

© ACM, 2009. This is the author's version of the work. It is
posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version was published in OOPSLA
2009, October 25-29, 2009, Orlando, Florida, USA.
http://doi.acm.org/1640089.1640100

How a Java VM Can Get More
from a Hardware Performance Monitor

Hiroshi Inoue and Toshio Nakatani
IBM Research – Tokyo

1623-14, Shimo-tsuruma, Yamato-shi, Kanagawa-ken, 242-8502, Japan
{inouehrs, nakatani}@jp.ibm.com

Abstract
This paper describes our sampling-based profiler that
exploits a processor’s HPM (Hardware Performance
Monitor) to collect information on running Java
applications for use by the Java VM. Our profiler provides
two novel features: Java-level event profiling and
lightweight context-sensitive event profiling. For Java
events, we propose new techniques to leverage the
sampling facility of the HPM to generate object creation
profiles and lock activity profiles. The HPM sampling is
the key to achieve a smaller overhead compared to profilers
that do not rely on a hardware help. To sample the object
creations with the HPM, which can only sample hardware
events such as executed instructions or cache misses, we
correlate the object creations with the store instructions for
Java object headers. For the lock activity profile, we
introduce an instrumentation-based technique, called
ProbeNOP, which uses a special NOP instruction whose
executions are counted by the HPM. For the context-
sensitive event profiling, we propose a new technique
called CallerChaining, which detects the calling context of
HPM events based on the call stack depth (the value of the
stack frame pointer). We show that it can detect the calling
contexts in many programs including a large commercial
application. Our proposed techniques enable both
programmers and runtime systems to get more valuable
information from the HPM to understand and optimize the
programs without adding significant runtime overhead.

Categories and Subject Descriptors. D.3.4
[Programming Languages]: Processors – Run-time
environments

General Terms. Measurement, Performance

Keywords. Hardware Performance Monitor; Profiling;
Calling Context

1. Introduction
Many modern high-performance processors have an HPM
(Hardware Performance Monitor) to count performance-
related hardware events and to sample events at specified
sampling intervals. Such hardware events include executed
instructions, cache misses (at each level of a memory
hierarchy), and branch mispredictions. Many profilers are
capable of using an HPM to provide programmers with
profiles of hardware events.

In this paper, we introduce new techniques in our
profiler that extend the scope of HPM-based profilers in
two ways. First, our profiler can capture Java-level events,
such as object creation or lock activities, by correlating
them with the hardware events directly supported by the
HPM. Second, we make it possible to detect calling context
in addition to the program location (method name and
instruction address) for each HPM event with minimal
additional runtime overhead in many applications.

As examples of Java-level event profiling, here we
study object creation profiling and lock activity profiling.
We show how our profiler can derive object creation
profiles, including information on both allocated objects
and allocation sites, from the store instruction profiles
collected by the HPM. For lock activity profiling, which
cannot be easily derived from hardware events, we propose
a new instrumentation-based technique, called ProbeNOP.
It uses a special NOP instruction, the ProbeNOP
instruction, which does not affect the program execution,
but whose executions are counted by the HPM. To
correlate a piece of code with a hardware event, the JIT
compiler generates a ProbeNOP instruction in the code of
interest, such as a lock acquisition code sequence. It also
encodes information on which register or memory location

to profile at the location of the ProbeNOP instruction
within the unused bits of the ProbeNOP instruction. The
handler for the HPM interrupt decodes the information
encoded in the ProbeNOP instruction and collects the
values of the specified targets. Our ProbeNOP technique
makes it possible to leverage the sampling facility of the
HPM for value profiling in the JVM with low profiling
overhead.

Another new feature in our profiler is an efficient
context detection technique, CallerChaining. It detects the
calling context for the HPM event based on the call stack
depth, calculated from the value in the stack frame pointer.
It does not incur significant additional runtime overhead
compared to profiling that is not aware of the context of the
events. In our CallerChaining, we first collect quadruples
of {caller method, caller call stack depth, callee method,
callee call stack depth} using the HPM. We construct a
CCT (Calling Context Tree) [1] with a call stack depth in
each CCT node by chaining pairs of a caller and callee that
have the same call stack depth. We use the call stack depth
as a hint to distinguish among the calling contexts that
include the same method. While profiling the HPM events,
we capture the call stack depth and the instruction address
for each event and map the event onto a CCT node using
these values. We found that this simple technique works
surprisingly well with many tested benchmarks including a
large application server workload, though it was not able to
uniquely distinguish the full calling context information in
those programs which have complicated CCTs.

We implemented our new profiler in the IBM J9/TR
Java VM and JIT compiler [2] for Linux running on an
IBM POWER6 processor [3]. The runtime overhead of
profiling was 2.2% or less when we controlled the
sampling interval to generate 16,000 samples/sec. Our
techniques do not depend heavily on the specific
environment and thus most of the proposed techniques can
be applied to other processors and other dynamic language
runtimes.

This paper makes the following contributions. (1) We
demonstrate that the HPM can be used to profile high-level
events in language runtime systems by correlating them
with hardware events. We present how our profiler
generates object creation profiles and lock activity profiles
with low overhead. (2) We introduce a lightweight context
detection technique called CallerChaining, which detects
the calling contexts for events without adding runtime
overhead. (3) We present efficient techniques to identify
the Java object that caused an HPM event based on a data
address captured by the HPM. For example, our technique
for identifying objects in the Java heap can avoid the
overhead of costly memory scanning [4].

Our proposed techniques enable both programmers and
runtime systems to get more valuable information from the
HPM to understand and optimize the running programs

without adding excess runtime overhead. For example, the
lock activity profiles can help optimizing a lock protocol
based on its behavior and traits, such as the owner locality
[5, 6]. Also, it is known that the calling context of the
allocation site is important to predict object lifetime [7],
and hence our object creation profiles with the calling
context can support adaptive optimizations based on the
objects’ lifetimes [8].

The rest of the paper is organized as follows. Section 2
gives an overview of the hardware performance monitor of
the POWER6 processor. Section 3 discusses related
profiling techniques. Section 4 describes our HPM-based
sampling profiler. Section 5 illustrates our new techniques
to profile high-level events using the HPM. Section 6 uses
our technique to detect the calling context using the call
stack depth. Section 7 describes the experimental
environment and our results. Finally, Section 8 summarizes
our new techniques.

