

© ACM, 2009. This is the author's version of the work. It is
posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version was published in PLDI’09
June 15–20, 2009, Dublin, Ireland.
http://doi.acm.org/10.1145/1543135.1542520

A Study of Memory Management
for Web-based Applications on Multicore Processors

Hiroshi Inoue, Hideaki Komatsu, and Toshio Nakatani
IBM Tokyo Research Laboratory

1623-14, Shimo-tsuruma, Yamato-shi, Kanagawa-ken, 242-8502, Japan
{inouehrs, komatsu, nakatani}@jp.ibm.com

Abstract
More and more server workloads are becoming Web-based. In
these Web-based workloads, most of the memory objects are used
only during one transaction. We study the effect of the memory
management approaches on the performance of such Web-based
applications on two modern multicore processors. In particular,
using six PHP applications, we compare a general-purpose alloca-
tor (the default allocator of the PHP runtime) and a region-based
allocator, which can reduce the cost of memory management by
not supporting per-object free. The region-based allocator
achieves better performance for all workloads on one processor
core due to its smaller memory management cost. However, when
using eight cores, the region-based allocator suffers from hidden
costs of increased bus traffics and the performance is reduced for
many workloads by as much as 27.2% compared to the default
allocator. This is because the memory bandwidth tends to become
a bottleneck in systems with multicore processors.

We propose a new memory management approach, defrag-
dodging, to maximize the performance of the Web-based work-
loads on multicore processors. In our approach, we reduce the
memory management cost by avoiding defragmentation overhead
in the malloc and free functions during a transaction. We found
that the transactions in Web-based applications are short enough
to ignore heap fragmentation, and hence the costs of the defrag-
mentation activities in existing general-purpose allocators out-
weigh their benefits. By comparing our approach against the
region-based approach, we show that a per-object free capability
can reduce bus traffic and achieve higher performance on multi-
core processors. We demonstrate that our defrag-dodging ap-
proach improves the performance of all the evaluated applications
on both processors by up to 11.4% and 51.5% over the default
allocator and the region-based allocator, respectively.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features – Dynamic storage
management.

General Terms Performance, Languages.

Keywords Dynamic memory management, Region-based mem-
ory management, Scripting Language, Web-based applications.

1. Introduction
Emerging Web-based workloads are demanding much higher
throughputs to support ever-increasing client requests. When a
next-generation server system is designed, it is important to be
able to run such Web-based applications efficiently on multicore
processors. One important characteristic of those Web-based ap-
plications is that most memory objects allocated during a transac-
tion are transaction scoped, living only during that transaction.
Therefore the runtime systems can discard these objects at once
when a transaction ends.

Region-based memory management [1-4] is a well-known
technique to reduce the cost of memory management by discard-
ing many objects at once. Typically, a region-based allocator does
not provide a per-object free and hence does not reuse the mem-
ory area allocated for dead objects. Instead, it discards the whole
region at once to reclaim all the objects allocated in that region.
For example, the Apache HTTP server uses a region-based cus-
tom allocator [5] that deallocates all of the objects allocated to
serve an HTTP connection when that connection terminates.

Although the region-based memory management looks ideal
for managing transaction-scoped objects in Web-based applica-
tions, it does not improve, or in some cases even degrades, the
performance of Web-based applications on systems with multi-
core processors compared to a general-purpose allocator. For
example, our results showed that performance of Web-based ap-
plications written in PHP significantly degraded on a system with
eight cores of Intel® Xeon® (Clovertown) processors, while it
improved the performance of the same applications on one or few
processor cores. Figure 1 shows an example of the degradation in
throughput. Although the region-based allocator significantly

0

0.2

0.4

0.6

0.8

1

1.2

1.4

default allocator
of the PHP runtime

region-based allocator

no
rm

al
iz

ed
 C

PU
 ti

m
e .

pe
r t

ra
ns

ac
tio

n

memory management
others

x11 speedup
for memory
management

18% slowdown
for other parts

sh
or

te
r

is
 fa

st
er

sh
or

te
r

is
 fa

st
er

Figure 1. Performance of a region-based allocator on multi-core
processors (for MediaWiki on 8 Xeon cores).

speeds up the memory management functions, it degraded the
performance of the rest of the program. This degradation is due to
longer access latency for system memory caused by the increased
bus traffics. The region-based allocator does not support per-
object free and hence cannot reuse the memory locations of dead
objects. Therefore many dead objects are left in cache memory
and cache pressure is increased, resulting in increased cache
misses and bus traffics. The system memory bandwidth tends to
become a bottleneck in systems with multicore processors [6, 7],
because the rate of improvement in processing power with such
multicore processors exceeds the rate of improvement in system
memory bandwidth. Hence the increase in bus traffic may limit
the performance of the region-based allocator on multicore proc-
essors.

Based on our learning, we present a new memory management
approach for transaction-scoped objects, called defrag-dodging.
With this approach, we aim to find a sweet spot between the gen-
eral-purpose memory management and the region-based memory
management. As discussed above, the region-based memory man-
agement is not an optimal way to reduce the memory manage-
ment cost on multicore processors.

Unlike the general-purpose memory allocators such as the de-
fault allocator of the PHP runtime, our approach reduces the
memory management cost by skipping those defragmentation
activities in malloc and free, which take a non-negligible CPU
time. We found that the transactions of Web-based applications
are short enough to ignore the harmful effects of gradual heap
fragmentation even in large Web-based applications, and hence
the cost of the defragmentation activities outweighs the benefit.
For example, the default allocator of the PHP runtime supports
both per-object and bulk freeing and it clean up the heap at the
end of each transaction by bulk freeing. In spite of cleaning up the
heap every transaction, the default allocator pays a cost for de-
fragmentation activities in malloc and per-object free functions to
avoid gradual performance degradation and the cost matters for
the overall performance of the workloads.

Unlike the region-based memory management, our approach
retains its per-object free capability even though all of the mem-
ory objects are freed at the end of a transaction. This per-object
free capability, which enables fine-grained memory reuse, is im-
portant to avoid the performance degradation with multicore
processors. Table 1 contrasts those three approaches. By avoiding
defragmentation activities, we can use a very simple data struc-
ture for the heap and we do not have to add per-object header for
each memory object in our new allocator. Such simpler data struc-
ture can give further improvements in the overall performance by
reducing memory pressure in addition to the reduced allocator
cost.

To evaluate our defrag-dodging approach, we implemented a
new memory allocator, called DDmalloc, in the PHP runtime and

compared the performance of three allocators, our DDmalloc, a
region-based allocator, and the default allocator of the PHP run-
time, using six Web-based applications. All three allocators sup-
port bulk freeing (with the function freeAll) for transaction-
scoped objects at the end of each transaction. In addition to the
freeAll, the default allocator and our DDmalloc support per-object
free during a transaction. Our DDmalloc avoids defragmenting
the heap in malloc and per-object free functions to reduce costs
but still maintains a free list to keep track of freed objects and
reuse them in future allocations. This configuration gives the
highest performance on multicore processors. We conducted ex-
periments on two systems, one with eight Intel Xeon cores and
the other with eight Sun Niagara cores. By reducing the CPU time
used for memory management our DDmalloc showed improve-
ments in throughput by up to 11.1% on Xeon and 11.4% on Niag-
ara compared to the default allocator of the PHP runtime using
eight cores. Meanwhile, due to the increased bus traffic the re-
gion-based allocator did not improve the throughput when using
eight cores.

