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Abstract  
More and more server workloads are becoming Web-based. In 
these Web-based workloads, most of the memory objects are used 
only during one transaction. We study the effect of the memory 
management approaches on the performance of such Web-based 
applications on two modern multicore processors. In particular, 
using six PHP applications, we compare a general-purpose alloca-
tor (the default allocator of the PHP runtime) and a region-based 
allocator, which can reduce the cost of memory management by 
not supporting per-object free. The region-based allocator 
achieves better performance for all workloads on one processor 
core due to its smaller memory management cost. However, when 
using eight cores, the region-based allocator suffers from hidden 
costs of increased bus traffics and the performance is reduced for 
many workloads by as much as 27.2% compared to the default 
allocator. This is because the memory bandwidth tends to become 
a bottleneck in systems with multicore processors. 

We propose a new memory management approach, defrag-
dodging, to maximize the performance of the Web-based work-
loads on multicore processors. In our approach, we reduce the 
memory management cost by avoiding defragmentation overhead 
in the malloc and free functions during a transaction. We found 
that the transactions in Web-based applications are short enough 
to ignore heap fragmentation, and hence the costs of the defrag-
mentation activities in existing general-purpose allocators out-
weigh their benefits. By comparing our approach against the 
region-based approach, we show that a per-object free capability 
can reduce bus traffic and achieve higher performance on multi-
core processors. We demonstrate that our defrag-dodging ap-
proach improves the performance of all the evaluated applications 
on both processors by up to 11.4% and 51.5% over the default 
allocator and the region-based allocator, respectively.  

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features – Dynamic storage 
management. 

General Terms Performance, Languages. 

Keywords Dynamic memory management, Region-based mem-
ory management, Scripting Language, Web-based applications. 

1. Introduction 
Emerging Web-based workloads are demanding much higher 
throughputs to support ever-increasing client requests. When a 
next-generation server system is designed, it is important to be 
able to run such Web-based applications efficiently on multicore 
processors. One important characteristic of those Web-based ap-
plications is that most memory objects allocated during a transac-
tion are transaction scoped, living only during that transaction. 
Therefore the runtime systems can discard these objects at once 
when a transaction ends.  

Region-based memory management [1-4] is a well-known 
technique to reduce the cost of memory management by discard-
ing many objects at once. Typically, a region-based allocator does 
not provide a per-object free and hence does not reuse the mem-
ory area allocated for dead objects. Instead, it discards the whole 
region at once to reclaim all the objects allocated in that region. 
For example, the Apache HTTP server uses a region-based cus-
tom allocator [5] that deallocates all of the objects allocated to 
serve an HTTP connection when that connection terminates. 

Although the region-based memory management looks ideal 
for managing transaction-scoped objects in Web-based applica-
tions, it does not improve, or in some cases even degrades, the 
performance of Web-based applications on systems with multi-
core processors compared to a general-purpose allocator. For 
example, our results showed that performance of Web-based ap-
plications written in PHP significantly degraded on a system with 
eight cores of Intel® Xeon® (Clovertown) processors, while it 
improved the performance of the same applications on one or few 
processor cores. Figure 1 shows an example of the degradation in 
throughput. Although the region-based allocator significantly 
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Figure 1. Performance of a region-based allocator on multi-core 
processors (for MediaWiki on 8 Xeon cores). 



speeds up the memory management functions, it degraded the 
performance of the rest of the program. This degradation is due to 
longer access latency for system memory caused by the increased 
bus traffics. The region-based allocator does not support per-
object free and hence cannot reuse the memory locations of dead 
objects. Therefore many dead objects are left in cache memory 
and cache pressure is increased, resulting in increased cache 
misses and bus traffics. The system memory bandwidth tends to 
become a bottleneck in systems with multicore processors [6, 7], 
because the rate of improvement in processing power with such 
multicore processors exceeds the rate of improvement in system 
memory bandwidth. Hence the increase in bus traffic may limit 
the performance of the region-based allocator on multicore proc-
essors. 

Based on our learning, we present a new memory management 
approach for transaction-scoped objects, called defrag-dodging. 
With this approach, we aim to find a sweet spot between the gen-
eral-purpose memory management and the region-based memory 
management. As discussed above, the region-based memory man-
agement is not an optimal way to reduce the memory manage-
ment cost on multicore processors. 

Unlike the general-purpose memory allocators such as the de-
fault allocator of the PHP runtime, our approach reduces the 
memory management cost by skipping those defragmentation 
activities in malloc and free, which take a non-negligible CPU 
time. We found that the transactions of Web-based applications 
are short enough to ignore the harmful effects of gradual heap 
fragmentation even in large Web-based applications, and hence 
the cost of the defragmentation activities outweighs the benefit. 
For example, the default allocator of the PHP runtime supports 
both per-object and bulk freeing and it clean up the heap at the 
end of each transaction by bulk freeing. In spite of cleaning up the 
heap every transaction, the default allocator pays a cost for de-
fragmentation activities in malloc and per-object free functions to 
avoid gradual performance degradation and the cost matters for 
the overall performance of the workloads. 

Unlike the region-based memory management, our approach 
retains its per-object free capability even though all of the mem-
ory objects are freed at the end of a transaction. This per-object 
free capability, which enables fine-grained memory reuse, is im-
portant to avoid the performance degradation with multicore 
processors. Table 1 contrasts those three approaches. By avoiding 
defragmentation activities, we can use a very simple data struc-
ture for the heap and we do not have to add per-object header for 
each memory object in our new allocator. Such simpler data struc-
ture can give further improvements in the overall performance by 
reducing memory pressure in addition to the reduced allocator 
cost.  

