
IBM Tokyo Research Laboratory

June 18, 2009 | PLDI’09 at Dublin, Ireland © 2009 IBM Corporation

A Study of Memory Management
for Web-based Applications
on Multicore Processors

Hiroshi Inoue, Hideaki Komatsu
and Toshio Nakatani
IBM Tokyo Research Laboratory

2

IBM Tokyo Research Laboratory

A Study of Memory Management for Web-based Applications on Multicore Processors © 2009 IBM Corporation

Goal

Our main contributions include:
1. Showing that a good technique for a single core is not necessarily a

good one on a multicore processor.
2. Proposing our new approach for multicore environments

To develop an efficient memory management technique
for Web-based applications to improve their performance on
multicore processors.

Our Goal

3

IBM Tokyo Research Laboratory

A Study of Memory Management for Web-based Applications on Multicore Processors © 2009 IBM Corporation

Characteristics of Web-based applications

In Web-based applications, most of the allocated
memory blocks are transaction scoped, and live only
during one transaction

We exploit their characteristics to reduce the costs of
memory management

4

IBM Tokyo Research Laboratory

A Study of Memory Management for Web-based Applications on Multicore Processors © 2009 IBM Corporation

An existing approach
Region-based memory management
– reduces the cost of memory management by discarding

all blocks in a region at once (instead of freeing individual
blocks)

– is widely used (e.g. Apache pool allocator)

time

one transaction of Web application

r = create_region()
objA =

alloc_from_region(r)
objA =

alloc_from_region(r)
A =

alloc_from_region(r)
destroy_region(r)

The region-based memory management looks ideal
for managing transaction-scoped memory blocks efficiently

5

IBM Tokyo Research Laboratory

A Study of Memory Management for Web-based Applications on Multicore Processors © 2009 IBM Corporation

custom memory allocator

Software stack of the Zend’s PHP runtime

Operating System

Zend’s
PHP Runtime

PHP Application

Standard C Library

Garbage
Collector

for transaction-
scoped allocations

for transaction-
scoped allocations

for persistent
allocations

Experimental setup with the PHP runtime

hardware

6

IBM Tokyo Research Laboratory

A Study of Memory Management for Web-based Applications on Multicore Processors © 2009 IBM Corporation

Software stack of the Zend’s PHP runtime

region-based allocator
(replacing default allocator)

Operating System

Zend’s
PHP Runtime

PHP Application

Standard C Library

Garbage
Collector

for transaction-
scoped allocations

for transaction-
scoped allocations

for persistent
allocations

We replaced only the
custom memory allocator

of the PHP runtime

We did not modify
PHP applications
garbage collector
memory allocator in libc

hardware

Experimental setup with the PHP runtime

7

IBM Tokyo Research Laboratory

A Study of Memory Management for Web-based Applications on Multicore Processors © 2009 IBM Corporation

Software stack of the Zend’s PHP runtime

region-based allocator
(replacing default allocator)

Operating System (Red Hat Enterprise Linux 5)

Zend’s
PHP Runtime
(PHP-5.2.1)

PHP Application

Standard C Library

Garbage
Collector

for transaction-
scoped allocations

for transaction-
scoped allocations

for persistent
allocations

2x Intel quad-core Xeon (Clovertown)

Experimental setup with the PHP runtime

System used
Blade Center HS21
2x quad-core Xeon
(Clovertown) 1.86 GHz
8 GB system memory
Red Hat Enterprise Linux 5

Software
PHP-5.2.1 (w/ APC-3.0.14)
lighttpd-1.4.13
mysql-4.1.20

Benchmark
six server applications

(ezPublish, MediaWiki,
SugarCRM, phpBB
CakePHP, SPECweb2005)

8

IBM Tokyo Research Laboratory

A Study of Memory Management for Web-based Applications on Multicore Processors © 2009 IBM Corporation

on one core

0.0

0.2

0.4

0.6

0.8

1.0

1.2

re
la

tiv
e

th
ro

ug
hp

ut
 .