To compare our DDmalloc against well known general-
purpose allocators that do not support bulk freeing, we also exam-
ined the performance of the Ruby runtime for a Web-based appli-
cation. We used Hoard [11] and TCmalloc [12] for the
comparisons. The results showed that the cost of the defragmenta-
tion activities exceeds the benefit even in those sophisticated
memory allocators. Our DDmalloc achieved higher performance
than these high-performance allocators.

In this paper, we examined our defrag-dodging approach for
transaction-scoped objects in Web-based applications, since mul-
ticore processors have already become so common for servers that
efficient execution of Web-based server applications on multicore
processors is important. However our defrag-dodging approach is
applicable to other applications that deallocate many objects in
groups and where the lifetimes of those objects are short enough
to ignore gradual fragmentation. Although it has received little
study to date, our results show that the limited bandwidth in mul-
ticore environments is another important problem for memory
allocators, in addition to such problems as lock contention and
false sharing.

The main contribution of this paper is two-fold. 1) We demon-
strate that the advance of multicore processors is significantly
changing the requirements for memory allocators. For example,
our experiments show that region-based memory management
may degrade the performance of applications on multicore envi-
ronments, while it improves the performance on systems with
only one or a few cores. 2) We propose and evaluate a new mem-
ory management approach for transaction-scoped objects, called
defrag-dodging, based on our observation that the cost of the
defragmentation activities outweighs the benefit in Web-based
workloads. The defrag-dodging approach can achieve higher per-

Table 1. Summary of three allocation approaches for transaction-scoped objects including our proposed defrag-dodging approach.

type of allocators bulk
free

per-object
free

defrag
mentation

cost of
malloc / free

bandwidth
requirement examples of the approach

general purpose allocators
supporting bulk freeing Yes Yes Yes high low

default allocator of the PHP
runtime [8], amalloc (arena
malloc) in libc, Reaps [9]

region-based allocators Yes No No lowest high Apache pool allocator [5],
GNU obstack [10]

our defrag-dodging
allocator Yes Yes No low low our DDmalloc

formance in Web-based applications on multicore processors by
reducing the cost of memory management.

The rest of the paper is organized as follows. Section 2 gives
an overview of existing memory management techniques. Section
3 describes our new defragment-dodging approach and our im-
plementation of the new approach. Section 4 shows the experi-
mental environment and gives a summary of our results. Section 5
discusses how our observations affect runtime systems of GC-
based languages. Section 6 covers related work. Finally, Section 7
reports our conclusions.

2. Existing Memory Management Approaches
This section gives an overview of existing memory management
approaches as a background of our proposed one.

2.1 Region-based memory management

Region-based memory management [1-4] is a well-known tech-
nique to reduce the cost of memory management using knowledge
of the object lifetimes. The region-based allocators obtain a large
block of memory from an underlying allocator, such as operating
systems, and the allocation is done by simply incrementing a
pointer that tracks the current location to allocate in the block.
The programmer can delete all the allocated objects merely by
discarding the entire block. Thus the costs of both allocation and
deallocation are almost negligible. The region-based memory
management, however, may suffer from performance degradation
with Web-based applications on multicore processors due to in-
creased bus traffic, as shown in Figure 1.

2.2 General-purpose malloc-free

General-purpose memory allocators have to perform many activi-
ties to avoid excess fragmentation of the free memory chunks in
the heap. How to avoid fragmentation depends on the implemen-
tation of the memory allocator and is a major area of innovation.
One typical approach is used in a well known memory allocator
developed by Doug Lea [13], which sorts all of the objects in the
free lists in order of their size to easily find the best object to allo-
cate for a request, coalesces multiple small objects into large ob-
jects, and splits large objects into small objects in response to
requests. The default allocator of the current PHP runtime devel-
oped by Zend Technologies [8] also does coalescing and splitting
of objects. Memory allocators often spent a large amount of CPU
time for such defragmentation activities, which are necessary for
general-purpose allocators to avoid gradual performance degrada-
tions of the applications, both in execution time and memory con-
sumption.

3. Our Defrag-dodging Approach
3.1 Basic concept

Our defrag-dodging approach eliminates the overhead of the
costly defragmentation activities in malloc and free by introduc-
ing a freeAll function for initializing the heap. The freeAll func-
tion is called from an application when all of the objects in the
heap can be deallocated, such as at the end of each transaction in
Web-based applications. In the defrag-dodging approach, alloca-
tors still retain the per-object free capability. Our approach re-
places the defragmentation activities in malloc and free by a
freeAll that cleans up the heap including the metadata, such as the
free lists of unallocated objects. Therefore applications need to
call freeAll even if all of the objects in the heap have already been
freed by per-object free. The defrag-dodging approach can reduce
the overhead of memory management because the cost to initial-

ize the metadata in the heap is much smaller than the cost of
maintenance for the heap with many live objects. We can skip
defragmentation activities in malloc and free because each trans-
action in most Web-based applications is short enough to ignore
the gradual performance degradations due to the fragmentation of
the heap.

Both our defrag-dodging approach and the region-based mem-
ory management can reduce the cost of memory management
compared to general-purpose malloc-free. Comparing the defrag-
dodging approach to the region-based memory management, the
cost is slightly higher for the defrag-dodging approach, because it
still needs to maintain the free lists to support per-object free se-
mantics. This per-object free capability is the key not only to
reduce the amount of memory used but also to improve the over-
all performance of the applications by avoiding increases in bus
traffic. Without reusing the freed objects, many already-dead
objects remain on the cache memory and hence waste the cache
capacity.

As with the region-based memory management, the defrag-
dodging approach requires modifications to applications written
with general malloc-free semantics, because our defrag-dodging
allocator depends on invocations of freeAll to avoid fragmenta-
tion in the heap. Also, it requires the allocations to be aware of
the objects’ lifetimes. For example, the current PHP runtime uses
its custom memory allocator to allocate transaction-scoped ob-
jects and an allocator in the standard library to allocate persistent
objects. The PHP runtime calls freeAll for the heap of its custom
allocator at the end of the lifetime of transaction-scoped objects.
Thus it is easy to apply the defrag-dodging approach or the re-
gion-based memory management to the PHP runtime by replacing
only the memory allocator. The modification to apply the defrag-
dodging approach for other applications written for general mal-
loc-free semantics is similar to that for the region-based memory
management [3]. The steps for modification are:
1) identify memory objects that can be discarded at once (such as

transaction-scoped objects in the Web-based workloads),
2) replace malloc and (per-object) free for those identified objects

with the allocation function for our allocator, and
3) add freeAll function calls in appropriate places (such as at the

ends of transactions in the PHP runtime).
In the modification for the region-based management, all invoca-
tions of per-object free for the objects identified in Step 1 have to
be removed in addition to these three steps, but those free calls
must be retained for ours.

