
AA-Sort: A New Parallel Sorting Algorithm for Multi-Core SIMD Processors

Hiroshi Inoue, Takao Moriyama, Hideaki Komatsu and Toshio Nakatani
IBM Tokyo Research Laboratory

{inouehrs, moriyama, komatsu, nakatani}@jp.ibm.com

Abstract

Many sorting algorithms have been studied in the

past, but there are only a few algorithms that can
effectively exploit both SIMD instructions and thread-
level parallelism. In this paper, we propose a new
parallel sorting algorithm, called Aligned-Access sort
(AA-sort), for shared-memory multi processors. The
AA-sort algorithm takes advantage of SIMD instruc-
tions. The key to high performance is eliminating
unaligned memory accesses that would reduce the
effectiveness of SIMD instructions. We implemented
and evaluated the AA-sort on PowerPC® 970MP and
Cell Broadband EngineTM. In summary, a sequential
version of the AA-sort using SIMD instructions
outperformed IBM’s optimized sequential sorting
library by 1.8 times and GPUTeraSort using SIMD
instructions by 3.3 times on PowerPC 970MP when
sorting 32 M of random 32-bit integers. Furthermore,
a parallel version of AA-sort demonstrated better
scalability with increasing numbers of cores than a
parallel version of GPUTeraSort on both platforms.

1. Introduction

Many modern high-performance processors provide
multiple hardware threads within one physical
processor with multiple cores and simultaneous
multithreading. Many processors also provide a set of
Single Instruction Multiple Data (SIMD) instructions,
such as the SSE instruction set [1] or the VMX
instruction set [2]. They can operate on multiple data
values in parallel to accelerate computationally
intensive programs for a broad range of applications.

An obvious advantage of the SIMD instructions is
the degree of data parallelism available in one
instruction. In addition, they allow programmers to
reduce the number of conditional branches in their
programs. Branches can potentially incur pipeline stalls
and thus limit the performance of superscalar
processors with long pipeline stages. For example, a

program can select the smaller values from two vectors
using vector compare and vector select instructions
without conditional branches. The benefit of reduction
in the number of conditional branches is significant for
many workloads. For example, Zhou et al. [3] reported
that SIMD instructions can accelerate many database
operations by removing branch overhead.

Sorting is one of the most important operations for
many commercial applications, especially database
management systems. Hence many sequential and
parallel sorting algorithms have been studied in the past
[4, 5]. However popular sorting algorithms, such as
quicksort, are not suitable for exploiting SIMD
instructions. For example, a VMX instruction or a SSE
instruction can load or store 128 bits of data between a
vector register and memory with one instruction, but it
is effective only when the data is aligned on a 128-bit
boundary. Many sorting algorithms require unaligned
or element-wise memory accesses, which incur
additional overhead and attenuate the benefits of SIMD
instructions. There is no known technique to remove
unaligned memory accesses from quicksort.

In this paper, we propose a new parallel sorting
algorithm suitable for exploiting both the SIMD
instructions and thread-level parallelism available on
today's multi-core processors. We call the new
algorithm Aligned-Access sort (AA-sort). The AA-sort
consists of two algorithms: an in-core sorting algorithm
and an out-of-core sorting algorithm. Both algorithms
can take advantage of the SIMD instructions and can
also run in parallel with multiple threads.

The in-core sorting algorithm of the AA-sort
extends combsort [6] and makes it possible to eliminate
all unaligned memory accesses and fully exploit the
SIMD instructions. The key idea to improve combsort
is to first sort the input data into the transposed order,
and then reorder it into the desired order. Its
computational time is proportional to N•log(N) on
average. Its disadvantages include poor memory access
locality. Thus we used another sorting algorithm, an
out-of-core sorting algorithm, to make it possible for
the entire AA-sort to use the cache more efficiently.

The out-of-core algorithm is based on mergesort and
employs our new vectorized merge algorithm. It has
better memory access locality than our in-core
algorithm. Its computational complexity is O(N•log(N))
even in the worst case.

The complete AA-sort algorithm first divides all of
the data into blocks that fit in the L2 cache of each
processor core. Next it sorts each block with the in-
core sorting algorithm. Finally it merges the sorted
blocks with our vectorized merge algorithm to
complete the sorting. Both the sorting phase and the
merging phase can be executed by multiple threads in
parallel.

We implemented and evaluated the AA-sort on a
system with 4 cores of the PowerPC® 970MP
processors and a system with 16 cores of the Cell
Broadband EngineTM (Cell BE) processors [7]. In
summary, a sequential version of the AA-sort using
SIMD instructions outperformed that of IBM’s
optimized sequential sorting library by 1.8 times and
GPUTeraSort [8], an existing state-of-the-art sorting
algorithm for SIMD processors, by 3.3 times on
PowerPC 970MP when sorting 32 M of random 32-bit
integers. Furthermore, a parallel version of the AA-sort
demonstrated better scalability with increasing numbers
of cores than a parallel version of the GPUTeraSort. It
achieved a speed up of 12.2x by 16 cores on the Cell
BE, while the GPUTeraSort achieved 7.1x. As a result
the AA-sort was 4.2 times faster on 4 cores of
PowerPC 970MP and 4.9 times faster on 16 cores of
Cell BE processors compared to GPUTeraSort.

