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Abstract 

 
Many sorting algorithms have been studied in the 

past, but there are only a few algorithms that can 
effectively exploit both SIMD instructions and thread-
level parallelism. In this paper, we propose a new 
parallel sorting algorithm, called Aligned-Access sort 
(AA-sort), for shared-memory multi processors. The 
AA-sort algorithm takes advantage of SIMD instruc-
tions. The key to high performance is eliminating 
unaligned memory accesses that would reduce the 
effectiveness of SIMD instructions. We implemented 
and evaluated the AA-sort on PowerPC® 970MP and 
Cell Broadband EngineTM. In summary, a sequential 
version of the AA-sort using SIMD instructions 
outperformed IBM’s optimized sequential sorting 
library by 1.8 times and GPUTeraSort using SIMD 
instructions by 3.3 times on PowerPC 970MP when 
sorting 32 M of random 32-bit integers. Furthermore, 
a parallel version of AA-sort demonstrated better 
scalability with increasing numbers of cores than a 
parallel version of GPUTeraSort on both platforms.  
 
 
1. Introduction 
 

Many modern high-performance processors provide 
multiple hardware threads within one physical 
processor with multiple cores and simultaneous 
multithreading. Many processors also provide a set of 
Single Instruction Multiple Data (SIMD) instructions, 
such as the SSE instruction set [1] or the VMX 
instruction set [2]. They can operate on multiple data 
values in parallel to accelerate computationally 
intensive programs for a broad range of applications. 

An obvious advantage of the SIMD instructions is 
the degree of data parallelism available in one 
instruction. In addition, they allow programmers to 
reduce the number of conditional branches in their 
programs. Branches can potentially incur pipeline stalls 
and thus limit the performance of superscalar 
processors with long pipeline stages. For example, a 

program can select the smaller values from two vectors 
using vector compare and vector select instructions 
without conditional branches. The benefit of reduction 
in the number of conditional branches is significant for 
many workloads. For example, Zhou et al. [3] reported 
that SIMD instructions can accelerate many database 
operations by removing branch overhead. 

Sorting is one of the most important operations for 
many commercial applications, especially database 
management systems. Hence many sequential and 
parallel sorting algorithms have been studied in the past 
[4, 5]. However popular sorting algorithms, such as 
quicksort, are not suitable for exploiting SIMD 
instructions. For example, a VMX instruction or a SSE 
instruction can load or store 128 bits of data between a 
vector register and memory with one instruction, but it 
is effective only when the data is aligned on a 128-bit 
boundary. Many sorting algorithms require unaligned 
or element-wise memory accesses, which incur 
additional overhead and attenuate the benefits of SIMD 
instructions. There is no known technique to remove 
unaligned memory accesses from quicksort. 

In this paper, we propose a new parallel sorting 
algorithm suitable for exploiting both the SIMD 
instructions and thread-level parallelism available on 
today's multi-core processors. We call the new 
algorithm Aligned-Access sort (AA-sort). The AA-sort 
consists of two algorithms: an in-core sorting algorithm 
and an out-of-core sorting algorithm. Both algorithms 
can take advantage of the SIMD instructions and can 
also run in parallel with multiple threads.  

The in-core sorting algorithm of the AA-sort 
extends combsort [6] and makes it possible to eliminate 
all unaligned memory accesses and fully exploit the 
SIMD instructions. The key idea to improve combsort 
is to first sort the input data into the transposed order, 
and then reorder it into the desired order. Its 
computational time is proportional to N•log(N) on 
average. Its disadvantages include poor memory access 
locality. Thus we used another sorting algorithm, an 
out-of-core sorting algorithm, to make it possible for 
the entire AA-sort to use the cache more efficiently. 



The out-of-core algorithm is based on mergesort and 
employs our new vectorized merge algorithm. It has 
better memory access locality than our in-core 
algorithm. Its computational complexity is O(N•log(N)) 
even in the worst case. 

The complete AA-sort algorithm first divides all of 
the data into blocks that fit in the L2 cache of each 
processor core. Next it sorts each block with the in-
core sorting algorithm. Finally it merges the sorted 
blocks with our vectorized merge algorithm to 
complete the sorting. Both the sorting phase and the 
merging phase can be executed by multiple threads in 
parallel. 