3.2 Implementation of DDmalloc

In this section, we describe the details of an implementation of
our defrag-dodging allocator, which we call DDmalloc. DDmal-
loc is based on a segregated storage [14] similar to other high-
performance allocators. We carefully implemented the malloc and
free functions to be as efficient as possible by avoiding activities
other than maintenance of the free lists. Though we describe the

segment 1

segment 2

free list of each size class

NULL
NULL

class 1

class 2

class 3

size class for each segment

NULL

unused
unused

segment 1

segment 2

segment 3 unused

segment 3

Figure 2. A heap structure.

details of DDmalloc in this section, the method of free list man-
agements in DDmalloc is not new. The novelty of our DDmalloc
is that we totally eliminate, not just delay, the defragmentation
activities. TCmalloc [12], for example, reduces the overhead by
delaying the defragmentation activities until the total size of the
memory objects in the free lists exceeds a threshold. However
TCmalloc still has costs for the delayed defragmentation activities
and the costs matter for the overall performance, as shown in
Section 4.4.

Figure 2 shows the heap structure with DDmalloc. A heap
consists of fixed-size memory chunks, each called a segment, and
metadata. Each segment must start from an address of a multiple
of the size of a segment. Due to this alignment restriction,
DDmalloc can efficiently determine to which segment an object
belongs from the address of the object. DDmalloc divides each
segment into multiple objects of the same size and uses the seg-
ment as an array of those objects. There is no per-object metadata
between objects. This results in both high space efficiency and
better cache utilization. Like many other high-performance mem-
ory allocators, DDmalloc maintains a free list for each size-class.
It maps all allocation requests into the corresponding size-class
and allocates memory from the free list for the size-class. The
metadata includes an array of pointers for the head of a single-
linked free list for each size-class and an array of 1-byte integers
that track the size-classes for each segment.

DDmalloc classifies objects into two categories, large objects
(larger than half the size of a segment) and small objects. Figure 3
presents examples of malloc and free calls for a small object cor-
responding to the size-class 2. To handle the malloc request,
DDmalloc first determines the size-class for the requested size.
Then it checks a free list for that size-class. In this example, it
finds that the free list is empty because it is the first invocation of
malloc. DDmalloc generates new free objects for this size-class
by obtaining an unused segment and dividing the segments into
fixed-sized objects corresponding to the size-class. It returns the
top of newly generated objects to the caller and uses a pointer to
the second object as the head of the free list. The size-class is
recorded in the metadata. In order to track the number of unallo-
cated objects within the segments, DDmalloc stores the number of
unallocated objects (5 in this example) at the top of the unallo-
cated objects. Figure 3(a) shows a snapshot of the heap after the
first call to malloc. Figure 3(b) shows an example of a subsequent
call to malloc with the same size request. Now the free list for the
size-class 2 is not empty and DDmalloc immediately returns the
object at the top of the free list and updates the free list. Figure
3(c) illustrates an example of a call for free for the object allo-
cated by the first malloc. DDmalloc chains the freed object to the
top of the corresponding free list. Thus the freed objects are re-
used in LIFO order.

For large objects requests, DDmalloc directly allocates and re-
claims the segments without using the free lists. It marks the seg-
ments as used for the large object in the size-class array when it

allocates the segments. To free the large objects, it simply marks
the segment as unused.

When freeAll is called, DDmalloc clears only the metadata in
the heap. The metadata is much smaller than the entire heap.
Hence the overhead of freeAll is almost negligible. As a result of
the freeAll call, the heap returns to the initial state shown in Fig-
ure 2.

How to map the requested sizes of small objects onto each
size-class is an important tunable parameter. Our current imple-
mentation 1) rounds up the requested size to a multiple of 8 bytes
if the size is smaller than 128 bytes, 2) rounds up to a multiple of
32 bytes if the size is smaller than 512 bytes, and 3) rounds up to
the nearest power of two for larger sizes. The size of a segment is
another important parameter, which affects both the amount of
memory consumed and the allocation speed. We used 32 KB as
the size of a segment. We chose these parameters based on our
measurements. For example, using larger segment size tended to
increase memory footprint and cache misses while it reduced the
number of instructions to manage each segment. We chose the
parameters based on such tradeoffs to provide the best throughput
in PHP applications

3.3 Optimizations

In addition to the basic memory management mechanisms, we
tuned our implementation for the following traits:
1. DDmalloc frequently accesses the metadata in the heap. Thus

accesses to the metadata may often incur cache misses due to
associativity overflows if they are located at the same location
in the heap. We change the position of the metadata in the
heaps using the process ids to cut down on cache misses. The
effect of this optimization is significant on Niagara where
multiple hardware threads share a small L1 cache.

2. DDmalloc uses large page memory for the heap to reduce the
overhead of TLB handling. Using larger size page for the
heap results in notable performance improvements on some
processors, such as Niagara, because of the high overhead of
TLB handling in software. However we disabled this large-
page optimization in our evaluations on Xeon to allow fair
comparisons to the default allocator of the PHP runtime.

3. The default configuration of the current PHP runtime is a
single-threaded application. However it can be configured as
a multi-threaded application to run as plug-ins for multi-
threaded HTTP servers. Even in the multi-threaded configura-
tion, the threads serve independent transactions and they do
not communicate with each other. Thus DDmalloc provides a
separate heap for each thread and does not need locks for each
heap. For our evaluations, we configured the PHP runtime as
a single-threaded application and hence each runtime process
owns only one heap.

(a) after first malloc for a small object (b) after second malloc for a small object (c) after free the object s1

segment 1

segment 2

free list of each size class

NULLclass 1

class 2

class 3

size class for each segment

NULL

2
unused

segment 1

segment 2

segment 3 unused

segment 3

s1 4s2 segment 1

segment 2

free list of each size class

NULLclass 1

class 2

class 3

size class for each segment

NULL

2
unused

segment 1

segment 2

segment 3 unused

segment 3

s2 4segment 1

segment 2

free list of each size class

NULLclass 1

class 2

class 3

size class for each segment

NULL

2
unused

segment 1

segment 2

segment 3 unused

segment 3

s1 5

number of unallocated
objects in this segment

Figure 3. Steps of malloc and free operations for small objects.

4. Experimental Results
This section focuses on the performance comparisons of the Web-
based applications written in PHP using the default memory allo-
cator of the PHP runtime, a region-based allocator, and our
DDmalloc for managing transaction-scoped objects.

4.1 Platforms and implementations

We implemented DDmalloc and a region-based allocator for two
platforms, Intel's quad-core Xeon (Clovertown) processors run-
ning Linux and Sun's UltraSPARC T1 (Niagara) processors run-
ning Solaris. The Xeon system used for our evaluation was
equipped with two 1.86 GHz quad-core Xeon E5320 processors
for a total of eight cores and 8 GB of system memory. Red Hat
Enterprise Linux 5 was running on the system. The PHP runtime
was compiled as a 64-bit binary with gcc-4.1.2. The Niagara sys-
tem used for our evaluation was equipped with a 1.2 GHz eight-
core Niagara processor and 16 GB of system memory. Solaris 10
was running on the system. The PHP runtime was compiled with
the C compiler included in Sun Studio 11. None of the experi-
ments used the large pages on Xeon, but they did use the 4-MB
pages on Niagara. This was because Linux could not use the large
pages without modifying the applications, while Solaris supports
them. Although both systems have a total of eight cores, the Ni-
agara system provides 32 hardware threads with 4-way multi-
threading for each core, while the Xeon system provides only 8
hardware threads.

We selected these two platforms to study the performance of
the allocators on multicore processors with different focuses. The
Xeon processor focuses on fast single-thread performance. Thus
the processor has a higher frequency, larger cache memories, a
hardware memory prefetcher, and out-of-order cores. In contrast,
the Niagara processor focuses on total throughput by aggregating
many simple cores in one chip. Thus the processor has a lower
frequency, smaller cache memories, no hardware memory pre-
fetcher, and in-order cores with 4-way multi-threading.

