
CPU Resource Reservation for Simultaneous Multi-Thread Systems

Hiroshi Inoue, Takao Moriyama, Yasushi Negishi, and Moriyoshi Ohara
IBM Tokyo Research Laboratory

{inouehrs, moriyama, negishi, ohara}@jp.ibm.com

Abstract

Simultaneous Multi-Thread (SMT) techniques are becoming popular because they increase the efficiency of CPU
resource usage by allowing multiple threads to run on a single physical processor at a very fine granularity.
Emerging real-time applications, however, may not benefit from the SMT techniques because those techniques often
compromise the predictable performance characteristics of applications, which real-time applications typically need
to meet their computation deadlines. In this paper, we propose a new resource reservation scheme for SMT systems.
In this scheme, a task scheduler dynamically enables and disables the SMT facility while real-time applications are
running by monitoring the progress of the real-time applications. In this way, real-time applications can still meet
their computation deadlines, and other best-effort applications can gain a high throughput due to the SMT facility.
We have implemented this scheme on a Linux kernel and evaluated it on a Hyper-Threading processor, an Intel's
implementation of SMT techniques. Our experimental results have shown that, for our workload, our scheme can
guarantee real-time applications to use reserved resources while best-effort applications can obtain a high
throughput due to the SMT facility.

1. Introduction

Soft real-time applications, such as multimedia
applications, are becoming increasingly important for
general-purpose systems. These applications often need
to use certain amount of computation resources in order
to complete their computations by a certain deadline.
Thus, Operating systems need to allocate resources to
meet various resource requirements for each process in
the system. In fact, previous works [1-5] have
addressed task scheduling schemes that meet such
resource requirements by allowing each real-time
process to declare its worst-case computation time and
the deadline.

Those scheduling schemes, however, may fail to
allocate resources as applications require on a processor
with an SMT (Simultaneous Multi-Thread) [6] facility.
This is because those scheduling schemes assume the
worst-case calculation time is predictable and because
this assumption is no longer true for SMT systems.
Since the SMT facility allows multiple threads to share
one processor at a very fine granularity, such as a
processor-cycle level, those threads compete each other
for various resources such as execution units, L1/L2
caches, bus, and register file. The performance of each
thread, therefore, heavily depends on the behavior of
other threads on the same processor. In reality, such
inter-dependency has already existed even for non-SMT
processors due to conflicts of shared resources, such as

cache lines. The degree of the inter-dependency,
however, is much higher in SMT systems than in
non-SMT systems. In other words, the CPU time of a
process less accurately indicates the amount of
consumed computation resources (i.e. the number of
instructions executed) on SMT systems than on
non-SMT systems. Therefore, existing CPU resource
reservation systems that reserve CPU time for real-time
processes may not work as intended on SMT
processors.

One can disable the SMT facility to avoid the effect of
other threads on the same processor while a real-time
process is dispatched. While this naive method can
meet the time constraints of real-time processes,
however, this method reduces the overall throughput
that we could obtain by using the SMT facility. Because
many general-purpose systems need to run real-time
and best-effort (non-real-time) processes at the same
time, it would be ideal if we could achieve two goals -
high throughput for best-effort processes and
guaranteed resource allocation for real-time process -
by exploiting the SMT facility.

To achieve these two goals, we propose a new resource
reservation scheme for SMT systems. In this scheme,
the task scheduler keeps track of the progress of each
real-time process and dynamically enables/disables the
SMT facility. More specifically, our method allows
best-effort processes to run on an SMT processor as

long as they do not prevent the real-time processes from
meeting their deadlines. We implemented and evaluated
this scheme in a Linux kernel on a real SMT processor.
Our experimental results have shown that our scheme
can achieve the above-mentioned two goals for our
workload; our scheme can guarantee real-time
processes to meet their deadlines, and our scheme can
maintain higher throughput than a naive scheme that
disables the SMT facility while a real-time process is
running.

The rest of the paper is organized as follows. Section 2
discusses related works. Section 3 describes our
resource reservation scheme, called slack time
monitoring. Section 4 describes our implementation of
this scheme on a Linux kernel. Section 5 discusses our
experimental environment and experimental results.
Section 6 discusses future works. Finally, Section 7
summarizes our work.

2 Related works

CPU resource reservation is a technique to ensure a
minimum execution rate. One form of the reservation is
a specification such as “reserve 10 ms of time out of
every 50 ms for the MPEG encoding process”.
Resource Kernel [1, 2] is one of the most widely known
resource reservation systems, for various kinds of
resources, such as processor and network bandwidth.
Resource Kernel guarantees allocations of CPU time to
real-time processes according to declared periods of
processing and required CPU time within a time period.
The existing implementation of Resource Kernel works
well on non-SMT processors, though it may not work
on SMT processors as intended. This is because the
progress of a thread heavily depends on that of other
threads on the same SMT processor, and programmers
cannot predict the behavior of the other threads. This
issue arises not only for existing reservation-based
real-time scheduling schemes [1 - 4], but also for other
real-time scheduling schemes such as rate monotonic
scheduling [5].