The main contribution of this paper is a new parallel
sorting algorithm that can effectively exploit the SIMD
instructions. It consists of two algorithms: an in-core
sorting algorithm and an out-of-core sorting algorithm.
In the in-core algorithm, it is possible to eliminate all
unaligned memory accesses from combsort. For the
out-of-core algorithm, we proposed a novel linear-time
merge algorithm that can take advantage of the SIMD
instructions. As far as the authors know, the AA-sort is
the first sorting algorithm with computational
complexity of O(N•log(N)) that can fully exploit the
SIMD instructions of today’s processors. We show that
our AA-sort achieves higher performance and
scalability with increasing numbers of processor cores
than the best known algorithms.

The rest of the paper is organized as follows.
Section 2 gives an overview of the SIMD instructions
we use for sorting. Section 3 discusses related work.
Section 4 describes the AA-sort algorithm. Section 5
discusses our experimental environment and gives a
summary of our results. Finally, Section 6 draws
conclusions.

2. SIMD instruction set

In this paper we use the Vector Multimedia
eXtension [2] (VMX, also known as AltiVec)
instructions of the PowerPC instruction set to present
our new sorting algorithm. It provides a set of 128-bit
vector registers, each of which can be used as sixteen
8-bit values, eight 16-bit values, or four 32-bit values.
The following VMX instructions are useful for sorting:
vector compare, vector select, and vector permutation.

The vector compare instruction reads from two
input registers and writes to one output register. It
compares each value in the first input register to the
corresponding value in the second input register and
returns the result of comparisons as a mask in the
output register.

The vector select instruction takes three registers as
the inputs and one for the output. It selects a value for
each bit from the first or second input registers by
using the contents of the third input register as a mask
for the selection.

The vector permutation instruction also takes three
registers as the inputs and one for the output. The
instruction can reorder the single-byte values of the
input arbitrarily. The first two registers are treated as
an array of 32 single-byte values, and the third register
is used as an array of indexes to pick 16 arbitrary bytes
from the input register.

These instructions are not unique to the VMX
instruction set. The SPE instruction set of Cell BE
provides these instructions. The SSE instruction set of
the IA32 also provides similar instructions in the
current implementation or will provide them in a future
instruction set [9].

3. Related work

Many sorting algorithms [4, 5] have been proposed
in the past. The quicksort is one of the fastest
algorithms used in practice, and hence there are many
optimized implementations of quicksort available.
However there is no known technique to implement
quicksort algorithm using existing SIMD instructions.

Sanders and Winkel [10] pointed out that the
performance of sorting on today’s processors is often
dominated by pipeline stalls caused by branch
mispredictions. They proposed a new sorting algorithm
named super-scalar sample sort (sss-sort), to avoid such
pipeline stalls by eliminating conditional branches.
They implemented the sss-sort by using the predicated
instructions of the processor and showed that the sss-
sort achieves up to 2 times higher performance over the
STL sorting function delivered with gcc. Our algorithm

can also avoid pipeline stalls caused by branch miss
predictions. Moreover, our algorithm makes it possible
to take advantage of data parallelism of SIMD
instructions.

There are some sorting algorithms suitable for
exploiting SIMD instructions [8, 11, 12]. They were
originally proposed in the context of sorting on
graphics processing units (GPUs), which are powerful
programmable processors with SIMD instruction sets.
Recent programmable GPUs are becoming increasingly
close to multi-core general-purpose processors. Such
programmable GPUs and multi-core processors with
SIMD instructions show the same characteristics, such
as the high thread-level parallelism and data parallelism
of the SIMD engines, which we focus on in this paper.

Govindaraju et al. [8] presented a sorting
architecture called GPUTeraSort. It included a new
sorting algorithm for SIMD instructions that improved
on Batcher’s bitonic merge sort [13]. We refer to this
algorithm, not the entire architecture, as the
GPUTeraSort. The bitonic merge sort has
computational complexity of O(N•log(N)2) and it can
be executed by up to N processors in parallel. The
GPUTeraSort improves this algorithm by altering the
order of comparisons to improve the effectiveness of
the SIMD comparisons and also increase the memory
access locality to reduce cache misses. Comparing the
AA-sort to the GPUTeraSort, both algorithms can be
effectively implemented with SIMD instructions and
both can exploit thread-level parallelism. An advantage
of our AA-sort is smaller computational complexity of
O(N•log(N)) compared to complexity of O(N•log(N)2)
for the GPUTeraSort.

Furtak et al. [14] showed the benefit of exploiting
SIMD instructions for sorting of very small arrays.
They demonstrated that replacing only the last few
steps of quicksort by sorting networks implemented
with SIMD instructions improved the performance of
the entire sort up to 22%. They evaluated the
performance benefits for the SSE instructions and the
VMX instructions. The AA-sort can take advantage of
SIMD instructions not only in the last part of the
sorting but also the entire stages.

4. AA-sort algorithm

In this section, we present our new sorting algorithm
that we call AA-sort. We use 32-bit integers as the data
type of the elements to be sorted. Hence one 128-bit
vector register contains four values. Note that our
algorithm is not limited to this data type and degree of
data parallelism as long as the SIMD instructions
support them. We assume the first element of the array
to be sorted is aligned on a 128-bit boundary and the

number of elements in the array, N, is a multiple of four
for ease of explanation. Figure 1 illustrates the layout
of the array, a[N]. The array of integer values a[N] is
equivalent to an array of vector integers va[N/4]. A
vector integer element va[i] consists of the four integer
values of a[i*4] to a[i*4+3].

