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Abstract 
 

Simultaneous Multi-Thread (SMT) techniques are becoming popular because they increase the efficiency of CPU 
resource usage by allowing multiple threads to run on a single physical processor at a very fine granularity. 
Emerging real-time applications, however, may not benefit from the SMT techniques because those techniques often 
compromise the predictable performance characteristics of applications, which real-time applications typically need 
to meet their computation deadlines. In this paper, we propose a new resource reservation scheme for SMT systems. 
In this scheme, a task scheduler dynamically enables and disables the SMT facility while real-time applications are 
running by monitoring the progress of the real-time applications. In this way, real-time applications can still meet 
their computation deadlines, and other best-effort applications can gain a high throughput due to the SMT facility. 
We have implemented this scheme on a Linux kernel and evaluated it on a Hyper-Threading processor, an Intel's 
implementation of SMT techniques. Our experimental results have shown that, for our workload, our scheme can 
guarantee real-time applications to use reserved resources while best-effort applications can obtain a high 
throughput due to the SMT facility. 

 
1. Introduction 

Soft real-time applications, such as multimedia 
applications, are becoming increasingly important for 
general-purpose systems. These applications often need 
to use certain amount of computation resources in order 
to complete their computations by a certain deadline. 
Thus, Operating systems need to allocate resources to 
meet various resource requirements for each process in 
the system. In fact, previous works [1-5] have 
addressed task scheduling schemes that meet such 
resource requirements by allowing each real-time 
process to declare its worst-case computation time and 
the deadline.  

Those scheduling schemes, however, may fail to 
allocate resources as applications require on a processor 
with an SMT (Simultaneous Multi-Thread) [6] facility. 
This is because those scheduling schemes assume the 
worst-case calculation time is predictable and because 
this assumption is no longer true for SMT systems. 
Since the SMT facility allows multiple threads to share 
one processor at a very fine granularity, such as a 
processor-cycle level, those threads compete each other 
for various resources such as execution units, L1/L2 
caches, bus, and register file. The performance of each 
thread, therefore, heavily depends on the behavior of 
other threads on the same processor. In reality, such 
inter-dependency has already existed even for non-SMT 
processors due to conflicts of shared resources, such as 

cache lines. The degree of the inter-dependency, 
however, is much higher in SMT systems than in 
non-SMT systems. In other words, the CPU time of a 
process less accurately indicates the amount of 
consumed computation resources (i.e. the number of 
instructions executed) on SMT systems than on 
non-SMT systems. Therefore, existing CPU resource 
reservation systems that reserve CPU time for real-time 
processes may not work as intended on SMT 
processors. 

One can disable the SMT facility to avoid the effect of 
other threads on the same processor while a real-time 
process is dispatched. While this naive method can 
meet the time constraints of real-time processes, 
however, this method reduces the overall throughput 
that we could obtain by using the SMT facility. Because 
many general-purpose systems need to run real-time 
and best-effort (non-real-time) processes at the same 
time, it would be ideal if we could achieve two goals - 
high throughput for best-effort processes and 
guaranteed resource allocation for real-time process - 
by exploiting the SMT facility.  

To achieve these two goals, we propose a new resource 
reservation scheme for SMT systems. In this scheme, 
the task scheduler keeps track of the progress of each 
real-time process and dynamically enables/disables the 
SMT facility. More specifically, our method allows 
best-effort processes to run on an SMT processor as 



long as they do not prevent the real-time processes from 
meeting their deadlines. We implemented and evaluated 
this scheme in a Linux kernel on a real SMT processor. 
Our experimental results have shown that our scheme 
can achieve the above-mentioned two goals for our 
workload; our scheme can guarantee real-time 
processes to meet their deadlines, and our scheme can 
maintain higher throughput than a naive scheme that 
disables the SMT facility while a real-time process is 
running. 

The rest of the paper is organized as follows. Section 2 
discusses related works. Section 3 describes our 
resource reservation scheme, called slack time 
monitoring. Section 4 describes our implementation of 
this scheme on a Linux kernel. Section 5 discusses our 
experimental environment and experimental results. 
Section 6 discusses future works. Finally, Section 7 
summarizes our work. 