SMT-aware task-scheduling schemes (such as [7 - 12])
had been proposed. Snavely et al. [7, 8] proposed SOS,
which selects the co-scheduled processes (i.e. running
at the same time on the same SMT processor) in such a
way to increase the overall throughput. They reported
that SOS has improved not only the throughput but also
the response time. Parekh et al. [9] proposed similar
approach to enhance throughput by selecting the
appropriate set of processes to co-schedule. Nakajima et

al. [10] proposed a scheduling scheme for an SMP of
SMT processors, which balances the load among
processors. These scheduling schemes consider
resource conflicts among threads on an SMT processor
like ours, however, these did not address on real-time
processes with time constraints. Our scheme, on the
other hand, targets a set of real-time processes and
best-effort processes.

Jain et al. [11] proposed a soft real-time scheduling
scheme that reduces the side effect of SMT. This
scheme is also based on an idea that selects
co-scheduled processes to minimize the effect of SMT.
This approach is effective in statistically reducing the
number of deadline misses. This scheme, however, does
not necessarily guarantee the allocation of required
computation resources for real-time processes. Our
proposed scheme, on the other hand, intends to
guarantee real-time processes to use required resources.
Our method, moreover, is complementary to the Jain’s
scheme, that is, an appropriate decision of job selection
can enhance overall throughput in addition to the results
of our method. Cazorla et al. [12] addressed removing
an unpredictability of a performance of a thread on an
SMT processor. They proposed a method to enforce
giving a certain IPC (instructions per clock cycle) to a
high priority thread by using the combination of the
task scheduler and the special resource sharing policy
on the processor. In contrast, our approach uses only a
task scheduler and it can be running on the existing
implementations of SMT, such as Intel’s
Hyper-Threading [13]. To our best knowledge, this
paper is the first report that quantitatively evaluated
reservation-based real-time scheduling schemes on a
commercially-available SMT environment.

3. Our resource reservation scheme for
SMT processors

3.1 Basic algorithm

To illustrate our scheme we present the following
example, a real-time process reserves an amount of
computation resource creserve before its deadline at
tdeadline. We represent the amount of computation
resource creserve by the CPU time without considering
any other processes on the same processor. We call this
condition the single-threaded condition. When a
real-time process is dispatched to one thread of an SMT
processor, the task scheduler first calculates the slack
time tslack. Slack time means the time that other
processes can use without jeopardizing the timing

constraints of the real-time process, and can be
represented as tslack = T – C, where T is remaining time
to the deadline, i.e., T = tdeadline – t0 and t0 denotes the
current time, and C is remaining reserved amount of
computation resource that the real-time process must
obtain before its deadline, i.e., C = creserve – c0 where c0
denotes the amount of computation resource the process
has obtained. C and c0 are also represented by
single-threaded CPU time.

If the slack time is greater than zero, the task scheduler
can dispatch other best-effort processes in order to
increase overall throughput. We call such processes
running together with real-time processes at the same
time on the SMT processor co-scheduled processes.
While co-scheduled processes are running on the
processor, the slack time must be continuously
monitored to insure it is greater than zero in order to
guarantee the allocation of the reserved amount of
computation resource to the real-time process. When
the slack time becomes zero, the task scheduler
preempts co-scheduled processes, and the hardware
threads of the processor except for that used by the
real-time processes must become idle so as not to
interfere with the real-time processes until they obtain
their reserved amounts of computation.

3.2 Slack time monitoring method

Our scheme has two implementation issues: when to
measure the slack time and how to do it. First we
discuss the timing of slack time measurement. One of
the possible ways to do monitoring of slack time is by
using an external timer interrupt and monitoring the
slack time in the interrupt handler of the timer. Both a
fixed-interval polling timer and a variable interval timer
can handle the monitoring, but the fixed-interval timer
tends to suffer from high interrupt overhead, though it
offers a simpler algorithm and implementation.

When a variable interval timer is used to monitor the
slack time, the interval between one interrupt at time t0
and the next one at time tnext can be represented by the
following equation using the monitored slack time
itself,

tnext – t0 = tslack , (1)

where tslack is the slack time measured at time t0. Thus
the next timer interrupt is set at time

tnext = t0 + tslack, (2)

in the interrupt handler for the timer interrupt at time t0.
The flow chart of an interrupt handler for this timer
interrupt is shown in Figure 1. First, the slack time tslack

is measured. If the slack time is zero, co-scheduled
processes are preempted. Otherwise the co-scheduled
processes are allowed to continue. When the slack time
is positive, the interrupt timer is set at tnext.

The other implementation issue is how to measure the
slack time. To measure the slack time, we need a
method to measure the amount of computation
resources that a real-time process has already actually
obtained. This measurement can be done in the either of
the following ways:

1. A real-time process reports its progress by itself.

2. The task scheduler observes the progress by using
a performance-monitoring facility of the
processor.

The former requires modifying the real-time programs,
while the latter requires a hardware assist. The strengths

slack time > 0

calculate time
for next interrupt

YES

preempt co-scheduled
processes

measure slack time

start of interrupt handler

NO

end of interrupt handler

set timer

slack time > 0

calculate time
for next interrupt

YES

preempt co-scheduled
processes

measure slack time

start of interrupt handler

NO

end of interrupt handler

set timer

Figure 1. Flow chart of interrupt handler.

time

amount of calculation

tdeadlinetnextt0

creserve
(reserved
amount)

Best
 ca

se
with

 slo
pe

 of
 1.