We implemented and evaluated the AA-sort on a 
system with 4 cores of the PowerPC® 970MP 
processors and a system with 16 cores of the Cell 
Broadband EngineTM (Cell BE) processors [7]. In 
summary, a sequential version of the AA-sort using 
SIMD instructions outperformed that of IBM’s 
optimized sequential sorting library by 1.8 times and 
GPUTeraSort [8], an existing state-of-the-art sorting 
algorithm for SIMD processors, by 3.3 times on 
PowerPC 970MP when sorting 32 M of random 32-bit 
integers. Furthermore, a parallel version of the AA-sort 
demonstrated better scalability with increasing numbers 
of cores than a parallel version of the GPUTeraSort. It 
achieved a speed up of 12.2x by 16 cores on the Cell 
BE, while the GPUTeraSort achieved 7.1x. As a result 
the AA-sort was 4.2 times faster on 4 cores of 
PowerPC 970MP and 4.9 times faster on 16 cores of 
Cell BE processors compared to GPUTeraSort.  

The main contribution of this paper is a new parallel 
sorting algorithm that can effectively exploit the SIMD 
instructions. It consists of two algorithms: an in-core 
sorting algorithm and an out-of-core sorting algorithm. 
In the in-core algorithm, it is possible to eliminate all 
unaligned memory accesses from combsort. For the 
out-of-core algorithm, we proposed a novel linear-time 
merge algorithm that can take advantage of the SIMD 
instructions. As far as the authors know, the AA-sort is 
the first sorting algorithm with computational 
complexity of O(N•log(N)) that can fully exploit the 
SIMD instructions of today’s processors. We show that 
our AA-sort achieves higher performance and 
scalability with increasing numbers of processor cores 
than the best known algorithms.  

The rest of the paper is organized as follows. 
Section 2 gives an overview of the SIMD instructions 
we use for sorting. Section 3 discusses related work. 
Section 4 describes the AA-sort algorithm. Section 5 
discusses our experimental environment and gives a 
summary of our results. Finally, Section 6 draws 
conclusions. 

2. SIMD instruction set 
 

In this paper we use the Vector Multimedia 
eXtension [2] (VMX, also known as AltiVec) 
instructions of the PowerPC instruction set to present 
our new sorting algorithm. It provides a set of 128-bit 
vector registers, each of which can be used as sixteen 
8-bit values, eight 16-bit values, or four 32-bit values. 
The following VMX instructions are useful for sorting: 
vector compare, vector select, and vector permutation.  

The vector compare instruction reads from two 
input registers and writes to one output register. It 
compares each value in the first input register to the 
corresponding value in the second input register and 
returns the result of comparisons as a mask in the 
output register.  

The vector select instruction takes three registers as 
the inputs and one for the output. It selects a value for 
each bit from the first or second input registers by 
using the contents of the third input register as a mask 
for the selection. 

The vector permutation instruction also takes three 
registers as the inputs and one for the output. The 
instruction can reorder the single-byte values of the 
input arbitrarily. The first two registers are treated as 
an array of 32 single-byte values, and the third register 
is used as an array of indexes to pick 16 arbitrary bytes 
from the input register. 

These instructions are not unique to the VMX 
instruction set. The SPE instruction set of Cell BE 
provides these instructions. The SSE instruction set of 
the IA32 also provides similar instructions in the 
current implementation or will provide them in a future 
instruction set [9]. 

3. Related work 
 

Many sorting algorithms [4, 5] have been proposed 
in the past. The quicksort is one of the fastest 
algorithms used in practice, and hence there are many 
optimized implementations of quicksort available. 
However there is no known technique to implement 
quicksort algorithm using existing SIMD instructions. 

Sanders and Winkel [10] pointed out that the 
performance of sorting on today’s processors is often 
dominated by pipeline stalls caused by branch 
mispredictions. They proposed a new sorting algorithm 
named super-scalar sample sort (sss-sort), to avoid such 
pipeline stalls by eliminating conditional branches. 
They implemented the sss-sort by using the predicated 
instructions of the processor and showed that the sss-
sort achieves up to 2 times higher performance over the 
STL sorting function delivered with gcc. Our algorithm 



can also avoid pipeline stalls caused by branch miss 
predictions. Moreover, our algorithm makes it possible 
to take advantage of data parallelism of SIMD 
instructions. 

There are some sorting algorithms suitable for 
exploiting SIMD instructions [8, 11, 12]. They were 
originally proposed in the context of sorting on 
graphics processing units (GPUs), which are powerful 
programmable processors with SIMD instruction sets. 
Recent programmable GPUs are becoming increasingly 
close to multi-core general-purpose processors. Such 
programmable GPUs and multi-core processors with 
SIMD instructions show the same characteristics, such 
as the high thread-level parallelism and data parallelism 
of the SIMD engines, which we focus on in this paper.  