To modify the memory allocator for transaction-scoped ob-
jects in the PHP runtime, we simply replaced the custom memory
allocator of the PHP runtime with our DDmalloc or the region-
based allocator. We did not need to modify other parts of the run-
time for our experiment. Also, we did not need to modify the PHP
applications.

Our region-based allocator obtains a 256 MB chunk of mem-
ory from the operating system at startup time and allocates mem-
ory objects from the top of the chunk by simply incrementing a
pointer showing the next position to allocate. It rounds up the
requested size to a multiple of 8 bytes when it allocates an object.
When the pointer reaches the end of the chunk, the allocator ob-
tains the next 256 MB chunk. One 256 MB chunk was large
enough for most of the PHP transactions and additional chunks
were rarely needed, so the overhead of system calls to obtain
additional chunks was negligible here. We also evaluated the
GNU obstack [10] as another region-based allocator. However
our own region-based allocator outperformed the obstack for the
PHP applications. Therefore we used only our own region-based
allocator in this paper.

4.2 Workloads and configurations

We used PHP-5.2.1 for the runtime, lighttpd-1.4.13 for the HTTP
server, and mysql-4.1.20 for the database server. We also installed
the APC-3.0.14 extension to the PHP runtime, which enhances
the performance of PHP applications by caching the compiled
intermediate code. Figure 4 is an overview of the system configu-

ration for the measurements. The database server and the client
emulator ran on separate machines. The number of PHP runtime
processes was 16 for Xeon and 48 for Niagara. We selected a
variety of Web applications written in PHP and evaluated their
performances. Table 2 summarizes these workloads.

MediaWiki [15] is a wiki server program developed by the
WikiMedia foundation for the Wikipedia online encyclopedia.
We imported 1,000 articles from a Wikipedia database dump
(http://download.wikimedia.org/). We configured MediaWiki to
use memcached-1.2.1 running on the same machine to cache the
results of the database queries. We measured two user scenarios
with the MediaWiki: a read-only scenario and a read-write sce-
nario. For the read-only scenario, we measured the throughput for
reading randomly selected articles. In the read-write scenario, the
clients opened randomly selected articles for editing and then
updated the article instead of just reading it in 20% of the total
transactions. The emulated clients introduced three seconds of
think time between each request. The number of emulated clients
was set for the highest throughput that allowed the average re-
sponse time to stay under 2.0 seconds.

PHP
runtimes

mysqld

(backend
simulator

for
SPECweb)

client
emulator

lighttpd

client

x86 / Linux

application server

2 x quad-core Xeon 1.86 GHz / Linux
or UltraSPARC T1 1.2 GHz / Solaris

database
server

number of runtimes = 16 (Xeon) or 48 (Niagara)

FastCGI
over Unix domain socket

x86 / Linux

Figure 4. System configuration for the measurements.

Table 2. Workloads used in our measurements

workload version descriptions of the workload

MediaWiki 1.9.3 A wiki server program

SugarCRM 4.5.1 A customer relationship
management system

eZ Publish 4.0.0 A content management system
phpBB 3.0.1 A Web-based forum program

CakePHP 1.2.0.7296 A Web application framework
SPECweb

2005 1.10 An industry-standard benchmark for
Web servers with dynamic pages

Table 3. Statistics on average number of malloc and free calls
per transaction and average size of memory allocation per malloc

numbers of calls per transactionworkload
malloc free realloc

allocation
size (byte)

MediaWiki
(read only) 151770 129141 6147 62.1

MediaWiki
(read/write) 404983 354775 22371 66.7

SugarCRM 276853 225800 3120 49.3
eZ Publish 123019 109856 4646 78.6

phpBB 46965 43267 1003 56.3
CakePHP 99195 82645 3574 68.6
SPECweb 3277 2383 106 175.6

For SugarCRM [16], we set up a database with 512 user ac-
counts and 10 customers for each user. Each emulated client
logged into SugarCRM using a unique user-id and then repeatedly
issued AJAX-style requests to obtain information on a customer
assigned to that user.

For eZ Publish [17], we built a website using the setup wizard
included in the distribution. We imported 1,000 articles from an
actual blog server as blog posts into the website. Each emulated
client kept its own session and read randomly selected articles.

The phpBB [18] is a popular Internet forum software package.
We generated 1,000 posts in a database and measured the
throughput to read randomly selected articles.

CakePHP [19] is a framework for developing Web applica-
tions. We built a simple telephone-directory application on top of
the framework to focus on the performance of the framework. We
generated 100 records in the database and measured the through-
put for the following scenario: reading a table of all of the records,
selecting one record randomly, and then updating that record.

SPECweb2005 [20] is an industry-standard benchmark for
Web servers with dynamic pages. We selected the eCommerce
scenario of the benchmark, because the other two scenarios em-
phasize SSL performance (in the Banking scenario) or large file
transfers (in the Support scenario) and thus were not suitable for
evaluating the performance of the PHP runtime itself. Even in the
eCommerce scenario, the PHP program is much simpler than the
other test applications and large amount of CPU time were con-
sumed in static file serving.

Table 3 shows the average sizes of memory allocations per
malloc call and average numbers of calls for malloc, per-object
free, and realloc per transaction for each workload. We include
the number of calls for calloc, a variation of malloc function, in
the number of malloc calls. The number of free calls is 7.9% to
27.3% (15.3% on average) less than that of malloc. This means
some allocated memory objects are not deallocated by per-object
free and remain alive until the end of the transaction. Those ob-
jects are freed by the freeAll at the end of the transaction. More
than 80% of the total objects are deallocated by per-object free
and thus the performance of the per-object free is still very impor-
tant, even with the runtime calls to freeAll at the ends of the
transactions. The statistics for SPECweb2005 are slightly differ-
ent from the other applications. The number of malloc and free
calls are significantly smaller than in other workloads and the
average size of memory allocation is larger than any other work-
load. As a result, the performance of SPECweb2005 was not sen-
sitive to the memory allocator, as shown later.

4.3 Performance results

Figure 5 shows comparisons of the throughput of the applications
on Xeon and Niagara. Our DDmalloc had the best performance
for all applications on both platforms. The maximum performance
advantages over the default allocator of the PHP runtime were
11.1% (7.7% on average) on Xeon and 11.4% (8.3% on average)
on Niagara. When we enabled the optimization using large pages
on Xeon, the improvement increased to 11.7% (9.0% on average).
In contrast, the region-based allocator significantly degraded the
average performance by as much as 27.2% on Xeon. On Niagara,
the region-based allocator improved the performance of four
workloads, while degrading the other three. As a result, the re-
gion-based allocator average almost matched the default allocator.
The maximum performance advantages of our DDmalloc over the
region-based memory allocator were up to 51.5% (24.2% on av-
erage) on Xeon and 17.4% (7.0% on average) on Niagara.