AA-sort consists of two algorithms, the in-core
sorting algorithm and the out-of-core sorting algorithm.
The overall AA-sort executes the following phases
using the two algorithms: (1) Divide all of the data into
blocks that fit into the cache of the processor. (2) Sort
each block with the in-core sorting algorithm. (3)
Merge the sorted blocks with the out-of-core algorithm.
First we present these two sorting algorithms and then
illustrate the overall sorting scheme.

4.1. In-core algorithm

Our in-core algorithm of AA-sort improves on
combsort [6], an extension to bubble sort. Bubble sort
compares each element to the next element and swaps
them if they are out of sorted order. Combsort
compares and swaps two non-adjacent elements.
Comparing two values with large separations improves
the performance drastically, because each value moves
toward its final position more quickly. Figure 2 shows
the pseudocode of combsort. The separation (labeled
gap in Figure 2) is divided by a number so called
shrink factor in each iteration until it becomes one. The
authors used 1.3 for the shrink factor. Then the final
loop is repeated until all of the data is sorted. The
computational complexity of combsort approximates
N•log(N) on average [6].

The fundamental operation of many sorting
algorithms including combsort, bitonic merge sort, and
GPUTeraSort, is to compare two values and swap them

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] · · ·

va[0] va[1]

Figure 1. Data structure of the array.

gap = N / SHRINK_FACTOR;

while (gap > 1) {

 for (i = 0; i < N - gap; i++)
 if (a[i] > a[i+gap]) swap(a[i], a[i+gap]);

 gap /= SHRINK_FACTOR;
}

do {

 for (i = 0; i < N - 1; i++)
 if (a[i] > a[i+1]) swap(a[i], a[i+1]);

} while(not totally sorted);

Figure 2. Pseudocode of combsort.

if they are out of order. Each conditional branch in this
operation will be taken in arbitrary order with roughly
50% probability for random input data, and therefore it
is very hard for branch prediction hardware to predict
the branches. This operation can be implemented using
vector compare and vector select instructions without
conditional branches.

Combsort has two problems that reduce the
effectiveness of SIMD instructions: (1) unaligned
memory accesses and (2) loop-carried dependencies.
Regarding the unaligned memory accesses, combsort
requires unaligned memory accesses when the value of
the gap is not a multiple of the degree of data
parallelism of the SIMD instructions. A loop-carried
dependency prevents exploiting the data parallelism of
the SIMD instructions when the value of the gap is
smaller than the degree of data parallelism.

In our proposed in-core sorting algorithms, we
resolved these issues of combsort. The key idea of our
improvement is to once sort the values into the
transposed order shown in Figure 3(a) and reorder the
sorted values into the original order after the sorting as
shown in Figure 3(b). Our in-core sorting algorithm
executes the following 3 steps:

(1) sort values within each vector in ascending order,
(2) execute combsort to sort the values into the

transposed order shown in figure 3(a), and then
(3) reorder the values from the transposed order into

the original order as shown in Figure 3(b).

Step 1 sorts four values in each vector integer va[i].
This step corresponds to the loops with the gaps of N/4,
N/4*2, and N/4*3 in combsort, because the gap
between consecutive elements in one vector register is
N/4 in the transposed order. This step can be
implemented by using vector instructions.

Step 2 executes combsort on the vector integer array
va[N/4] into the transposed order. Figure 4 shows
pseudocode for the Step 2 of our in-core algorithm. In
this code, vector_cmpswap is an operation that
compares and swaps values in each element of the
vector register A with the corresponding element of the
vector register B as shown in Figure 5. Similarly
vector_cmpswap_skew is an operation that compares
and swaps the first to third elements of the vector
register A with the second to fourth elements of the
vector register B. It does not change the last element of
the vector register A and the first element of the vector
register B. Both operations can be implemented using
SIMD instructions. Comparing the code of Figure 4 to
the code of the original combsort in Figure 2, the inner-
most loop is divided into two loops with these two
operations. By these two loops, all of the values are
compared and swapped with the values with the
distance of the gap in the transposed order. The do-
while loop in Figure 4 assures correct order of the
output.

Step 3 reorders the sorted values into the correct
order. This step does not require data-dependent
conditional branches because it only moves each
element in predefined orders, and hence reordering

Original order:

0

Transposed order:

n 2n 3n 1 n+1 2n+1 3n+1 2 n+2 · · ·

0 1 2 3 4 5 6 7 8 9 · · ·

n = N/4: number of vectors

(a) Original and transposed order in memory

1 2 30
5 6 74
9 10 118

···

N-3 N-2 N-1N-4

n 2n 3n0
n+1 2n+1 3n+11
n+2 2n+2 3n+22

···

2n-1 3n-1 N-1n-1

elements in a vector

ar
ra

y
of

 v
ec

to
rs

reorder
after sorting

Transposed order Original order

(b) Schematic of reordering after the sorting
Figure 3. Transposed order.

moving smaller values to MIN side and
larger values to MAX side

A0 A1 A2 A3

B0 B1 B2 B3

vector_cmpswap(A, B)

A0 A1 A2 A3

B0 B1 B2 B3

vector_cmpswap_skew(A, B)

vector A

vector B

vector A

vector B

MIN

MAX

MIN

MAX

Figure 5. The vector_cmpswap and
vector_cmpswap_skew operations.