To evaluate our defrag-dodging approach, we implemented a 
new memory allocator, called DDmalloc, in the PHP runtime and 

compared the performance of three allocators, our DDmalloc, a 
region-based allocator, and the default allocator of the PHP run-
time, using six Web-based applications. All three allocators sup-
port bulk freeing (with the function freeAll) for transaction-
scoped objects at the end of each transaction. In addition to the 
freeAll, the default allocator and our DDmalloc support per-object 
free during a transaction. Our DDmalloc avoids defragmenting 
the heap in malloc and per-object free functions to reduce costs 
but still maintains a free list to keep track of freed objects and 
reuse them in future allocations. This configuration gives the 
highest performance on multicore processors. We conducted ex-
periments on two systems, one with eight Intel Xeon cores and 
the other with eight Sun Niagara cores. By reducing the CPU time 
used for memory management our DDmalloc showed improve-
ments in throughput by up to 11.1% on Xeon and 11.4% on Niag-
ara compared to the default allocator of the PHP runtime using 
eight cores. Meanwhile, due to the increased bus traffic the re-
gion-based allocator did not improve the throughput when using 
eight cores.  

To compare our DDmalloc against well known general-
purpose allocators that do not support bulk freeing, we also exam-
ined the performance of the Ruby runtime for a Web-based appli-
cation. We used Hoard [11] and TCmalloc [12] for the 
comparisons. The results showed that the cost of the defragmenta-
tion activities exceeds the benefit even in those sophisticated 
memory allocators. Our DDmalloc achieved higher performance 
than these high-performance allocators. 

In this paper, we examined our defrag-dodging approach for 
transaction-scoped objects in Web-based applications, since mul-
ticore processors have already become so common for servers that 
efficient execution of Web-based server applications on multicore 
processors is important. However our defrag-dodging approach is 
applicable to other applications that deallocate many objects in 
groups and where the lifetimes of those objects are short enough 
to ignore gradual fragmentation. Although it has received little 
study to date, our results show that the limited bandwidth in mul-
ticore environments is another important problem for memory 
allocators, in addition to such problems as lock contention and 
false sharing. 

The main contribution of this paper is two-fold. 1) We demon-
strate that the advance of multicore processors is significantly 
changing the requirements for memory allocators. For example, 
our experiments show that region-based memory management 
may degrade the performance of applications on multicore envi-
ronments, while it improves the performance on systems with 
only one or a few cores. 2) We propose and evaluate a new mem-
ory management approach for transaction-scoped objects, called 
defrag-dodging, based on our observation that the cost of the 
defragmentation activities outweighs the benefit in Web-based 
workloads. The defrag-dodging approach can achieve higher per-

Table 1. Summary of three allocation approaches for transaction-scoped objects including our proposed defrag-dodging approach. 

type of allocators bulk 
free 

per-object 
free 

defrag 
mentation

cost of 
malloc / free

bandwidth 
requirement examples of the approach

general purpose allocators 
supporting bulk freeing Yes Yes Yes high low 

default allocator of the PHP 
runtime [8], amalloc (arena 
malloc) in libc, Reaps [9] 

region-based allocators Yes No No lowest high Apache pool allocator [5], 
GNU obstack [10] 

our defrag-dodging  
allocator Yes Yes No low low our DDmalloc 



formance in Web-based applications on multicore processors by 
reducing the cost of memory management.  

The rest of the paper is organized as follows. Section 2 gives 
an overview of existing memory management techniques. Section 
3 describes our new defragment-dodging approach and our im-
plementation of the new approach. Section 4 shows the experi-
mental environment and gives a summary of our results. Section 5 
discusses how our observations affect runtime systems of GC-
based languages. Section 6 covers related work. Finally, Section 7 
reports our conclusions. 

2. Existing Memory Management Approaches 
This section gives an overview of existing memory management 
approaches as a background of our proposed one. 

2.1 Region-based memory management 

Region-based memory management [1-4] is a well-known tech-
nique to reduce the cost of memory management using knowledge 
of the object lifetimes. The region-based allocators obtain a large 
block of memory from an underlying allocator, such as operating 
systems, and the allocation is done by simply incrementing a 
pointer that tracks the current location to allocate in the block. 
The programmer can delete all the allocated objects merely by 
discarding the entire block. Thus the costs of both allocation and 
deallocation are almost negligible. The region-based memory 
management, however, may suffer from performance degradation 
with Web-based applications on multicore processors due to in-
creased bus traffic, as shown in Figure 1. 

2.2 General-purpose malloc-free 

General-purpose memory allocators have to perform many activi-
ties to avoid excess fragmentation of the free memory chunks in 
the heap. How to avoid fragmentation depends on the implemen-
tation of the memory allocator and is a major area of innovation. 
One typical approach is used in a well known memory allocator 
developed by Doug Lea [13], which sorts all of the objects in the 
free lists in order of their size to easily find the best object to allo-
cate for a request, coalesces multiple small objects into large ob-
jects, and splits large objects into small objects in response to 
requests. The default allocator of the current PHP runtime devel-
oped by Zend Technologies [8] also does coalescing and splitting 
of objects. Memory allocators often spent a large amount of CPU 
time for such defragmentation activities, which are necessary for 
general-purpose allocators to avoid gradual performance degrada-
tions of the applications, both in execution time and memory con-
sumption. 

3. Our Defrag-dodging Approach 
3.1 Basic concept 

Our defrag-dodging approach eliminates the overhead of the 
costly defragmentation activities in malloc and free by introduc-
ing a freeAll function for initializing the heap. The freeAll func-
tion is called from an application when all of the objects in the 
heap can be deallocated, such as at the end of each transaction in 
Web-based applications. In the defrag-dodging approach, alloca-
tors still retain the per-object free capability. Our approach re-
places the defragmentation activities in malloc and free by a 
freeAll that cleans up the heap including the metadata, such as the 
free lists of unallocated objects. Therefore applications need to 
call freeAll even if all of the objects in the heap have already been 
freed by per-object free. The defrag-dodging approach can reduce 
the overhead of memory management because the cost to initial-

ize the metadata in the heap is much smaller than the cost of 
maintenance for the heap with many live objects. We can skip 
defragmentation activities in malloc and free because each trans-
action in most Web-based applications is short enough to ignore 
the gradual performance degradations due to the fragmentation of 
the heap. 