2. HPM of the POWER6 Processor
In this paper we use the IBM POWER6 processor [3] to
present our new profiling techniques. Like many other
processors, POWER6 has a built-in HPM (Hardware
Performance Monitor) that can monitor and count various
performance-related events, such as the cache misses or
instructions executed on the processor. The POWER6
provides four performance counters (programmable from
the operating system) so that up to four performance-
related events can be counted simultaneously.

An HPM counter can be configured to generate an
interrupt when the counter value overflows. To provide
detailed information on the HPM event that caused the
interrupt, POWER6 has two special purpose registers
called SIAR (sampled instruction address register) and
SDAR (sampled data address register) [9]. The SIAR
contains the instruction address of the sampled instruction
and the SDAR contains the data address if the sampled
event is a memory-related event†. By using the HPM
interrupts, we can sample events for specified sampling
intervals and obtain instruction and data addresses for each
HPM event.

The implementation of an HPM depends on the
processor, but most of today’s processors have similar
features. For example, recent Intel’s x86 processors
support PEBS (precise event based sampling), which
arrows profilers to obtain an architectural state information
of the processor when a selected event occurs [11] like the

† To have accurate values in the SIAR and SDAR registers, we need to use
HPM events named with the prefix PM_MRK. The list of the HPM events
on POWER6 is available in the Oprofile distribution [10].

SIAR and SDAR of the POWER6. The PEBS is useful to
implement our ProbeNOP technique and CallerChaining.
However the PEBS does not support the store instruction
executed event and thus our object creation profiling is not
directly applicable for the PEBS. To implement the
ProbeNOP technique with the PEBS, x87 floating-point
instructions or SIMD instructions can be used as the
ProbeNOP instruction if these instructions are not used in
the JVM.

3. Related Work
There are existing profilers, such as Oprofile [10] in Linux
and the tprof command in IBM AIX, which can generate
hardware events profiles using the HPM. The scope of
those existing profilers is, however, limited to the profiles
for hardware events directly supported as an event in the
HPM, such as cache miss profiles. In contrast, our profiler
can provide low-overhead Java-level events profiles, such
as object creation profiles and the lock activity profiles, in
addition to the hardware event profiles.

There are profilers to capture such Java-level events,
which typically use JVM Tool Interface (JVMTI) [12] to
communicate with the JVM. However they often incur
unacceptable overhead during program execution. For
example, HPROF as included in JRE distributions can
provide a rich set of useful information including CPU time
profiles, object creation profiles, and monitor contention
profiles. Because HPROF incurs significant overhead, the
performance of profiled applications often degrades by
more than a factor of 10. Such overhead may make the
CPU time or monitor contention profiles unreliable and
different from the unmonitored profiles. Our profiler can
provide similar Java-level event profiles with much lower
overhead by exploiting the sampling facility of the HPM.

Due to the importance of the object creation profiles,
many profilers have been developed to collect various
information on object creation. Some profilers insert a
hook in the object creation code to identify the allocation
site, while others count the number of objects for each class
in the Java heap. However a hook incurs significant
overhead, while object counting cannot capture the
allocation site information accurately. Compared to these
techniques, our HPM-based approach can capture
information on both the created objects and on their
allocation sites with low overhead by exploiting the
sampling facility of the HPM. Some software-based
sampling techniques have been proposed for the object
creation sampling [13, 14]. The overhead of these
techniques are typically small, such as less than 3.0% [13].
An advantage of our HPM-based object creation sampling
technique over these software-based sampling techniques is
that we do not need to generate any additional instructions
in the JIT compiler and thus our technique does not impose

additional overhead while the HPM is not configured to
generate interrupts.

We created ProbeNOP, an instrumentation technique for
value profiling, which uses HPM sampling features. In this
technique, we insert only a special NOP instruction in the
program code and thus the overhead is negligible while the
sampling is disabled. In contrast to an existing low-
overhead profiling technique [15], which generates
duplicated code with instrumentations, our technique does
not impose significant space overhead because it only adds
one instruction per sampling point. This advantage makes it
possible to insert instrumentation code for all locations of
interest to generate complete profiles.

Our profiler supports context-sensitive profiling by our
CallerChaining technique. Profiles with calling context
information, consisting of current program locations and
sequences of call sites on the stack, are more informative in
characterizing the program behaviors compared to profiles
with only current locations. Often stack walking is used
when a profiler needs to know the current calling context.
Alternatively, it is also possible to track the current calling
context at each method invocation and exit by inserting the
instrumentation code [1, 16]. However both of these
techniques are very costly. For example, Oprofile supports
context-sensitive profiling by walking the stack at each
invocation of the handler for an HPM interrupt, but this is
much more work than profiling that ignores the contexts.
Our technique avoids this work in the interrupt handler by
not using stack walking.

There are advanced techniques for context-aware
profiling [17, 18, 19, 20]. Among them, Bond and
McKinley’s [17] Probabilistic Calling Context (PCC) can
be directly applicable for the HPM profiling. The PCC
allows for lightweight context-sensitive profiling by
maintaining only one value that represents the current
calling context. Both the PCC and our CallerChaining are
probabilistic approaches to detect the calling context. In
contrast to ours, the PCC generates special code and data
structure to do context-sensitive profiling and thus imposes
overhead in both computation time and memory space in
exchange for higher accuracy. Our CallerChaining does not
impose visible runtime overhead as long as the HPM is not
configured to generate interrupts. This advantage makes
our technique more attractive to use as part of the runtime
support for adaptive optimizations. Because we only use
call stack depth to identify the calling context instead of a
special value in PCC, our technique cannot distinguish
contexts accurately in programs that have very complicated
CCTs. For such programs, we can combine our technique
with the PCC to improve the accuracy in profiling with
additional overhead.

Recently, Mytkowicz et al. [21] proposed a technique
called inferred call path profiling for C and C++ programs.
Although developed independently, their technique also

uses pairs of the current instruction pointer and the call
stack depth to identify the calling context. They focused on
techniques to disambiguate the calling contexts that had the
same call stack depth.

There are some existing techniques that use cache miss
profiles obtained by the HPM when applying adaptive
optimizations in compilers and runtime systems [4, 22, 23,
24]. For example, Adl-Tabatabai et al. [4] exploit cache
miss statistics in their Java JIT compiler to insert effective
prefetch instructions on the Intel Itenium2 processor. Later,
Schneider et al. [22] also used cache miss statistics in the
garbage collector to optimize the placement of objects in
the Jikes RVM on the Intel Pentium4 processor. These
techniques identify the instructions and objects that cause
many cache misses and exploit the information for
optimizations. We seek to provide more information on
running programs, including Java-level event profiles and
context-sensitive event profiles, without adding significant
runtime overhead.