0

c0

Worst case
with slope of 0.0

slo
pe

 of
 1.

0

time

amount of calculation

tdeadlinetnextt0

creserve
(reserved
amount)

Best
 ca

se
with

 slo
pe

 of
 1.

0

c0

Worst case
with slope of 0.0

slo
pe

 of
 1.

0

Figure 2. Schematic of calculation progress.

and limitations of these two measurement methods are
evaluated and discussed in Section 5.

Figure 2 illustrates a schematic image of the calculation
progress of a real-time process. The x-axis shows the
time and the y-axis shows the amount of computation
resources that the real-time process has obtained up to
that time. Because the amount of computation resources
is represented by the single-threaded CPU time, the
slope of the graph takes values from zero to one. The
best case, with a slope of one, means no interference
exists from co-scheduled threads, as in the
single-threaded condition. On the other hand, in the
worst case, the case with slope zero, the real-time
process cannot use any computation resources and
cannot make any progress because of the co-scheduled
processes. Even in that worst case, however, since the
co-scheduled processes are preempted at the time tnext,
the real-time process can still meet its deadline. The
time to monitor the slack time tnext presented by
Equation (2) is determined on the basis of this worst
case.

When using a fixed-interval polling timer to monitor
the slack time, the basic approach is the same as for the
variable interval timer. The fixed interval of the timer
interrupt should be selected considering interrupt
overhead and monitoring accuracy. If the interval is too
small the overhead becomes significant, but if the
interval is too long the monitoring becomes inaccurate,
which means that the task scheduler cannot correctly
detect when the slack time might become zero.

Our method trades off the overhead of external timer
interrupts for a guarantee of the allocation of the
reserved amount of computation resource to the
real-time processes. When using a variable interval
timer, if the minimum calculation speed of one thread
in the SMT processor is given, the number of interrupts
and overhead can be reduced using that minimum
calculation speed in the calculation of tnext as

tnext = tslack / (1 – α) + t0. (3)

where we define α as the ratio between the minimum
speeds and the single-threaded calculation speeds (i.e.
instructions per cycle). The value of α varies from zero
to one. If α equals zero, the real-time process may be
starved for computation resources due to competing
co-scheduled threads. On the other hand, as α
approaches one, the real-time process suffers less from
the effects due to co-scheduled threads. For example,
when α is 0.5, a real-time process is sure to run at a
speed of at least half of the single-threaded speed and at
single-threaded speed in the best case.

Figure 3 depicts a schematic image of the calculation
progress of a real-time process using interrupt reduction.
The y-axis of Figure 3 is the amount of computation
resource represented by the single-threaded CPU time,
as in Figure 2, so the slope of the graph in the best case
is also one and it becomes α in the worst case. Even in
such a worst case, it can be guaranteed that the
real-time process can meet its deadline if the
co-scheduled processes are preempted at the time of tnext
calculated by Equation (3).

3.3 A scheduling example

Figure 4 shows a scheduling example. In this case, one
real-time process and some other best-effort
non-real-time processes are scheduled on a system with
a two-thread SMT processor. The real-time process
reserves computation resources corresponding to 6 ms
of the single-threaded speed before the deadline at 10
ms. The slack time is monitored using a variable
interval timer as described in the last section.

amount of calculation

time

reserved (real-time) process

other process idle

preempt

interrupt interrupt

0ms 4ms 6ms
(deadline)

0ms

6ms
(reserved
 amount)

2ms

thread 0

thread 1

Figure 4. Sample case of scheduling
(slack time monitoring method).

time

amount of calculation

tdeadlinetnextt0

creserve
(reserved
amount)

Best
 ca

se
with

 slo
pe

 of
 1.

0

c0

Worst case

with slope of (1-α)

slo
pe

 of
 1.

0

Figure 3. Schematic of calculation progress
with reduction of timer interrupt.

First, the real-time process is dispatched to thread 0. At
that time slack time tslack is calculated as,

tslack = T – C = 10 ms – 6 ms = 4 ms. (4)

In this case tslack is greater than zero; therefore one of
the other best effort processes can be dispatched for
thread 1. The next time to set the timer interrupt for is,

tnext = tslack + 0 ms = 4 ms. (5)

At the time 4 ms, the real-time process is observed to
have already obtained the amount of computation
resource corresponding to 2 ms of single-threaded
speed, and thus the remaining reserved amount of
computation resource is 4 ms. The slack time at this
time is,

tslack = T – C

= (10 ms – 4 ms) – (6 ms – 2 ms) = 2 ms. (6)

The slack time is still positive. Thus the co-scheduled
best effort process is able to continue running on thread
1. The next time to set an interrupt is,

tnext = tslack + 4 ms = 6 ms. (7)

Between 4 ms and 6 ms, the real-time process cannot
obtain any processor resources and the amount of
computation resource already obtained is unchanged.
Now the slack time becomes zero as follows:

tslack = T – C

= (10 ms – 6 ms) – (6 ms – 2 ms) = 0. (8)

Thus after this time, the real-time process must run
alone on the processor to obtain the reserved amount of
computation resource before the deadline. In order to
run the real-time process in the single-threaded
condition, the task scheduler preempts the co-scheduled
best-effort process on thread 1, and makes thread 1 idle.