gap = (N/4) / SHRINK_FACTOR;

while (gap > 1) {

 /* straight comparisons */
 for (i = 0; i < N/4 - gap; i++)
 vector_cmpswap(va[i], va[i+gap]);

 /* skewed comparisons */
 /* when i+gap exceeds N/4 */
 for (i = N/4 - gap; i < N/4; i++)
 vector_cmpswap_skew(va[i],
 va[i+gap – N/4]);

 /* dividing gap by the shrink factor */
 gap /= SHRINK_FACTOR;
}

do {

 for (i = 0; i < N/4 - 1; i++)
 vector_cmpswap(va[i], va[i+1]);

 vector_cmpswap_skew(va[N/4-1], va[0]);

} while(not totally sorted);

Figure 4. Pseudocode of the Step 2.

does not incur any troublesome overhead. Vector
permutation instructions can efficiently execute this
step.

In summary, our in-core sorting algorithm consists
of three steps. All three of the steps can be executed by
SIMD instructions without unaligned memory accesses.
Also all of them can be implemented with a negligible
number of data-dependent conditional branches. The
computational complexity of the entire in-core
algorithm is dominated by Step 2 and is the same as
that of combsort, approximating O(N•log(N)) on
average and O(N2) in the worst case.

Our in-core sorting algorithm suffers from poor
memory access locality. Thus its performance may
degrade if the data cannot fit into the cache of the
processor. We propose another sorting algorithm, the
out-of-core sorting algorithm, which takes that problem
into account.

4.2. Out-of-core algorithm

For the out-of-core sorting, we propose an
innovative method to integrate odd-even merge
algorithm [13] implemented with SIMD instructions
into the usual merge algorithm. Our method make it
possible for the merge operations to take advantage of
SIMD instructions while still keeping the
computational complexity of O(N). This complexity is
smaller than the complexity of O(N•log(N)) for the
odd-even merge or the bitonic merge.

Figure 6 shows the data flow of the odd-even merge
operation for eight values stored in the two vector
registers, which contain four sorted values each. In the
figure the boxes with inequality symbols signify
comparison operations. Each of them reads two values

from the two inputs (one each) and sends the smaller
value to the left output and the larger one to the right.
The odd-even merge operation requires log(P)+1
stages to merge two vector registers, each of which
contain P elements. Here P=4 and log(P)+1=3. Each
stage executes only one vector compare, two vector
select and one or two vector permutation instructions.
If an SIMD instruction set does not support a vector
permutation operation, repeating a vector_cmpswap
operation and a rotation of one vector register can
substitute for the odd-even merge. However this
requires P stages instead of log(P)+1 stages.

The merge operation for two large arrays stored in
memory can be implemented using this merge
operation for the vector registers. Figure 7 shows the
pseudocode for merging of two vector integer arrays va
and vb. In this code, the vector_merge operation is the
merge operation for the vector registers shown in
Figure 6. In each iteration, this code
(1) executes a merge operation of two vector registers,

vMin and vMax,
(2) stores the contents of vMin, the smallest four

values, as output,
(3) compares the next element of each input array, and
(4) loads four values into vMin from the array whose

next element is smaller and advances the pointer
for the array.

Loading new elements from only one input array is
sufficient, because the four data values in vMax are not
larger than at least one of the next elements of the each
input array and hence the larger of the two next
elements must not be contained in the next four output
values. There is only one conditional branch for the
output of every P elements, while the naive merge
operation requires one conditional branch for each
output element.

Our out-of-core sorting algorithm recursively
repeats the merge operation described earlier. It does

A0 A1 A2 A3 B0 B1 B2 B3

sorted sorted

vector register A vector register B

stage 1

sorted

stage 2

stage 3

vector register A vector register B

input

outputA0 A1 A2 A3 B0 B1 B2 B3

< < < <

< <

< <<

: no operation < : comparison
MIN MAX

Figure 6. Data flow of vector merge operation.

aPos = bPos = 0;
vMin = va[aPos++];
vMax = vb[bPos++];

while (aPos < aEnd && bPos < bEnd) {

 /* merge vMin and vMax */
 vector_merge(vMin, vMax);

 /* store the smaller vector as output*/
 vMergedArray[i] = vMin;

 /* load next vector and advance pointer */
 /* a[aPos*4] is first element of va[aPos]*/
 /* and b[bPos*4] is that of vb[bPos] */
 if (a[aPos*4] < b[bPos*4])
 vMin = va[aPos++];
 else
 vMin = vb[bPos++];
}

Figure 7. Pseudocode of the merge
operation in memory.

not require any unaligned memory accesses. However,
it achieves lower performance than our in-core
algorithm for small amounts of data that can fit in the
cache. On the other hand, the out-of-core sorting
algorithm achieves higher performance than the in-core
algorithm when data cannot fit in the cache. This is
because the out-of-core algorithm has much better
memory access locality compared to our in-core sorting
algorithm.

4.3. Overall parallel sorting scheme of AA-sort

The overall AA-sort executes the following phases
using the two algorithms:
(1) Divide all of the data to be sorted into blocks that

fit in the cache or the local memory of the processor.
(2) Sort each block with the in-core sorting algorithm

in parallel by multiple threads, where each thread
processes an independent block.

