
IBM Tokyo Research Laboratory

September 18th, 2007 PACT2007 at Brasov, Romania © 2007 IBM Corporation

AA-Sort:
A New Parallel Sorting Algorithm
for Multi-Core SIMD Processors

Hiroshi Inoue, Takao Moriyama,
Hideaki Komatsu and Toshio Nakatani
IBM Tokyo Research Laboratory

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

Goal

Outperform existing algorithms, such as Quick sort, by exploiting
SIMD instructions on a single thread

Scale well by using thread-level parallelism of multiple cores

Develop a fast sorting algorithm by exploiting
the following features of today’s processors

►SIMD instructions

►Multiple Cores (Thread-level parallelism)

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

Benefit and limitation of SIMD instructions

Benefits: SIMD selection instructions
(e.g. select minimum instruction) can
accelerate sorting by

– parallelizing comparisons

– avoiding unpredictable conditional
branches

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

MIN MIN MIN MIN

input 1

input 2

output

Limitation: SIMD load / store instructions can be
effective only when they access contiguous 128 bits
of data (e.g. four 32-bit values) aligned on 128-bit
boundary

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

SIMD instructions are effective for some existing
sorting algorithms but slower than Quick sort

Such as Bitonic merge sort, Odd-even merge sort, and
GPUTeraSort [Govindaraju ’05]
They are slower than Quick sort for sorting a large
number (N) of elements

– Their computational complexity is O(N (log (N))2)

1 865 7 4 3 2

A step of Bitonic merge sort

MIN MAX

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

Presentation Outline

Motivation

AA-sort: Our new sorting algorithm

Experimental results

Summary

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

What is Comb sort?

Comb sort [Lacey '91] is an extension to Bubble sort
It compares two non-adjacent elements

distance = 6

starting to compare two
elements with large
distance

2 567 8 4 1 3

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

What is Comb sort?

Comb sort [Lacey '91] is an extension to Bubble sort
It compares two non-adjacent elements

starting to compare two
elements with large
distance

2 567 8 4 1 3

decreasing distance by
dividing a constant called
shrink factor (1.3) for each
iteration

distance = distance / 1.3 = 4

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

What is Comb sort?

Comb sort [Lacey '91] is an extension to Bubble sort
It compares two non-adjacent elements

starting to compare two
elements with large
distance

2 567 8 4 1 3

decreasing distance by
dividing a constant called
shrink factor (1.3) for each
iteration

distance = distance / 1.3 = 3

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

What is Comb sort?

Comb sort [Lacey '91] is an extension to Bubble sort
It compares two non-adjacent elements

starting to compare two
elements with large
distance

2 567 8 4 1 3

decreasing distance by
dividing a constant called
shrink factor (1.3) for each
iteration

distance = distance / 1.3 = 2

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

What is Comb sort?

Comb sort [Lacey '91] is an extension to Bubble sort
It compares two non-adjacent elements

starting to compare two
elements with large
distance

2 567 8 4 1 3

repeat until all data are
sorted with distance = 1 average complexity

N log (N)

decreasing distance by
dividing a constant called
shrink factor (1.3) for each
iteration

distance = distance / 1.3 = 1

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

123 45 6 789 1011 12

832 61 10 12115 94 7

sorted

input data

sorted output data

SIMD instructions are not
effective for Comb sort due to

Our technique to SIMDize the Comb sort

► unaligned memory accesses
► loop-carried dependencies

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

123 45 6 789 1011 12

832 61 10 12115 94 7

sorted

1174 51 6 1292 310 8

input data

sorted output data

Transposed order

SIMD instructions are effective for
Comb sort into the Transposed order

Reorder after sorting

Our technique to SIMDize the Comb sort

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

123 45 6 789 1011 12

832 61 10 12115 94 7

sorted

1152 8

input data

sorted output data

assume four elements in one
vector

741 10 6 1293

Our technique to SIMDize the Comb sort

Transposed order

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

123 45 6 789 1011 12

832 61 10 12115 94 7

sorted

11

74

5

1

6 129

2

3

10

8

input data

sorted output data

Our technique to SIMDize the Comb sort

► no unaligned access
► no loop-carried dependency

► unaligned access
► loop-carried dependency

Transposed order

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

Analysis of our SIMDized Comb sort

N/AO(N log(N))almost 0
Number of

unaligned memory
accesses

O(N log(N))O(N log(N))O(N log(N))

reordering:
O(N)

Computational
complexity

O(N log(N))almost 0almost 0

Number of
unpredictable
conditional
branches

original (scalar)
Comb sort

naively SIMDized
Comb sort

our SIMDized
Comb sort

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

Overview of the AA-Sort

It consists of two phases:

– Phase 1: SIMDized Comb sort

– Phase 2: SIMDized Merge sort

block1 block2 block3 block4

sort each block using
SIMDized Comb sort

merge the blocks using
SIMDized Merge sort

input data
divide input data into
small blocks that can fit
into (L2) cache

sorted

Phase 1

Phase 2

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

Our approach to SIMDize merge operations

SIMD instructions are effective for Bitonic merge or
Odd-even merge
Their computational complexity are higher than usual
merge operations

Our solution

– Integrate Odd-even merge into the usual merge operation
to take advantage of SIMD instructions while keeping the
computational complexity of usual merge operation

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

2 3

Odd-even merge for values in two vector registers

Input
two vector registers contain
four presorted values in each

Output
eight values in two vector
registered are now sorted

Odd-even Merge
one SIMD comparison
and “shuffle” operations
for each stage

No conditional branches!

