation above,  

The comparison to select an input array for 
the next block is hard to predict for branch 
predictor and costly due to misprediction 
overhead 

The comparison to check equality is much 
easier to predict and not so costly 
(assuming the number of output is much 
smaller than the input) 

We focus on reducing the hard-to-predict 
conditional branches  

 
Our block-based approach 

1. We read multiple elements (block size S, 
here S=2), instead of just one element, 
from each of the two input arrays, 

2. compare all of the pairs of elements 
from the two arrays to find any matching 
pairs, 

3. then increment a pointer by S, instead of 
one 

Step 1. 

read multiple elements 

1 3 5 9 10 12 ·····

2 5 6 8 11 14 ·····

Step 3. 

advance a pointer 

by S at once 

  reduce hard-to-predict branches to only 
1/S (one comparison for each S 
elements in step 3) 

  increase easy-to-predict branches by S 
times (S2 comparisons in step 2) 

 We observed about 2x gain with S = 3 
or 4 even without using SIMD 
instructions 

Exploiting SIMD instructions 

Performance results 

• In our block-based approach, the larger 
number of comparisons from these all-pairs 
comparisons is an obvious drawback  

We use SIMD instructions to reduce these 
comparisons as follow 

1. read only a part of each element and pack 
them into a vector register 

2. compare them by SIMD comparison 
(partial comparison) 

3. if no matching pair found, skip further 
comparisons for this block (common case) 

4. execute full comparisons to find matching 
pairs (or repeat a partial comparison with 
a different part of each key) 

• This partial comparison approach can yield 
higher data parallelism than comparing the 
entire key 
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256k random 32-bit integers, selectivity = 0% 

• emulated multi-word query from Wikipedia 
with a different number of words in a query 

• each algorithm is combined with galloping 
(if the sizes of two sets are very different) 

Evaluation with artificial dataset 

Evaluation with more realistic dataset 
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STL Naive (block size = 1)

Our scalar algorithm (block size = 2) Our scalar algorithm (block size = 3)

Our scalar algorithm (block size = 4) Our scalar algorithm (block size = 5)

Our SIMD algorithm (block size = 4) Branchless algorithm

V1 SIMD algorithm  (Lemire et al.)
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Our scalar 

algorithm: 

up to 2.1x 

gain over 

STL (S = 3) 

Our SIMD algorithm: further 

2x gain over our scalar 

algorithm (about 5x gain over 

STL) 

up to 1.8x gain 

over STL (S = 3) 

Our SIMD algorithm: further 2x 

gain over our scalar algorithm 

(about 5x gain over STL) 

input array A

input array B

A[i] A[i+1] A[i+2] A[i+3]

B[j] B[j+1] B[j+2] B[j+3]

vector register A

(128 bit)

vector register B

(128 bit)

compare 

each byte pair 

costly due to frequent branch mispredictions 
 we focus on reducing this branch 

not so costly; easy to predict 
(mostly not taken) 

Step 2. 

compare all pairs to 

find matches 

while (pA < pAend-1 && pB < pBend-1) { 
  A0=*pA; A1=*(pA+1); B0=*pB; B1=*(pB+1); 
  if      (A0 == B0) { *pOut++ = A0; } 
  else if (A0 == B1) { *pOut++ = A0;  
                       Bpos+=2; continue; } 
  else if (A1 == B0) { *pOut++ = A1; 
                       Apos+=2; continue; } 
  if      (A1 == B1) { *pOut++ = A1; 
                       Apos+=2; Bpos+=2; } 
  else if (A1  < B1) { Apos+=2; } 
  else               { Bpos+=2; } 
} 

Our block-based approach 

S2 easy-to-predict branches per 

S elements  S times more 

only one while processing S elements  

 reduced to 1/S 

increment a pointer by S  

execution 

per element 

mispredicti

on rate 
total cost 

if_equal 

branches 
S 0% S * costexec 

if_greater 

branches 
1/S 50% 

(costexec+ 

costmisp* 0.5) / S 

• A simple cost model to determine the best 
block size S 

Best block size can be determined based on  
r = costmisp / costexec 

Sbest = 1  when  r ≤ 2 

Sbest = 2  when  2 ≤ r ≤ 10 

Sbest = 3  when  10 ≤ r ≤ 22 

Sbest = 4  when  22 ≤ r ≤ 38 

 

Sbest = 3 for 

many of today’s 

processors  

with SIMD, we use S = 4 to fully 

exploit vector register size 

pack only a part (e.g. least significant one byte) 

from elements into a vector register 

Systems 

• 2.9-GHz Xeon (SandyBridge) or 4.1-GHz 
POWER7+ / RHEL 6.4 / gcc-4.8 

• using 128-bit SIMD (SSE or VSX) 

intersecting  
2 posting lists 

intersecting  
3 posting lists 

intersecting  
6 posting lists 

intersecting  
8 posting lists 
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block size   1     2     3     4     5     4 block size   1     2     3     4     5     4
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selectivity (output size / input size)

STL Our scalar algorithm (block size = 3 x 3)

Our SIMD algorithm (block size = 4 x 4) V1 SIMD algorithm  [9]

higher  selectivity

(more output)

lower selectivity

(less output)

Our SIMD algorithm is the best with 

low selectivity (common case)

Our scalar algorithm is the 

best until ~65% selectivity
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256k random integers, various selectivity 

2 5 6 8 11 14input array A

input array B

·····

·····

A[i] A[i+1] A[i+2] A[i+3] A[i+4] A[i+5]

B[i] B[i+1] B[i+2] B[i+3] B[i+4] B[i+5]

·····output array

1 3 5 9 10 12

5

sorted

sorted

17 41