(3) Merge the sorted blocks with the out-of-core sorting
algorithm by multiple threads.
The block size for the in-core sorting is an important

parameter. The selection of the block size depends on
bandwidth and latency for each level of memory
hierarchy. On the PowerPC 970MP processors, for
example, half of the size of L2 cache was best for the
block size because its L2 cache was fast enough to
keep the processor core busy even there were many L1
cache misses.

If the number of elements of data is N and that the
number of elements in one block is B, then the number
of blocks for the in-core algorithm is (N/B). The
computational time for the in-core sorting of each
block is proportional to B•log(B) on average and hence
the total computational complexity of the in-core
sorting phase is O(N), since B is a constant. The sorting
of each block is independent of the other blocks, so
they can run in parallel on multiple threads up to the
number of blocks. In the out-of-core sorting phase,
merging the sorted blocks involves log(N/B) stages and
the computational complexity of each stage is O(N),
and thus the total computational complexity of this
phase is O(N•log(N)), even in the worst case. For
parallelizing the last few stages of the out-of-core
sorting, the number of blocks becomes smaller than the
number of threads, and hence multiple threads must
cooperate on one merge operation to fully exploit the
thread-level parallelism [15].

The entire AA-sort has the computational
complexity of O(N•log(N)) even in the worst case. Also
it can be executed in parallel by multiple threads with
complexity of O(N•log(N)/k) assuming the number of
threads, k, is smaller than the number of blocks, (N/B).

4.4. Sorting of {key, data} pairs

In real-world workloads, sorting is mostly used to
reorder data structures according to their keys. We can
extend the AA-sort for such purposes. To that end, we
consider sorting for pairs consisting of a key of 32-bit
integer value and a 32-bit piece of associated data, such
as a pointer to the data structure that contains the key.
Assuming the keys and the attached data are stored in
distinct arrays, the comparing and swapping operations
can be implemented by using the result of the
comparison for the key to move both the keys and the
data. When the keys and attached data are stored in an
array one after another, comparing and swapping of
{key, data} pairs can be implemented by adding one
vector permutation instruction after the vector compare
instruction to replace the result of the comparison of
the data with the result of the comparison of the keys.
Hence the data always move with the associated keys in
both cases.

5. Experimental results

We implemented the AA-sort and the GPUTeraSort

for the PowerPC 970MP and the Cell BE with and
without using the SIMD instructions. We used the
GPUTeraSort for comparison because it is the best
existing sorting algorithm for SIMD instructions.
General purpose processors with SIMD instructions,
however, are not the best platforms to execute the
algorithm because it is originally designed for GPUs
with much higher thread-level parallelism and memory
bandwidth than the general purpose processors. We
also evaluated two library functions, IBM’s
Engineering and Scientific Subroutine Library (ESSL)
version 4.2 [16] and the STL library delivered with gcc
implementing introsort [17], on the PowerPC 970MP.
Table 1 summarizes characteristics of each algorithm.

The PowerPC 970MP system used for our
evaluation was equipped with two 2.5 GHz dual-core
PowerPC 970MP processors and 8 GB of system
memory. In total, the system had 4 cores, each of which
had 1 MB of L2 cache memory. The Linux kernel
2.6.20 was running on the system. We also evaluated
the performance of the sorting programs on a system

Table 1. Comparisons of algorithms
complexity algorithm SIMD thread

parallel average worst
AA-sort Yes Yes N•log(N) ←

GPUTeraSort Yes Yes N•log(N)2 ←
ESSL No No N•log(N) N2

STL (introsort) No No N•log(N) ←

equipped with two 2.4 GHz Cell BE processors with 1
GB of system memory. The Cell BE is an asymmetric
multi-core processor that combines a PowerPC core
with eight accelerator cores called SPEs. We used only
the SPE cores for sorting. Thus, 16 SPE cores with 256
KB local memory each were available on the system.
The Linux kernel 2.6.15 was running on the system.

5.1. Implementation details

The programs for the PowerPC 970 were written in
C using the AltiVec intrinsics [18]. We compiled all of
the programs with the IBM XL C/C++ compiler for
Linux v8. The programs for the Cell BE were also
written in C using the intrinsics for SPE [19]. We
compiled our programs with the IBM XL C Compiler
for SPE. All of the programs used the memory with a
16 MB page size to reduce the overhead of TLB
handling on both platforms.

In the implementations of AA-sort, we selected a
half of the size of L2 cache or local memory as the
block size for the in-core sorting phase, 512 KB (128 K
of 32-bit values) on the PowerPC 970MP and 128 KB
(32 K of 32-bit values) on the SPE. The shrink factor
for our in-core sorting algorithm was 1.28. We chose
these parameters based on our measurements.

We used some techniques to reduce the required
bandwidth for system memory. The experimental
implementations of the AA-sort used a multi-way
merge technique [5, 20] with our out-of-core sorting.
We employed a 4-way merge; input data was read from
4 streams and output into a merged output stream. It
reduced the number of merging stages from log2(N/B)
to log4(N/B). Our implementation of the GPUTeraSort
for the Cell BE reduced the amount of data read from
system memory by directly copying data from the local
memory of another SPE core instead of from system
memory whenever possible. It can benefit from huge
bandwidth of the on-chip bus of the Cell BE.