Govindaraju et al. [8] presented a sorting 
architecture called GPUTeraSort. It included a new 
sorting algorithm for SIMD instructions that improved 
on Batcher’s bitonic merge sort [13]. We refer to this 
algorithm, not the entire architecture, as the 
GPUTeraSort. The bitonic merge sort has 
computational complexity of O(N•log(N)2) and it can 
be executed by up to N processors in parallel. The 
GPUTeraSort improves this algorithm by altering the 
order of comparisons to improve the effectiveness of 
the SIMD comparisons and also increase the memory 
access locality to reduce cache misses. Comparing the 
AA-sort to the GPUTeraSort, both algorithms can be 
effectively implemented with SIMD instructions and 
both can exploit thread-level parallelism. An advantage 
of our AA-sort is smaller computational complexity of 
O(N•log(N)) compared to complexity of O(N•log(N)2) 
for the GPUTeraSort. 

Furtak et al. [14] showed the benefit of exploiting 
SIMD instructions for sorting of very small arrays. 
They demonstrated that replacing only the last few 
steps of quicksort by sorting networks implemented 
with SIMD instructions improved the performance of 
the entire sort up to 22%. They evaluated the 
performance benefits for the SSE instructions and the 
VMX instructions. The AA-sort can take advantage of 
SIMD instructions not only in the last part of the 
sorting but also the entire stages. 

4. AA-sort algorithm 
 

In this section, we present our new sorting algorithm 
that we call AA-sort. We use 32-bit integers as the data 
type of the elements to be sorted. Hence one 128-bit 
vector register contains four values. Note that our 
algorithm is not limited to this data type and degree of 
data parallelism as long as the SIMD instructions 
support them. We assume the first element of the array 
to be sorted is aligned on a 128-bit boundary and the 

number of elements in the array, N, is a multiple of four 
for ease of explanation. Figure 1 illustrates the layout 
of the array, a[N]. The array of integer values a[N] is 
equivalent to an array of vector integers va[N/4]. A 
vector integer element va[i] consists of the four integer 
values of a[i*4] to a[i*4+3]. 

AA-sort consists of two algorithms, the in-core 
sorting algorithm and the out-of-core sorting algorithm. 
The overall AA-sort executes the following phases 
using the two algorithms: (1) Divide all of the data into 
blocks that fit into the cache of the processor. (2) Sort 
each block with the in-core sorting algorithm. (3) 
Merge the sorted blocks with the out-of-core algorithm. 
First we present these two sorting algorithms and then 
illustrate the overall sorting scheme. 

4.1. In-core algorithm 
 

Our in-core algorithm of AA-sort improves on 
combsort [6], an extension to bubble sort. Bubble sort 
compares each element to the next element and swaps 
them if they are out of sorted order. Combsort 
compares and swaps two non-adjacent elements. 
Comparing two values with large separations improves 
the performance drastically, because each value moves 
toward its final position more quickly. Figure 2 shows 
the pseudocode of combsort. The separation (labeled 
gap in Figure 2) is divided by a number so called 
shrink factor in each iteration until it becomes one. The 
authors used 1.3 for the shrink factor. Then the final 
loop is repeated until all of the data is sorted. The 
computational complexity of combsort approximates 
N•log(N) on average [6]. 

The fundamental operation of many sorting 
algorithms including combsort, bitonic merge sort, and 
GPUTeraSort, is to compare two values and swap them 

 

 
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] · · ·

va[0] va[1]

Figure 1. Data structure of the array. 

gap = N / SHRINK_FACTOR; 

while (gap > 1) { 

  for (i = 0; i < N - gap; i++) 
    if (a[i] > a[i+gap]) swap(a[i], a[i+gap]);

  gap /= SHRINK_FACTOR; 
} 

do { 

  for (i = 0; i < N - 1; i++)  
    if (a[i] > a[i+1]) swap(a[i], a[i+1]); 

} while( not totally sorted ); 

Figure 2. Pseudocode of combsort. 



if they are out of order. Each conditional branch in this 
operation will be taken in arbitrary order with roughly 
50% probability for random input data, and therefore it 
is very hard for branch prediction hardware to predict 
the branches. This operation can be implemented using 
vector compare and vector select instructions without 
conditional branches. 

Combsort has two problems that reduce the 
effectiveness of SIMD instructions: (1) unaligned 
memory accesses and (2) loop-carried dependencies. 
Regarding the unaligned memory accesses, combsort 
requires unaligned memory accesses when the value of 
the gap is not a multiple of the degree of data 
parallelism of the SIMD instructions. A loop-carried 
dependency prevents exploiting the data parallelism of 
the SIMD instructions when the value of the gap is 
smaller than the degree of data parallelism. 