4. Profiling Framework
In this section, we describe the implementation of our
profiler to capture the hardware events and generate the
profiles for those events. In particular, we focus on our
effective translation techniques to identify the Java object
that caused an event based on the data address of the event.
Our new technique to collect Java-level events using the
HPM and our context-sensitive profiling technique will be
described in later Sections 5 and 6, respectively.

4.1 Oprofile device driver in the Linux kernel

Our profiler consists of two parts: an operating system
device driver (to access the HPM from the user space) and
a built-in profiler implemented in the JVM, which accesses
the HPM via the interface exported by the device driver.
We used Linux as our target operating system and used the
existing Oprofile [10] device driver in the Linux kernel as
the basis of our device driver.

The Oprofile device driver for the PowerPC architecture
provides an interface to set the HPM-related special
purpose registers from user space. By using this interface,
we can select up to four HPM events to count in the HPM
counters and also specify a sampling interval for each
counter to generate an interrupt when that counter reaches
its sampling interval. We did not modify this interface.
Oprofile also provides an OS-space buffer to store the
results of the HPM samples. User-space processes can read
the OS-space buffer using a read system call to a special
device file. A user process will block on the system call
and return when the OS-space buffer becomes full or is
explicitly flushed.

4.2 Overview of our profiler

What we extended in the device driver is the information to
capture in the HPM interrupt handler as implemented in the
device driver. The original Oprofile only captures the HPM
counter ID, to label the source of the interrupt, and the
instruction address that caused the event for each HPM
sample. Our extended version also captures a data address
from the SDAR register (for memory-related events) and
the value of the stack frame pointer. We use this frame
pointer value in three ways: (1) to identify the software
thread that caused the event, (2) to identify the Java object
that caused an event if that object is allocated on stack, and
(3) to track the calling context for the events as described
in Section 6. The JVM has two kinds of stack frame
pointers, GPR1 for the system stack and GPR14 for the
Java stack. We use GPR14 in our profiler.

We create a dedicated thread for the HPM profiler in the
JVM to read the HPM samples from the OS-space buffer
and generate the statistics. Though the JVM has another
profiling mechanism based on timer interrupts to control
the JIT compilation, our HPM profiler thread only handles
the HPM-based profiling and does not affect the timer-
based profiling mechanism.

The HPM profiler thread first sets the HPM events to
profile, and then synchronously read the OS-space buffer
for the HPM samples, so the thread blocks on this read
system call until the OS-space buffer becomes full. When
the buffer becomes full, then the HPM profiler thread
returns from the read system call and copies the content
of the buffer into a user-space buffer.

Once the data has been copied to user space, the HPM
profiler thread translates the instruction address of each
sample into a Java method, when the address is included in
a JIT-compiled method, or into a JVM module, when the
address is not in a JIT-compiled method. The JVM module
will be, for example, the interpreter, the memory manager,
or the JIT compiler. The original JVM already has the data
to convert an instruction address of the JIT-compiled
method into a Java method, so we do not need a new data
structure for that purpose. Most JVM implementations
should have similar data structures to identify program
locations when exceptions occur in JIT-compiled methods.

For memory-related events, the HPM profiler thread
also translates the data address to a Java class, an offset in
the object, and the location of the objects (nursery, survivor,
tenure, or stack). We give details on the data address to
Java object translation process in the next sections.

Focusing on running Java applications, we do not use
the HPM sampling during stop-the-world GC. When the
Java heap becomes full and stop-the-world GC begins, we
stop the HPM sampling and explicitly flush the OS-space
buffer. The GC threads must wait for the HPM profiler
thread to complete the data address translation. This is

because the HPM profiler thread cannot identify the Java
object from the data address if the GC threads move the
object in the Java heap. Figure 1 depicts how the HPM
profiler thread collaborates with the other threads with and
without the data address translation. In the current
implementation, we do not parallelize the HPM profiler
thread and use only one dedicated thread.

4.3 Identifying objects in the Java heap

This section describes our new techniques to effectively
find the object that caused a memory-related event, such as
a cache miss, based on a data address obtained from the
HPM, when the data address points at an address inside the
Java heap. As already mentioned in Section 4.2, we ensure

that objects in the Java heap have not been moved by the
garbage collector before the data address to Java object
translation completes.

Adl-Tabatabai et al. [4] do this translation by scanning
memory backward from the sampled data address to find
the nearest valid object header, starting with a pointer to a
virtual function table of the class, in their technique called
Mississippi delta.

To avoid the large cost of this backward scan, we
introduce a new technique, which tries a heuristic before
the scan. It first checks the instruction that caused the event,
and if the instruction is a load or store instruction that
points to an address to access with a value in a register and
a constant offset, it is likely that the value in the register is

time

stop-the-world GC

HPM sampling
enabled

HPM sampling
enabled

HPM sampling
enabled

block in read
system call

block in read
system callblock in read

system call

(1) (2) (3) (4)

HPM profiler
thread

application
threads

GC
threads

(a) without data address
to Java object translations

(1) When the buffer for HPM samples in the OS space becomes full, the HPM profiler thread returns from the

read system call. HPM sampling is disabled.
(2) When the HPM profiler thread finishes processing the samples, HPM sampling is re-enabled.
(3) When a stop-the-world GC starts, the GC threads force flushing the OS-space buffer and the HPM profiler

thread returns from the read system call.
(4) When the stop-the-world GC ends, GC threads re-enable the HPM sampling. (If the HPM profiler thread has

not finished its processing, the GC thread does not re-enable the sampling.)

 stop-the-world GC

HPM sampling
enabled

HPM sampling
enabled

HPM sampling
enabled

block in read
system call

block in read
system callblock in read

system call

(1) (2) (3A) (4)

GC
threads

HPM profiler
thread

(3B)

application
threads

time

(b) with data address
to Java object translations
(for memory-related events)

(3A) When a stop-the-world GC starts, the GC threads force flushing the OS-space buffer and the HPM profiler

thread returns from read system call. The GC threads wait for the HPM profiler thread to finish translating
the data addresses of all samples.

(3B) After the HPM profiler thread completes the translations, it wakes the GC threads and continues running to
generate profiles based on the already translated samples.