 

2 Related works 

CPU resource reservation is a technique to ensure a 
minimum execution rate. One form of the reservation is 
a specification such as “reserve 10 ms of time out of 
every 50 ms for the MPEG encoding process”. 
Resource Kernel [1, 2] is one of the most widely known 
resource reservation systems, for various kinds of 
resources, such as processor and network bandwidth. 
Resource Kernel guarantees allocations of CPU time to 
real-time processes according to declared periods of 
processing and required CPU time within a time period. 
The existing implementation of Resource Kernel works 
well on non-SMT processors, though it may not work 
on SMT processors as intended. This is because the 
progress of a thread heavily depends on that of other 
threads on the same SMT processor, and programmers 
cannot predict the behavior of the other threads. This 
issue arises not only for existing reservation-based 
real-time scheduling schemes [1 - 4], but also for other 
real-time scheduling schemes such as rate monotonic 
scheduling [5]. 

SMT-aware task-scheduling schemes (such as [7 - 12]) 
had been proposed. Snavely et al. [7, 8] proposed SOS, 
which selects the co-scheduled processes (i.e. running 
at the same time on the same SMT processor) in such a 
way to increase the overall throughput. They reported 
that SOS has improved not only the throughput but also 
the response time. Parekh et al. [9] proposed similar 
approach to enhance throughput by selecting the 
appropriate set of processes to co-schedule. Nakajima et 

al. [10] proposed a scheduling scheme for an SMP of 
SMT processors, which balances the load among 
processors. These scheduling schemes consider 
resource conflicts among threads on an SMT processor 
like ours, however, these did not address on real-time 
processes with time constraints. Our scheme, on the 
other hand, targets a set of real-time processes and 
best-effort processes. 

Jain et al. [11] proposed a soft real-time scheduling 
scheme that reduces the side effect of SMT. This 
scheme is also based on an idea that selects 
co-scheduled processes to minimize the effect of SMT. 
This approach is effective in statistically reducing the 
number of deadline misses. This scheme, however, does 
not necessarily guarantee the allocation of required 
computation resources for real-time processes. Our 
proposed scheme, on the other hand, intends to 
guarantee real-time processes to use required resources. 
Our method, moreover, is complementary to the Jain’s 
scheme, that is, an appropriate decision of job selection 
can enhance overall throughput in addition to the results 
of our method. Cazorla et al. [12] addressed removing 
an unpredictability of a performance of a thread on an 
SMT processor. They proposed a method to enforce 
giving a certain IPC (instructions per clock cycle) to a 
high priority thread by using the combination of the 
task scheduler and the special resource sharing policy 
on the processor. In contrast, our approach uses only a 
task scheduler and it can be running on the existing 
implementations of SMT, such as Intel’s 
Hyper-Threading [13]. To our best knowledge, this 
paper is the first report that quantitatively evaluated 
reservation-based real-time scheduling schemes on a 
commercially-available SMT environment. 

 

3. Our resource reservation scheme for 
SMT processors 

3.1 Basic algorithm 

To illustrate our scheme we present the following 
example, a real-time process reserves an amount of 
computation resource creserve before its deadline at 
tdeadline. We represent the amount of computation 
resource creserve by the CPU time without considering 
any other processes on the same processor. We call this 
condition the single-threaded condition. When a 
real-time process is dispatched to one thread of an SMT 
processor, the task scheduler first calculates the slack 
time tslack. Slack time means the time that other 
processes can use without jeopardizing the timing 



constraints of the real-time process, and can be 
represented as tslack = T – C, where T is remaining time 
to the deadline, i.e., T = tdeadline – t0 and t0 denotes the 
current time, and C is remaining reserved amount of 
computation resource that the real-time process must 
obtain before its deadline, i.e., C = creserve – c0 where c0 
denotes the amount of computation resource the process 
has obtained. C and c0 are also represented by 
single-threaded CPU time. 

If the slack time is greater than zero, the task scheduler 
can dispatch other best-effort processes in order to 
increase overall throughput. We call such processes 
running together with real-time processes at the same 
time on the SMT processor co-scheduled processes. 
While co-scheduled processes are running on the 
processor, the slack time must be continuously 
monitored to insure it is greater than zero in order to 
guarantee the allocation of the reserved amount of 
computation resource to the real-time process. When 
the slack time becomes zero, the task scheduler 
preempts co-scheduled processes, and the hardware 
threads of the processor except for that used by the 
real-time processes must become idle so as not to 
interfere with the real-time processes until they obtain 
their reserved amounts of computation.  

3.2 Slack time monitoring method 

Our scheme has two implementation issues: when to 
measure the slack time and how to do it. First we 
discuss the timing of slack time measurement. One of 
the possible ways to do monitoring of slack time is by 
using an external timer interrupt and monitoring the 
slack time in the interrupt handler of the timer. Both a 
fixed-interval polling timer and a variable interval timer 
can handle the monitoring, but the fixed-interval timer 
tends to suffer from high interrupt overhead, though it 
offers a simpler algorithm and implementation. 