Both our defrag-dodging approach and the region-based mem-
ory management can reduce the cost of memory management 
compared to general-purpose malloc-free. Comparing the defrag-
dodging approach to the region-based memory management, the 
cost is slightly higher for the defrag-dodging approach, because it 
still needs to maintain the free lists to support per-object free se-
mantics. This per-object free capability is the key not only to 
reduce the amount of memory used but also to improve the over-
all performance of the applications by avoiding increases in bus 
traffic. Without reusing the freed objects, many already-dead 
objects remain on the cache memory and hence waste the cache 
capacity. 

As with the region-based memory management, the defrag-
dodging approach requires modifications to applications written 
with general malloc-free semantics, because our defrag-dodging 
allocator depends on invocations of freeAll to avoid fragmenta-
tion in the heap. Also, it requires the allocations to be aware of 
the objects’ lifetimes. For example, the current PHP runtime uses 
its custom memory allocator to allocate transaction-scoped ob-
jects and an allocator in the standard library to allocate persistent 
objects. The PHP runtime calls freeAll for the heap of its custom 
allocator at the end of the lifetime of transaction-scoped objects. 
Thus it is easy to apply the defrag-dodging approach or the re-
gion-based memory management to the PHP runtime by replacing 
only the memory allocator. The modification to apply the defrag-
dodging approach for other applications written for general mal-
loc-free semantics is similar to that for the region-based memory 
management [3]. The steps for modification are: 
1) identify memory objects that can be discarded at once (such as 

transaction-scoped objects in the Web-based workloads),  
2) replace malloc and (per-object) free for those identified objects 

with the allocation function for our allocator, and 
3) add freeAll function calls in appropriate places (such as at the 

ends of transactions in the PHP runtime).  
In the modification for the region-based management, all invoca-
tions of per-object free for the objects identified in Step 1 have to 
be removed in addition to these three steps, but those free calls 
must be retained for ours. 

3.2 Implementation of DDmalloc 

In this section, we describe the details of an implementation of 
our defrag-dodging allocator, which we call DDmalloc. DDmal-
loc is based on a segregated storage [14] similar to other high-
performance allocators. We carefully implemented the malloc and 
free functions to be as efficient as possible by avoiding activities 
other than maintenance of the free lists. Though we describe the 
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Figure 2. A heap structure. 



details of DDmalloc in this section, the method of free list man-
agements in DDmalloc is not new. The novelty of our DDmalloc 
is that we totally eliminate, not just delay, the defragmentation 
activities. TCmalloc [12], for example, reduces the overhead by 
delaying the defragmentation activities until the total size of the 
memory objects in the free lists exceeds a threshold. However 
TCmalloc still has costs for the delayed defragmentation activities 
and the costs matter for the overall performance, as shown in 
Section 4.4. 

Figure 2 shows the heap structure with DDmalloc. A heap 
consists of fixed-size memory chunks, each called a segment, and 
metadata. Each segment must start from an address of a multiple 
of the size of a segment. Due to this alignment restriction, 
DDmalloc can efficiently determine to which segment an object 
belongs from the address of the object. DDmalloc divides each 
segment into multiple objects of the same size and uses the seg-
ment as an array of those objects. There is no per-object metadata 
between objects. This results in both high space efficiency and 
better cache utilization. Like many other high-performance mem-
ory allocators, DDmalloc maintains a free list for each size-class. 
It maps all allocation requests into the corresponding size-class 
and allocates memory from the free list for the size-class. The 
metadata includes an array of pointers for the head of a single-
linked free list for each size-class and an array of 1-byte integers 
that track the size-classes for each segment.  

DDmalloc classifies objects into two categories, large objects 
(larger than half the size of a segment) and small objects. Figure 3 
presents examples of malloc and free calls for a small object cor-
responding to the size-class 2. To handle the malloc request, 
DDmalloc first determines the size-class for the requested size. 
Then it checks a free list for that size-class. In this example, it 
finds that the free list is empty because it is the first invocation of 
malloc. DDmalloc generates new free objects for this size-class 
by obtaining an unused segment and dividing the segments into 
fixed-sized objects corresponding to the size-class. It returns the 
top of newly generated objects to the caller and uses a pointer to 
the second object as the head of the free list. The size-class is 
recorded in the metadata. In order to track the number of unallo-
cated objects within the segments, DDmalloc stores the number of 
unallocated objects (5 in this example) at the top of the unallo-
cated objects. Figure 3(a) shows a snapshot of the heap after the 
first call to malloc. Figure 3(b) shows an example of a subsequent 
call to malloc with the same size request. Now the free list for the 
size-class 2 is not empty and DDmalloc immediately returns the 
object at the top of the free list and updates the free list. Figure 
3(c) illustrates an example of a call for free for the object allo-
cated by the first malloc. DDmalloc chains the freed object to the 
top of the corresponding free list. Thus the freed objects are re-
used in LIFO order. 

For large objects requests, DDmalloc directly allocates and re-
claims the segments without using the free lists. It marks the seg-
ments as used for the large object in the size-class array when it 

allocates the segments. To free the large objects, it simply marks 
the segment as unused.  

When freeAll is called, DDmalloc clears only the metadata in 
the heap. The metadata is much smaller than the entire heap. 
Hence the overhead of freeAll is almost negligible. As a result of 
the freeAll call, the heap returns to the initial state shown in Fig-
ure 2. 