Figure 1. Schematics of collaboration among an HPM profiler thread, GC threads, and application threads: (a) when the
data address to Java object translations are not involved (b) when the translations are involved.

a pointer to an object and the constant is an offset within
the object. We then test that location to see if it contains a
valid object header. Because the IBM JIT compiler
generates this form of load and store instructions for field
accesses, this works in many cases. If the instruction is not
in the form or if the assumed location does not contain a
valid object header, we fall back to the memory scan to
find a valid object header. Figure 2 shows pseudocode for
our technique and the existing memory scanning technique.
In SPECjbb2005, we successfully identified the objects
using this heuristic in 84.2% and 83.6% of the L1 and L2
cache miss events. This technique cannot be used if the JIT
compiler uses optimization techniques that change the
object format, such as object inlining [25].

4.4 Identifying stack-allocated objects

This section describes how our profiler identifies a stack-
allocated object that generates an event from a data address.
We can assure that the location of the object in the Java
heap is not changed before the HPM profiler executes the
data address to Java object translations by controlling the
GC activities. However, it is not possible to retain the state
of a stack-allocated object because the stack frame that
included the object was discarded when the application
thread exited from the method. Thus we need another
technique to track stack-allocated objects.

As already described, our profiler captures the value of
the stack frame pointer for each HPM sample. We use the
frame pointer value to identify the stack-allocated objects.
If the sampled data address is in a stack for any Java thread,
the profiler calculates the offset of the data address in the
stack frame by subtracting the frame pointer value from the
data address. Then it looks up a table that contains offsets
and sizes of all stack-allocated objects for each Java
method. We modified the JIT compiler to maintain this
table because the original JVM did not track the
information. The space overhead for this additional data
structure is small because the stack allocation of local

objects based on escape analysis is a costly optimization
and is applied only to a few very hot methods.

5. How to Get Java-level Event
Profiles Using the HPM
In this section, we give details about our techniques to
obtain high-level information in a Java VM using the HPM.
First we describe a simple example for an object creation
profile. Then we describe our techniques for a more
complicated example using lock activity profiling.

5.1 Identifying object creation events by screening
store instructions

Here, we show how our profiler derives an object creation
profile from the HPM samples. Though what we describe
in this section looks simple and naive, it yields accurate
statistics, including information for both the created objects
and allocation sites.

Our observation is that, in our JVM, the first word in the
object header, which is the virtual function table pointer, is
not modified once the object is initialized. Based on this
observation, we create the object creation profiles by first
collecting the store instruction profiles using the HPM,
which includes a data address and an instruction address
for each sampled store instruction, and then translate the
data address of each sample into a Java class and offset in
the object. Here we used the PM_MRK_ST_NEST event
on POWER6. Next, we filter out any sample whose offset
value is not zero. After this filtering, the store instruction
profile has become an object creation profile, because a
store to the virtual function table pointer appears only when
the object is created. Of course, the garbage collector also
writes this word in the headers, but we disable the HPM
sampling during garbage collection to prevent those store
instructions during GC from being included in the profile.

Compared to existing profiling techniques for object
creation profiling, our HPM-based approach can capture
information on both the created objects and their allocation

 Existing Technique

doBackwordMemoryScan (dataAddress) {
p = dataAddress;
count = 0;
while (count < LIMIT) {

if (*p contains a valid object header) {
return p;

}
count++;
p = p – 8; // assuming object is 8-byte aligned

}
return HEADER_NOT_FOUND;

}

Our Technique

findObjectHeader (dataAddress, instructionAddress) {
// shortcut path by checking instruction
instruction = *instructionAddress;
if (instruction is a load/store addressed by register + constant) {

if (*(dataAddress – constant) contains valid object header) {
// successfully identified object
return dataAddress – constant;

}
}
// fall back to memory scanning
return doBackwardMemoryScan (dataAddress);

}

Figure 2. Pseudocode of the two methods to identify the Java object that caused an event.

.

sites with low overhead by exploiting the sampling facility
of the HPM. Our technique does not require any special
code for object allocations nor does it impose limitations in
compiler optimizations.

By applying a similar technique to a profile of store
instructions, we can also create a profile of those objects
and methods which invoke a write barrier for the
generational garbage collector.

5.2 Identifying Lock activities by inserting ProbeNOP
instructions

In this section, we introduce a new instrumentation-based
profiling technique using a special NOP instruction to
capture Java-level events that cannot be easily associated
with hardware events. This technique involves the JIT
compiler generating special NOP instructions whose
execution is counted by the HPM in the code of interest,
such as lock acquisition code sequences.

5.2.1 ProbeNOP

The basic idea of our technique is that we insert a special
NOP instruction where we want to probe. This does not
affect the program meaning or performance but only
increments an HPM counter when encountered. We call
this NOP instruction ProbeNOP. We use the ProbeNOP
instruction to invoke an HPM interrupt and also to send
context-dependent information to the HPM interrupt
handler by encoding the information in unused fields in the
NOP instruction.

We show a simple example of using ProbeNOP in
Figure 3. The left side of the figure shows simple
pseudocode to calculate the sum of the elements in an array
with a ProbeNOP instruction inserted in the loop. This
ProbeNOP does not affect the program execution or

performance if HPM sampling is not active. If the HPM is
configured to count the ProbeNOP executions and to
generate an interrupt with a sampling interval of 10, it still
does not affect the meaning of the code, but it generates an
HPM interrupt once per ten iterations. The pseudocode for
the HPM interrupt handler in the OS is shown on the right
side of the figure. The handler first identifies the
instruction that generates the interrupt and checks if that
instruction is a ProbeNOP. Then it decodes the target
information encoded in the ProbeNOP instruction’s bit
pattern. Here the target is the val stored in reg3. The
handler stores the pair of the instruction address and the
value of the target, reg3, in the OS-space buffer for HPM
samples instead of the pair of the instruction address and
the data address as when the HPM handler is tracking a
memory-related event.

The profiler can later determine the value of the target
by reading the HPM samples from the OS-space buffer. As

load_imm reg1, 0 // i
load_imm reg2, 0 // sum
loop:
load reg3 = array [reg1] // val
ProbeNOP reg3
add reg2 = reg2 + reg3
add reg1 = reg1 + element_size
compare reg1, 100 * element_size
jump_if_less loop

User-space pseudocode

handleInterruptForProbeNOP () {
instructionAddress = read SIAR register;
instruction = *instructionAddress;
if (instruction is ProbeNOP) {

target = decode information encoded in the ProbeNOP;
profiledValue = current value of the target;
store {instructionAddress, profiledValue} in buffer;
return;

}
// should not reach here
return;

}

HPM interrupt handler in OS
HPM interrupt

sum = 0;
for (i = 0; i < 100; i++) {

val = array[i];
ProbeNOP(val);
sum = sum + val;

}

Corresponding pseudo-assembly code

Figure 3. A simple example of ProbeNOP usage.