default allocator of PHP runtime

region-based allocator

Med
iaW

iki

(re
ad

 on
ly)

Med
iaW

iki

(re
ad

/w
rite

)
Sug

arC
RM

eZ
 Pub

lis
h

ph
pB

B
Cak

eP
HP

SPECweb
Geo

. M
EAN

8% speedup

hi
gh

er
 is

 fa
st

er

Throughput
Performance of the region-based allocator:

9

IBM Tokyo Research Laboratory

A Study of Memory Management for Web-based Applications on Multicore Processors © 2009 IBM Corporation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

re
la

tiv
e

th
ro

ug
hp

ut
 .

default allocator of PHP runtime

region-based allocator

hi
gh

er
 is

 fa
st

er

on one core on eight cores

0.0

0.2

0.4

0.6

0.8

1.0

1.2

re
la

tiv
e

th
ro

ug
hp

ut
 .

default allocator of PHP runtime

region-based allocator

Med
iaW

iki

(re
ad

 on
ly)

Med
iaW

iki

(re
ad

/w
rite

)
Sug

arC
RM

eZ
 Publis

h

ph
pB

B
Cak

eP
HP

SPECweb
Geo

. M
EAN

Med
iaW

iki

(re
ad

 on
ly)

Med
iaW

iki

(re
ad

/w
rite

)
Sug

arC
RM

eZ
 Publis

h

ph
pB

B
Cak

eP
HP

SPECweb
Geo

. M
EAN

8% speedup

13% slowdown!

Throughput
Performance of the region-based allocator:

10

IBM Tokyo Research Laboratory

A Study of Memory Management for Web-based Applications on Multicore Processors © 2009 IBM Corporation

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8
number of cores

re
la

tiv
e

th
ro

ug
hp

ut

region-based allocator
dafult allocator of PHP runtime

The region-based
allocator was 12%
faster on one core

The region-based
allocator was 23%
slower on eight cores

hi
gh

er
 is

 fa
st

er

for ezPublish

Scalability
Performance of the region-based allocator:

11

IBM Tokyo Research Laboratory

A Study of Memory Management for Web-based Applications on Multicore Processors © 2009 IBM Corporation

Execution time breakdown

0

0.2

0.4

0.6

0.8

1

1.2

1.4

default
allocator of the
PHP runtime

region-based
allocator

re
la

tiv
e

ex
ec

ut
io

n
tim

e .
memory management
others

0

0.2

0.4

0.6

0.8

1

1.2

1.4

default allocator
of the PHP

runtime

region-based
allocator

re
la

tiv
e

ex
ec

ut
io

n
tim

e .

memory management
others

10x speedup
in memory

management
40% slowdown
in other parts

10x speedup

on one core on eight cores

for ezPublish

Performance of the region-based allocator:

12

IBM Tokyo Research Laboratory

A Study of Memory Management for Web-based Applications on Multicore Processors © 2009 IBM Corporation

Cache misses and bus traffic

-40%

-20%

0%

20%

40%

60%

80%

ch
an

ge
 in

 n
um

be
r o

f c
ac

he
 m

is
se

s .

eZ Publish
MediaWiki (read only)
MediaWiki (read/write)
SugarCRM
phpBB
CakePHP
SPECweb2005
Geo. MEAN

L1I miss L1D miss

DTLB miss
L2 miss bus traffic

more cache misses
than default allocator

fewer cache misses
than default allocator
(better)

ch
an

ge
 in

 n
um

be
r o

f e
ve

nt
s

on eight cores

115% 103%

Performance of the region-based allocator:

13

IBM Tokyo Research Laboratory

A Study of Memory Management for Web-based Applications on Multicore Processors © 2009 IBM Corporation