1 4 7 8

stage 1

stage 2

stage 3

input

output

< < < <

< <

< <<

sorted sorted

sorted

2 3 5 6

1 4 7 85 6

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

21 23

17 18

Our technique to integrate Odd-even merge into
usual merge

sorted array 1 1 4 7 9

sorted array 2 2 3 5 6

sorted

sorted

10 11 12 14

8 13 15 16

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

21 23

17 18

sorted array 1

sorted array 2

1 4 7 9 2 3 5 6

sorted sorted

vector registers

1 4 7 9

2 3 5 6

10 11 12 14

8 13 15 16

Odd-even merge

Our technique to integrate Odd-even merge into
usual merge

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

21 23

17 18

1 4 7 9

2 3 5 6

Our technique to integrate Odd-even merge into
usual merge

sorted array 1

sorted array 2

· · ·

· · ·

1 4 7 92 3 5 6

sorted

vector registers

10 11 12 14

8 13 15 16

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

1 4 7 9

2 3 5 6

21 23

17 18

Our technique to integrate Odd-even merge into
usual merge

sorted array 1 10 11 12 14

sorted array 2

vector registers

merged array 1 42 3

8 13 15 16

7 95 6

use a scalar comparison
to select array to load from

output smaller four values
as merged array

sorted

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

1 4 7 9

2 3 5 6

21 23

17 188 13 15 16

8 13 15 16

Our technique to integrate Odd-even merge into
usual merge

sorted array 1

sorted array 2

vector registers

merged array

Odd-even merge

7 95 6

1 42 3

10 11 12 14

sorted

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

1 4 7 9

2 3 5 6 8 13 15 16

10 11 12 14

13 15 169

8

Our technique to integrate Odd-even merge into
usual merge

sorted array 1 21 23

sorted array 2 17 18

vector registers

merged array 75 6

sorted

1 42 3

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

Comparing merge operations

O(N)O(N log(N))O(N)
Computational

complexity

1 for every
output element

0
1 for every

output vector

Number of
unpredictable
conditional
branches

usual (scalar)
merge operation

odd-even merge
implemented
with SIMD

our integrated
merge

operation

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

Parallelizing AA-sort among multiple threads

block1 block2 block3 block4

thread 1 thread 2

thread 1, 2
sorted

each thread executes
independent merge
operations

each thread sorts
independent blocks using
SIMDized Comb sort

multiple threads cooperate
on one merge operation

Phase 1

Phase 2

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

Presentation Outline

Motivation

AA-sort: Our new sorting algorithm

Experimental results

Summary

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

Environment for Performance Evaluation

We used two processors for performance evaluation

– PowerPC 970 using VMX instructions (up to 4 cores)

– Cell BE using SPE cores (up to 16 SPE cores)

We compared the performance of four algorithms

– AA-sort

– GPUTeraSort [Govindaraju '05]

– ESSL (IBM’s optimized library)

– STL delivered with GCC (open source library)

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

0.01

0.1

1

10

100

1 M 2 M 4 M 8 M 16 M 32 M 64 M 128 M

number of elements

ex
ec

ut
io

n
tim

e
(s

ec
) .

AA-sort

GPUTeraSort

ESSL

STL

Single-thread performance on PowerPC 970 for
various input size

sorting 32-bit random integers on one core of PowerPC 970

faster

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

0

1

2

3

4

5

AA-sort GPUTeraSort ESSL STL

algorithm

ex
ec

ut
io

n
tim

e
(s

ec
) .

Single-thread performance on PowerPC 970

x1.7

x3.0
x3.3

sorting 32 M elements of random 32-bit integers on PowerPC 970

faster

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5

number of cores

re
la

tiv
e

th
ro

ug
hp

ut
ov

er
 A

A
-s

or
t

us
in

g
1

co
re

 . AA-sort

GPUTeraSort

Scalability with multiple cores on PowerPC 970
faster

x2.6 by 4 cores

x2.1 by 4 cores

sorting 32 M elements of random 32-bit integers on PowerPC 970

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

0

2

4

6

8

10

12

14

0 4 8 12 16

number of cores

re
la

tiv
e

th
ro

ug
hp

ut
ov

er
 A

A
-s

or
t

us
in

g
1

co
re

 . AA-sort

GPUTeraSort

Scalability with multiple cores on Cell BE

12.2x
by 16 cores7.4x

by 8 cores

sorting 32 M elements of random 32-bit integers on Cell BE

faster

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

Summary

We proposed a new sorting algorithm called AA-sort, which can take
advantage of

– SIMD instructions

– Multiple Cores (thread-level parallelism)

We evaluated the AA-sort on PowerPC 970 and Cell BE

– Using only 1 core of PowerPC 970, the AA-sort outperformed

• IBM’s ESSL by 1.7x

• GPUTeraSort by 3.3x

– On Cell BE, the AA-sort showed good scalability

• 8 cores 7.4x

• 16 cores 12.2x

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

Thank you for your attention!

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

SIMD instructions are not effective for Quick sort

SIMD instructions are NOT effective for Quick sort,
which requires element-wise and unaligned memory
accesses

123 45 6 1389 1011 12

search an element
larger than the pivot

search an element
smaller than the pivot

swap
element-wise and unaligned memory accesses

A step of Quick sort (pivot = 7)

IBM Tokyo Research Laboratory

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

Transposed order

To see the values to sort as a two dimensional array

0 1 2 3

4 5 6 7

8 9 10 11

N-4 N-3 N-2 N-1

Original order
= row major

column: elements in a vector

ro
w

:
ar

ra
y

of
 v

ec
to

rs

0 n 2n 3n
1 n+1 2n+1 3n+1

2 n+2 2n+2 3n+2

n-1 2n-1 3n-1 N-1

Transposed order
= column major

adjacent values are stored
in one vector

adjacent values are stored in
same slot of adjacent vectors