In our parallel implementation of the AA-sort, all of
the threads first execute in-core sorting and then move
onto a merging phase after all of the blocks of input
data are sorted. When executing our out-of-core sorting
with multiple threads, each thread executes
independent merge operations as long as there are
enough blocks to merge. In the last few stages, the
number of blocks becomes smaller than the number of
threads, and hence multiple threads must cooperate on
one merge operation. Our implementation first divides
one input stream into chunks of equal size for each
thread, and then finds a corresponding starting point
and finishing point for another input stream by
executing binary search. Additionally it executes

rebalancing of the data among threads if the data size
for each thread is not balanced.

5.2. Effects of using SIMD instructions

This section focuses on the performance of

sequential implementations of each algorithm with
great emphasis on the effect of SIMD instructions. We
use both the in-core sorting algorithm and the out-of-
core sorting algorithm of the AA-sort separately to
illustrate the effect of SIMD instructions for each
algorithm. Note that the out-of-core sorting algorithm
is not used with such small amount of data when
executing the entire AA-sort.

Figure 8 compares the performance of the sorting
algorithms for 16 K of random 32-bit integers using
only one PowerPC 970MP core. All of the data to be
sorted can fit into the L2 cache of the processor. The
performance of our in-core algorithm, out-of-core
algorithm and the GPUTeraSort was drastically
improved by using the SIMD instructions and the in-
core sorting algorithm with SIMD instructions
achieved the highest performance among all of the
algorithms tested. We also implemented and evaluated
the original combsort using SIMD instructions. The
degree of acceleration by SIMD instructions for the
original combsort was only 2.2. It was not significant
compared to our in-core algorithm because the benefit

0

0.5

1

1.5

2

2.5

3

3.5

in-core
algorithm of

AA-sort

out-of-core
algorithm of

AA-sort

GPUTeraSort ESSL STL

ex
ec

ut
io

n
tim

e
(m

se
c)

without SIMD instructions

with SIMD instructions

x 7.87

x 3.33 x 7.97

Figure 8. Acceleration by SIMD
instructions for sorting 16 K random
integers on one core of PowerPC 970MP

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

in-core
algorithm of

AA-sort

out-of-core
algorithm of

AA-sort

GPUTeraSort ESSL STLbr
an

ch
 m

is
pr

ed
ic

tio
ns

 p
er

 in
st

ru
ct

io
n

without SIMD instructions

with SIMD instructions

Figure 9. Branch misprediction rate.

of the SIMD instructions was reduced by unaligned
memory access and loop-carried dependencies.

The degrees of acceleration with the SIMD
instructions for our in-core algorithm and the
GPUTeraSort were larger than the degree of
parallelism available by the SIMD instructions (4x) due
to reduced number of branch mispredictions. Figure 9
shows the branch misprediction rate measured by using
a performance monitor counter of the processor. The
branch misprediction rates were reduced by more than
a factor of 10 for our in-core algorithm and the
GPUTeraSort. The change of misprediction rate was
smaller for our out-of-core algorithm because data-
dependent conditional branches were reduced but not
totally eliminated.

Table 2 shows a breakdown of the performance gain
with SIMD instructions shown in Figure 8 into two
reasons: reduction in numbers of instructions and
improvements in cycles per instruction (CPI). The
reduction in numbers of instructions was mainly owing
to data parallelism of the SIMD instructions and the
CPI improvements were due to reduced branch
overhead. For our in-core algorithm and GPUTeraSort,
the numbers of instructions were reduced almost in
proportional to the degree of data parallelism available
by the SIMD instructions, while the reduction was not
significant for our out-of-core algorithm. This is
because the vectorized merge for vector registers
shown in Figure 6 is more complicated and requires
more instructions than the naive merge operation for
scalar values.

5.3. Performance for 32-bit integers

In this section, we discuss the performance of

sorting for large 32-bit integer arrays. Figure 10
compares the performance of sequential versions of
four algorithms on the PowerPC 970MP. The AA-sort
and GPUTeraSort were implemented with SIMD
instructions. The x-axis shows the number of elements
up to 128 M elements (512 MB) and the y-axis shows
the execution time. The AA-sort achieved the best
result among all algorithms for every data size. It was
faster by 1.8 times than the ESSL and by 3.0 times than
the STL when sorting 32 M integers. It also surpassed
the performance of the GPUTeraSort by 3.3 times. The
performance advantage of the AA-sort over the
GPUTeraSort became larger with a larger data size
because of the larger computational complexity of the
GPUTeraSort.

Figure 11 illustrates how the performance of each
algorithm depends on four input datasets as shown in
Table 3. The AA-sort and the GPUTeraSort showed
obviously much smaller dependence on the input

dataset than the other two algorithms. This is because
the two implementations with SIMD instructions did
not suffer from branch mispredictions even for the
random input. The performance of the ESSL and the
STL degraded severely for some cases. Our in-core
algorithm may also show poor performance for some
datasets, since it uses a heuristic approach. Our out-of-
core algorithm, however, does not show catastrophic
performance even for the worst case. As a result,
overall the AA-sort also does not depend too much on
the input data, because the input size for the in-core
algorithm is limited to the block size.