To examine the differences due to the memory allocators, Fig-
ure 6 compares breakdowns of the system-wide CPU time per
transaction as measured on Xeon. In the figure, memory opera-
tions include only those for transaction-scoped objects in the PHP
runtime and do not include other memory operations, such as
memory management functions in the operating system. We used
a sampling profiler (Oprofile [21]), which uses a hardware per-
formance monitor, and did not insert instrumentation code in the
memory management functions to obtain the execution time of
each call to the allocator. As discussed in Section 1, the region-
based allocator reduced the CPU time used for memory opera-

0

20

40

60

80

100

120

140

160

no
rm

al
iz

ed
 C

PU
 ti

m
es

 p
er

 tr
an

sa
ct

io
n

(%
)

memory management
others

Med
iaW

iki

(re
ad

 on
ly)

Med
iaW

iki

(re
ad

/w
rite

)

Sug
arC

RM

eZ
 P

ub
lish

ph
pB

B

Cak
eP

HP

SPECweb

Geo
. M

EAN

de
fa

ul
t a

llo
ca

to
r

re
gi

on
-b

as
ed

 a
llo

ca
to

r
ou

r D
D

m
al

lo
c

de
fa

ul
t a

llo
ca

to
r

re
gi

on
-b

as
ed

 a
llo

ca
to

r
ou

r D
D

m
al

lo
c

de
fa

ul
t a

llo
ca

to
r

re
gi

on
-b

as
ed

 a
llo

ca
to

r
ou

r D
D

m
al

lo
c

de
fa

ul
t a

llo
ca

to
r

re
gi

on
-b

as
ed

 a
llo

ca
to

r
ou

r D
D

m
al

lo
c

de
fa

ul
t a

llo
ca

to
r

re
gi

on
-b

as
ed

 a
llo

ca
to

r
ou

r D
D

m
al

lo
c

de
fa

ul
t a

llo
ca

to
r

re
gi

on
-b

as
ed

 a
llo

ca
to

r
ou

r D
D

m
al

lo
c

de
fa

ul
t a

llo
ca

to
r

re
gi

on
-b

as
ed

 a
llo

ca
to

r
ou

r D
D

m
al

lo
c

de
fa

ul
t a

llo
ca

to
r

re
gi

on
-b

as
ed

 a
llo

ca
to

r
ou

r D
D

m
al

lo
c

sh
or

te
r

is
 fa

st
er

Figure 6. Breakdown of CPU time per transaction on 8 Xeon
cores.

0

0.2

0.4

0.6

0.8

1

1.2
re

la
tiv

e
th

ro
ug

hp
ut

 o
ve

r
de

fa
ul

t a
llo

ca
to

r o
f P

H
P

ru
nt

im
e

default allocator of PHP runtime
region-based allocator
our DDmalloc

hi
gh

er
 is

 fa
st

eron Xeon

Med
iaW

iki

(re
ad

 on
ly)

Med
iaW

iki

(re
ad

/w
rite

)

Sug
arC

RM

eZ
 P

ub
lish

ph
pB

B

Cak
eP

HP

SPECweb

Geo
. M

EAN
0

0.2

0.4

0.6

0.8

1

1.2

re
la

tiv
e

th
ro

ug
hp

ut
 o

ve
r

de
fa

ul
t a

llo
ca

to
r o

f P
H

P
ru

nt
im

e

default allocator of PHP runtime
region-based allocator
our DDmalloc

hi
gh

er
 is

 fa
st

eron Niagara

Med
iaW

iki

(re
ad

 on
ly)

Med
iaW

iki

(re
ad

/w
rite

)

Sug
arC

RM

eZ
 P

ub
lish

ph
pB

B

Cak
eP

HP

SPECweb

Geo
. M

EAN

Figure 5. Relative throughput over the default allocator of the PHP runtime on 8 cores of Xeon and Niagara.

tions by 85% on average compared to the default allocator. Other
parts of the programs, however, were slowed down. Our DDmal-
loc also reduced the overhead for memory management functions
by 56% on average and up to 65%. The performance of other
parts was unchanged or slightly improved. Comparing the break-
down for all workloads, SPECweb2005 consumed the least time
for memory management. As a result, the effect of memory allo-
cators was also least significant.

To see the effects of memory allocators on the scalability with
increasing number of cores, Figure 7 compares the throughput of
MediaWiki for the read-only scenario with various numbers of
cores. DDmalloc consistently outperformed the default allocator.
It almost tied the region-based allocator for small numbers of
cores (up to 2 cores on Xeon and 4 cores on Niagara). However,
DDmalloc demonstrated much better scalability with increased
numbers of cores compared to the region-based allocator, and
hence it achieved the best performance among the three allocators

when using eight cores on both platforms, as shown in Figure 5.
Table 4 summarizes the speedups using eight cores for all work-
loads. Both DDmalloc and the region-based allocator improved
the performance of every workload when using only one core on
both platforms. However the region-based allocator showed much
poorer scalability compared to the other two allocators while
DDmalloc and the default allocator of the PHP runtime achieved
almost comparable speedups for all workloads.

Figures 8 shows the changes in the numbers of instructions,
cache misses, and bus transactions per Web transaction from the
default allocator. On both platforms, DDmalloc reduced both L1
and L2 cache misses and bus transactions while the region-based
allocator significantly increased the numbers of L2 cache misses
and bus transactions. The reduction in instructions and L1 instruc-
tion cache misses for DDmalloc and the region-based allocator
were because of the smaller size of the allocator code. The reduc-
tion in L1 data cache misses was mainly because they do not use

0

20

40

60

80

100

120

140

0 2 4 6 8
number of cores

th
ro

ug
hp

ut
 (t

ra
ns

ac
tio

ns
 /

se
c)

our DDmalloc
region-based allocator
dafult allocator of PHP runtime

on Niagara

hi
gh

er
 is

 fa
st

er

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8
number of cores

th
ro

ug
hp

ut
 (t

ra
ns

ac
tio

ns
 /

se
c)

our DDmalloc
region-based allocator
dafult allocator of PHP runtime

on Xeon

hi
gh

er
 is

 fa
st

er

Figure 7. Throughput of MediaWiki (read-only scenario) with increasing numbers of cores on Xeon and Niagara.

Table 4. Speedups with 8 cores for each workload

on Xeon on Niagara
workload memory allo-

cator
throughput
with 1 core

(transactions/sec)

throughput
with 8 cores

(transactions/sec)

speedup
with

8 cores

throughput
with 1 core

(transactions/sec)

throughput
with 8 cores

(transactions/sec)

speedup
with

8 cores

MediaWiki
(read only)

default
region-based

DDmalloc

25.3
26.4 (+4.0%)
26.4 (+4.1%)

156.6
145.7 (-7.0%)
167.9 (+7.2%)

6.2x
5.5x
6.4x

14.9
16.5 (+11.3%)
16.5 (+11.3%)

111.0
113.3 (+2.1%)
122.2 (+10.1%)

7.5x
6.9x
7.4x

MediaWiki
(read/write)

default
region-based

DDmalloc

11.7
12.5 (+6.6%)
12.7 (+7.9%)

79.6
59.7 (-24.9%)
85.5 (+7.4%)

6.8x
4.8x
6.8x

5.2
5.5 (+5.4%)
5.6 (+7.0%)

40.0
39.6 (-1.1%)
43.5 (+8.8%)

7.7x
7.2x
7.8x

SugarCRM
default

region-based
DDmalloc

19.4
20.8 (+7.2%)
21.1 (+8.9%)

134.6
98.0 (-27.2%)
148.4 (+10.2%)

6.9x
4.7x
7.0x

8.1
9.2 (+13.4%)
8.8 (+8.3%)

64.4
62.3 (-3.4%)
69.7 (+8.3%)