As described previously, disabling SMT while any
real-time process is running is another way to guarantee
the allocation of reserved computation resource. We
call this naive method the SMT disabling method.
Figure 5 depicts a sample case of scheduling using the
SMT disabling method. In Figure 5 the real-time
process is dispatched to thread 0 at time 0, and thread 1
remains idle from time 0. The real-time process can use
all of the processor resources because thread 1 is idle,
and can obtain the reserved amount of computation
resources in 6 ms. In the remaining 4 ms, two of the
best-effort processes can use thread 0 and thread 1. The
SMT disabling method can guarantee real-time
processes will meet their deadlines, though the SMT
facility of the processor is not utilized while any

real-time process is running, which usually cause the
system to have lower throughput.

3.4 Scheduling of multiple real-time processes

We have described the basic scheduling scheme with
only one real-time process in the last section. In this
section, we consider a case with multiple real-time
processes in the system. We denote the real-time
processes as p1, p2,..., pn and they are ordered by their
deadlines. Thus process p1 is the task with the earliest
deadline and process pn is the task with the latest
deadline. Our proposed scheme, the slack time
monitoring method, is intended to remove the effects of
co-scheduled processes and does not define how to
order the real-time processes to execute them. Existing
scheduling schemes such as the earliest deadline first
(EDF) scheduling or least slack-time first (LSF)
scheduling can be used to define the order of real-time
processes.

In the case with multiple real-time processes, the slack
time for process pi must account for the execution time
of the processes p1, p2,..., pi-1, which have the earlier
deadlines. Thus the slack time for process pi is
calculated as follow,

∑
=

−=
i

j
jiislack CTt

1
,

 (9)

where Ti is the remaining time to the deadline of the
process pi and Ci is remaining reserved amount of
computation resource that process pi must obtain before
its deadline. The slack time for the overall system,
which is used to determine whether co-scheduled

amount of calculation

time

reserved (real-time) process other process

idle

0ms 6ms
(deadline)

0ms

6ms
(reserved
 amount)

thread 0

thread 1 other process

Figure 5. Sample case of scheduling
(SMT disabling method).

processes are allowed to continue or not, is the smallest
one among the slack times for each real-time process.

4. Implementation

4.1 Basic Reservation Model

To evaluate the slack time monitoring method
described in Section 3, we implemented a real-time task
scheduler that uses this method in the Linux kernel
2.4.21 and evaluated it on a standard PC. The scheduler
guarantees reserved amounts of CPU time for real-time
processes. This reservation model is based on Resource
Kernel [1, 2]. A CPU reservation used in this scheduler
is specified by a reserved amount of computation
resources represented by the single-threaded CPU time
and a reservation period. Once a real-time process
successfully creates a CPU reservation, the scheduler
dispatches the real-time process at the highest priority
until the real-time process uses up its reserved
computation resource. If the real-time process uses up
its reserved amount of computation resource or yields
the CPU, the real-time process is not dispatched again
until the end of current period. In a multi-processor or a
SMT system, a CPU reservation additionally specifies
which CPU the reservation uses. In this case the process
with the reservation cannot use any other processors.

4.2 Scheduling algorithms for SMT processors

We have implemented three types of SMT scheduling
algorithms. When the scheduler dispatches a real-time
process with a reservation to one thread of the SMT
processor, the scheduler handles other threads by using
these three methods:

・ Non-SMT-aware: The scheduler does not worry
about SMT. This means that any other processes
can run on other threads without any limitations.

・ SMT disabling method: The scheduler dispatches
real-time process only in the single-threaded
condition. This means that no other processes can
run on the SMT processor while a real-time
process is running on it. This method is illustrated
in Figure 5.

・ Slack time monitoring method (our proposed
method): The scheduler monitors the slack time
and dispatches other processes to other threads
whenever possible, as described in Section 3.

Our implementation of the slack time monitoring
method uses the system timer (IRQ 0) as a variable
interval external timer. Thus the system timer is
configured to generate one interrupt at a specified time,
while it is configured to generate an interrupt
periodically at the rate of the time slice quanta (10 ms)
in the original Linux kernel. In order to measure the
amount of computation that the real-time process has
actually obtained, we implemented two methods in the
scheduler.

1. Syscall implementation: A real-time process
reports its progress by itself by using a system call.

2. PMC implementation: The task scheduler measures
the progress by using the Performance Monitoring
Counter (PMC) [14] of the Xeon processor.

We use the number of executed instructions measured
by the PMC as a metric of the progress in the PMC
implementation.

One more point was considered in this implementation
to reduce the number of interrupts and overhead. We
noted in Section 3 that co-scheduled processes are
preempted when the slack time becomes zero. If the
slack time becomes too small, the overhead becomes
too large relative to the amount of time before the next
interrupt. To avoid this, the co-scheduled processes are
preempted when the slack time becomes less than 10
µs.

5. Evaluation

5.1 Experimental environment

In this paper, our proposed method was evaluated on a
workstation with a Xeon processor, which is equipped
with Intel’s implementation of the SMT technique
named Hyper-Threading. The single physical processor
on this workstation was treated as two independent
processors in the Linux kernel.

