
Hiroshi Inoue (inouehrs@jp.ibm.com)† ‡ Moriyoshi Ohara† Kenjiro Taura‡

†IBM Research - Tokyo ‡University of Tokyo

Faster Set Intersection with SIMD Instructions
by Reducing Branch Mispredictions

VLDB 2015 at Hawai‘i, USA

Introduction

• Set intersection is the operation to find
common elements from two sets; we
cover intersecting two sorted integer
arrays in this work

• Heavily used in DBMS (merge join) or in
search engines (multi-word AND query)

Key observation

while (pA < pAend && pB < pBend) {
 if (*pA==*pB) { *pOut++ = *pA++;pB++; }
 else if (*pA <*pB) { pA++; }
 else { pB++; }
}

In a merge-based implementation above,

The comparison to select an input array for
the next block is hard to predict for branch
predictor and costly due to misprediction
overhead

The comparison to check equality is much
easier to predict and not so costly
(assuming the number of output is much
smaller than the input)

We focus on reducing the hard-to-predict
conditional branches

Our block-based approach

1. We read multiple elements (block size S,
here S=2), instead of just one element,
from each of the two input arrays,

2. compare all of the pairs of elements
from the two arrays to find any matching
pairs,

3. then increment a pointer by S, instead of
one

Step 1.

read multiple elements

1 3 5 9 10 12 ·····

2 5 6 8 11 14 ·····

Step 3.

advance a pointer

by S at once

 reduce hard-to-predict branches to only
1/S (one comparison for each S
elements in step 3)

 increase easy-to-predict branches by S
times (S2 comparisons in step 2)

 We observed about 2x gain with S = 3
or 4 even without using SIMD
instructions

Exploiting SIMD instructions

Performance results

• In our block-based approach, the larger
number of comparisons from these all-pairs
comparisons is an obvious drawback

We use SIMD instructions to reduce these
comparisons as follow

1. read only a part of each element and pack
them into a vector register

2. compare them by SIMD comparison
(partial comparison)

3. if no matching pair found, skip further
comparisons for this block (common case)

4. execute full comparisons to find matching
pairs (or repeat a partial comparison with
a different part of each key)

• This partial comparison approach can yield
higher data parallelism than comparing the
entire key

0.0

0.5

1.0

1.5

2.0

2.5

2-word query 3-word query 6-word query 8-word queryre
la

ti
v
e

 p
e

rf
o

rm
a

n
c
e

 o
v
e

r
(S

T
L
 +

 g
a

ll
o

p
in

g
)

Our adaptive SIMD algorithm Our adaptive scalar algorithm

V1 SIMD + SIMD galloping [9] STL + galloping (baseline)

STL only

h
ig

h
e
r is

 fa
s
te

r

256k random 32-bit integers, selectivity = 0%

• emulated multi-word query from Wikipedia
with a different number of words in a query

• each algorithm is combined with galloping
(if the sizes of two sets are very different)

Evaluation with artificial dataset

Evaluation with more realistic dataset

0

200

400

600

800

1,000

1,200

1,400

1,600

Xeon POWER7+

p
e

rf
o

rm
a

n
c
e

 (
in

p
u

t e
n

tr
ie

s
 /

u
s
e

c
)

STL Naive (block size = 1)

Our scalar algorithm (block size = 2) Our scalar algorithm (block size = 3)

Our scalar algorithm (block size = 4) Our scalar algorithm (block size = 5)

Our SIMD algorithm (block size = 4) Branchless algorithm

V1 SIMD algorithm (Lemire et al.)

h
ig

h
e

r is
 fa

s
te

r

Our scalar

algorithm:

up to 2.1x

gain over

STL (S = 3)

Our SIMD algorithm: further

2x gain over our scalar

algorithm (about 5x gain over

STL)

up to 1.8x gain

over STL (S = 3)

Our SIMD algorithm: further 2x

gain over our scalar algorithm

(about 5x gain over STL)

input array A

input array B

A[i] A[i+1] A[i+2] A[i+3]

B[j] B[j+1] B[j+2] B[j+3]

vector register A

(128 bit)

vector register B

(128 bit)

compare

each byte pair

costly due to frequent branch mispredictions
 we focus on reducing this branch

not so costly; easy to predict
(mostly not taken)

Step 2.

compare all pairs to

find matches

while (pA < pAend-1 && pB < pBend-1) {
 A0=*pA; A1=*(pA+1); B0=*pB; B1=*(pB+1);
 if (A0 == B0) { *pOut++ = A0; }
 else if (A0 == B1) { *pOut++ = A0;
 Bpos+=2; continue; }
 else if (A1 == B0) { *pOut++ = A1;
 Apos+=2; continue; }
 if (A1 == B1) { *pOut++ = A1;
 Apos+=2; Bpos+=2; }
 else if (A1 < B1) { Apos+=2; }
 else { Bpos+=2; }
}

Our block-based approach

S2 easy-to-predict branches per

S elements  S times more

only one while processing S elements

 reduced to 1/S

increment a pointer by S

execution

per element

mispredicti

on rate
total cost

if_equal

branches
S 0% S * costexec

if_greater

branches
1/S 50%

(costexec+

costmisp* 0.5) / S

• A simple cost model to determine the best
block size S

Best block size can be determined based on
r = costmisp / costexec

Sbest = 1 when r ≤ 2

Sbest = 2 when 2 ≤ r ≤ 10

Sbest = 3 when 10 ≤ r ≤ 22

Sbest = 4 when 22 ≤ r ≤ 38

Sbest = 3 for

many of today’s

processors

with SIMD, we use S = 4 to fully

exploit vector register size

pack only a part (e.g. least significant one byte)

from elements into a vector register

Systems

• 2.9-GHz Xeon (SandyBridge) or 4.1-GHz
POWER7+ / RHEL 6.4 / gcc-4.8

• using 128-bit SIMD (SSE or VSX)

intersecting
2 posting lists

intersecting
3 posting lists

intersecting
6 posting lists

intersecting
8 posting lists

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

in
s
tr

u
c
tio

n
s

e
x
e
c
u
te

d
 p

e
r

in
p
u
t

e
le

m
e
n
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

in
st

ru
c
tio

n
s

e
x
e
c
u
te

d
 p

e
r

in
p
u
t

e
le

m
e
n
t

Branch

mispredictions
Instructions

executed

b
e

tte
r

7x reduction

1.54x

reduction

block size 1 2 3 4 5 4 block size 1 2 3 4 5 4

scalar SIMD scalar SIMD

0

100

200

300

400

500

600

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

p
e

rf
o

rm
a

n
c
e

 (
in

p
u

t
e

n
tr

ie
s
 /

u
s
e

c
)

selectivity (output size / input size)

STL Our scalar algorithm (block size = 3 x 3)

Our SIMD algorithm (block size = 4 x 4) V1 SIMD algorithm [9]

higher selectivity

(more output)

lower selectivity

(less output)

Our SIMD algorithm is the best with

low selectivity (common case)

Our scalar algorithm is the

best until ~65% selectivity

fa
s
te

r

256k random integers, various selectivity

2 5 6 8 11 14input array A

input array B

·····

·····

A[i] A[i+1] A[i+2] A[i+3] A[i+4] A[i+5]

B[i] B[i+1] B[i+2] B[i+3] B[i+4] B[i+5]

·····output array

1 3 5 9 10 12

5

sorted

sorted

17 41