How to map the requested sizes of small objects onto each 
size-class is an important tunable parameter. Our current imple-
mentation 1) rounds up the requested size to a multiple of 8 bytes 
if the size is smaller than 128 bytes, 2) rounds up to a multiple of 
32 bytes if the size is smaller than 512 bytes, and 3) rounds up to 
the nearest power of two for larger sizes. The size of a segment is 
another important parameter, which affects both the amount of 
memory consumed and the allocation speed. We used 32 KB as 
the size of a segment. We chose these parameters based on our 
measurements. For example, using larger segment size tended to 
increase memory footprint and cache misses while it reduced the 
number of instructions to manage each segment. We chose the 
parameters based on such tradeoffs to provide the best throughput 
in PHP applications 

3.3 Optimizations 

In addition to the basic memory management mechanisms, we 
tuned our implementation for the following traits: 
1. DDmalloc frequently accesses the metadata in the heap. Thus 

accesses to the metadata may often incur cache misses due to 
associativity overflows if they are located at the same location 
in the heap. We change the position of the metadata in the 
heaps using the process ids to cut down on cache misses. The 
effect of this optimization is significant on Niagara where 
multiple hardware threads share a small L1 cache. 

2. DDmalloc uses large page memory for the heap to reduce the 
overhead of TLB handling. Using larger size page for the 
heap results in notable performance improvements on some 
processors, such as Niagara, because of the high overhead of 
TLB handling in software. However we disabled this large-
page optimization in our evaluations on Xeon to allow fair 
comparisons to the default allocator of the PHP runtime. 

3. The default configuration of the current PHP runtime is a 
single-threaded application. However it can be configured as 
a multi-threaded application to run as plug-ins for multi-
threaded HTTP servers. Even in the multi-threaded configura-
tion, the threads serve independent transactions and they do 
not communicate with each other. Thus DDmalloc provides a 
separate heap for each thread and does not need locks for each 
heap. For our evaluations, we configured the PHP runtime as 
a single-threaded application and hence each runtime process 
owns only one heap. 

(a) after first malloc for a small object  (b) after second malloc for a small object (c) after free the object s1 
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Figure 3. Steps of malloc and free operations for small objects. 



4. Experimental Results 
This section focuses on the performance comparisons of the Web-
based applications written in PHP using the default memory allo-
cator of the PHP runtime, a region-based allocator, and our 
DDmalloc for managing transaction-scoped objects. 

4.1 Platforms and implementations 

We implemented DDmalloc and a region-based allocator for two 
platforms, Intel's quad-core Xeon (Clovertown) processors run-
ning Linux and Sun's UltraSPARC T1 (Niagara) processors run-
ning Solaris. The Xeon system used for our evaluation was 
equipped with two 1.86 GHz quad-core Xeon E5320 processors 
for a total of eight cores and 8 GB of system memory. Red Hat 
Enterprise Linux 5 was running on the system. The PHP runtime 
was compiled as a 64-bit binary with gcc-4.1.2. The Niagara sys-
tem used for our evaluation was equipped with a 1.2 GHz eight-
core Niagara processor and 16 GB of system memory. Solaris 10 
was running on the system. The PHP runtime was compiled with 
the C compiler included in Sun Studio 11. None of the experi-
ments used the large pages on Xeon, but they did use the 4-MB 
pages on Niagara. This was because Linux could not use the large 
pages without modifying the applications, while Solaris supports 
them. Although both systems have a total of eight cores, the Ni-
agara system provides 32 hardware threads with 4-way multi-
threading for each core, while the Xeon system provides only 8 
hardware threads.  

We selected these two platforms to study the performance of 
the allocators on multicore processors with different focuses. The 
Xeon processor focuses on fast single-thread performance. Thus 
the processor has a higher frequency, larger cache memories, a 
hardware memory prefetcher, and out-of-order cores. In contrast, 
the Niagara processor focuses on total throughput by aggregating 
many simple cores in one chip. Thus the processor has a lower 
frequency, smaller cache memories, no hardware memory pre-
fetcher, and in-order cores with 4-way multi-threading. 

To modify the memory allocator for transaction-scoped ob-
jects in the PHP runtime, we simply replaced the custom memory 
allocator of the PHP runtime with our DDmalloc or the region-
based allocator. We did not need to modify other parts of the run-
time for our experiment. Also, we did not need to modify the PHP 
applications. 

Our region-based allocator obtains a 256 MB chunk of mem-
ory from the operating system at startup time and allocates mem-
ory objects from the top of the chunk by simply incrementing a 
pointer showing the next position to allocate. It rounds up the 
requested size to a multiple of 8 bytes when it allocates an object. 
When the pointer reaches the end of the chunk, the allocator ob-
tains the next 256 MB chunk. One 256 MB chunk was large 
enough for most of the PHP transactions and additional chunks 
were rarely needed, so the overhead of system calls to obtain 
additional chunks was negligible here. We also evaluated the 
GNU obstack [10] as another region-based allocator. However 
our own region-based allocator outperformed the obstack for the 
PHP applications. Therefore we used only our own region-based 
allocator in this paper. 

4.2 Workloads and configurations 

We used PHP-5.2.1 for the runtime, lighttpd-1.4.13 for the HTTP 
server, and mysql-4.1.20 for the database server. We also installed 
the APC-3.0.14 extension to the PHP runtime, which enhances 
the performance of PHP applications by caching the compiled 
intermediate code. Figure 4 is an overview of the system configu-

ration for the measurements. The database server and the client 
emulator ran on separate machines. The number of PHP runtime 
processes was 16 for Xeon and 48 for Niagara. We selected a 
variety of Web applications written in PHP and evaluated their 
performances. Table 2 summarizes these workloads. 