The evaluation reported here was done with only one
real-time process using CPU reservations and two other
best-effort processes of a non-real-time program.
Several types of programs were tested as the best-effort
process, and for each test two metrics were measured,
deadline misses of the real-time process and throughput
of the best-effort processes.

5.2 Evaluation using simple workload

First we report results of an evaluation using a very
simple workload. The real-time process used in this
evaluation was a program that calculates the product of
two 200×200 double-precision floating-point matrices
once per time period. This program did not use the
SIMD instructions or any special optimizations such as
loop blocking. It was compiled using gcc 3.2 with the
–O2 option. One matrix product calculation took about
50 ms on the workstation, and this calculation was done
periodically with a CPU reservation with a period of 70
ms and a reserved computation resource corresponding
to 55 ms. This meant that the real-time process should
be able to process the matrix calculation at the highest
priority until it obtained the computation resources
corresponding to 55 ms in the single-threaded CPU
speed. We confirmed that no deadline misses were
observed under this condition on a non-SMT processor.
Figure 6 shows the main code of the program used as
the real-time process. In this code rt_report_progress()
was the system call to report the progress of the
computation to the scheduler. The argument of the
system call was an integer value that describes the
progress in the range between 0 and 255. This system
call was used only when we evaluated the Syscall
implementation and this line was commented out when
we tested the PMC implementation.

5.2.1 Test for allocation of reserved amount of
computation resource

First, whether or not the real-time process could obtain
the reserved amount of computation resource was
examined. Figure 7 depicts the completion times of the
calculation in the presence of each one of three types of
competing best-effort processes. The Syscall
implementation of our proposed method is used in this
evaluation. The x-axis is the time measured by the

(a) integer-intensive workload

period

0 20 40 60 80 100 120 140 160 180 200

co
m

pl
et

io
n

tim
e

[m
s]

0

20

40

60

80

100

non SMT aware
Slack time monitoring
SMT disabling

deadline

(b) floating-intensive workload

period

0 20 40 60 80 100 120 140 160 180 200

co
m

pl
et

io
n

tim
e

[m
s]

0

20

40

60

80

100

120

non SMT aware
Slack time monitoring
SMT disabling

deadline

(c) I/O-dependent (kernel compilation) workload

period

0 20 40 60 80 100 120 140 160 180 200

co
m

pl
et

io
n

tim
e

[m
s]

0

20

40

60

80

100

non SMT aware
Slack time monitoring
SMT disabling

deadline

Figure 7. The completion times of the real-time process
versus the number of iterations of periodical tasks for three
competing tasks: (a) integer-intensive workload, (b)
floating-intensive workload, and (c) I/O-dependent (kernel
compilation) workload. (Slack time monitoring uses the
Syscall implementation).

for (i=0; i<iSize; i++) {
 for (j=0; j<iSize; j++) {
 c[i][j] = 0.0;
 for (k=0; k<iSize; k++) {
 c[i][j] += a[k][j] * b[i][k];
 }
 }
 rt_report_progress(i*256/iSize);
}

Figure 6. Code of the real-time process.

70-ms time periods, and the y-axis is completion times.
If the completion time was smaller than the deadline
time, 70 ms, it meant the real-time process successfully
performed the reserved amount of computation before
the deadline. If it was bigger than 70 ms, on the other
hand, it meant the deadline was missed in that period.
In Figure 7, three types of competing programs were
used as best-effort processes. They were:

(a) a program that calculates the product of two
200×200 integer matrices

(b) a program that calculates the product of two
200×200 double-precision floating-point matrices
(same as the real-time process)

(c) a program that compiles the Linux kernel
repeatedly on the local hard disk drive (connected
via an IDE interface and using Ext3 as the file
system)

There were obvious differences between the methods in
handling the other threads in the SMT processor. For
the method which does not consider interference
between the real-time process and a co-scheduled
best-effort process, many deadline misses occurred
regardless of the type of competing program. The
real-time process was dispatched to a thread but a
best-effort process was dispatched to another thread and
it prevented the real-time process from obtaining the
reserved amount of computation resources by
competing for processor resources. In other words, the
calculations of the real-time process became slower
than in the single-threaded condition. This observation
shows that the effect of co-scheduled processes must be
considered in order to guarantee the allocation of the
reserved amount of resources to a real-time process on
an SMT processor.

For the SMT disabling method, the effects of the
co-scheduled process on completion times were small
enough to neglect and no deadlines were missed
regardless of the type of competing program. This was
because the other thread was idle while the real-time
process was running, and there was no process to make
the real-time process slow down by competing for
processor resources, however, this also means that the
performance benefit of SMT was lost. For the slack
time monitoring method, it was also observed that
deadline misses did not occur, though the completion
times fluctuated due to the competing process. These
results show that both SMT disabling method and slack
time monitoring method can guarantee a real-time
process will meet its deadline by allocating the reserved
amount of computation resources to the real-time
process.

Figure 8 depicts the result of the same evaluation using
the PMC implementation of the slack time monitoring
method. In this implementation the task scheduler
measured the progress of the real-time process through
the Performance Monitoring Counter and the real-time
process did not need to report its progress. Figure 8
shows the result with the kernel compilation program as
competing best-effort processes. The results of the
PMC implementation shows there were no deadline
misses though the completion times fluctuated. This
result looks similar to that of the Syscall
implementation in Figure 7. The results of the PMC
implementation with other two types of competing
programs are not shown here but they also similar to
that of Figure 7. Thus both implementations of the slack
time monitoring method worked well to guarantee a
real-time process met its the deadline on an SMT
processor.