When a variable interval timer is used to monitor the 
slack time, the interval between one interrupt at time t0 
and the next one at time tnext can be represented by the 
following equation using the monitored slack time 
itself, 

tnext – t0 = tslack ,    (1) 

where tslack is the slack time measured at time t0. Thus 
the next timer interrupt is set at time 

tnext = t0 + tslack,    (2) 

in the interrupt handler for the timer interrupt at time t0. 
The flow chart of an interrupt handler for this timer 
interrupt is shown in Figure 1. First, the slack time tslack 

is measured. If the slack time is zero, co-scheduled 
processes are preempted. Otherwise the co-scheduled 
processes are allowed to continue. When the slack time 
is positive, the interrupt timer is set at tnext. 

The other implementation issue is how to measure the 
slack time. To measure the slack time, we need a 
method to measure the amount of computation 
resources that a real-time process has already actually 
obtained. This measurement can be done in the either of 
the following ways: 

1. A real-time process reports its progress by itself. 

2. The task scheduler observes the progress by using 
a performance-monitoring facility of the 
processor. 

The former requires modifying the real-time programs, 
while the latter requires a hardware assist. The strengths 
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Figure 1. Flow chart of interrupt handler. 
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Figure 2. Schematic of calculation progress. 



and limitations of these two measurement methods are 
evaluated and discussed in Section 5. 

Figure 2 illustrates a schematic image of the calculation 
progress of a real-time process. The x-axis shows the 
time and the y-axis shows the amount of computation 
resources that the real-time process has obtained up to 
that time. Because the amount of computation resources 
is represented by the single-threaded CPU time, the 
slope of the graph takes values from zero to one. The 
best case, with a slope of one, means no interference 
exists from co-scheduled threads, as in the 
single-threaded condition. On the other hand, in the 
worst case, the case with slope zero, the real-time 
process cannot use any computation resources and 
cannot make any progress because of the co-scheduled 
processes. Even in that worst case, however, since the 
co-scheduled processes are preempted at the time tnext, 
the real-time process can still meet its deadline. The 
time to monitor the slack time tnext presented by 
Equation (2) is determined on the basis of this worst 
case. 

When using a fixed-interval polling timer to monitor 
the slack time, the basic approach is the same as for the 
variable interval timer. The fixed interval of the timer 
interrupt should be selected considering interrupt 
overhead and monitoring accuracy. If the interval is too 
small the overhead becomes significant, but if the 
interval is too long the monitoring becomes inaccurate, 
which means that the task scheduler cannot correctly 
detect when the slack time might become zero. 

Our method trades off the overhead of external timer 
interrupts for a guarantee of the allocation of the 
reserved amount of computation resource to the 
real-time processes. When using a variable interval 
timer, if the minimum calculation speed of one thread 
in the SMT processor is given, the number of interrupts 
and overhead can be reduced using that minimum 
calculation speed in the calculation of tnext as 

tnext = tslack / (1 – α ) + t0.   (3) 

where we define α as the ratio between the minimum 
speeds and the single-threaded calculation speeds (i.e. 
instructions per cycle). The value of α varies from zero 
to one. If α equals zero, the real-time process may be 
starved for computation resources due to competing 
co-scheduled threads. On the other hand, as α 
approaches one, the real-time process suffers less from 
the effects due to co-scheduled threads. For example, 
when α is 0.5, a real-time process is sure to run at a 
speed of at least half of the single-threaded speed and at 
single-threaded speed in the best case. 

Figure 3 depicts a schematic image of the calculation 
progress of a real-time process using interrupt reduction. 
The y-axis of Figure 3 is the amount of computation 
resource represented by the single-threaded CPU time, 
as in Figure 2, so the slope of the graph in the best case 
is also one and it becomes α in the worst case. Even in 
such a worst case, it can be guaranteed that the 
real-time process can meet its deadline if the 
co-scheduled processes are preempted at the time of tnext 
calculated by Equation (3). 