MediaWiki [15] is a wiki server program developed by the 
WikiMedia foundation for the Wikipedia online encyclopedia. 
We imported 1,000 articles from a Wikipedia database dump 
(http://download.wikimedia.org/). We configured MediaWiki to 
use memcached-1.2.1 running on the same machine to cache the 
results of the database queries. We measured two user scenarios 
with the MediaWiki: a read-only scenario and a read-write sce-
nario. For the read-only scenario, we measured the throughput for 
reading randomly selected articles. In the read-write scenario, the 
clients opened randomly selected articles for editing and then 
updated the article instead of just reading it in 20% of the total 
transactions. The emulated clients introduced three seconds of 
think time between each request. The number of emulated clients 
was set for the highest throughput that allowed the average re-
sponse time to stay under 2.0 seconds. 
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Figure 4. System configuration for the measurements. 

 
Table 2. Workloads used in our measurements 

workload version descriptions of the workload 

MediaWiki 1.9.3 A wiki server program 

SugarCRM 4.5.1 A customer relationship  
management system 

eZ Publish 4.0.0 A content management system 
phpBB 3.0.1 A Web-based forum program  

CakePHP 1.2.0.7296 A Web application framework 
SPECweb

2005 1.10 An industry-standard benchmark for 
Web servers with dynamic pages 

 
Table 3. Statistics on average number of malloc and free calls 
per transaction and average size of memory allocation per malloc 

numbers of calls per transactionworkload 
malloc free realloc

allocation 
size (byte)

MediaWiki 
(read only) 151770 129141 6147 62.1 

MediaWiki 
(read/write) 404983 354775 22371 66.7 

SugarCRM 276853 225800 3120 49.3 
eZ Publish 123019 109856 4646 78.6 

phpBB 46965 43267 1003 56.3 
CakePHP 99195 82645 3574 68.6 
SPECweb 3277 2383 106 175.6 

 



For SugarCRM [16], we set up a database with 512 user ac-
counts and 10 customers for each user. Each emulated client 
logged into SugarCRM using a unique user-id and then repeatedly 
issued AJAX-style requests to obtain information on a customer 
assigned to that user. 

For eZ Publish [17], we built a website using the setup wizard 
included in the distribution. We imported 1,000 articles from an 
actual blog server as blog posts into the website. Each emulated 
client kept its own session and read randomly selected articles. 

The phpBB [18] is a popular Internet forum software package. 
We generated 1,000 posts in a database and measured the 
throughput to read randomly selected articles. 

CakePHP [19] is a framework for developing Web applica-
tions. We built a simple telephone-directory application on top of 
the framework to focus on the performance of the framework. We 
generated 100 records in the database and measured the through-
put for the following scenario: reading a table of all of the records, 
selecting one record randomly, and then updating that record. 

SPECweb2005 [20] is an industry-standard benchmark for 
Web servers with dynamic pages. We selected the eCommerce 
scenario of the benchmark, because the other two scenarios em-
phasize SSL performance (in the Banking scenario) or large file 
transfers (in the Support scenario) and thus were not suitable for 
evaluating the performance of the PHP runtime itself. Even in the 
eCommerce scenario, the PHP program is much simpler than the 
other test applications and large amount of CPU time were con-
sumed in static file serving. 

Table 3 shows the average sizes of memory allocations per 
malloc call and average numbers of calls for malloc, per-object 
free, and realloc per transaction for each workload. We include 
the number of calls for calloc, a variation of malloc function, in 
the number of malloc calls. The number of free calls is 7.9% to 
27.3% (15.3% on average) less than that of malloc. This means 
some allocated memory objects are not deallocated by per-object 
free and remain alive until the end of the transaction. Those ob-
jects are freed by the freeAll at the end of the transaction. More 
than 80% of the total objects are deallocated by per-object free 
and thus the performance of the per-object free is still very impor-
tant, even with the runtime calls to freeAll at the ends of the 
transactions. The statistics for SPECweb2005 are slightly differ-
ent from the other applications. The number of malloc and free 
calls are significantly smaller than in other workloads and the 
average size of memory allocation is larger than any other work-
load. As a result, the performance of SPECweb2005 was not sen-
sitive to the memory allocator, as shown later. 

4.3  Performance results 

Figure 5 shows comparisons of the throughput of the applications 
on Xeon and Niagara. Our DDmalloc had the best performance 
for all applications on both platforms. The maximum performance 
advantages over the default allocator of the PHP runtime were 
11.1% (7.7% on average) on Xeon and 11.4% (8.3% on average) 
on Niagara. When we enabled the optimization using large pages 
on Xeon, the improvement increased to 11.7% (9.0% on average). 
In contrast, the region-based allocator significantly degraded the 
average performance by as much as 27.2% on Xeon. On Niagara, 
the region-based allocator improved the performance of four 
workloads, while degrading the other three. As a result, the re-
gion-based allocator average almost matched the default allocator. 
The maximum performance advantages of our DDmalloc over the 
region-based memory allocator were up to 51.5% (24.2% on av-
erage) on Xeon and 17.4% (7.0% on average) on Niagara.  

To examine the differences due to the memory allocators, Fig-
ure 6 compares breakdowns of the system-wide CPU time per 
transaction as measured on Xeon. In the figure, memory opera-
tions include only those for transaction-scoped objects in the PHP 
runtime and do not include other memory operations, such as 
memory management functions in the operating system. We used 
a sampling profiler (Oprofile [21]), which uses a hardware per-
formance monitor, and did not insert instrumentation code in the 
memory management functions to obtain the execution time of 
each call to the allocator. As discussed in Section 1, the region-
based allocator reduced the CPU time used for memory opera-
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Figure 6. Breakdown of CPU time per transaction on 8 Xeon 
cores. 
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Figure 5. Relative throughput over the default allocator of the PHP runtime on 8 cores of Xeon and Niagara. 



tions by 85% on average compared to the default allocator. Other 
parts of the programs, however, were slowed down. Our DDmal-
loc also reduced the overhead for memory management functions 
by 56% on average and up to 65%. The performance of other 
parts was unchanged or slightly improved. Comparing the break-
down for all workloads, SPECweb2005 consumed the least time 
for memory management. As a result, the effect of memory allo-
cators was also least significant. 