 Vector Permute VA-form

vperm VRT,VRA,VRB,VRC

4 VRT VRA VRB VRC 43
0 6 11 16 21 26 31

Vector Permute VA-form

vperm VRT,VRA,VRB,VRC

4 VRT VRA VRB VRC 43
0 6 11 16 21 26 31

those 20 bits are used to encode the targets
• first 5 bits: the first target (GPR only)
• next 1 bit: kind of the second target (register or memory)
• next 14 bits: the second target
- for memory 5 bits for base register (GPR only)

9 bits for offset from the base
(-1024 to +1020 by assuming 4-byte alignment)

- for register the target register (GPR, Link Register etc.)

Figure 4. ProbeNOP instruction format on POWER6
using the vector permute instruction [26].

a result, the profiler gets the values of the 10th element,
20th element, .., and the 100th element in the array as a
result of the sampling.

This technique using the ProbeNOP enables value
profiling of the specified target while minimizing the
performance degradation, especially when the HPM
sampling is not enabled. Note that the interrupt handler in
Figure 3 is simplified for ease of explanation. We will
show the pseudocode for the full interrupt handler in
Section 6.

5.2.2 Implementation on POWER6

To implement this technique on POWER6, we use the
vector permute (vperm) instruction of the VMX (Altivec)
instruction set as a ProbeNOP [26]. We selected this
instruction because our JVM does not use VMX
instructions and the HPM of the POWER6 can count the
number of vperm instructions executed by the
PM_MRK_VMX_PERMUTE_ISSUED event. Also, the
VMX instructions are executed in a dedicated pipeline and
thus do not affect the execution of other instructions
significantly. The vperm instruction format has 20 bits
that we can use to encode the target information, because it
uses four registers as operands and each register ID is 5
bits. In the current implementation, we support up to two
targets when collecting values in the interrupt handler in
one ProbeNOP. The first target is dedicated for general
purpose registers and the second target is for one of the
general-purpose registers, another register such as the link
register, or a memory location referenced by the value in
the specified general-purpose register with an offset. If two

targets are specified in a ProbeNOP instruction, the
interrupt handler stores the instruction address and the
values of both targets for each HPM sample. Figure 4
depicts the instruction format of the ProbeNOP.

We have a limitation in implementing our technique on
POWER6 since the HPM interrupt is not precise; the
processor state when an event occurs are not preserved
until the HPM interrupt handler invoked. It means the
target values, such as those in general purpose registers,
may change before the profiler read the values in the
interrupt handler. We can still determine the correct
instruction address and data address because the POWER6
keeps the information in the SIAR and SDAR registers
until the interrupt handler is invoked. To ensure that the
interrupt handler reads a valid target value on POWER6,
we can add a sync instruction after each ProbeNOP as a
workaround†. In the next section, we insert a ProbeNOP in
each lock acquisition operation to generate lock acquisition
profiles. Fortunately, in this case the monitor acquisition
operation inherently includes a sync operation and thus we
did not need to explicitly add an expensive sync instruction.

5.2.3 Lock activity profile using ProbeNOP

In this section, we use the profiling technique with
ProbeNOP to generate a detailed lock activity profile.

† We empirically found this workaround worked on the POWER6
processor, although the Power Instruction Set Architecture [26] does not
explicitly require this behavior for the sync instruction.

...
ProbeNOP(obj); // at monitor enter
// monitor enter for obj
if (obj is in inflated mode || tryLock(obj) == FAILED) {

// tryLock failed if obj is locked by another thread
// or recursion count overflows
monitorEnterHelper(obj);

}
// critical section begins
...

Monitor enter code sequence in JIT-generated code

monitorEnterHelper(obj) {
caller = read link register;
ProbeNOP(obj, caller); // at helper enter
sync();
if (obj is in inflated mode) {

inflatedMonitorEnterHelper(obj);
return;

}
for (i=0; i<loopCount1; i++) {

for (j=0; j<loopCount2; j++) {
if (tryLock(obj) == SUCCESS) return;
ProbeNOP(obj, caller); // at spin loop
sync();
doIdleLoop(); // just consume cycles

}
yield_cpu();

}
inflateTheObject(); // spin locking failed
return;

}

Monitor enter helper in JVM

Figure 5. ProbeNOPs for lock activity profile.

The IBM JVM implements a bimodal locking algorithm
[27, 28, 29] in which a lock word in the object header has
one of two modes: a flat mode for spin locking and an
inflated mode for suspend locking. Each object starts from
the flat mode and enters the inflated mode when a Java
thread fails to acquire the lock of the object by spin locking.
We focus on profiling the flat mode locks with our
techniques. The IBM JVM supports a powerful lock
profiling tool named Java Lock Monitor (JLM), included in
the Performance Inspector [30], which can provide detailed
information on lock contentions. However the scope of
JLM is limited to the inflated locks, and it cannot provide
information on the program locations that caused the lock
contention. Our technique can overcome these limitations,
and combining our profiler with the JLM can give a
complete picture of the lock activities.

We insert ProbeNOP instructions at the following three
kinds of locations:
1) all lock acquisition operations in the JIT-compiled

methods (labeled monitor enter in the figure)
2) at the entry point of the monitor enter helper function

(labeled helper enter)
3) in the spin loop for flat locks in the helper function

(labeled spin loop)
Figure 5 shows the locations of the inserted ProbeNOPs
using simplified pseudocode for the JIT-compiled code and
the helper function. Each ProbeNOP has a different
purpose. The ProbeNOP in the JIT-compiled code is to
capture all of the lock acquisitions, including the successes
that do not call the monitor enter helper function. The
ProbeNOP at the helper entry point is to provide the
program location information for the inflated monitor
activities captured by the JLM. The ProbeNOP in the spin
loop is to identify the locks which consume CPU time in
this spin loop. Note that the two ProbeNOPs in the helper
code are followed by sync instructions to assure that an
HPM interrupt for the ProbeNOP is generated at those

places. These sync instructions are in rarely executed paths
and they do not incur significant overhead in most cases.

The HPM profiler thread can distinguish among the
samples from these three types of ProbeNOPs by the
instruction address in each sample. Then it generates high-
level lock activity profiles, such as the hot locks that often
spent long periods in the spin loop. Programmers can
combine such information with the output of the JLM to
understand the lock activities.