5.2.2 Throughput of best effort processes

For the two methods that were able to guarantee
allocation of the reserved amount of computation
resources, the SMT disabling method and the slack time
monitoring method, we evaluated the throughputs of the
best-effort processes that were running while the
real-time process was running with reservations. Figure
9 depicts the throughputs of the best-effort processes
under the conditions described in the last section. The
values are normalized using the results of the SMT
disabling method. The throughput of the matrix
calculation program was defined as the number of
calculations done in unit time, and that of the kernel
compile program was defined as the inverse of the
required time to compile the entire kernel code as
measured by the time command. We confirmed that the

period

0 20 40 60 80 100 120 140 160 180 200

co
m

pl
et

io
n

tim
e

[m
s]

0

20

40

60

80

PMC implementation
Syscall implementation

deadline

Figure 8. The completion times of real-time processes
versus the number of iterations of periodical tasks for
PMC and Syscall implementations.

real-time process did not miss its deadlines in these
tests of throughput.

We can see that the slack time monitoring method led
to higher throughput for the best-effort processes than
the SMT disabling method in all of the programs and in
both implementations. These results mean that the
usage of processor resources is increased by the slack
time monitoring method, because this method allows
best-effort processes to run while the real-time process
was running. The difference of throughput between
both methods was not constant among the different
types of best-effort processes. The most significant
increase of throughput was observed for the integer
matrix calculation, an increase of up to 84%, while a
relatively small increase of 23% was observed for the
floating-point matrix calculation. Because the real-time
process used in our evaluation was a floating-point
calculation intensive program, other best-effort
floating-point calculation intensive programs could
only obtain small increases in throughput by using SMT
because of resource contention for the floating-point
units. In the case of the kernel compile, which is
thought to be a more practical job with disk I/O and
process forks, the throughput was increased by about
20% by using the slack time monitoring method.

Comparing of the two types of implementations of the
slack time monitoring method, the results showed that
the differences between both implementations were
small. This was because the overhead of the system call
and that of an access to the performance monitoring
counter were comparable.

Looking through all of these results, increases of
throughput of the best-effort processes were observed
for the slack time monitoring method comparing to the
SMT disabling method, while both methods were able
to guarantee allocation of the reserved amount of
computation resources to the real-time process. The
type of competing best-effort process affected the
increase of throughput: More contention between
processes led to less increase of throughput. However,
the allocation of the reserved amounts of computation
was not affected by the type of the best effort process,
even if the process contained block I/O operations.

5.3 Evaluation using real workload

Here we evaluate the slack time monitoring method
using more practical workloads that have time
constraints. We choose a real-time MPEG encoding
program as such a workload. In recent years, real-time
MPEG encoding software is used in a wide range of

applications from modern PCs to consumer electronics
devices such as set top boxes. A real-time MPEG
encoder used with an external input such as a TV tuner
must finish the encoding process of one frame before a
the next frame comes, or the picture will be lost. Thus,
a real-time MPEG encoder has strict deadline defined
by the interval of picture frames. Though a buffer
memory between the encoder and the tuner can help
prevent such lost frames, there will still be losses when
the buffer memory overflows. A real-time MPEG
encoder is often used with other non-real-time
processes in real systems. For example, a user may use
a PC for Web browsing or other purpose while a TV
program is being recorded in the background. An
appropriate resource reservation system can help such
encoder not to fail in the recording even though other
heavy processes are running on the same machine.

In this evaluation, we used one of the most widely
known open-source MPEG encoders mpeg2enc
included in the MJPEG tools-1.6.2 [15]. The encoder
was used to read an uncompressed video stream from a
file on the local hard disk drive, encode it to MPEG-1
format, and write the encoded stream to the same disk.
The input video stream was 30 seconds long and had a
frame rate of 30 frames per second, so it contained 900
frames in total. The file size of the input data was about
100MB and the encoded data was 5.5MB. From this
frame rate, the deadline for one encoding process was
determined at 33.3 ms after the process started. The
mpeg encoder can run in multi-threaded mode when

re
la

tiv
e

th
ro

ug
hp

ut

0.0

0.5

1.0

1.5

2.0
SMT disabling

Syscall implementation
PMC implementation

slacktime monitoring

1.001.001.00SMT disabling

1.221.231.81slack time monitoring
(PMC implementation)

1.211.231.84slack time monitoring
(Syscall implementation)

compilefloatinteger

1.001.001.00SMT disabling

1.221.231.81slack time monitoring
(PMC implementation)

1.211.231.84slack time monitoring
(Syscall implementation)

compilefloatinteger

integer float compile

Figure 9. The relative throughput of non real-time
processes for three methods: SMT disabling method,
Syscall implementation, and PMC implementation.

two or more processors are available, but we forced the
encoder in single-thread mode in this test, whether or
not Hyper-Threading was enabled.