To see the effects of memory allocators on the scalability with 
increasing number of cores, Figure 7 compares the throughput of 
MediaWiki for the read-only scenario with various numbers of 
cores. DDmalloc consistently outperformed the default allocator. 
It almost tied the region-based allocator for small numbers of 
cores (up to 2 cores on Xeon and 4 cores on Niagara). However, 
DDmalloc demonstrated much better scalability with increased 
numbers of cores compared to the region-based allocator, and 
hence it achieved the best performance among the three allocators 

when using eight cores on both platforms, as shown in Figure 5. 
Table 4 summarizes the speedups using eight cores for all work-
loads. Both DDmalloc and the region-based allocator improved 
the performance of every workload when using only one core on 
both platforms. However the region-based allocator showed much 
poorer scalability compared to the other two allocators while 
DDmalloc and the default allocator of the PHP runtime achieved 
almost comparable speedups for all workloads.  

Figures 8 shows the changes in the numbers of instructions, 
cache misses, and bus transactions per Web transaction from the 
default allocator. On both platforms, DDmalloc reduced both L1 
and L2 cache misses and bus transactions while the region-based 
allocator significantly increased the numbers of L2 cache misses 
and bus transactions. The reduction in instructions and L1 instruc-
tion cache misses for DDmalloc and the region-based allocator 
were because of the smaller size of the allocator code. The reduc-
tion in L1 data cache misses was mainly because they do not use 
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Figure 7. Throughput of MediaWiki (read-only scenario) with increasing numbers of cores on Xeon and Niagara. 

 
Table 4. Speedups with 8 cores for each workload 

on Xeon on Niagara 
workload memory allo-

cator 
throughput 
with 1 core 

(transactions/sec)

throughput 
with 8 cores 

(transactions/sec)

speedup
with  

8 cores

throughput 
with 1 core 

(transactions/sec) 

throughput 
with 8 cores 

(transactions/sec)

speedup
with  

8 cores

MediaWiki 
(read only) 

default 
region-based 

DDmalloc 

25.3 
26.4 (+4.0%) 
26.4 (+4.1%) 

156.6 
145.7 (-7.0%) 
167.9 (+7.2%) 

6.2x 
5.5x 
6.4x 

14.9  
16.5 (+11.3%) 
16.5 (+11.3%) 

111.0  
113.3 (+2.1%) 
122.2 (+10.1%)

7.5x  
6.9x 
7.4x 

MediaWiki 
(read/write) 

default 
region-based 

DDmalloc 

11.7 
12.5 (+6.6%) 
12.7 (+7.9%) 

79.6 
59.7 (-24.9%) 
85.5 (+7.4%) 

6.8x 
4.8x 
6.8x 

5.2  
5.5 (+5.4%) 
5.6 (+7.0%) 

40.0  
39.6 (-1.1%) 
43.5 (+8.8%) 

7.7x  
7.2x 
7.8x 

SugarCRM 
default 

region-based 
DDmalloc 

19.4 
20.8 (+7.2%) 
21.1 (+8.9%) 

134.6 
98.0 (-27.2%) 
148.4 (+10.2%)

6.9x 
4.7x 
7.0x 

8.1  
9.2 (+13.4%) 
8.8 (+8.3%) 

64.4  
62.3 (-3.4%) 
69.7 (+8.3%) 

7.9x  
6.8x  
7.9x 

eZ Publish 
default 

region-based 
DDmalloc 

28.5 
31.8 (+11.6%) 
32.2 (+12.9%) 

178.6 
138.3 (-22.6%) 
196.3 (+9.9%) 

6.3x 
4.3x 
6.1x 

13.6  
16.5 (+21.1%) 
15.8 (+15.9%) 

99.4  
94.4 (-5.1%) 
110.8 (+11.4%)

7.3x  
5.7x  
7.0x 

phpBB 
default 

region-based 
DDmalloc 

62.6 
69.2 (+10.6%) 
69.5 (+11.0%) 

402.4 
393.5 (-2.2%) 
447.2 (+11.1%)

6.4x 
5.7x 
6.4x 

30.5 
35.9 (+17.7%) 
34.0 (+11.2%) 

234.0 
259.1 (+10.8%)
259.8 (+11.0%)

7.7x 
7.2x 
7.7x 

CakePHP 
default 

region-based 
DDmalloc 

28.3 
31.6 (+11.4%) 
30.8 (+8.8%) 

191.6 
185.7 (-3.1%) 
206.6 (+7.8%) 

6.8x 
5.9x 
6.7x 

12.6 
13.8 (+9.3%) 
13.6 (+7.7%) 

96.7 
101.6 (+5.1%) 
103.8 (+7.3%) 

7.7x 
7.4x 
7.7x 

SPECweb 
2005 

default 
region-based 

DDmalloc 

188.6 
197.3 (+4.6%) 
194.3 (+3.0%) 

970.0 
960.4 (-1.0%) 
977.3 (+0.8%) 

5.1x 
4.9x 
5.0x 

115.5  
118.3 (+2.4%) 
118.4 (+2.5%) 

699.3  
705.4 (+0.9%) 
709.2 (+1.4%) 

6.1x 
6.0x 
6.0x 

 The ratios in parenthesis show the relative throughputs over the default allocator. 