0

10

20

30

40

50

60

1 2 4 8
number of cores

av
er

ag
e

L1
 m

is
s

la
te

nc
y

(c
yc

le
)

dafult allocator of PHP runtime
region-based allocator

average memory
latency increased

due to bus
contention

average L1 cache miss latency: (L1D_PEND_MISS / L1D_REPL)

reduced cost of memory management > increased bus traffic

reduced cost of memory management < increased bus traffic

on one or few cores

on more cores

Memory latency
Performance of the region-based allocator:

for ezPublish

14

IBM Tokyo Research Laboratory

A Study of Memory Management for Web-based Applications on Multicore Processors © 2009 IBM Corporation

to reduce the cost of memory management
without slowing down on multicore processors

Our Goal

0

0.2

0.4

0.6

0.8

1

1.2

1.4

default allocator of
the PHP runtime

region-based
allocator

Our Goal

re
la

tiv
e

ex
ec

ut
io

n
tim

e
.

memory management
others

15

IBM Tokyo Research Laboratory

A Study of Memory Management for Web-based Applications on Multicore Processors © 2009 IBM Corporation

Revisiting general-purpose memory allocators

General-purpose memory allocators’ tasks

– malloc(): allocate memory block

– free(): reclaim memory block and prepare for reuse in future
allocations

– minimize the heap fragmentation (defragmentation)

For example,

coalescing multiple small blocks into large blocks

splitting large blocks into small blocks

sorting unused blocks in the free lists

typically consumes large
amounts of CPU time

16

IBM Tokyo Research Laboratory

A Study of Memory Management for Web-based Applications on Multicore Processors © 2009 IBM Corporation

Our approach: Defrag-Dodging

Our new approach: Defrag-Dodging

– reduces the memory management cost by avoiding
defragmentation activities in malloc and free

– unlike the region-based memory management,
support a free() function to enable fine-grained memory reuse

Key observation

cost of defragmentation > benefits

the transactions in Web-based applications are short enough
to ignore heap fragmentation, and so the

17

IBM Tokyo Research Laboratory

A Study of Memory Management for Web-based Applications on Multicore Processors © 2009 IBM Corporation

Comparing three approaches

malloc()
allocate new memory

block

-
free()

reclaim and reuse
memory block

--defragmentation

region-based
memory

management

our
Defrag-Dodging

general-purpose
memory

management

18

IBM Tokyo Research Laboratory

A Study of Memory Management for Web-based Applications on Multicore Processors © 2009 IBM Corporation

Comparing three approaches

malloc()
allocate new memory

block

-
free()

reclaim and reuse
memory block

--defragmentation

region-based
memory

management

our
Defrag-Dodging

general-purpose
memory

management

reduced memory management cost
•simpler allocator code
•simpler heap structure (e.g. no per-object metadata)

19

IBM Tokyo Research Laboratory

A Study of Memory Management for Web-based Applications on Multicore Processors © 2009 IBM Corporation

Comparing three approaches

malloc()
allocate new memory

block

-
free()

reclaim and reuse
memory block

--defragmentation

region-based
memory

management

our
Defrag-Dodging

general-purpose
memory

management

better scalability on multicore processors
by avoiding increases in bus traffic

20

IBM Tokyo Research Laboratory

A Study of Memory Management for Web-based Applications on Multicore Processors © 2009 IBM Corporation

DDmalloc: Implementation of Defrag-Dodging

based on a segregated heap allocator
– maintains free lists for each size of blocks to keep track of

freed blocks and reuse them in future allocations

reduced cost by keeping malloc and free as simple as
possible

– for example, free() function only chains the freed blocks
to the corresponding free list (and does nothing else!)

– the allocator code is less than 500 lines of C code

clears all metadata to refresh the heap at the end of
each transaction
see the paper for the implementation details

21

IBM Tokyo Research Laboratory

A Study of Memory Management for Web-based Applications on Multicore Processors © 2009 IBM Corporation

custom memory allocator

Software stack of the Zend’s PHP runtime

Operating System

Zend’s
PHP Runtime

PHP Application

Standard C Library

Garbage
Collector

for transaction-
scoped allocations

for transaction-
scoped allocations

for persistent
allocations

Experimental setup with the PHP runtime

hardware

22

IBM Tokyo Research Laboratory

A Study of Memory Management for Web-based Applications on Multicore Processors © 2009 IBM Corporation