Figure 12 shows the execution time of parallel
versions of the AA-sort and the GPUTeraSort on 1, 2,
and 4 PowerPC 970MP cores for 32 M random
integers. It also shows the performance of the ESSL
and the STL on only one core. The AA-sort achieved
larger speed up by using multiple cores than
GPUTeraSort. As a result, the performance of the AA-
sort was 4.2 times as high as the performance of the
GPUTeraSort with 4 cores of PowerPC 970MP. To see
the scalability with larger numbers of cores, Figure 13
shows the scalability of both algorithms on the Cell BE
up to 16 cores when sorting 32 M of 32-bit integers.
Both algorithms showed almost linear speed up for up
to 4 cores. With more than 4 cores, our AA-sort

Table 2. Breakdown of performance gain
algorithm speed up

by SIMD
reduction in
instructions†

improvement
in CPI‡

in-core
algorithm 7.87 4.06 1.94

out-of-core
algorithm 3.33 2.92 1.14

GPUTeraSort 7.97 4.69 1.70

† reduction in instructions
= instruction_countscalar / instruction_countSIMD

‡ improvement in CPI = CPIscalar / CPISIMD

0.01

0.1

1

10

100

1 M 2 M 4 M 8 M 16 M 32 M 64 M 128 M
data size (number of elements)

ex
ec

ut
io

n
tim

e
(s

ec
)

AA-sort
GPUTeraSort
ESSL
STL

Figure 10. Performance of sequential
version of each algorithm on a PowerPC
970MP core for sorting random 32-bit
integers with various data sizes.

= X

demonstrated better scalability than the GPUTeraSort.
For example the AA-sort achieved a speed up of 12.2x
for 16 cores while the GPUTeraSort achieved 7.1x.
This was due to the fact that the GPUTeraSort has a
higher communication/computation ratio than the AA-
sort and the memory bandwidth was a bottleneck that
limited the scalability. The GPUTeraSort requires
higher memory bandwidth because it assumes huge
memory bandwidth of GPUs. As a result, the perfor-
mance of the AA-sort was better than the GPUTeraSort
by 4.9 times with 16 cores of the Cell BE.

5.4. Performance for {key, data} pairs

This section focuses on sorting for pairs of key and

associated data such as a pointer to the structure having
that key value. Figure 14 shows the sorting times of the
AA-sort and the GPUTeraSort for sorting pairs with
various data types for keys while using 16 cores on the
Cell BE. The x-axis shows the number of elements up

to 16 M pairs (128 MB). In the measurements the keys
and the attached data are stored in distinct arrays. The
tested data types of the keys included single-precision
floating-point values, 64-bit integers, and 10-byte
ASCII strings. The floating point keys and the integer
keys were initialized using random numbers. For the
ASCII string keys, we used the input data generator of
the Sort Benchmark [21] to initialize the keys, and
sorted them into the order of the strnicmp() function.

Our implementations for wider keys, 64-bit integers
and 10-byte ASCII strings, employed the hybrid
approach of our algorithm and radixsort. Govindaraju
et al. [8] also used a similar hybrid approach for the
improved bitonic merge sort and radixsort in the
GPUTeraSort. First it extracts the first few bytes from
the keys and encodes them into 32-bit integer values,
then sorts the pairs according to the encoded keys.
After sorting by the first few bytes, when and only
when multiple pairs have the same encoded keys, the
pairs having the same encoded key are sorted using the

0

2

4

6

8

10

12

14

1 2 4 8 16
number of processor cores

sp
ee

d
up

AA-sort

GPUTeraSort

0.158 sec

0.776 sec

with 1 core
AA-sort: 1.92 sec
GPUTeraSort: 5.54 sec

ESSL and STL are
not supporting Cell BE

Figure 13. Scalability with increasing number
of cores on Cell BE for 32 million integers.

0.001

0.01

0.1

1

1 M 2 M 4 M 8 M 16 M
data size (number of {key, data} pairs)

ex
ec

ut
io

n
tim

e
(s

ec
)

32-bit integer
32-bit floating point
64-bit integer
10-byte ASCII

32-bit integerGPUTeraSort

AA-sort

data type of keys

Figure 14. Performance comparisons of
the data type of the key for sorting {key,
data} pairs on the Cell BE using 16 cores.

0

1

2

3

4

5

6

7

8

9

10

AA-sort GPUTeraSort ESSL STL

ex
ec

ut
io

n
tim

e
(s

ec
)

dataset A (random)
dataset B (almost presorted)
dataset C (presorted forward)
dataset D (presorted reverse)

356 sec

Figure 11. Performance comparison on
one PowerPC 970MP core for various
input datasets with 32 million integers.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

AA-sort GPUTeraSort ESSL STL

ex
ec

ut
io

n
tim

e
(s

ec
)

with 1 core
with 2 cores
with 4 cores

x 2.7
by 4 cores

x 2.1
by 4 cores

Figure 12. The execution time of parallel
versions of AA-sort and GPUTeraSort on
up to 4 cores of PowerPC 970MP.

Table 3. Description of datasets.
dataset description pseudocode of initialization

A random for (i=0; i<N; i++) { data[i] = random32(); }

B almost presorted for (i=1; i<N; i++) { data[i] = i; } data[0] = N;

C presorted (forward) for (i=0; i<N; i++) { data[i] = i; }

D presorted (reversed) for (i=0; i<N; i++) { data[i] = N-i; }

next few bytes. The results shown in Figure 14 include
the time for key extraction and encoding. The input for
our sorting function was pairs of {key, pointer}, and
the output was a sorted array of pointers. The
performance of the AA-sort for sorting 16 M pairs with
random integer keys was about 1.6 times slower than
that for sorting 16 M of simple 32-bit integer values.
However the AA-sort achieved up to 5.0 times faster
results than the GPUTeraSort for the {key, pointer}
pairs with 32-bit integer keys. For the wider keys, the
performance was slightly degraded due to the overhead
of the key encoding and repeated sorting. Even the
slowest case with the AA-sort, for the keys of 10-byte
ASCII strings, was much faster than the GPUTeraSort
for the pairs with 32-bit integer keys.