3.3 A scheduling example 

Figure 4 shows a scheduling example. In this case, one 
real-time process and some other best-effort 
non-real-time processes are scheduled on a system with 
a two-thread SMT processor. The real-time process 
reserves computation resources corresponding to 6 ms 
of the single-threaded speed before the deadline at 10 
ms. The slack time is monitored using a variable 
interval timer as described in the last section. 
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Figure 4. Sample case of scheduling 
(slack time monitoring method). 
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First, the real-time process is dispatched to thread 0. At 
that time slack time tslack is calculated as, 

tslack = T – C = 10 ms – 6 ms = 4 ms.  (4) 

In this case tslack is greater than zero; therefore one of 
the other best effort processes can be dispatched for 
thread 1. The next time to set the timer interrupt for is, 

tnext = tslack + 0 ms = 4 ms.   (5) 

At the time 4 ms, the real-time process is observed to 
have already obtained the amount of computation 
resource corresponding to 2 ms of single-threaded 
speed, and thus the remaining reserved amount of 
computation resource is 4 ms. The slack time at this 
time is, 

tslack = T – C  

= (10 ms – 4 ms) – (6 ms – 2 ms) = 2 ms. (6) 

The slack time is still positive. Thus the co-scheduled 
best effort process is able to continue running on thread 
1. The next time to set an interrupt is, 

tnext = tslack + 4 ms = 6 ms.   (7) 

Between 4 ms and 6 ms, the real-time process cannot 
obtain any processor resources and the amount of 
computation resource already obtained is unchanged. 
Now the slack time becomes zero as follows: 

tslack = T – C 

= (10 ms – 6 ms) – (6 ms – 2 ms) = 0. (8) 

Thus after this time, the real-time process must run 
alone on the processor to obtain the reserved amount of 
computation resource before the deadline. In order to 
run the real-time process in the single-threaded 
condition, the task scheduler preempts the co-scheduled 
best-effort process on thread 1, and makes thread 1 idle.  

As described previously, disabling SMT while any 
real-time process is running is another way to guarantee 
the allocation of reserved computation resource. We 
call this naive method the SMT disabling method. 
Figure 5 depicts a sample case of scheduling using the 
SMT disabling method. In Figure 5 the real-time 
process is dispatched to thread 0 at time 0, and thread 1 
remains idle from time 0. The real-time process can use 
all of the processor resources because thread 1 is idle, 
and can obtain the reserved amount of computation 
resources in 6 ms. In the remaining 4 ms, two of the 
best-effort processes can use thread 0 and thread 1. The 
SMT disabling method can guarantee real-time 
processes will meet their deadlines, though the SMT 
facility of the processor is not utilized while any 

real-time process is running, which usually cause the 
system to have lower throughput. 

3.4 Scheduling of multiple real-time processes 

We have described the basic scheduling scheme with 
only one real-time process in the last section. In this 
section, we consider a case with multiple real-time 
processes in the system. We denote the real-time 
processes as p1, p2,..., pn and they are ordered by their 
deadlines. Thus process p1 is the task with the earliest 
deadline and process pn is the task with the latest 
deadline. Our proposed scheme, the slack time 
monitoring method, is intended to remove the effects of 
co-scheduled processes and does not define how to 
order the real-time processes to execute them. Existing 
scheduling schemes such as the earliest deadline first 
(EDF) scheduling or least slack-time first (LSF) 
scheduling can be used to define the order of real-time 
processes. 

In the case with multiple real-time processes, the slack 
time for process pi must account for the execution time 
of the processes p1, p2,..., pi-1, which have the earlier 
deadlines. Thus the slack time for process pi is 
calculated as follow,  

∑
=

−=
i

j
jiislack CTt

1
,

   (9) 

where Ti is the remaining time to the deadline of the 
process pi and Ci is remaining reserved amount of 
computation resource that process pi must obtain before 
its deadline. The slack time for the overall system, 
which is used to determine whether co-scheduled 

amount of calculation

time

reserved (real-time) process other process

idle

0ms 6ms
(deadline)

0ms

6ms
(reserved
 amount)

thread 0

thread 1 other process
 

Figure 5. Sample case of scheduling 
(SMT disabling method). 



processes are allowed to continue or not, is the smallest 
one among the slack times for each real-time process. 

 

4. Implementation 

4.1 Basic Reservation Model 

To evaluate the slack time monitoring method 
described in Section 3, we implemented a real-time task 
scheduler that uses this method in the Linux kernel 
2.4.21 and evaluated it on a standard PC. The scheduler 
guarantees reserved amounts of CPU time for real-time 
processes. This reservation model is based on Resource 
Kernel [1, 2]. A CPU reservation used in this scheduler 
is specified by a reserved amount of computation 
resources represented by the single-threaded CPU time 
and a reservation period. Once a real-time process 
successfully creates a CPU reservation, the scheduler 
dispatches the real-time process at the highest priority 
until the real-time process uses up its reserved 
computation resource. If the real-time process uses up 
its reserved amount of computation resource or yields 
the CPU, the real-time process is not dispatched again 
until the end of current period. In a multi-processor or a 
SMT system, a CPU reservation additionally specifies 
which CPU the reservation uses. In this case the process 
with the reservation cannot use any other processors. 