Software stack of the Zend’s PHP runtime

DDmalloc
(replacing default allocator)

Operating System

Zend’s
PHP Runtime

PHP Application

Standard C Library

Garbage
Collector

for transaction-
scoped allocations

for transaction-
scoped allocations

for persistent
allocations

Again, we replaced only
the custom memory

allocator with DDmalloc

We did not modify
PHP applications
garbage collector
memory allocator in libc

hardware

Experimental setup with the PHP runtime

23

IBM Tokyo Research Laboratory

A Study of Memory Management for Web-based Applications on Multicore Processors © 2009 IBM Corporation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

re
la

tiv
e

th
ro

ug
hp

ut
 .

default allocator of PHP runtime
region-based allocator
our DDmalloc

0.0

0.2

0.4

0.6

0.8

1.0

1.2

re
la

tiv
e

th
ro

ug
hp

ut
 .

default allocator of PHP runtime
region-based allocator
our DDmalloc

Throughput

hi
gh

er
 is

 fa
st

er

Med
iaW

iki

(re
ad

 on
ly)

Med
iaW

iki

(re
ad

/w
rite

)
Sug

arC
RM

eZ
 Pub

lis
h

ph
pB

B
Cak

eP
HP

SPECweb
Geo

. M
EAN

Med
iaW

iki

(re
ad

 on
ly)

Med
iaW

iki

(re
ad

/w
rite

)
Sug

arC
RM

eZ
 Pub

lis
h

ph
pB

B
Cak

eP
HP

SPECweb
Geo

. M
EAN

on one core on eight cores

Performance of DDmalloc:

24

IBM Tokyo Research Laboratory

A Study of Memory Management for Web-based Applications on Multicore Processors © 2009 IBM Corporation

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8
number of cores

re
la

tiv
e

th
ro

ug
hp

ut
 .

our DDmalloc
region-based allocator
dafult allocator of PHP runtime

Scalability

hi
gh

er
 is

 fa
st

er

for ezPublish

Performance of DDmalloc:

25

IBM Tokyo Research Laboratory

A Study of Memory Management for Web-based Applications on Multicore Processors © 2009 IBM Corporation

Execution time breakdown

0

0.2

0.4

0.6

0.8

1

1.2

1.4

default allocator
of the PHP

runtime

region-based
allocator

DDmalloc

re
la

tiv
e

ex
ec

ut
io

n
tim

e .

memory management
others

for ezPublish

10x speedup

2x speedup
in memory

management

no slowdown!
(2% improved)

Performance of DDmalloc:

26

IBM Tokyo Research Laboratory

A Study of Memory Management for Web-based Applications on Multicore Processors © 2009 IBM Corporation

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

ch
an

ge
 in

 n
um

be
r o

f e
ve

nt
s

eZ Publish
MediaWiki (read only)
MediaWiki (read/write)
SugarCRM
phpBB
CakePHP
SPECweb2005
Geo. MEAN

Cache misses and bus traffic

L1I miss L1D miss DTLB miss L2 miss bus traffic

more cache misses
than default allocator

fewer cache misses
than default allocator
(better)

on eight cores

Performance of DDmalloc:

27

IBM Tokyo Research Laboratory

A Study of Memory Management for Web-based Applications on Multicore Processors © 2009 IBM Corporation

Summary

We studied the effects of memory management approaches on the
performance of Web-based applications on multicore processors

– region-based allocator: fast on a single core, but slow on
multicore processors due to increased bus traffic

– general-purpose allocator: not cost-effective in avoiding heap
fragmentation

We proposed the new approach of Defrag-Dodging to reduce
memory management costs

More data on the paper
evaluation on Niagara

evaluation with Ruby runtime
comparisons with TCmalloc, Hoard

discussions on the GC-based languages

More data on the paper
evaluation on Niagara

evaluation with Ruby runtime
comparisons with TCmalloc, Hoard

discussions on the GC-based languages