In our proposed in-core sorting algorithms, we 
resolved these issues of combsort. The key idea of our 
improvement is to once sort the values into the 
transposed order shown in Figure 3(a) and reorder the 
sorted values into the original order after the sorting as 
shown in Figure 3(b). Our in-core sorting algorithm 
executes the following 3 steps:  

(1) sort values within each vector in ascending order,  
(2) execute combsort to sort the values into the 

transposed order shown in figure 3(a), and then  
(3) reorder the values from the transposed order into 

the original order as shown in Figure 3(b).  

Step 1 sorts four values in each vector integer va[i]. 
This step corresponds to the loops with the gaps of N/4, 
N/4*2, and N/4*3 in combsort, because the gap 
between consecutive elements in one vector register is 
N/4 in the transposed order. This step can be 
implemented by using vector instructions.  

Step 2 executes combsort on the vector integer array 
va[N/4] into the transposed order. Figure 4 shows 
pseudocode for the Step 2 of our in-core algorithm. In 
this code, vector_cmpswap is an operation that 
compares and swaps values in each element of the 
vector register A with the corresponding element of the 
vector register B as shown in Figure 5. Similarly 
vector_cmpswap_skew is an operation that compares 
and swaps the first to third elements of the vector 
register A with the second to fourth elements of the 
vector register B. It does not change the last element of 
the vector register A and the first element of the vector 
register B. Both operations can be implemented using 
SIMD instructions. Comparing the code of Figure 4 to 
the code of the original combsort in Figure 2, the inner-
most loop is divided into two loops with these two 
operations. By these two loops, all of the values are 
compared and swapped with the values with the 
distance of the gap in the transposed order. The do-
while loop in Figure 4 assures correct order of the 
output.  

Step 3 reorders the sorted values into the correct 
order. This step does not require data-dependent 
conditional branches because it only moves each 
element in predefined orders, and hence reordering 

Original order:

0

Transposed order:

n 2n 3n 1 n+1 2n+1 3n+1 2 n+2 · · ·

0 1 2 3 4 5 6 7 8 9 · · ·
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(a) Original and transposed order in memory 
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(b) Schematic of reordering after the sorting 
Figure 3. Transposed order. 
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Figure 5. The vector_cmpswap and 
vector_cmpswap_skew operations. 

gap = (N/4) / SHRINK_FACTOR; 

while (gap > 1) { 

  /* straight comparisons     */ 
  for (i = 0; i < N/4 - gap; i++) 
      vector_cmpswap(va[i], va[i+gap]); 

  /* skewed comparisons       */ 
  /* when i+gap exceeds N/4   */ 
  for (i = N/4 - gap; i < N/4; i++) 
      vector_cmpswap_skew(va[i], 
                          va[i+gap – N/4]); 

  /* dividing gap by the shrink factor */ 
  gap /= SHRINK_FACTOR; 
} 

do {  

  for (i = 0; i < N/4 - 1; i++) 
      vector_cmpswap(va[i], va[i+1]); 

  vector_cmpswap_skew(va[N/4-1], va[0]); 

} while( not totally sorted ); 

Figure 4. Pseudocode of the Step 2. 



does not incur any troublesome overhead. Vector 
permutation instructions can efficiently execute this 
step. 

In summary, our in-core sorting algorithm consists 
of three steps. All three of the steps can be executed by 
SIMD instructions without unaligned memory accesses. 
Also all of them can be implemented with a negligible 
number of data-dependent conditional branches. The 
computational complexity of the entire in-core 
algorithm is dominated by Step 2 and is the same as 
that of combsort, approximating O(N•log(N)) on 
average and O(N2) in the worst case.  

Our in-core sorting algorithm suffers from poor 
memory access locality. Thus its performance may 
degrade if the data cannot fit into the cache of the 
processor. We propose another sorting algorithm, the 
out-of-core sorting algorithm, which takes that problem 
into account. 

4.2. Out-of-core algorithm 
 

For the out-of-core sorting, we propose an 
innovative method to integrate odd-even merge 
algorithm [13] implemented with SIMD instructions 
into the usual merge algorithm. Our method make it 
possible for the merge operations to take advantage of 
SIMD instructions while still keeping the 
computational complexity of O(N). This complexity is 
smaller than the complexity of O(N•log(N)) for the 
odd-even merge or the bitonic merge. 

Figure 6 shows the data flow of the odd-even merge 
operation for eight values stored in the two vector 
registers, which contain four sorted values each. In the 
figure the boxes with inequality symbols signify 
comparison operations. Each of them reads two values 

from the two inputs (one each) and sends the smaller 
value to the left output and the larger one to the right. 
The odd-even merge operation requires log(P)+1 
stages to merge two vector registers, each of which 
contain P elements. Here P=4 and log(P)+1=3. Each 
stage executes only one vector compare, two vector 
select and one or two vector permutation instructions. 
If an SIMD instruction set does not support a vector 
permutation operation, repeating a vector_cmpswap 
operation and a rotation of one vector register can 
substitute for the odd-even merge. However this 
requires P stages instead of log(P)+1 stages. 