7.9x
6.8x
7.9x

eZ Publish
default

region-based
DDmalloc

28.5
31.8 (+11.6%)
32.2 (+12.9%)

178.6
138.3 (-22.6%)
196.3 (+9.9%)

6.3x
4.3x
6.1x

13.6
16.5 (+21.1%)
15.8 (+15.9%)

99.4
94.4 (-5.1%)
110.8 (+11.4%)

7.3x
5.7x
7.0x

phpBB
default

region-based
DDmalloc

62.6
69.2 (+10.6%)
69.5 (+11.0%)

402.4
393.5 (-2.2%)
447.2 (+11.1%)

6.4x
5.7x
6.4x

30.5
35.9 (+17.7%)
34.0 (+11.2%)

234.0
259.1 (+10.8%)
259.8 (+11.0%)

7.7x
7.2x
7.7x

CakePHP
default

region-based
DDmalloc

28.3
31.6 (+11.4%)
30.8 (+8.8%)

191.6
185.7 (-3.1%)
206.6 (+7.8%)

6.8x
5.9x
6.7x

12.6
13.8 (+9.3%)
13.6 (+7.7%)

96.7
101.6 (+5.1%)
103.8 (+7.3%)

7.7x
7.4x
7.7x

SPECweb
2005

default
region-based

DDmalloc

188.6
197.3 (+4.6%)
194.3 (+3.0%)

970.0
960.4 (-1.0%)
977.3 (+0.8%)

5.1x
4.9x
5.0x

115.5
118.3 (+2.4%)
118.4 (+2.5%)

699.3
705.4 (+0.9%)
709.2 (+1.4%)

6.1x
6.0x
6.0x

 The ratios in parenthesis show the relative throughputs over the default allocator.

the per-object metadata that increases the size of the objects and
reduces the cache locality. Both DDmalloc and the region-based
allocator increased the D-TLB misses for two or three workloads
and reduced them for the others. The number of TLB misses was
sensitive to the allocator and its parameters, such as the size of a
segment in DDmalloc, because the number of TLB entries is very
small. For DDmalloc, we chose the parameter values that pro-
duced the highest throughput rather than the fewest TLB or cache
misses. If we enable the large page optimization on Xeon, the
TLB misses were reduced by more than 60% compared to the
default allocator. The increase in L2 cache misses and subsequent
bus transactions for the region-based allocator was because it does
not support per-object free and thus cannot reuse the dead objects
residing in the L2 cache. The increased cache pressure did not
significantly increase the L1 data cache misses, because only the
most frequently used data objects were residing in the small L1
cache and the dead objects were quickly spilled out of it. On
Xeon, the increases in bus transactions were much larger than the
increases in the L2 cache misses. This difference mainly came
from the hardware memory prefetcher. We observed that the dif-

ference was reduced by disabling the prefetcher. The inferior
scalability of the region-based allocator was unaffected, even
without the prefetcher.

These cache miss trends were consistent when we changed the
numbers of cores used. Our DDmalloc achieved better perform-
ance with the PHP runtime because of these improvements in the
cache misses in addition to the smaller memory management
overhead. In contrast, the region-based allocator was slowed
down by the increases in bus transactions when using large num-
ber of cores as shown in Figure 7 and Table 4. Those performance
degradations for the region-based allocator were less significant
on Niagara because Niagara provides relatively higher memory
bandwidth than Xeon.

Figure 9 shows the average memory consumptions during
transactions. We defined memory consumption for each allocator
as follows: the amount of memory allocated from the underlying
memory allocator for the default allocator, the total amount of
memory used for allocated segments and the metadata for
DDmalloc, and the total amount of memory allocated during a
transaction for the region-based allocator. DDmalloc consumed

-40
-30
-20
-10

0
10
20
30
40
50
60
70

ch
an

ge
 in

 n
um

be
r o

f e
ve

nt
s

pe
r t

ra
ns

ac
tio

n .
ov

er
 d

ef
au

lt
al

lo
ca

to
r o

f P
H

P
 ru

nt
im

e
(%

)
MediaWiki (read only)
MediaWiki (read/write)
SugarCRM
eZ Publish
phpBB
CakePHP
SPECweb2005
Geo. MEAN

115% 103%

total instruction L1I cache miss L1D cache miss D-TLB miss L2 cache miss bus transaction

DDmall
oc

reg
ion

-ba
se

d

all
oc

ato
r

DDmall
oc

reg
ion

-ba
se

d

all
oc

ato
r

DDmall
oc

reg
ion

-ba
se

d

all
oc

ato
r

DDmall
oc

reg
ion

-ba
se

d

all
oc

ato
r

DDmall
oc

reg
ion

-ba
se

d

all
oc

ato
r

DDmall
oc

reg
ion

-ba
se

d

all
oc

ato
r

on Xeon

lo
w

er
 is

 b
et

te
r

-30

-20

-10

0

10

20

30

40

50

60

70

ch
an

ge
 in

 n
um

be
r o

f e
ve

nt
s

pe
r t

ra
ns

ac
tio

n .
ov

er
 d

ef
au

lt
al

lo
ca

to
r o

f P
H

P
 ru

nt
im

e
(%

)

MediaWiki (read only)
MediaWiki (read/write)
SugarCRM
eZ Publish
phpBB
CakePHP
SPECweb2005
Geo. MEAN

174%

total instruction L1I cache miss L1D cache miss D-TLB miss L2 cache miss bus transaction
reg

ion
-ba

se
d

all
oc

ato
r

reg
ion

-ba
se

d

all
oc

ato
r

reg
ion

-ba
se

d

all
oc

ato
r

reg
ion

-ba
se

d

all
oc

ato
r

reg
ion

-ba
se

d

all
oc

ato
r

reg
ion

-ba
se

d

all
oc

ato
r

on Niagara
116%

lo
w

er
 is

 b
et

te
r

DDmall
oc

DDmall
oc

DDmall
oc

DDmall
oc

DDmall
oc

DDmall
oc

Figure 8. Comparisons of changes in the numbers of instructions, cache misses, and bus transactions per web transaction with our
DDmalloc and the region-based allocator on 8 cores of Xeon and Niagara.

24% more memory on average compared to the default allocator.
This was because the segregated heap management, which is the
basis of DDmalloc, tends to consume more memory area as a
trade-off for faster allocation and deallocation. Using a smaller
size for segments can reduce the memory consumptions while it
often increases the CPU time used for malloc and free. The re-
gion-based allocator consumed almost 3 times as much memory
on average and more than 7 times more in the worst case.

4.4 Performance comparisons with high-performance
general-purpose allocators

This section compares the performance of our DDmalloc against
the well known general-purpose allocators, hoard-3.7 [11] and
TCmalloc [12] included in the google-perf-tools-0.9.1. Those
general-purpose allocators support only the malloc-free interface,
and thus they are not applicable to the PHP runtime. Therefore we
used the Ruby runtime for this comparison. The Ruby runtime
does not call freeAll at the end of each Web transaction and does
not distinguish between the allocations for transaction-scoped
objects and other objects. To compare the performance of
DDmalloc to the general-purpose allocators, we did not modify
the runtime to call freeAll. Instead, we configured the runtime to
restart periodically (once per 500 transactions) to clean up the
entire heap without calling freeAll. This allows direct compari-
sons with these general-purpose allocators supporting only malloc
and free, though this is not the best way to clean up the heap for
DDmalloc because restarting process incurs more overhead than
the freeAll function and once per 500 transactions is not short
enough to totally ignore the gradual degradations due to heap
fragmentation. Restarting the processes of scripting language
runtimes is a common practice to avoid performance degradations
even with standard memory allocators. Thereby we configured
the runtime to restart every 500 transactions for all of the alloca-
tors because it was beneficial for all of the allocators.

