1“
I

IBM Tokyo Research Laboratory

AA-Sort:
A New Parallel Sorting Algorithm
for Multi-Core SIMD Processors

Hiroshi Inoue, Takao Moriyama,
Hideaki Komatsu and Toshio Nakatani
IBM Tokyo Research Laboratory

September 18th, 2007 PACT2007 at Brasov, Romania © 2007 IBM Corporation

IBM Tokyo Research Laboratory

Goal

Develop a fast sorting algorithm by exploiting
the following features of today’s processors

» SIMD instructions
» Multiple Cores (Thread-level parallelism)

= Qutperform existing algorithms, such as Quick sort, by exploiting
SIMD instructions on a single thread

= Scale well by using thread-level parallelism of multiple cores

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 1BM Corporation

IBM Tokyo Research Laboratory

Benefit and limitation of SIMD instructions

= Benefits: SIMD selection instructions

nputl [A0 | A1 | A2 | A3

(e.g. select minimum instruction) can
accelerate sorting by input 2 [o [B1 [B2 [B3
— parallelizing comparisons l l l l
MIN)XMINXMIN AMIN
—avoiding unpredictable conditional W
branches output [co[cilc2cs

= Limitation: SIMD load / store instructions can be
effective only when they access contiguous 128 bits
of data (e.g. four 32-bit values) aligned on 128-bit
boundary

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

IBM Tokyo Research Laboratory

SIMD instructions are effective for some existing
sorting algorithms but slower than Quick sort

= Such as Bitonic merge sort, Odd-even merge sort, and
GPUTeraSort [Govindaraju '09]

= They are slower than Quick sort for sorting a large
number (N) of elements

— Their computational complexity is O(N (log (N))?)

A step of Bitonic merge sort

1 5 6 8 7 4 3 2

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

IBM Tokyo Research Laboratory

Presentation Outline

* AA-sort: Our new sorting algorithm
= Experimental results

= Summary

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

IBM Tokyo Research Laboratory

What is Comb sort?

= Comb sort [Lacey '91] is an extension to Bubble sort
= |t compares two non-adjacent elements

starting to compare two
elements with large

distance

distance = 6

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 1BM Corporation

IBM Tokyo Research Laboratory

What is Comb sort?

= Comb sort [Lacey '91] is an extension to Bubble sort
= |t compares two non-adjacent elements

starting to compare two
elements with large
distance

decreasing distance by
dividing a constant called

distance = distance / 1.3 =4 shrink factor (1.3) for each
iteration

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

IBM Tokyo Research Laboratory

What is Comb sort?

= Comb sort [Lacey '91] is an extension to Bubble sort
= |t compares two non-adjacent elements

2

7

distance = distance / 1.3 = 3

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors

starting to compare two
elements with large
distance

decreasing distance by
dividing a constant called
shrink factor (1.3) for each
iteration

© 2007 IBM Corporation

IBM Tokyo Research Laboratory

What is Comb sort?

= Comb sort [Lacey '91] is an extension to Bubble sort
= |t compares two non-adjacent elements

2

7 6

5

distance = distance / 1.3 = 2

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors

starting to compare two
elements with large
distance

decreasing distance by
dividing a constant called

shrink factor (1.3) for each
iteration

© 2007 IBM Corporation

IBM Tokyo Research Laboratory

What is Comb sort?

= Comb sort [Lacey '91] is an extension to Bubble sort
= |t compares two non-adjacent elements

starting to compare two

2 7 6 5 8 4 1 3 .
elements with large
decreasing distance by

dividing a constant called

distance = distance / 1.3 =1 shrink factor (1.3) for each
iteration

repeat until all data are
N log (N

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

IBM Tokyo Research Laboratory

Our technique to SIMDize the Comb sort

input data
5 3 2 |11 | 9 4 |12 | 1 | 10| 6 8 7
SIMD instructions are not
effective for Comb sort due to
» unaligned memory accesses
» loop-carried dependencies
\ 4
sorted output data
1 2 3 4 5 6 7 8 9 | 10 | 11 | 12
reeel—