4.2 Scheduling algorithms for SMT processors 

We have implemented three types of SMT scheduling 
algorithms. When the scheduler dispatches a real-time 
process with a reservation to one thread of the SMT 
processor, the scheduler handles other threads by using 
these three methods: 

・ Non-SMT-aware: The scheduler does not worry 
about SMT. This means that any other processes 
can run on other threads without any limitations. 

・ SMT disabling method: The scheduler dispatches 
real-time process only in the single-threaded 
condition. This means that no other processes can 
run on the SMT processor while a real-time 
process is running on it. This method is illustrated 
in Figure 5. 

・ Slack time monitoring method (our proposed 
method): The scheduler monitors the slack time 
and dispatches other processes to other threads 
whenever possible, as described in Section 3. 

Our implementation of the slack time monitoring 
method uses the system timer (IRQ 0) as a variable 
interval external timer. Thus the system timer is 
configured to generate one interrupt at a specified time, 
while it is configured to generate an interrupt 
periodically at the rate of the time slice quanta (10 ms) 
in the original Linux kernel. In order to measure the 
amount of computation that the real-time process has 
actually obtained, we implemented two methods in the 
scheduler.  

1. Syscall implementation: A real-time process 
reports its progress by itself by using a system call. 

2. PMC implementation: The task scheduler measures 
the progress by using the Performance Monitoring 
Counter (PMC) [14] of the Xeon processor.  

We use the number of executed instructions measured 
by the PMC as a metric of the progress in the PMC 
implementation. 

One more point was considered in this implementation 
to reduce the number of interrupts and overhead. We 
noted in Section 3 that co-scheduled processes are 
preempted when the slack time becomes zero. If the 
slack time becomes too small, the overhead becomes 
too large relative to the amount of time before the next 
interrupt. To avoid this, the co-scheduled processes are 
preempted when the slack time becomes less than 10 
µs. 

 

5. Evaluation  

5.1 Experimental environment 

In this paper, our proposed method was evaluated on a 
workstation with a Xeon processor, which is equipped 
with Intel’s implementation of the SMT technique 
named Hyper-Threading. The single physical processor 
on this workstation was treated as two independent 
processors in the Linux kernel. 

The evaluation reported here was done with only one 
real-time process using CPU reservations and two other 
best-effort processes of a non-real-time program. 
Several types of programs were tested as the best-effort 
process, and for each test two metrics were measured, 
deadline misses of the real-time process and throughput 
of the best-effort processes.  



5.2 Evaluation using simple workload 

First we report results of an evaluation using a very 
simple workload. The real-time process used in this 
evaluation was a program that calculates the product of 
two 200×200 double-precision floating-point matrices 
once per time period. This program did not use the 
SIMD instructions or any special optimizations such as 
loop blocking. It was compiled using gcc 3.2 with the 
–O2 option. One matrix product calculation took about 
50 ms on the workstation, and this calculation was done 
periodically with a CPU reservation with a period of 70 
ms and a reserved computation resource corresponding 
to 55 ms. This meant that the real-time process should 
be able to process the matrix calculation at the highest 
priority until it obtained the computation resources 
corresponding to 55 ms in the single-threaded CPU 
speed. We confirmed that no deadline misses were 
observed under this condition on a non-SMT processor. 
Figure 6 shows the main code of the program used as 
the real-time process. In this code rt_report_progress() 
was the system call to report the progress of the 
computation to the scheduler. The argument of the 
system call was an integer value that describes the 
progress in the range between 0 and 255. This system 
call was used only when we evaluated the Syscall 
implementation and this line was commented out when 
we tested the PMC implementation. 

5.2.1 Test for allocation of reserved amount of 
computation resource 

First, whether or not the real-time process could obtain 
the reserved amount of computation resource was 
examined. Figure 7 depicts the completion times of the 
calculation in the presence of each one of three types of 
competing best-effort processes. The Syscall 
implementation of our proposed method is used in this 
evaluation. The x-axis is the time measured by the 
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(b) floating-intensive workload 
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(c) I/O-dependent (kernel compilation) workload  
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Figure 7. The completion times of the real-time process 
versus the number of iterations of periodical tasks for three 
competing tasks: (a) integer-intensive workload, (b) 
floating-intensive workload, and (c) I/O-dependent (kernel 
compilation) workload. (Slack time monitoring uses the 
Syscall implementation). 

 
for (i=0; i<iSize; i++) { 
    for (j=0; j<iSize; j++) { 
        c[i][j] = 0.0; 
        for (k=0; k<iSize; k++) { 
            c[i][j] += a[k][j] * b[i][k];
        } 
    } 
    rt_report_progress(i*256/iSize); 
} 
 

Figure 6. Code of the real-time process. 