We selected Ruby on Rails-1.2.3 [22] as a workload for the
evaluation. Ruby on Rails is a framework for developing Web
applications. We followed the evaluation for CakePHP, building a
similar application on top of Ruby on Rails and evaluating it us-
ing the same scenario. We used the prebuilt binary of the ruby-
1.8.5 included in the OS distribution and dynamically linked each
memory allocator at runtime. The other server configurations
were unchanged from the measurements for PHP. Figure 10
shows the comparisons for the throughput with various memory
allocators on all eight cores of Xeon. Our DDmalloc again
achieved the best performance. The performance advantage over

the default allocator, glibc-2.5, was 13.6%. Hoard and TCmalloc
also outperformed glibc. DDmalloc outperformed the next best
allocator, TCmalloc, by 5.3%.

Figure 11 compares the breakdowns of CPU cycles per trans-
action. All of the results are normalized against the results for
glibc, the default allocator for the platform. DDmalloc obviously
spent the least time on memory operations among the tested allo-
cators by avoiding the costs for defragmentation activities in mal-
loc and free. The results show that the costs of the
defragmentation activities exceed the benefits in Web-based ap-
plications even in those sophisticated memory allocators, and the
costs matter for the overall performance of the workloads.

Med
iaW

iki

(re
ad

 on
ly)

Med
iaW

iki

(re
ad

/w
rite

)

Sug
arC

RM

eZ
 P

ub
lis

h
ph

pB
B

Cak
eP

HP

SPECweb

Geo
. M

EAN

0

5

10

15

20

25

30

pe
ak

 le
ve

l o
f m

em
or

y
co

ns
um

pt
io

n

du
rin

g
a

tra
ns

ac
tio

n
(M

B
)

default allocator of PHP runtime
region-based allocator
our DDmalloc

sh
or

te
r i

s
be

tte
r .

Figure 9. Comparison of the amount of memory
consumed.

0

0.2

0.4

0.6

0.8

1

1.2

glibc Hoard TCmalloc our
DDmalloc

re
la

tiv
e

th
ro

ug
hp

ut
 o

ve
r g

lib
c .

hi
gh

er
 is

 fa
st

er
 .

Figure 10. Relative throughput of Ruby on Rails over glibc-
2.5 on 8 Xeon cores.

0

0.2

0.4

0.6

0.8

1

1.2

glibc Hoard TCmalloc our
DDmalloc

no
rm

al
iz

ed
 C

P
U

 ti
m

e
pe

r t
ra

ns
ac

tio
n

memory management
others

sh
or

te
r

is
 fa

st
er

Figure 11. Breakdown of CPU time per transaction for Ruby
on Rails on 8 Xeon cores with various allocators.

0.8

0.85

0.9

0.95

1

1.05

1.1

20 100 500 2500 no restart
lifetime of one process (number of transactions)

re
la

tiv
e

pe
rfo

rm
an

ce
 o

ve
r w

ith
ou

t
re

st
ar

tin
g

pr
oc

es
se

s

our DDmalloc
glibc

restarting frequently restarting rarely

hi
gh

er
 is

 fa
st

er

(non-zero
origin)

Figure 12. Performance improvements by restarting Ruby
processes for various periods of restart on 8 Xeon cores.

In our DDmalloc, objects in the free lists are chained in ran-
dom order after a long run without defragmentation activities.
Hence DDmalloc starts to allocating separated objects for succes-
sive allocation requests. Such allocations tend to decrease the
cache locality. To see this degradation more quantitatively, Figure
12 depicts the performance improvements from restarting the
processes of the Ruby runtime to clean up the heap. From this
figure, restarting a process after every 500 transactions improved
throughput by 4.0% compared to no restarts for our DDmalloc
while the improvement was only 1.1% for glibc. We observed
that restarting a process after every 500 transactions reduced the
number of L2 cache misses per transaction by 8.0% for DDmalloc
while it was 2.5% for glibc. The reductions in the L1 cache
misses by restarting the process were only 0.3% and 0.8% for
DDmalloc and glibc respectively.

These results show that, even without restarting, DDmalloc
was almost as fast as the TCmalloc and still faster than glibc or
Hoard. This was because the benefit of efficient malloc and free
of DDmalloc due to no defragmentation outweighed the cost of
increased L2 cache misses due to fragmentations for this particu-
lar workload. We have evaluated only one application in this sec-
tion and more extensive study on the benefit and cost of
defragmentation is an interesting future work.

5. Discussions
In this section, we consider how important our observations are
for systems other than Web application servers.

The language runtime systems supporting garbage collection
for memory management, such as JavaTM VMs and .net runtimes,
are widely used today. Many of these virtual machines, especially
those using copying garbage collectors, allocate heap memory for
newly created objects in a similar way to the region-based alloca-
tors, in which the allocation is done by simply incrementing a
pointer that tracks the current location to allocate. This allocation
mechanism is widely used because of the virtue of small alloca-
tion overhead. In those virtual machines, however, allocated ob-
jects are not freed until the heap becomes full and the virtual
machines execute garbage collection. Hence the virtual machines
may suffer from the increased bus traffic on multicore processors,
just as the region-based allocator suffers in the PHP runtime, be-
cause they cannot reuse the memory locations used by already-
dead objects.

In the GC-based languages, programmers do not free objects
explicitly and hence reusing the memory locations quickly is not
a trivial task. However techniques to quickly reclaim short-lived
objects are quite important to reduce the hidden costs of the in-
creased bus traffic and to achieve high performance on multicore
processors. For example, the advanced escape analysis of Shankar
et al. [23] is a good way to quickly reuse the short-lived objects
by allocating them on a stack. For another example, MicroPhase
of Xian et al. [24] can improve the memory locality by aggres-
sively invoking a garbage collection before the Java heap be-
comes full.

6. Related Work
Memory management consumes a considerable fraction of CPU
time in applications [25]. Therefore many designs of dynamic
memory management have been proposed in the past [26]. For
general purpose use, an allocator by Doug Lea [13] is known as
one of the most advanced designs of dynamic memory manage-
ment, which balances several goals, including speed, space, and
portability. Recent advances in multicore processors require good
scalability for every application. Hence currently many memory

allocators focus on scalability for multi-threaded applications.
Hoard [11], TCmalloc (included in google-perf-tools) [12] are
such examples. Many of them achieve good scalability of multi-
threaded applications by avoiding lock contentions for heap ac-
cesses and false sharing. In this paper, we focus on poor scalabil-
ity caused by the limited bus bandwidth on multicore processors
as another reason for poor scalability.

There have been many efforts to exploit knowledge about the
characteristics of the applications, such as the lifetimes or sizes of
the objects, to improve the performance of memory management
[1-4, 27, 28]. Region-based memory management [1-4], which
allows fast allocation by simply incrementing a pointer and free-
ing multiple objects at once, is one of the most attractive ways to
exploit the knowledge of the lifetimes of the objects. As already
discussed in this paper, the region-based memory management is
very effective in reducing the overhead of memory management.
However, it may suffer from poor scalability on multicore proces-
sors. Our proposed defrag-dodging approach can also exploit the
knowledge of the object lifetimes to reduce the overhead of mem-
ory management, but it yields higher scalability than the region-
based memory management.