6. How to Get Context-Sensitive Event
Profiles Using HPM
In this section we present our technique, called
CallerChaining, to provide context-sensitive profiles
without walking a stack for each HPM sample.

6.1 Frame-pointer-based Calling Context Tree (CCT)
generation

We first explain how we generate a calling context tree
with a call stack depth in each CCT node from the HPM
samples based on the values in the stack frame pointer. In
this technique, we assume that the size of stack frame for
each method is a constant during the measurements. This
implies we need to stop the JIT compiler during the
measurements and this particular technique is only suitable
for working with an application in a steady state, but is not
suitable for transient states such as those at boot time.

For this technique, we need to collect samples as
quadruples of {caller method, caller call stack depth, callee
method, callee call stack depth}. The sampling of those
values does not require complicated operations and is much
less expensive than the stack walking. Figure 6 shows
examples of HPM sample profiles and a constructed CCT.
In the table, the call stack depths for the callee and caller
are shown as offsets from the base of the stack area of the
thread. Though the stack grows downward in our JVM, we
show the offset value as positive in the figure. We
construct the CCT by chaining the callers and callees based

 A

B C

D D E

E
20
40

50
40

B
C

90
80

D
D

10
80

40
90

C
D

50
100

E
E

1010A40C

1010A50B

number of
samples

caller call
stack depth

caller
method

callee call
stack depth

callee
method

20
40

50
40

B
C

90
80

D
D

10
80

40
90

C
D

50
100

E
E

1010A40C

1010A50B

number of
samples

caller call
stack depth

caller
method

callee call
stack depth

callee
method

10

50 40

90 80 50

100

constructed calling context tree
(number at each node means

call stack depth)

Figure 6. Constructing calling context tree from HPM samples based on call stack depths.

on call stack depths. From the HPM samples shown in the
table, it is obvious that Methods B and C are called from
Method A. Also, Method D is called from Methods B and
C via the paths A-B-D and A-C-D, respectively. The
method E is called from Method C and D, but for Method
D we cannot tell whether the method E is called via path
A-B-D-E or path A-C-D-E from the callee and caller
relationship data alone. For such a case, we can use the call
stack depth to distinguish the paths. In the example,
Method D has a call stack depth of 90 only when it is
called from Method B and thus we can determine that
method E is called via the path A-B-D-E rather than A-C-
D-E. The right side of figure 6 shows the constructed CCT
with the call stack depth in each node. Note that because
this technique distinguishes among the call sites based on
the call stack depth, it cannot distinguish between call sites
in the same method if a method has multiple call sites for
the same callee.

A good way to collect these quadruples is to insert a
ProbeNOP at each method entry point to profile the link
register value (caller address) and the call stack depth. On
the POWER6 processor, however, we need to add a sync
instruction for each ProbeNOP to assure a precise interrupt.
Adding a sync instruction for each method entry point
incurs unacceptable overhead and so we took a different
approach as a workaround. We first configure the HPM to
generate an interrupt after a certain number of instructions
are executed. In this configuration, interrupts are generated
almost randomly throughout the program. If an interrupt
happens in a method prologue, while the link register still
has the caller address, we capture the link register value
(caller address) and the frame pointer value (call stack
depth). This approach does not require ProbeNOP and sync
instructions for each method, but it requires more samples
because we throw away most of the samples that miss the
method prologues. That means that we need a long time to
generate the CCT.

If the stack frame structure allows the interrupt handler
to access the caller address stored in the stack frame, we
can use the samples that do not hit the method prologue. In
the current stack frame structure in our JVM, however, the
location of the stack slot which contains the caller address
is different from method to method, so it is difficult to
obtain the caller address stored on the stack in the interrupt
handler.

Another disadvantage of not using ProbeNOP is that the
number of samples cannot always be used as an indicator
for the hotness of the edge in the CCT. In Figure 6, for
example, the edges A-B and A-C have the same number of
samples (10) as shown in the table, but that does not mean
that Method A calls Methods B and C with the same
frequency, because the size of prologue differs for each
methods. However it is still possible to use the number of
samples to determine the relative hotness of the edges, as

long as those edges point at the same callee. For example,
we can estimate that Method D calls Method E eight times
more often than Method C based on numbers of samples in
the table (10 and 80). We can use these estimates of edge
hotness to distribute the HPM events.

Figure 7 illustrates two cases where our technique fails
to identify the context based on call stack depths. The first
case is one in which some methods, B and F in the figure,
have the same stack frame size. This can be generalized as
to cases where two call sequences, each consisting of
multiple methods, have the same total stack frame size. The
other case is when some methods, B and C here, appear in
the calling context in different orders. In both cases, we
add a node as needed in this phase.

6.2 Mapping HPM events on Calling Context Tree

In this section, we map the HPM events, such as cache
misses, onto the generated CCT. Because our profiler
collects a value in the stack frame pointer for each sample,
it is mostly straightforward to map the events based on the
instruction addresses and the call stack depth. For example,
if Method E caused a cache miss when the call stack depth
was 100, the event is mapped on the node of Method E on
the path A-B-D-E.

When there are multiple nodes having the same pair of a
method and call stack depth, such as the cases shown in
Figure 7, we distribute the HPM events based on hotness of
the edges as many existing profilers, such as gprof [31], do
when distributing the events or execution times for the
callers. In the example of Figure 7(A), cache miss events
generated by Method D are distributed into two paths A-B-
D and A-F-D in proportion to the estimated hotnesses of
the edges B-D and F-D, which we have already calculated
when we built the CCT. If this uncertainty affects the
overall profile too greatly, we can change the stack frame
size of a method by simply adding padding in the stack
frame and retry the profiling [21].

A

B

C

C

B

D D

A

B

D

F

D

B and F have the same
stack frame size

B) same methods
different order

A) different methods
same stack frame size

EE

10

50

80

120 120

40

80

EE

10

5050

9090

Figure 7. Two examples of calling context trees for
which our techniques cannot uniquely identify the calling
context of the Method E.

The lack of precision of the HPM interrupts in
POWER6 is a more severe problem. As already mentioned,
we can get the exact instruction and data addresses that
caused an event, but the frame pointer value (call stack
depth) at the time of the event may have already changed
when the interrupt handler is invoked. Due to this problem,
some HPM events do not have a corresponding node in the
CCT. We try to find the correct nodes for such HPM events
by changing the call stack depth to that of a possible caller
or callee in the CCT. In the CCT of Figure 6, for example,
a cache miss generated by Method E with a call stack depth
of 40 is mapped to the node of Method E in the path A-C-E,
because the node’s caller also has the call stack depth of 40.
This can happen when Method E causes a cache miss but
the HPM interrupt for the cache miss occurs after returning
to the caller, method C. With this fitting process, we
successfully found the corresponding nodes for most of the
samples, even in the very large application.