70-ms time periods, and the y-axis is completion times. 
If the completion time was smaller than the deadline 
time, 70 ms, it meant the real-time process successfully 
performed the reserved amount of computation before 
the deadline. If it was bigger than 70 ms, on the other 
hand, it meant the deadline was missed in that period. 
In Figure 7, three types of competing programs were 
used as best-effort processes. They were: 

(a) a program that calculates the product of two 
200×200 integer matrices 

(b) a program that calculates the product of two 
200×200 double-precision floating-point matrices 
(same as the real-time process) 

(c) a program that compiles the Linux kernel 
repeatedly on the local hard disk drive (connected 
via an IDE interface and using Ext3 as the file 
system) 

There were obvious differences between the methods in 
handling the other threads in the SMT processor. For 
the method which does not consider interference 
between the real-time process and a co-scheduled 
best-effort process, many deadline misses occurred 
regardless of the type of competing program. The 
real-time process was dispatched to a thread but a 
best-effort process was dispatched to another thread and 
it prevented the real-time process from obtaining the 
reserved amount of computation resources by 
competing for processor resources. In other words, the 
calculations of the real-time process became slower 
than in the single-threaded condition. This observation 
shows that the effect of co-scheduled processes must be 
considered in order to guarantee the allocation of the 
reserved amount of resources to a real-time process on 
an SMT processor. 

For the SMT disabling method, the effects of the 
co-scheduled process on completion times were small 
enough to neglect and no deadlines were missed 
regardless of the type of competing program. This was 
because the other thread was idle while the real-time 
process was running, and there was no process to make 
the real-time process slow down by competing for 
processor resources, however, this also means that the 
performance benefit of SMT was lost. For the slack 
time monitoring method, it was also observed that 
deadline misses did not occur, though the completion 
times fluctuated due to the competing process. These 
results show that both SMT disabling method and slack 
time monitoring method can guarantee a real-time 
process will meet its deadline by allocating the reserved 
amount of computation resources to the real-time 
process.  

Figure 8 depicts the result of the same evaluation using 
the PMC implementation of the slack time monitoring 
method. In this implementation the task scheduler 
measured the progress of the real-time process through 
the Performance Monitoring Counter and the real-time 
process did not need to report its progress. Figure 8 
shows the result with the kernel compilation program as 
competing best-effort processes. The results of the 
PMC implementation shows there were no deadline 
misses though the completion times fluctuated. This 
result looks similar to that of the Syscall 
implementation in Figure 7. The results of the PMC 
implementation with other two types of competing 
programs are not shown here but they also similar to 
that of Figure 7. Thus both implementations of the slack 
time monitoring method worked well to guarantee a 
real-time process met its the deadline on an SMT 
processor. 

5.2.2 Throughput of best effort processes 

For the two methods that were able to guarantee 
allocation of the reserved amount of computation 
resources, the SMT disabling method and the slack time 
monitoring method, we evaluated the throughputs of the 
best-effort processes that were running while the 
real-time process was running with reservations. Figure 
9 depicts the throughputs of the best-effort processes 
under the conditions described in the last section. The 
values are normalized using the results of the SMT 
disabling method. The throughput of the matrix 
calculation program was defined as the number of 
calculations done in unit time, and that of the kernel 
compile program was defined as the inverse of the 
required time to compile the entire kernel code as 
measured by the time command. We confirmed that the 
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real-time process did not miss its deadlines in these 
tests of throughput. 

We can see that the slack time monitoring method led 
to higher throughput for the best-effort processes than 
the SMT disabling method in all of the programs and in 
both implementations. These results mean that the 
usage of processor resources is increased by the slack 
time monitoring method, because this method allows 
best-effort processes to run while the real-time process 
was running. The difference of throughput between 
both methods was not constant among the different 
types of best-effort processes. The most significant 
increase of throughput was observed for the integer 
matrix calculation, an increase of up to 84%, while a 
relatively small increase of 23% was observed for the 
floating-point matrix calculation. Because the real-time 
process used in our evaluation was a floating-point 
calculation intensive program, other best-effort 
floating-point calculation intensive programs could 
only obtain small increases in throughput by using SMT 
because of resource contention for the floating-point 
units. In the case of the kernel compile, which is 
thought to be a more practical job with disk I/O and 
process forks, the throughput was increased by about 
20% by using the slack time monitoring method.  