The merge operation for two large arrays stored in 
memory can be implemented using this merge 
operation for the vector registers. Figure 7 shows the 
pseudocode for merging of two vector integer arrays va 
and vb. In this code, the vector_merge operation is the 
merge operation for the vector registers shown in 
Figure 6. In each iteration, this code  
(1) executes a merge operation of two vector registers, 

vMin and vMax,  
(2) stores the contents of vMin, the smallest four 

values, as output,  
(3) compares the next element of each input array, and 
(4) loads four values into vMin from the array whose 

next element is smaller and advances the pointer 
for the array.  

Loading new elements from only one input array is 
sufficient, because the four data values in vMax are not 
larger than at least one of the next elements of the each 
input array and hence the larger of the two next 
elements must not be contained in the next four output 
values. There is only one conditional branch for the 
output of every P elements, while the naive merge 
operation requires one conditional branch for each 
output element.  

Our out-of-core sorting algorithm recursively 
repeats the merge operation described earlier. It does 
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Figure 6. Data flow of vector merge operation.

aPos = bPos = 0; 
vMin = va[aPos++]; 
vMax = vb[bPos++]; 

while (aPos < aEnd && bPos < bEnd) { 

  /* merge vMin and vMax */ 
  vector_merge(vMin, vMax); 

  /* store the smaller vector as output*/ 
  vMergedArray[i] = vMin; 

  /* load next vector and advance pointer  */
  /* a[aPos*4] is first element of va[aPos]*/
  /* and b[bPos*4] is that of vb[bPos]     */
  if (a[aPos*4] < b[bPos*4]) 
      vMin = va[aPos++]; 
  else 
      vMin = vb[bPos++]; 
} 

Figure 7. Pseudocode of the merge 
operation in memory. 



not require any unaligned memory accesses. However, 
it achieves lower performance than our in-core 
algorithm for small amounts of data that can fit in the 
cache. On the other hand, the out-of-core sorting 
algorithm achieves higher performance than the in-core 
algorithm when data cannot fit in the cache. This is 
because the out-of-core algorithm has much better 
memory access locality compared to our in-core sorting 
algorithm.  

4.3. Overall parallel sorting scheme of AA-sort 
 

The overall AA-sort executes the following phases 
using the two algorithms:  
(1) Divide all of the data to be sorted into blocks that 

fit in the cache or the local memory of the processor. 
(2) Sort each block with the in-core sorting algorithm 

in parallel by multiple threads, where each thread 
processes an independent block. 

(3) Merge the sorted blocks with the out-of-core sorting 
algorithm by multiple threads. 
The block size for the in-core sorting is an important 

parameter. The selection of the block size depends on 
bandwidth and latency for each level of memory 
hierarchy. On the PowerPC 970MP processors, for 
example, half of the size of L2 cache was best for the 
block size because its L2 cache was fast enough to 
keep the processor core busy even there were many L1 
cache misses. 

If the number of elements of data is N and that the 
number of elements in one block is B, then the number 
of blocks for the in-core algorithm is (N/B). The 
computational time for the in-core sorting of each 
block is proportional to B•log(B) on average and hence 
the total computational complexity of the in-core 
sorting phase is O(N), since B is a constant. The sorting 
of each block is independent of the other blocks, so 
they can run in parallel on multiple threads up to the 
number of blocks. In the out-of-core sorting phase, 
merging the sorted blocks involves log(N/B) stages and 
the computational complexity of each stage is O(N), 
and thus the total computational complexity of this 
phase is O(N•log(N)), even in the worst case. For 
parallelizing the last few stages of the out-of-core 
sorting, the number of blocks becomes smaller than the 
number of threads, and hence multiple threads must 
cooperate on one merge operation to fully exploit the 
thread-level parallelism [15].  

The entire AA-sort has the computational 
complexity of O(N•log(N)) even in the worst case. Also 
it can be executed in parallel by multiple threads with 
complexity of O(N•log(N)/k) assuming the number of 
threads, k, is smaller than the number of blocks, (N/B).  