First, the characteristics of the encoding process were
tested. Figure 10 depicts the completion times of the
encoding process of each frame without any competing
processes. The completion times fluctuated even when
no other processes affected them. One reason for this
fluctuation was differences in the types of the frames.
Two types of frames called I-frames and P-frames were
included in the encoded MPEG stream; with one
I-frame appearing after 11 P-frames. The computation
time required to encode an I-frame is smaller than for a
P-frame. Another reason of the fluctuation was changes
of a scene in the video. There are some sharp peaks of
the calculation time in Figure 10. These frames were
drastically changed from the previous frames.

We have evaluated our implementations of the slack
time monitoring method using this workload. In the test,
the computation time of 25 ms was reserved for the
encoder out of every 33.3 ms, and the deadline of the
calculation was defined at 33.3 ms. For the Syscall
implementation we had to modify the encoder program
to insert the system calls to report its progress. We add
the system calls at only two places, in an outermost
large loop that does motion estimation and in another
large loop that does a discrete cosine transformation.
These parts consume a large portion of the entire
computation time.

Figure 11 depicts the results of the completion times
with the kernel compilation program running as the
background competing process. The figure shows that
both implementations of the slack time monitoring
method and the SMT disabling method effectively
prevented deadline misses, while the non-SMT-aware

frame

0 100 200 300 400 500 600 700 800 900

co
m

pl
et

io
n

tim
e

[m
s]

0

5

10

15

20

25

Figure 10. The completion times of MPEG encoding
workload in each frame. (no competing tasks).

0 100 200 300 400 500 600 700 800 900

co
m

pl
et

io
n

tim
e

[m
s]

0

10

20

30

40

deadline

(a) Non-SMT-aware reservation

0 100 200 300 400 500 600 700 800 900

co
m

pl
et

io
n

tim
e

[m
s]

0

10

20

30

40

deadline

(b) Syscall implementation

0 100 200 300 400 500 600 700 800 900

co
m

pl
et

io
n

tim
e

[m
s]

0

10

20

30

40

deadline

(c) PMC implementation

frame

0 100 200 300 400 500 600 700 800 900

co
m

pl
et

io
n

tim
e

[m
s]

0

10

20

30

40

deadline

(d) SMT disabling method

Figure 11. The completion times of MPEG encoding workload
in each frame with a kernel compilation process as a competing
job for four scheduling methods; (a) Non-SMT-aware
reservation (b) Syscall implementation (c) PMC
implementation (d) SMT disabling method.

reservation method could not guarantee the encoder met
its deadlines at all. The results of the Syscall
implementation and the PMC implementation of the
slack time monitoring method looked similar.
Nevertheless we can see different tendencies in Figure
11. The completion times of the Syscall implementation
tended to be later than that of the PMC implementation.
This meant that the Syscall implementation could use
the SMT facility more effectively and allow the
non-real-time processes longer running times. Figure 10
shows that in this encoding workload the completion
times of each frame fluctuated, and the degree of
progress reported by the encoder itself can take into
account such fluctuations of the required computation
times, but the degree of progress measured by the task
scheduler using the Performance Monitoring Counter
could not do this. For example, if one frame in the
video stream was very simple and the encoder required
only 50% of the reserved computation resources to
encode the frame, the task scheduler could not detect
that the frame had not required the full computation
resource and it had to conservatively dispatch all of
reserved amount of resources to the encoder.

Figure 12 shows the throughputs of the best-effort
processes that were running while the encoder was
running as the real-time process with reservations. The
throughputs of both implementations of the slack time
monitoring method were better than the throughput of
the SMT disabling method, just as with the simple
workloads described in the last section. For the two
implementations of the slack time monitoring method,
the Syscall implementation obtained slightly higher
throughput than the PMC implementation. This was
consistent with the results shown in Figure 11.

From these results, we see that the Syscall
implementation has more opportunities to utilize the
SMT facility through it requires program modifications
that the PMC implementation does not require.

6. Future Work

In this paper, we evaluated only one real-time process
as the first step toward using an SMT processor for a
real-time application that requires deterministic
allocation of processor resource. More work is needed
to use SMT processors for real-time applications in
general conditions. Some of the most important
possible future works would be considering two or
more real-time applications running on a system, SMT
processors with more than two hardware threads and

systems with multiple SMT processors. The SMT
facility of IBM POWER 5 processor can assign
different priority level to each thread [16]. To utilize
this mechanism in our method will be another
challenging future work.

7. Conclusion

This paper proposes a novel scheduling method to
exploit SMT facilities in a system that contains
real-time and best-effort processes. On SMT-enabled
systems, existing reservation-based scheduling methods
may fail to allocate resources that real-time applications
require, and hence real-time applications may fail to
meet their computation deadlines. This is because
existing reservation-based methods assume the CPU
time of a process indicates the amount of the resource
that the process has consumed and because the
assumption is no longer valid on SMT processors. Our
slack time monitoring method, on the other hand, keeps
track of the progress of real-time processes and
adaptively enables/disables the SMT facility. In this
way, our method can achieve a high throughput by
exploiting the SMT facility even when the workload
contains both real-time and best-effort processes. To
our best knowledge, this paper is the first report that
quantitatively evaluated reservation-based real-time

re
la

tiv
e

th
ro

ug
hp

ut

0.0

0.5

1.0

1.5

2.0
SMT disabling

Syscall implementation
PMC implementation

slacktime monitoring

integer float compile

1.001.001.00SMT disabling

1.241.561.44slack time monitoring
(PMC implementation)

1.301.631.59slack time monitoring
(Syscall implementation)

compilefloatinteger

1.001.001.00SMT disabling

1.241.561.44slack time monitoring
(PMC implementation)

1.301.631.59slack time monitoring
(Syscall implementation)

compilefloatinteger

Figure 12. The relative throughput of non real-time processes
for three methods: SMT disabling method, Syscall
implementation, and PMC implementation.

scheduling schemes on a commercially-available SMT
environment.