Complete pseudocode for the entire HPM interrupt
handler appears in Figure 8.

7. Experimental Results
This section evaluates our profiling techniques by using
standard benchmarks and a very large Web application
server, the IBM WebSphere Application Server.

7.1 Profiling overhead

We evaluate our profiler using SPECjbb2005 [32],
SPECjvm2008 (compiler.compiler, derby, sunflow,
xml.validation, serial, and mpegaudio) [33] and DayTrader
2.0 [34] running on IBM WebSphere Application Server
version 7.0 [35]. We implemented our profiler in the 32-bit
JVM included in the IBM SDK for Java 6 SR2. We ran the
benchmarks on an IBM BladeCenter JS22 using 2 cores of
the 4.0-GHz POWER6 processors with 2 SMT threads per
core. This means SPECjbb2005 and SPECjvm2008 were
configured to run with 4 threads. Each core has 64 KB of
L1 data cache and 64 KB of L1 instruction cache and 4 MB
of L2 cache. The size of the Java heap was 2 GB using 16-
MB large pages and the generational garbage collector was
selected. The full JVM command line options were
-Xgcpolicy:gencon -Xms2000m -Xmx2000m -Xmo400m
-Xgcthreads4 -Xlp. The system has 16 GB of system
memory and runs RedHat Enterprise Linux 5.2. For
DayTrader, the DB2 database server and the client
emulator ran on separate machines.

Figure 9 compares the performance of programs with
and without the profiler attached to determine the overhead
of the profiler. The overhead of the profiling depends on
the sampling interval. Shorter intervals (higher interrupt
frequencies) give higher accuracies and larger overheads.
We controlled the sampling interval to generate 8,000
samples/sec for each event (one sample per 500 µsec per
HW thread, or per 2-million CPU cycles) or 2,000

 handleInterrupt () {
for each HPM counter which overflows {

instructionAddress = read SIAR register; // instruction address which caused the interrupt

if (running in Oprofile compatible mode) { // to allow the original Oprofile running with this driver
store {instructionAddress, counterID} in buffer;

}
else if (the counter is counting ProbeNOPs) { // handler for the ProbeNOP profiling (see section 4)

instruction = *instructionAddress;
if (the instruction is a ProbeNOP) { // to wipe out irregular samples

targets = decode information encoded in the ProbeNOP; // one ProbeNOP includes up to two targets
profiledValue1 = current value of the target1;
profiledValue2 = current value of the target2;
store {instructionAddress, profiledValue1, profiledValue2, framePointerValue, counterID} in buffer;

}
}
else if (generating a calling context tree) { // handler for the CCT reconstruction (see section 5)

currentInstAddr = current instruction address // to get the address consistent with the frame pointer
store {currentInstAddr, linkRegisterValue, framePointerValue, counterID} in buffer;

}
else if (SDAR register contains a valid value) { // by checking a flag in a special purpose register

dataAddress = read SDAR register; // handler for memory-related events
store {instructionAddress, dataAddress, framePointerValue, counterID} in buffer;

}
else { // handler for non-memory events

store {instructionAddress, framePointerValue, counterID} in buffer;
}
reset the counter according to the sampling interval;

}
}

Figure 8. Pseudocode for the HPM interrupt handler.

samples/sec for each event. The figure shows the overhead
of three different configurations for the profiler. In the first
configuration (labeled CPI), the profiler counts the active
CPU cycles (PM_RUN_CYC event) and the instructions
executed (PM_INST_CMPL event) simultaneously and
calculates the CPI (cycles per instruction) for each method.
The profiler generated a CPI value for each method every
30 sec. In the second configuration (labeled L1miss), the
profiler counts the L1 cache misses (PM_MRK_
LD_MISS_L1 event) and the instructions executed
(PM_MRK_INST_FIN event). This configuration involved
the expensive data address to Java object translation for the
cache miss events, which requires stopping the GC threads
during the translation and consumed more CPU time in the
HPM profiler. Then the profiler generated a summary of
the cache miss ratios and a sorted list of the objects and
fields that caused the cache misses for each method. The
additional statistics led to more overhead compared to the
first configuration. The overhead to generate an object
creation profile is almost the same as the overhead of the
second configuration because the HPM profiler thread
executes similar operations. In the third configuration
(labeled lock), we inserted ProbeNOPs to monitor the lock
activities as described in Section 5 and the profiler counts
the ProbeNOP instructions executed and all of the
instructions executed in the same interval. In this
configuration, the overhead due to the HPM profiler thread
was similar to the second configuration, confirming that the
inserted ProbeNOPs (vperm instructions) do not
significantly affect the performance. For SPECjbb2005 and
SPECjvm2008, we ran the performance measurements 24
times with four iterations each and averaged the best score
of each run. For DayTrader, we ran and averaged four

measurements. We also show a 95% confidence interval
for each data in the figure. Examples for each type of the
profiles appears in appendix.

From Figure 9, the overhead of the profiler is generally
small, within 2.2%, even for the second and the third
configurations that involve the costly data address to Java
object translations. The difference between the first
configuration and the other configurations mostly comes
from the overhead of the translation. For the third
configuration, the inserted ProbeNOPs did not affect the
performance of the tested programs. The increase in the
code size of JIT-compiled code due to the ProbeNOP, one
instruction per lock acquisition operation, was fairly small
and smaller than the fluctuations due to the dynamic nature
of the JIT compiler. In some programs, the overhead of the
third configuration was slightly smaller than the second
configuration because the data address of each HPM
sample, as captured by the ProbeNOP technique, always
pointed at the Java object header, and the overhead of the
data address to Java object translation was smaller than the
translation in the second configuration.

The sampling frequencies in the configurations were
high enough to generate accurate profiles in most cases.
Actually much lower sampling frequencies, which would
impose much smaller overheads, would provide
sufficiently accurate profiles for most purposes. For
example, Schneider et al. [22] proposed 200 samples/sec as
a reasonable choice on a single-core Pentium4 processor
for their optimizations, while we used 8,000 samples/sec
on the two POWER6 cores. We used a higher sampling
frequency here because some of our advanced techniques,
such as creating the object creation profiles, require a large
number of samples compared to simple cache miss profiles.