4.4. Sorting of {key, data} pairs  
 

In real-world workloads, sorting is mostly used to 
reorder data structures according to their keys. We can 
extend the AA-sort for such purposes. To that end, we 
consider sorting for pairs consisting of a key of 32-bit 
integer value and a 32-bit piece of associated data, such 
as a pointer to the data structure that contains the key. 
Assuming the keys and the attached data are stored in 
distinct arrays, the comparing and swapping operations 
can be implemented by using the result of the 
comparison for the key to move both the keys and the 
data. When the keys and attached data are stored in an 
array one after another, comparing and swapping of 
{key, data} pairs can be implemented by adding one 
vector permutation instruction after the vector compare 
instruction to replace the result of the comparison of 
the data with the result of the comparison of the keys. 
Hence the data always move with the associated keys in 
both cases.  
 
5. Experimental results 

 
We implemented the AA-sort and the GPUTeraSort 

for the PowerPC 970MP and the Cell BE with and 
without using the SIMD instructions. We used the 
GPUTeraSort for comparison because it is the best 
existing sorting algorithm for SIMD instructions. 
General purpose processors with SIMD instructions, 
however, are not the best platforms to execute the 
algorithm because it is originally designed for GPUs 
with much higher thread-level parallelism and memory 
bandwidth than the general purpose processors. We 
also evaluated two library functions, IBM’s 
Engineering and Scientific Subroutine Library (ESSL) 
version 4.2 [16] and the STL library delivered with gcc 
implementing introsort [17], on the PowerPC 970MP. 
Table 1 summarizes characteristics of each algorithm. 

The PowerPC 970MP system used for our 
evaluation was equipped with two 2.5 GHz dual-core 
PowerPC 970MP processors and 8 GB of system 
memory. In total, the system had 4 cores, each of which 
had 1 MB of L2 cache memory. The Linux kernel 
2.6.20 was running on the system. We also evaluated 
the performance of the sorting programs on a system 

Table 1. Comparisons of algorithms 
complexity algorithm SIMD thread 

parallel average worst
AA-sort Yes Yes N•log(N) ← 

GPUTeraSort Yes Yes N•log(N)2 ← 
ESSL No No N•log(N) N2 

STL (introsort) No No N•log(N) ← 



equipped with two 2.4 GHz Cell BE processors with 1 
GB of system memory. The Cell BE is an asymmetric 
multi-core processor that combines a PowerPC core 
with eight accelerator cores called SPEs. We used only 
the SPE cores for sorting. Thus, 16 SPE cores with 256 
KB local memory each were available on the system. 
The Linux kernel 2.6.15 was running on the system.  

5.1. Implementation details 
 

The programs for the PowerPC 970 were written in 
C using the AltiVec intrinsics [18]. We compiled all of 
the programs with the IBM XL C/C++ compiler for 
Linux v8. The programs for the Cell BE were also 
written in C using the intrinsics for SPE [19]. We 
compiled our programs with the IBM XL C Compiler 
for SPE. All of the programs used the memory with a 
16 MB page size to reduce the overhead of TLB 
handling on both platforms. 

In the implementations of AA-sort, we selected a 
half of the size of L2 cache or local memory as the 
block size for the in-core sorting phase, 512 KB (128 K 
of 32-bit values) on the PowerPC 970MP and 128 KB 
(32 K of 32-bit values) on the SPE. The shrink factor 
for our in-core sorting algorithm was 1.28. We chose 
these parameters based on our measurements. 

We used some techniques to reduce the required 
bandwidth for system memory. The experimental 
implementations of the AA-sort used a multi-way 
merge technique [5, 20] with our out-of-core sorting. 
We employed a 4-way merge; input data was read from 
4 streams and output into a merged output stream. It 
reduced the number of merging stages from log2(N/B) 
to log4(N/B). Our implementation of the GPUTeraSort 
for the Cell BE reduced the amount of data read from 
system memory by directly copying data from the local 
memory of another SPE core instead of from system 
memory whenever possible. It can benefit from huge 
bandwidth of the on-chip bus of the Cell BE. 

In our parallel implementation of the AA-sort, all of 
the threads first execute in-core sorting and then move 
onto a merging phase after all of the blocks of input 
data are sorted. When executing our out-of-core sorting 
with multiple threads, each thread executes 
independent merge operations as long as there are 
enough blocks to merge. In the last few stages, the 
number of blocks becomes smaller than the number of 
threads, and hence multiple threads must cooperate on 
one merge operation. Our implementation first divides 
one input stream into chunks of equal size for each 
thread, and then finds a corresponding starting point 
and finishing point for another input stream by 
executing binary search. Additionally it executes 

rebalancing of the data among threads if the data size 
for each thread is not balanced.  

5.2. Effects of using SIMD instructions 
 
This section focuses on the performance of 

sequential implementations of each algorithm with 
great emphasis on the effect of SIMD instructions. We 
use both the in-core sorting algorithm and the out-of-
core sorting algorithm of the AA-sort separately to 
illustrate the effect of SIMD instructions for each 
algorithm. Note that the out-of-core sorting algorithm 
is not used with such small amount of data when 
executing the entire AA-sort. 