We have implemented the slack time monitoring
method on a Linux kernel and have evaluated the
system throughput on a Hyper-Threading processor,
which is an Intel's implementation of the SMT
technique. Our experimental results have shown that
our method can always allocate resources that our
real-time applications have previously reserved, while a
traditional reservation-based method that does not
aware SMT fails to do so when the SMT facility is
enabled. Yet, our method can still exploit the SMT
facility; our method results in up to 84% higher
throughput of best-effort processes than a scheduling
method that blindly disable SMT facility while
real-time process is running.

We evaluated the following two implementations of our
slack time monitoring method. The first implementation
relies on the task scheduler to monitor the progress of
real-time processes by using the Performance
Monitoring Counter. The second implementation relies
on each real-time application to report its progress to
the task scheduler. Our results have shown that the
second one can produce a higher throughput than the
first one. This is because the second implementation
allows the task scheduler to dispatch best-effort
processes longer than the first implementation by using
run-time information while the first implementation
requires the task scheduler to assume the worst-case
resource usage.

We expect that SMT techniques are becoming popular
not only for servers and workstations but also for
embedded systems. Since embedded systems often
involve real-time applications, it is becoming
increasingly important to exploit SMT facilities for
real-time systems.

References
[1] R. Rajkumar, K. Juvva, A. Molano, S. Oikawa.

Resource Kernels: A Resource-Centric Approach
to Real-Time Systems, In Proceedings of the
Conference on Multimedia Computing and
Networking, SPIE/ACM (1998).

[2] S. Oikawa, R. Rajkumar. Portable RK: A
Portable Resource Kernel for Guaranteed and
Enforced Timing Behavior, In Proceedings of
the Real-Time Technology and Applications
Symposium, IEEE (1999).

[3] M. B. Jones, D. Rosu, M. Rosu. CPU
Reservations and Time Constraints: Efficient,
Predictable Scheduling of Independent Activities,
In Proceedings of the Symposium on Operating
Systems Principles, ACM (1997).

[4] C. W. Mercer, S. Savage, H. Tokuda.
Processor Capacity Reserves: Operating System
Support for Multimedia Applications. In
Proceedings of the International Conference on
Multimedia Computing and Systems, IEEE
(1994).

[5] C. L. Liu, J. W. Layland. Scheduling
Algorithms for Multiprogramming in a
Hard-Real-Time Environment, Journal of the
ACM, Vol. 20, No. 1, pp. 46–61 (1973).

[6] D. Tullsen, S. Eggers, H. Levy. Simultaneous
Multithreading: Maximizing On-Chip
Parallelism, In Proceedings of the Annual
International Symposium on Computer
Architecture, ACM (1995)

[7] A. Snavely, D. Tullsen. Symbiotic Job
scheduling for a Simultaneous Multithreading
Processor, In Proceedings of the Architectural
Support for Programming Languages and
Operating Systems, ACM (2000).

[8] A. Snavely, D. Tullsen, G. Voelker. Symbiotic
Job scheduling with Priorities for a Simultaneous
Multithreading Processor, In proceedings of the
SIGMETRICS international conference on
Measurement and modeling of computer systems,
ACM (2002).

[9] S. Parekh, S. Eggers, H. Levy. Thread-Sensitive
Scheduling for SMT Processors, University of
Washington Technical Report (2000).

[10] J. Nakajima, V. Pallipadi. Enhancements for
Hyper-Threading Technology in the Operating
System - Seeking the Optimal Scheduling, In
Proceedings of the Workshop on Industrial
Experiences with System Software, USENIX
(2002)

[11] R. Jain, C. J. Hughes, S. V. Adve. Soft
Real-Time Scheduling on Simultaneous
Multithreading Processors, In Proceedings of the
Real-Time Systems Symposium, IEEE (2002).

[12] F. J. Cazorla, P. M. W. Knijnenburg, R.
Sakellariou, E. Fernández, A. Ramirez, M.
Valero. Predictable performance in SMT
processors, In Proceedings of the conference on
Computing Frontiers, ACM (2004)

[13] Intel Corporation. Hyper-Threading Technology,
Intel Technology Journal, Vol 6, No 1 (2002)

[14] Intel Corporation. IA-32 Intel Architecture
Software Developer's Manual Volume 3: System
Programming Guide.

[15] MJPEG Tools. http://mjpeg.sourceforge.net/

[16] R. Kalla, B. Sinharoy, J. M. Tendler. IBM
power5 chip: a dual-core multithreaded
processor, IEEE Micro, Vol. 24, No. 2, pp. 40-47
(2004).

TM Xeon is a trademark of Intel Corporation.
POWER is a trademark of International Business
Machines Corporation.