the per-object metadata that increases the size of the objects and 
reduces the cache locality. Both DDmalloc and the region-based 
allocator increased the D-TLB misses for two or three workloads 
and reduced them for the others. The number of TLB misses was 
sensitive to the allocator and its parameters, such as the size of a 
segment in DDmalloc, because the number of TLB entries is very 
small. For DDmalloc, we chose the parameter values that pro-
duced the highest throughput rather than the fewest TLB or cache 
misses. If we enable the large page optimization on Xeon, the 
TLB misses were reduced by more than 60% compared to the 
default allocator. The increase in L2 cache misses and subsequent 
bus transactions for the region-based allocator was because it does 
not support per-object free and thus cannot reuse the dead objects 
residing in the L2 cache. The increased cache pressure did not 
significantly increase the L1 data cache misses, because only the 
most frequently used data objects were residing in the small L1 
cache and the dead objects were quickly spilled out of it. On 
Xeon, the increases in bus transactions were much larger than the 
increases in the L2 cache misses. This difference mainly came 
from the hardware memory prefetcher. We observed that the dif-

ference was reduced by disabling the prefetcher. The inferior 
scalability of the region-based allocator was unaffected, even 
without the prefetcher. 

These cache miss trends were consistent when we changed the 
numbers of cores used. Our DDmalloc achieved better perform-
ance with the PHP runtime because of these improvements in the 
cache misses in addition to the smaller memory management 
overhead. In contrast, the region-based allocator was slowed 
down by the increases in bus transactions when using large num-
ber of cores as shown in Figure 7 and Table 4. Those performance 
degradations for the region-based allocator were less significant 
on Niagara because Niagara provides relatively higher memory 
bandwidth than Xeon. 

Figure 9 shows the average memory consumptions during 
transactions. We defined memory consumption for each allocator 
as follows: the amount of memory allocated from the underlying 
memory allocator for the default allocator, the total amount of 
memory used for allocated segments and the metadata for 
DDmalloc, and the total amount of memory allocated during a 
transaction for the region-based allocator. DDmalloc consumed 
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Figure 8. Comparisons of changes in the numbers of instructions, cache misses, and bus transactions per web transaction with our 
DDmalloc and the region-based allocator on 8 cores of Xeon and Niagara. 



24% more memory on average compared to the default allocator. 
This was because the segregated heap management, which is the 
basis of DDmalloc, tends to consume more memory area as a 
trade-off for faster allocation and deallocation. Using a smaller 
size for segments can reduce the memory consumptions while it 
often increases the CPU time used for malloc and free. The re-
gion-based allocator consumed almost 3 times as much memory 
on average and more than 7 times more in the worst case. 

4.4 Performance comparisons with high-performance 
general-purpose allocators 

This section compares the performance of our DDmalloc against 
the well known general-purpose allocators, hoard-3.7 [11] and 
TCmalloc [12] included in the google-perf-tools-0.9.1. Those 
general-purpose allocators support only the malloc-free interface, 
and thus they are not applicable to the PHP runtime. Therefore we 
used the Ruby runtime for this comparison. The Ruby runtime 
does not call freeAll at the end of each Web transaction and does 
not distinguish between the allocations for transaction-scoped 
objects and other objects. To compare the performance of 
DDmalloc to the general-purpose allocators, we did not modify 
the runtime to call freeAll. Instead, we configured the runtime to 
restart periodically (once per 500 transactions) to clean up the 
entire heap without calling freeAll. This allows direct compari-
sons with these general-purpose allocators supporting only malloc 
and free, though this is not the best way to clean up the heap for 
DDmalloc because restarting process incurs more overhead than 
the freeAll function and once per 500 transactions is not short 
enough to totally ignore the gradual degradations due to heap 
fragmentation. Restarting the processes of scripting language 
runtimes is a common practice to avoid performance degradations 
even with standard memory allocators. Thereby we configured 
the runtime to restart every 500 transactions for all of the alloca-
tors because it was beneficial for all of the allocators. 

We selected Ruby on Rails-1.2.3 [22] as a workload for the 
evaluation. Ruby on Rails is a framework for developing Web 
applications. We followed the evaluation for CakePHP, building a 
similar application on top of Ruby on Rails and evaluating it us-
ing the same scenario. We used the prebuilt binary of the ruby-
1.8.5 included in the OS distribution and dynamically linked each 
memory allocator at runtime. The other server configurations 
were unchanged from the measurements for PHP. Figure 10 
shows the comparisons for the throughput with various memory 
allocators on all eight cores of Xeon. Our DDmalloc again 
achieved the best performance. The performance advantage over 

the default allocator, glibc-2.5, was 13.6%. Hoard and TCmalloc 
also outperformed glibc. DDmalloc outperformed the next best 
allocator, TCmalloc, by 5.3%.  

Figure 11 compares the breakdowns of CPU cycles per trans-
action. All of the results are normalized against the results for 
glibc, the default allocator for the platform. DDmalloc obviously 
spent the least time on memory operations among the tested allo-
cators by avoiding the costs for defragmentation activities in mal-
loc and free. The results show that the costs of the 
defragmentation activities exceed the benefits in Web-based ap-
plications even in those sophisticated memory allocators, and the 
costs matter for the overall performance of the workloads. 
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2.5 on 8 Xeon cores. 
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on Rails on 8 Xeon cores with various allocators. 
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In our DDmalloc, objects in the free lists are chained in ran-
dom order after a long run without defragmentation activities. 
Hence DDmalloc starts to allocating separated objects for succes-
sive allocation requests. Such allocations tend to decrease the 
cache locality. To see this degradation more quantitatively, Figure 
12 depicts the performance improvements from restarting the 
processes of the Ruby runtime to clean up the heap. From this 
figure, restarting a process after every 500 transactions improved 
throughput by 4.0% compared to no restarts for our DDmalloc 
while the improvement was only 1.1% for glibc. We observed 
that restarting a process after every 500 transactions reduced the 
number of L2 cache misses per transaction by 8.0% for DDmalloc 
while it was 2.5% for glibc. The reductions in the L1 cache 
misses by restarting the process were only 0.3% and 0.8% for 
DDmalloc and glibc respectively. 