Figure 8 compares the performance of the sorting 
algorithms for 16 K of random 32-bit integers using 
only one PowerPC 970MP core. All of the data to be 
sorted can fit into the L2 cache of the processor. The 
performance of our in-core algorithm, out-of-core 
algorithm and the GPUTeraSort was drastically 
improved by using the SIMD instructions and the in-
core sorting algorithm with SIMD instructions 
achieved the highest performance among all of the 
algorithms tested. We also implemented and evaluated 
the original combsort using SIMD instructions. The 
degree of acceleration by SIMD instructions for the 
original combsort was only 2.2. It was not significant 
compared to our in-core algorithm because the benefit 
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of the SIMD instructions was reduced by unaligned 
memory access and loop-carried dependencies. 

The degrees of acceleration with the SIMD 
instructions for our in-core algorithm and the 
GPUTeraSort were larger than the degree of 
parallelism available by the SIMD instructions (4x) due 
to reduced number of branch mispredictions. Figure 9 
shows the branch misprediction rate measured by using 
a performance monitor counter of the processor. The 
branch misprediction rates were reduced by more than 
a factor of 10 for our in-core algorithm and the 
GPUTeraSort. The change of misprediction rate was 
smaller for our out-of-core algorithm because data-
dependent conditional branches were reduced but not 
totally eliminated.  

Table 2 shows a breakdown of the performance gain 
with SIMD instructions shown in Figure 8 into two 
reasons: reduction in numbers of instructions and 
improvements in cycles per instruction (CPI). The 
reduction in numbers of instructions was mainly owing 
to data parallelism of the SIMD instructions and the 
CPI improvements were due to reduced branch 
overhead. For our in-core algorithm and GPUTeraSort, 
the numbers of instructions were reduced almost in 
proportional to the degree of data parallelism available 
by the SIMD instructions, while the reduction was not 
significant for our out-of-core algorithm. This is 
because the vectorized merge for vector registers 
shown in Figure 6 is more complicated and requires 
more instructions than the naive merge operation for 
scalar values. 
 
5.3. Performance for 32-bit integers 

 
In this section, we discuss the performance of 

sorting for large 32-bit integer arrays. Figure 10 
compares the performance of sequential versions of 
four algorithms on the PowerPC 970MP. The AA-sort 
and GPUTeraSort were implemented with SIMD 
instructions. The x-axis shows the number of elements 
up to 128 M elements (512 MB) and the y-axis shows 
the execution time. The AA-sort achieved the best 
result among all algorithms for every data size. It was 
faster by 1.8 times than the ESSL and by 3.0 times than 
the STL when sorting 32 M integers. It also surpassed 
the performance of the GPUTeraSort by 3.3 times. The 
performance advantage of the AA-sort over the 
GPUTeraSort became larger with a larger data size 
because of the larger computational complexity of the 
GPUTeraSort. 

Figure 11 illustrates how the performance of each 
algorithm depends on four input datasets as shown in 
Table 3. The AA-sort and the GPUTeraSort showed 
obviously much smaller dependence on the input 

dataset than the other two algorithms. This is because 
the two implementations with SIMD instructions did 
not suffer from branch mispredictions even for the 
random input. The performance of the ESSL and the 
STL degraded severely for some cases. Our in-core 
algorithm may also show poor performance for some 
datasets, since it uses a heuristic approach. Our out-of-
core algorithm, however, does not show catastrophic 
performance even for the worst case. As a result, 
overall the AA-sort also does not depend too much on 
the input data, because the input size for the in-core 
algorithm is limited to the block size. 

Figure 12 shows the execution time of parallel 
versions of the AA-sort and the GPUTeraSort on 1, 2, 
and 4 PowerPC 970MP cores for 32 M random 
integers. It also shows the performance of the ESSL 
and the STL on only one core. The AA-sort achieved 
larger speed up by using multiple cores than 
GPUTeraSort. As a result, the performance of the AA-
sort was 4.2 times as high as the performance of the 
GPUTeraSort with 4 cores of PowerPC 970MP. To see 
the scalability with larger numbers of cores, Figure 13 
shows the scalability of both algorithms on the Cell BE 
up to 16 cores when sorting 32 M of 32-bit integers. 
Both algorithms showed almost linear speed up for up 
to 4 cores. With more than 4 cores, our AA-sort 