sorted

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors

© 2007 IBM Corporation

IBM Tokyo Research Laboratory

Our technique to SIMDize the Comb sort

input data
5 3 2 |11 | 9 4 (12| 1 |10 | 6 8 7

N

Transposed order
X 1 4 7 |10 | 2 5 8 |11 | 3 6 9 | 12

— T

sorted output data
1 2 3 4 5 6 7 8 9 | 10 | 11 | 12

D instructions are effective for

mb sort into the Transposed order

sorted

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 1BM Corporation

IBM Tokyo Research Laboratory

Our technique to SIMDize the Comb sort

input data
5 3 2 |11 | 9 4 (12| 1 |10 | 6 8 7

Transposed order
1 4 7 |10] 2 5 8 |11]| 3 6 9 | 12

sorted output data sl
1 2 3 4 5 6 7 8 9 | 10 | 11 | 12

sorted

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

IBM Tokyo Research Laboratory

Our technique to SIMDize the Comb sort

input data
5 3 2 |11 | 9 4 (12| 1 |10 | 6 8 7

Transposed order

» N0 unaligned access
» N0O loop-carried dependency

sorted outpuata

L2 | 3 [Y 5>

6 7 8 9 [10 | 11 | 12

sorted

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 1BM Corporation

IBM Tokyo Research Laboratory

Analysis of our SIMDized Comb sort

our SIMDized | naively SIMDized | original (scalar)
Comb sort Comb sort Comb sort
Number of
unpredictable
conditional almost 0 almost 0 O(N log(N))
branches
Number of
unaligned memory almost O O(N log(N)) N/A
accesses
Computational O(N log(N)) O(N log(N)) O(N log(N))
complexity
reordering:
O(N)

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors

© 2007 IBM Corporation

IBM Tokyo Research Laboratory

Overview of the AA-Sort

= |t consists of two phases:
— Phase 1: SIMDized Comb sort

— Phase 2: SIMDized Merge sort

divide input data into

input data small blocks that can fit
into (L2) cache

~ | block1 | block2 | block3 | block4

Phase 1 4 |, v v v

< A

Phase 2 < \/’ \/’

\/ merge the blocks using
~|sorted - SIMDized Merge sort

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

> sort each block using
SIMDized Comb sort

AV

IBM Tokyo Research Laboratory

Our approach to SIMDize merge operations

= SIMD instructions are effective for Bitonic merge or
Odd-even merge

= Their computational complexity are higher than usual
merge operations

= Qur solution

— Integrate Odd-even merge into the usual merge operation
to take advantage of SIMD instructions while keeping the
computational complexity of usual merge operation

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

IBM Tokyo Research Laboratory

Odd-even merge for values in two vector registers

two vector registers contain
SO four presorted values in each

input

sorted
I

stage 1

one SIMD comparison
and “shuffle” operations
for each stage

No conditional branches!

eight values in two vector
registered are now sorted

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

IBM Tokyo Research Laboratory

Our technique to integrate Odd-even merge into
usual merge

sorted
- ——
sorted array 1 1 4 7 9 10 | 11 | 12 | 14 | 21 | 23 | e

sorted array 2 2 3 5 6 8 |13 |15 | 16 | 17 | 18 weee
o ——

sorted

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 1BM Corporation

IBM Tokyo Research Laboratory

Our technique to integrate Odd-even merge into
usual merge

sorted array 1 1 4 7 9 10 | 11 | 12 | 14 | 21 | 23 | e

sorted array 2 2 3 5 6 8 |13 |15 | 16 | 17 | 18 weee

sorted sorted
T T
vector registers 1 4 7 9 2 3 5 6

—T

Odd-even merge

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

IBM Tokyo Research Laboratory

Our technique to integrate Odd-even merge into
usual merge

sorted array 1 1 4 7 9 10 | 11 | 12 | 14 | 21 | 23 | e

sorted array 2 2 3 5 6 8 |13 |15 | 16 | 17 | 18 weee

sorted
A
vector registers 1 2 3 4 5 6 7 9

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 1BM Corporation

IBM Tokyo Research Laboratory

Our technique to integrate Odd-even merge into
usual merge

sorted array 1 1 4 7

sorted array 2 2 3 5

use a scalar comparison
to select array to load from

vector registers

output smaller four values
merged array 1 as merged array

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 1BM Corporation

IBM Tokyo Research Laboratory

Our technique to integrate Odd-even merge into

usual merge

sorted array 1

sorted array 2

vector registers

merged array

7 9 |10 [11 | 12 | 14 | 21 | 23 | e
5 6 8 [13 | 15 | 16 | 17 | 18 e
13 | 15 | 16 5 6 7 9

—T

Odd-even merge

3 4

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors

© 2007 IBM Corporation

IBM Tokyo Research Laboratory

Our technique to integrate Odd-even merge into
usual merge

sorted array 1 1 4 7 9 @ 1112 | 14 | 21 | 23 | e
sorted array 2 2 3 5 6 8 13 | 15 Lu@ 18 eee

vector registers 9 [13 | 15 | 16

merged array 1 2 3 4 5 6 7 8

sorted

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 1BM Corporation

IBM Tokyo Research Laboratory

Comparing merge operations

our integrated

odd-even merge

usual (scalar)

merge Implemented merae operation
operation with SIMD ge op
Number of
unpredictable 1 for every 0 1 for every
conditional output vector output element
branches
Computational
complexity O(N) O(N log(N)) O(N)