Comparing of the two types of implementations of the 
slack time monitoring method, the results showed that 
the differences between both implementations were 
small. This was because the overhead of the system call 
and that of an access to the performance monitoring 
counter were comparable. 

Looking through all of these results, increases of 
throughput of the best-effort processes were observed 
for the slack time monitoring method comparing to the 
SMT disabling method, while both methods were able 
to guarantee allocation of the reserved amount of 
computation resources to the real-time process. The 
type of competing best-effort process affected the 
increase of throughput: More contention between 
processes led to less increase of throughput. However, 
the allocation of the reserved amounts of computation 
was not affected by the type of the best effort process, 
even if the process contained block I/O operations. 

5.3 Evaluation using real workload 

Here we evaluate the slack time monitoring method 
using more practical workloads that have time 
constraints. We choose a real-time MPEG encoding 
program as such a workload. In recent years, real-time 
MPEG encoding software is used in a wide range of 

applications from modern PCs to consumer electronics 
devices such as set top boxes. A real-time MPEG 
encoder used with an external input such as a TV tuner 
must finish the encoding process of one frame before a 
the next frame comes, or the picture will be lost. Thus, 
a real-time MPEG encoder has strict deadline defined 
by the interval of picture frames. Though a buffer 
memory between the encoder and the tuner can help 
prevent such lost frames, there will still be losses when 
the buffer memory overflows. A real-time MPEG 
encoder is often used with other non-real-time 
processes in real systems. For example, a user may use 
a PC for Web browsing or other purpose while a TV 
program is being recorded in the background. An 
appropriate resource reservation system can help such 
encoder not to fail in the recording even though other 
heavy processes are running on the same machine. 

In this evaluation, we used one of the most widely 
known open-source MPEG encoders mpeg2enc 
included in the MJPEG tools-1.6.2 [15]. The encoder 
was used to read an uncompressed video stream from a 
file on the local hard disk drive, encode it to MPEG-1 
format, and write the encoded stream to the same disk. 
The input video stream was 30 seconds long and had a 
frame rate of 30 frames per second, so it contained 900 
frames in total. The file size of the input data was about 
100MB and the encoded data was 5.5MB. From this 
frame rate, the deadline for one encoding process was 
determined at 33.3 ms after the process started. The 
mpeg encoder can run in multi-threaded mode when 
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Figure 9. The relative throughput of non real-time 
processes for three methods: SMT disabling method, 
Syscall implementation, and PMC implementation. 

 



two or more processors are available, but we forced the 
encoder in single-thread mode in this test, whether or 
not Hyper-Threading was enabled. 

First, the characteristics of the encoding process were 
tested. Figure 10 depicts the completion times of the 
encoding process of each frame without any competing 
processes. The completion times fluctuated even when 
no other processes affected them. One reason for this 
fluctuation was differences in the types of the frames. 
Two types of frames called I-frames and P-frames were 
included in the encoded MPEG stream; with one 
I-frame appearing after 11 P-frames. The computation 
time required to encode an I-frame is smaller than for a 
P-frame. Another reason of the fluctuation was changes 
of a scene in the video. There are some sharp peaks of 
the calculation time in Figure 10. These frames were 
drastically changed from the previous frames. 

We have evaluated our implementations of the slack 
time monitoring method using this workload. In the test, 
the computation time of 25 ms was reserved for the 
encoder out of every 33.3 ms, and the deadline of the 
calculation was defined at 33.3 ms. For the Syscall 
implementation we had to modify the encoder program 
to insert the system calls to report its progress. We add 
the system calls at only two places, in an outermost 
large loop that does motion estimation and in another 
large loop that does a discrete cosine transformation. 
These parts consume a large portion of the entire 
computation time. 