These results show that, even without restarting, DDmalloc 
was almost as fast as the TCmalloc and still faster than glibc or 
Hoard. This was because the benefit of efficient malloc and free 
of DDmalloc due to no defragmentation outweighed the cost of 
increased L2 cache misses due to fragmentations for this particu-
lar workload. We have evaluated only one application in this sec-
tion and more extensive study on the benefit and cost of 
defragmentation is an interesting future work. 

5. Discussions  
In this section, we consider how important our observations are 
for systems other than Web application servers.  

The language runtime systems supporting garbage collection 
for memory management, such as JavaTM VMs and .net runtimes, 
are widely used today. Many of these virtual machines, especially 
those using copying garbage collectors, allocate heap memory for 
newly created objects in a similar way to the region-based alloca-
tors, in which the allocation is done by simply incrementing a 
pointer that tracks the current location to allocate. This allocation 
mechanism is widely used because of the virtue of small alloca-
tion overhead. In those virtual machines, however, allocated ob-
jects are not freed until the heap becomes full and the virtual 
machines execute garbage collection. Hence the virtual machines 
may suffer from the increased bus traffic on multicore processors, 
just as the region-based allocator suffers in the PHP runtime, be-
cause they cannot reuse the memory locations used by already-
dead objects.  

In the GC-based languages, programmers do not free objects 
explicitly and hence reusing the memory locations quickly is not 
a trivial task. However techniques to quickly reclaim short-lived 
objects are quite important to reduce the hidden costs of the in-
creased bus traffic and to achieve high performance on multicore 
processors. For example, the advanced escape analysis of Shankar 
et al. [23] is a good way to quickly reuse the short-lived objects 
by allocating them on a stack. For another example, MicroPhase 
of Xian et al. [24] can improve the memory locality by aggres-
sively invoking a garbage collection before the Java heap be-
comes full. 

6. Related Work  
Memory management consumes a considerable fraction of CPU 
time in applications [25]. Therefore many designs of dynamic 
memory management have been proposed in the past [26]. For 
general purpose use, an allocator by Doug Lea [13] is known as 
one of the most advanced designs of dynamic memory manage-
ment, which balances several goals, including speed, space, and 
portability. Recent advances in multicore processors require good 
scalability for every application. Hence currently many memory 

allocators focus on scalability for multi-threaded applications. 
Hoard [11], TCmalloc (included in google-perf-tools) [12] are 
such examples. Many of them achieve good scalability of multi-
threaded applications by avoiding lock contentions for heap ac-
cesses and false sharing. In this paper, we focus on poor scalabil-
ity caused by the limited bus bandwidth on multicore processors 
as another reason for poor scalability.  

There have been many efforts to exploit knowledge about the 
characteristics of the applications, such as the lifetimes or sizes of 
the objects, to improve the performance of memory management 
[1-4, 27, 28]. Region-based memory management [1-4], which 
allows fast allocation by simply incrementing a pointer and free-
ing multiple objects at once, is one of the most attractive ways to 
exploit the knowledge of the lifetimes of the objects. As already 
discussed in this paper, the region-based memory management is 
very effective in reducing the overhead of memory management. 
However, it may suffer from poor scalability on multicore proces-
sors. Our proposed defrag-dodging approach can also exploit the 
knowledge of the object lifetimes to reduce the overhead of mem-
ory management, but it yields higher scalability than the region-
based memory management. 

Berger et al. [9] proposed an allocator, called Reaps, that com-
bines the conventional malloc/free and the region-based memory 
management. Like our defrag-dodging approach or the custom 
allocator in the PHP runtime, it supports both per-object free and 
bulk free for all of the objects in a region. In contrast to ours, their 
allocator acts in almost the same way as Doug Lea's allocator [13] 
for per-object free and does not focus on improving the perform-
ances of the per-object free. Thus the Reaps also pays cost of the 
defragmentation activities, which is excessive for short-lived 
transactions in Web-based applications, like the default allocator 
of the PHP runtime.  

7. Conclusions 
In this paper, we examine the performance of a general-purpose 
allocator and a non-freeing region-based allocator using Web-
based workloads on two platforms with multicore processors. Our 
results show that the region-based allocator achieves much better 
performance for all workloads on one or a few processor cores 
due to its smaller memory management costs. However the re-
gion-based allocators suffer from hidden costs of increased bus 
traffic on multicore environments and the performance is reduced 
by as much as 27.2% compared to the default allocator when 
using eight cores. This is because the system memory bandwidth 
tends to become a bottleneck in systems with multicore proces-
sors. 

This paper describes a new memory management approach, 
called defrag-dodging, for transaction-scoped objects in Web-
based applications. The approach can improve the performance of 
Web-based applications on multicore processors by reducing the 
total costs of memory management without increasing the bus 
traffic. The key to the reduced costs for memory management in 
the defrag-dodging allocator is that it avoids the defragmentation 
activities in the malloc and free invocations during transactions. 
In Web-based applications, the costs of the defragmentation ac-
tivities in existing general-purpose allocators outweigh their bene-
fits. We show that the throughput with our new approach is higher 
than with the other two allocators for all of the applications when 
using eight cores. The improvements are up to 11.4% and 51.5% 
over the default allocator and the region-based allocator, respec-
tively. Our results show that the increasing use of multicore proc-
essors is significantly changing the requirements for memory 
allocators to fully benefit from the large amounts of computing 
resources provided by such multicore processors. 
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