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors

© 2007 IBM Corporation

IBM Tokyo Research Laboratory

Parallelizing AA-sort among multiple threads

! thread 1 ¢ thread 2 each thread sorts

:' independent blocks using
| blockl | block2 ;I block3 SIMDized Comb sort
Phase 1 < | \L \l/ !
| ! each thread executes
- > H independent merge

\/ ! operations
h

| thread 1, 2 - multiple threads cooperate
\-| sorted on one merge operation

Phase 2 <

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

IBM Tokyo Research Laboratory

Presentation Outline

= Motivation
= AA-sort: Our new sorting algorithm
» Experimental results

= Summary

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

IBM Tokyo Research Laboratory

Environment for Performance Evaluation

= We used two processors for performance evaluation
— PowerPC 970 using VMX instructions (up to 4 cores)

— Cell BE using SPE cores (up to 16 SPE cores)

= We compared the performance of four algorithms
— AA-sort
— GPUTeraSort [Govindaraju '095]
— ESSL (IBM'’s optimized library)

— STL delivered with GCC (open source library)

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

IBM Tokyo Research Laboratory

Single-thread performance on PowerPC 970 for
various input size

100 ¢

- —h
- —— AA-sort o

. - | —#— GPUTeraSort 5

g 10 ' —a—EssL

> || —e—STL

£ i

c 1

2

5

&)

o

s 01 ¢

0.01

T 2M 4M 8M 16M 32M 64M 128M

number of elements

sorting 32-bit random integers on one core of PowerPC 970

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

IBM Tokyo Research Laboratory

Single-thread performance on PowerPC 970

> 3.3
XO. IE;-
- o
—~ 4 D
(@] -~
()
@
()
£
5
= 2
(@]
()
)
1
0
AA-sort GPUTeraSort ESSL STL
algorithm

sorting 32 M elements of random 32-bit integers on PowerPC 970

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

IBM Tokyo Research Laboratory

Scalability with multiple cores on PowerPC 970

3
o —— AA-sort " éh
. § *° | -=GPUTeraSort 3
g —
5o 2
3 < / x2.6 by 4 cores
£ 215
g S
e
o) —a
3 05 | :/ 4 x2.1 by 4 cores
) |

0 1 2 3 4 5

number of cores

sorting 32 M elements of random 32-bit integers on PowerPC 970

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

IBM Tokyo Research Laboratory

Scalability with multiple cores on Cell BE

14
—
o 12 | | —6— AA-sort o | ?n;
. O —8— GPUTeraSort / =
> © —
a — 10
C
22
Sw 8|
c S5
g‘é 6 12.2x
=2 7.4x by 16 cores
@% 4 by 8 cores
o
3 2| —
0
0 4 8 12 16

number of cores

sorting 32 M elements of random 32-bit integers on Cell BE

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

IBM Tokyo Research Laboratory

Summary

= We proposed a new sorting algorithm called AA-sort, which can take
advantage of

— SIMD instructions
— Multiple Cores (thread-level parallelism)

= We evaluated the AA-sort on PowerPC 970 and Cell BE

— Using only 1 core of PowerPC 970, the AA-sort outperformed

- IBM’s ESSL by 1.7x
« GPUTeraSort by 3.3x

— On Cell BE, the AA-sort showed good scalability

* 8 cores 7.4x
* 16 cores 12.2x

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

IBM Tokyo Research Laboratory

Thank you for your attention!

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

IBM Tokyo Research Laboratory

SIMD instructions are not effective for Quick sort

= SIMD instructions are NOT effective for Quick sort,
which requires element-wise and unaligned memory
accesses

A step of Quick sort (pivot = 7)

5 3 2 [11| 9 4 {12 1 [10| 6 8 | 13

- ~
search an element search an element
larger than the pivot smaller than the pivot

swap
element-wise and unaligned memory accesses

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 IBM Corporation

IBM Tokyo Research Laboratory

Transposed order

= To see the values to sort as a two dimensional array

d(]|dCer] dlUe C Ored (U]jaCerl AdlUCS dlC OIred |Ir

in one vector same slot of adjacent vectors

colu elements in a vector
(7)) —
S —V T
O o 2 ol en| tn
4 —— -
= - e n-1(2r +1\3r +1
E - : . [n 2 (2r +2(3r +2
§ Y o °
o N , ! y ’J
e o 1 |2r-1]|3rn-1 1
Original order Transposed order
= row major = column major

A New Parallel Sorting Algorithm for Multi-Core SIMD Processors © 2007 1BM Corporation