6. Conclusions

This paper describes a new parallel sorting
algorithm that we call Aligned-Access sort (AA-sort).
The AA-sort is suitable for exploiting both the SIMD
instructions and thread-level parallelism available on
today's multi-core processors. The AA-sort does not
involve any unaligned memory accesses that attenuate
the benefit of SIMD instructions, and hence it can
effectively exploit the SIMD instructions. We
implemented and evaluated the AA-sort on PowerPC
970MP and Cell Broadband Engine processors. In
summary, a sequential version of the AA-sort using
SIMD instructions outperformed that of IBM’s ESSL
by 1.8 times and the GPUTeraSort using SIMD
instructions by 3.3 times on the PowerPC 970MP when
sorting 32 M of random 32-bit integers. Furthermore, a
parallel version of the AA-sort demonstrated better
scalability with increasing numbers of cores than a
parallel version of the GPUTeraSort. The AA-sort
achieved speed up of 12.2x by 16 cores on the Cell BE,
while the GPUTeraSort achieved 7.1x. As a result the
AA-sort was 4.2 times faster on 4 cores of the
PowerPC 970MP and 4.9 times faster on 16 cores of
the Cell BE processors compared to the GPUTeraSort.

7. References

[1] Intel Corp. IA-32 Intel Architecture Software

Developer's Manual.
[2] IBM Corp. PowerPC Microprocessor Family:

Vector/SIMD Multimedia Extension Technology
Programming Environments Manual.

[3] J. Zhou and K. A. Ross. Implementing database
operations using SIMD instructions. In Proceedings of
the ACM SIGMOD international conference on
Management of data, pp. 145–156, 2002.

[4] W. A. Martin. Sorting. ACM Computing Surveys, 3(4),
pp. 147–174, 1971.

[5] D. E. Knuth. The Art of Computer Programming. Vol.
3: Sorting and Searching, 1973.

[6] S. Lacey and R. Box. A Fast, Easy Sort. Byte Magazine,
April, pp. 315–320, 1991.

[7] D. Pham et al. The Design and Implementation of a
First-Generation CELL Processor. In Proceedings of the
IEEE International Solid-State Circuits Conference, pp.
184–185, 2005.

[8] N. K. Govindaraju, J. Gray, R. Kumar, and D. Manocha.
GPUTeraSort: High Performance Graphics Coprocessor
Sorting for Large Database Management. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 325–336,
2006.

[9] R. M. Ramanathan. Extending the World’s Most
Popular Processor Architecture. Technology@intel
Magazine, 2006.

[10] P. Sanders and S. Winkel. Super Scalar Sample Sort. In
Proceedings of the European Symposium on Algorithms,
volume 3221 of LNCS, pp. 784–796, 2004.

[11] T. Purcell, C. Donner, M. Cammarano, H. Jensen, and P.
Hanrahan. Photon mapping on programmable graphics
hardware. In Proceedings of ACM SIGGRAPH/
EUROGRAPHICS Workshop On Graphics Hardware,
pp. 41–50, 2003.

[12] N. K. Govindaraju, N. Raghuvanshi, and D. Manocha.
Fast and Approximate Stream Mining of Quantiles and
Frequencies Using Graphics Processors. In Proceedings
of the ACM SIGMOD International Conference on
Management of Data, pp. 611–622, 2005.

[13] K. E. Batcher. Sorting networks and their applications.
In Proceedings of the AFIPS Spring Joint Computer
Conference, 32, pp. 307–314, 1968.

[14] T. Furtak, J. N. Amaral, and R. Niewiadomski. Using
SIMD Registers and Instructions to Enable Instruction-
Level Parallelism in Sorting Algorithms. In Proceedings
of the ACM Symposium on Parallelism in Algorithms
and Architectures, pp. 348–357, 2007.

[15] R. Francis, and I. Mathieson. A Benchmark Parallel Sort
for Shared memory Multiprocessors, IEEE Transactions
on Computers, 37(12), pp. 1619–1626, 1988.

[16] IBM Corp. Engineering Scientific Subroutine Library
(ESSL) and Parallel ESSL, http://www-03.ibm.com/
systems/p/software/essl.html.

[17] D. R. Musser. Introspective Sorting and Selection
Algorithms, Software Practice and Experience, 27(8),
pp. 983-993, 1997.

[18] Freescale Semiconductor Inc. AltiVec Technology
Programming Interface Manual, 1999.

[19] IBM Corp., Sony Computer Entertainment Inc., and
Toshiba Corp. SPU C/C++ Language Extensions, 2005.

[20] T. Nakatani, S. T. Huang, B. W. Arden, and S. K.
Tripathi. K-Way Bitonic Sort, IEEE Transactions on
Computers, 38(2), pp. 283–288, 1989.

[21] Sort Benchmark, http://research.microsoft.com/barc/
SortBenchmark.

PowerPC is a registered trademark of IBM Corporation. Cell
Broadband Engine is a trademark of Sony Computer
Entertainment Inc.