Table 2. Breakdown of performance gain 
algorithm speed up

by SIMD
reduction in 
instructions† 

improvement
in CPI‡ 

in-core 
algorithm 7.87 4.06 1.94 

out-of-core 
algorithm 3.33 2.92 1.14 

GPUTeraSort 7.97 4.69 1.70 

† reduction in instructions  
= instruction_countscalar / instruction_countSIMD 

‡ improvement in CPI = CPIscalar / CPISIMD 
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Figure 10. Performance of sequential 
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demonstrated better scalability than the GPUTeraSort. 
For example the AA-sort achieved a speed up of 12.2x 
for 16 cores while the GPUTeraSort achieved 7.1x. 
This was due to the fact that the GPUTeraSort has a 
higher communication/computation ratio than the AA-
sort and the memory bandwidth was a bottleneck that 
limited the scalability. The GPUTeraSort requires 
higher memory bandwidth because it assumes huge 
memory bandwidth of GPUs. As a result, the perfor-
mance of the AA-sort was better than the GPUTeraSort 
by 4.9 times with 16 cores of the Cell BE. 

5.4. Performance for {key, data} pairs  
 
This section focuses on sorting for pairs of key and 

associated data such as a pointer to the structure having 
that key value. Figure 14 shows the sorting times of the 
AA-sort and the GPUTeraSort for sorting pairs with 
various data types for keys while using 16 cores on the 
Cell BE. The x-axis shows the number of elements up 

to 16 M pairs (128 MB). In the measurements the keys 
and the attached data are stored in distinct arrays. The 
tested data types of the keys included single-precision 
floating-point values, 64-bit integers, and 10-byte 
ASCII strings. The floating point keys and the integer 
keys were initialized using random numbers. For the 
ASCII string keys, we used the input data generator of 
the Sort Benchmark [21] to initialize the keys, and 
sorted them into the order of the strnicmp() function.  

Our implementations for wider keys, 64-bit integers 
and 10-byte ASCII strings, employed the hybrid 
approach of our algorithm and radixsort. Govindaraju 
et al. [8] also used a similar hybrid approach for the 
improved bitonic merge sort and radixsort in the 
GPUTeraSort. First it extracts the first few bytes from 
the keys and encodes them into 32-bit integer values, 
then sorts the pairs according to the encoded keys. 
After sorting by the first few bytes, when and only 
when multiple pairs have the same encoded keys, the 
pairs having the same encoded key are sorted using the 
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Table 3. Description of datasets. 
dataset description pseudocode of initialization 

A random for (i=0; i<N; i++) { data[i] = random32(); }  

B almost presorted for (i=1; i<N; i++) { data[i] = i; }  data[0] = N; 

C presorted (forward) for (i=0; i<N; i++) { data[i] = i; } 

D presorted (reversed) for (i=0; i<N; i++) { data[i] = N-i; } 

 



next few bytes. The results shown in Figure 14 include 
the time for key extraction and encoding. The input for 
our sorting function was pairs of {key, pointer}, and 
the output was a sorted array of pointers. The 
performance of the AA-sort for sorting 16 M pairs with 
random integer keys was about 1.6 times slower than 
that for sorting 16 M of simple 32-bit integer values. 
However the AA-sort achieved up to 5.0 times faster 
results than the GPUTeraSort for the {key, pointer} 
pairs with 32-bit integer keys. For the wider keys, the 
performance was slightly degraded due to the overhead 
of the key encoding and repeated sorting. Even the 
slowest case with the AA-sort, for the keys of 10-byte 
ASCII strings, was much faster than the GPUTeraSort 
for the pairs with 32-bit integer keys. 
 
6. Conclusions 
 

This paper describes a new parallel sorting 
algorithm that we call Aligned-Access sort (AA-sort). 
The AA-sort is suitable for exploiting both the SIMD 
instructions and thread-level parallelism available on 
today's multi-core processors. The AA-sort does not 
involve any unaligned memory accesses that attenuate 
the benefit of SIMD instructions, and hence it can 
effectively exploit the SIMD instructions. We 
implemented and evaluated the AA-sort on PowerPC 
970MP and Cell Broadband Engine processors. In 
summary, a sequential version of the AA-sort using 
SIMD instructions outperformed that of IBM’s ESSL 
by 1.8 times and the GPUTeraSort using SIMD 
instructions by 3.3 times on the PowerPC 970MP when 
sorting 32 M of random 32-bit integers. Furthermore, a 
parallel version of the AA-sort demonstrated better 
scalability with increasing numbers of cores than a 
parallel version of the GPUTeraSort. The AA-sort 
achieved speed up of 12.2x by 16 cores on the Cell BE, 
while the GPUTeraSort achieved 7.1x. As a result the 
AA-sort was 4.2 times faster on 4 cores of the 
PowerPC 970MP and 4.9 times faster on 16 cores of 
the Cell BE processors compared to the GPUTeraSort.  
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