Berger et al. [9] proposed an allocator, called Reaps, that com-
bines the conventional malloc/free and the region-based memory
management. Like our defrag-dodging approach or the custom
allocator in the PHP runtime, it supports both per-object free and
bulk free for all of the objects in a region. In contrast to ours, their
allocator acts in almost the same way as Doug Lea's allocator [13]
for per-object free and does not focus on improving the perform-
ances of the per-object free. Thus the Reaps also pays cost of the
defragmentation activities, which is excessive for short-lived
transactions in Web-based applications, like the default allocator
of the PHP runtime.

7. Conclusions
In this paper, we examine the performance of a general-purpose
allocator and a non-freeing region-based allocator using Web-
based workloads on two platforms with multicore processors. Our
results show that the region-based allocator achieves much better
performance for all workloads on one or a few processor cores
due to its smaller memory management costs. However the re-
gion-based allocators suffer from hidden costs of increased bus
traffic on multicore environments and the performance is reduced
by as much as 27.2% compared to the default allocator when
using eight cores. This is because the system memory bandwidth
tends to become a bottleneck in systems with multicore proces-
sors.

This paper describes a new memory management approach,
called defrag-dodging, for transaction-scoped objects in Web-
based applications. The approach can improve the performance of
Web-based applications on multicore processors by reducing the
total costs of memory management without increasing the bus
traffic. The key to the reduced costs for memory management in
the defrag-dodging allocator is that it avoids the defragmentation
activities in the malloc and free invocations during transactions.
In Web-based applications, the costs of the defragmentation ac-
tivities in existing general-purpose allocators outweigh their bene-
fits. We show that the throughput with our new approach is higher
than with the other two allocators for all of the applications when
using eight cores. The improvements are up to 11.4% and 51.5%
over the default allocator and the region-based allocator, respec-
tively. Our results show that the increasing use of multicore proc-
essors is significantly changing the requirements for memory
allocators to fully benefit from the large amounts of computing
resources provided by such multicore processors.

Acknowledgments
We are grateful to the anonymous reviewers for their thoughtful
comments and suggestions. We thank Tamiya Onodera, Rei
Odaira, and Kazunori Ogata for their useful feedback on earlier
drafts on this work. We also thank Shannon Jacobs for his edito-
rial assistance and valuable suggestions including the name de-
frag-dodging.

References
[1] D. R. Hanson. Fast allocation and deallocation of memory based on

object lifetimes. Software—Practice & Experience, 20(1), pp. 5–12,
1990.

[2] D. A. Barrett and B. G. Zorn. Using Lifetime Predictors to Improve
Memory Allocation Performance. In Proceedings of the ACM Con-
ference on Programming Language Design and Implementation, pp.
187–196, 1993.

[3] D. Gay and A Aiken. Memory management with explicit regions. In
Proceedings of the ACM Conference on Programming Language
Design and Implementation, pp. 313–323, 1998

[4] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Che-
ney. Region-Based Memory Management in Cyclone. In Proceed-
ings of the ACM Conference on Programming Language Design and
Implementation, pp. 282–293, 2002.

[5] Apache Software Foundation. The Apache Portable Runtime Project.
http://apr.apache.org/ .

[6] R. Iyer, M. Bhat, L. Zhao, R. Illikkal, S. Makineni, M. Jones, K. Shiv,
and D. Newell. Exploring Small-Scale and Large-Scale CMP Archi-
tectures for Commercial Java Servers. In Proceedings of the IEEE In-
ternational Symposium on Workload Characterization, pp. 191–200,
2006.

[7] Y. Chen, E. Li, W. Li, T. Wang, J. Li, X. Tong, P. P. Wang, W. Hu,
Y. Zhang, Y. Chen. Media mining – emerging tera-scale computing
applications. Intel Technology Journal, 11(3), pp 239–250, 2007.

[8] The PHP Group. PHP: Hypertext Preprocessor. http://www.php.net/ .
[9] E. D. Berger, B. G. Zorn, and K. S. McKinley. Reconsidering custom

memory allocation. In Proceedings of the ACM Conference on Ob-
ject Oriented Programming, Systems, Languages, and Applications,
pp. 1–12, 2002.

[10] Free Software Foundation, Inc. GNU C Library obstack.
http://www.gnu.org/software/libc/manual/html_node/Obstacks.html.

[11] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson.
Hoard: A Scalable Memory Allocator for Multithreaded Applications.
In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems, pp.
117–128, 2000.

[12] S. Ghemawat and P. Menage. TCMalloc : Thread-Caching Malloc.
http://goog-perftools.sourceforge.net/doc/tcmalloc.html .

[13] Doug Lea. A Memory Allocator.
http://g.oswego.edu/dl/html/malloc.html .

[14] M. S. Johnstone and P. R. Wilson. The memory fragmentation prob-
lem: Solved. In Proceedings of the International Symposium on
Memory Management, pp. 26–36, 1998.

[15] Wikimedia Foundation. MediaWiki. http://www.mediawiki.org .
[16] SugarCRM Inc. SugarCRM. http://www.sugarcrm.com .
[17] eZ Systems. eZ Publish. http://ez.no .
[18] The phpBB Group. phpBB. http://www.phpbb.com/ .
[19] Cake Software Foundation, Inc. CakePHP. http://www.cakephp.org/ .
[20] Standard Performance Evaluation Corporation. SPECweb2005.

http://www.spec.org/web2005/ .
[21] OProfile - A System Profiler for Linux.

http://oprofile.sourceforge.net/news/ .
[22] D. H. Hansson. Ruby on Rails. http://www.rubyonrails.org .
[23] A. Shankar, M. Arnold, and R. Bodik. Jolt: lightweight dynamic

analysis and removal of object churn. In Proceedings of the ACM
Conference on Object Oriented Programming Systems Languages
and Applications, pp. 127–142, 2008.

[24] F. Xian, W. Srisa-an, and, H. Jiang. Microphase: an approach to
proactively invoking garbage collection for improved performance.
In Proceedings of the ACM Conference on Object Oriented Pro-
gramming Systems Languages and Applications, pp. 77–96, 2007.

[25] D. Detlefs, A. Dosser, and B. Zorn. Memory allocation costs in large
C and C++ programs. Software—Practice & Experience, 24(6), pp.
527–542, 1994.

[26] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic
Storage Allocation: A Survey and Critical Review. In Proceedings of
the International Workshop on Memory Management, pp. 1–116,
1995.

[27] M. L. Seidl, and B. G. Zorn. Segregating heap objects by reference
behavior and lifetime. In Proceedings of the International Confer-
ence on Architectural Support for Programming Languages and Op-
erating Systems, pp. 12–23, 1998.

[28] Y. Shuf, M. Gupta, R. Bordawekar, and J. P. Singh. Exploiting pro-
lific types for memory management and optimizations. In Proceed-
ings of the ACM Symposium on Principles of Programming
Languages, pp. 295–306, 2002.

Java is a trademark of Sun Microsystems, Inc. Intel and Xeon are
registered trademarks of Intel Corporation. Other company, prod-
uct, and service names may be trademarks or service marks of
others.