Figure 11 depicts the results of the completion times 
with the kernel compilation program running as the 
background competing process. The figure shows that 
both implementations of the slack time monitoring 
method and the SMT disabling method effectively 
prevented deadline misses, while the non-SMT-aware 
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Figure 10. The completion times of MPEG encoding 
workload in each frame. (no competing tasks). 
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Figure 11. The completion times of MPEG encoding workload 
in each frame with a kernel compilation process as a competing 
job for four scheduling methods; (a) Non-SMT-aware 
reservation (b) Syscall implementation (c) PMC 
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reservation method could not guarantee the encoder met 
its deadlines at all. The results of the Syscall 
implementation and the PMC implementation of the 
slack time monitoring method looked similar. 
Nevertheless we can see different tendencies in Figure 
11. The completion times of the Syscall implementation 
tended to be later than that of the PMC implementation. 
This meant that the Syscall implementation could use 
the SMT facility more effectively and allow the 
non-real-time processes longer running times. Figure 10 
shows that in this encoding workload the completion 
times of each frame fluctuated, and the degree of 
progress reported by the encoder itself can take into 
account such fluctuations of the required computation 
times, but the degree of progress measured by the task 
scheduler using the Performance Monitoring Counter 
could not do this. For example, if one frame in the 
video stream was very simple and the encoder required 
only 50% of the reserved computation resources to 
encode the frame, the task scheduler could not detect 
that the frame had not required the full computation 
resource and it had to conservatively dispatch all of 
reserved amount of resources to the encoder. 

Figure 12 shows the throughputs of the best-effort 
processes that were running while the encoder was 
running as the real-time process with reservations. The 
throughputs of both implementations of the slack time 
monitoring method were better than the throughput of 
the SMT disabling method, just as with the simple 
workloads described in the last section. For the two 
implementations of the slack time monitoring method, 
the Syscall implementation obtained slightly higher 
throughput than the PMC implementation. This was 
consistent with the results shown in Figure 11. 

From these results, we see that the Syscall 
implementation has more opportunities to utilize the 
SMT facility through it requires program modifications 
that the PMC implementation does not require. 

 

6. Future Work 

In this paper, we evaluated only one real-time process 
as the first step toward using an SMT processor for a 
real-time application that requires deterministic 
allocation of processor resource. More work is needed 
to use SMT processors for real-time applications in 
general conditions. Some of the most important 
possible future works would be considering two or 
more real-time applications running on a system, SMT 
processors with more than two hardware threads and 

systems with multiple SMT processors. The SMT 
facility of IBM POWER 5 processor can assign 
different priority level to each thread [16]. To utilize 
this mechanism in our method will be another 
challenging future work. 

 

7. Conclusion 

This paper proposes a novel scheduling method to 
exploit SMT facilities in a system that contains 
real-time and best-effort processes. On SMT-enabled 
systems, existing reservation-based scheduling methods 
may fail to allocate resources that real-time applications 
require, and hence real-time applications may fail to 
meet their computation deadlines. This is because 
existing reservation-based methods assume the CPU 
time of a process indicates the amount of the resource 
that the process has consumed and because the 
assumption is no longer valid on SMT processors. Our 
slack time monitoring method, on the other hand, keeps 
track of the progress of real-time processes and 
adaptively enables/disables the SMT facility. In this 
way, our method can achieve a high throughput by 
exploiting the SMT facility even when the workload 
contains both real-time and best-effort processes. To 
our best knowledge, this paper is the first report that 
quantitatively evaluated reservation-based real-time 
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Figure 12. The relative throughput of non real-time processes 
for three methods: SMT disabling method, Syscall 
implementation, and PMC implementation. 
 



scheduling schemes on a commercially-available SMT 
environment. 

We have implemented the slack time monitoring 
method on a Linux kernel and have evaluated the 
system throughput on a Hyper-Threading processor, 
which is an Intel's implementation of the SMT 
technique. Our experimental results have shown that 
our method can always allocate resources that our 
real-time applications have previously reserved, while a 
traditional reservation-based method that does not 
aware SMT fails to do so when the SMT facility is 
enabled. Yet, our method can still exploit the SMT 
facility; our method results in up to 84% higher 
throughput of best-effort processes than a scheduling 
method that blindly disable SMT facility while 
real-time process is running. 

We evaluated the following two implementations of our 
slack time monitoring method. The first implementation 
relies on the task scheduler to monitor the progress of 
real-time processes by using the Performance 
Monitoring Counter. The second implementation relies 
on each real-time application to report its progress to 
the task scheduler. Our results have shown that the 
second one can produce a higher throughput than the 
first one. This is because the second implementation 
allows the task scheduler to dispatch best-effort 
processes longer than the first implementation by using 
run-time information while the first implementation 
requires the task scheduler to assume the worst-case 
resource usage. 

We expect that SMT techniques are becoming popular 
not only for servers and workstations but also for 
embedded systems. Since embedded systems often 
involve real-time applications, it is becoming 
increasingly important to exploit SMT facilities for 
real-time systems. 
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