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

SPECjbb
20

05

co
mpil

er.
co

mpil
er

de
rby

su
nfl

ow

xm
l.v

ali
da

tio
n

se
ria

l

mpe
ga

ud
io

Day
Trad

er

Geo
. M

EAN

re
la

tiv
e

th
ro

ug
hp

ut
 .

without profiler
with profiler (CPI)
with profiler (L1miss)
with profiler (lock)

hi
gh

er
 is

 fa
st

er

(non-zero
origin)

A) sampling rate = 8,000 samples/sec

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

SPECjbb
20

05

co
mpil

er.
co

mpil
er

de
rby

su
nfl

ow

xm
l.v

ali
da

tio
n

se
ria

l

mpe
ga

ud
io

Day
Trad

er

Geo
. M

EAN

re
la

tiv
e

th
ro

ug
hp

ut
 .

without profiler
with profiler (CPI)
with profiler (L1miss)
with profiler (lock)

hi
gh

er
 is

 fa
st

er

(non-zero
origin)

B) sampling rate = 2,000 samples/sec

Figure 9. Average throughputs without profiler and with three profiler configurations. The error bars show 95%
confidence intervals.

7.2 Accuracy of the object creation profiling

To confirm the accuracy of our object creation profiling
technique, Figure 10 compares the breakdowns of the
numbers of objects created in the Java heap as measured by
our profiler for two benchmarks, SPECjbb2005 and
compiler.compiler, to the numbers counted in the garbage
collector. The figure shows that the object creation profiles
from our profiler were consistent with those generated by
the more accurate method.

To quantitatively evaluate the accuracy of our technique,
we use the overlap metric [15] as calculated by the
following formula:

overlap(profile1, profile2) =

∑ ∈profilesclass
min(ratio(class) in profile1, ratio(class) in profile2)

where

ratio(class) =
number_of_samples(class) / total_number_of_samples

The overlap metric shows how large portion of the samples
are included in both profiles. This metric becomes 100%
for a pair of identical profiles. Figure 11 show the overlap
metric of the profiles generated by our profiler and the
profiles generated by counting objects in the garbage
collector. We show the average overlap metric calculated
from samples gathered in 30 seconds of measurements with
the sampling rates of 8,000 samples/sec and 2,000
samples/sec. We also show the overlap metric calculated
from 4 minutes measurements with the 8,000 samples/sec
sampling rate. The accuracy was limited for mpegaudio
because the number of newly created objects was so small

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Our
profiler

actual

other classes

java/lang/Integer

spec/jbb/Orderline

java/math/BigDecimal

java/lang/String

char array

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Our
profiler

actual

other classes

integer array

char array

com/sun/tools/javac/code/Types$Subst

com/sun/tools/javac/tree/JCTree$JCIdent

com/sun/tools/javac/code/Type$MethodType

java/util/HashMap$Entry

byte array

java/lang/Integer

com/sun/tools/javac/util/ListBuffer

com/sun/tools/javac/util/List

SPECjbb2005 compiler.compiler (SPECjvm2008)
Figure 10. Breakdown of created objects by numbers of objects, as obtained from the HPM.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

30 seconds
2,000 samples/sec

30 seconds
8,000 samples/sec

240 seconds
8,000 samples/sec

number of samples

ov
er

la
p

m
et

ric

SPECjbb2005 compiler.compiler
derby sunflow
xml.validation serial
mpegaudio daytrader

hi
gh

er
 is

 m
or

e
ac

cu
ra

te

Figure 11. Accuracy of the object creation profiles as measured by the overlap metric.

that it was not possible to sample a lot of events required to
generate an accurate profile.

These results show our simple technique to derive the
object creation profile from the store instruction profile is
an effective and accurate way to capture the object creation
behavior with very low overhead. Note that, though Figure
10 shows only the breakdown of object classes, our profiler
got information on the allocation sites for every sampled
object at the same time as shown in an example in
appendix.

7.3 Accuracy of the context-sensitive profiling

To evaluate how accurately our CallerChaining technique
can generate the calling context tree (CCT) based on the
call stack depths, we compare the number of nodes in the
generated CCT and the number of nodes that have multiple
callers with the same call stack depth for each benchmark
in the first two columns of Table 1. As described in Section
5, our technique cannot uniquely identify the locations of
the children of such nodes in a CCT and we distribute the
HPM events based on the edge hotness in the CCT for the
calling contexts that include such nodes. From the table, at
most 7.9% of the nodes were problematic for the bench-
marks other than compiler.compiler. For compiler.compiler,
more than 25% of the nodes have multiple callers with the
same call stack depth, and thus our technique has limited
accuracy for the calling context in each sample. The
compiler.compiler has a very complicated CCT consisting
of the largest number of nodes among the benchmarks even
though the number of methods involved in the CCT is
smaller compared to DayTrader, as shown in the next two
columns of Table 1. This means that each method was
called from a variety of calling contexts, which led to
frequent conflicts of the call stack depths in the different
calling contexts. Note that we enabled the HPM sampling

for five minutes to generate the CCT. This measurement
time can be much shorter if the processor supports precise
HPM interrupts so we could use the ProbeNOP technique
for this purpose.

To evaluate how accurately our technique can identify
the calling context of each HPM event, we show the
number of L1 cache miss events for which we can track
their calling contexts accurately against the total cache miss
events occurring in the JIT-compiled code in the last two
columns of Table 1. For the programs other than
compiler.compiler, we can identify the call sites for at least
one level in more than 90% of the cache miss events, and
for at least three levels in more than 80% of the cache miss
events without ambiguity. Jones and Ryder [7] reported
that only one level of the calling context improved the
prediction of object lifetime though predictions based on
allocation site alone were not accurate enough. Because of
its low overhead and good accuracy, we believe that our
CallerChaining is an attractive way to provide valuable
information to use with adaptive optimizations. For
mpegaudio, we failed to identify the calling contexts for
0.8% of the cache miss events, even though the benchmark
did not suffer from any call stack depth conflicts. These
failures were caused by the imprecise HPM interrupts that
returned mismatched pairs of an instruction address and a
call stack depth. For benchmarks other than
compiler.compiler, the ratios of such failures were 0.1% to
1.3%, while it was 4.4% for compiler.compiler.

Figure 12 shows the L1 cache miss profiles mapped for
the calling contexts for SPECjbb2005. Each line of the
profile shows a method signature, the call stack depth
shown in the offset from the stack base of the thread, the
number of samples in the method (labeled s:), the ratio of
the total samples, the number and ratio for all descendants
and itself (labeled d:). We only show those nodes whose

Table 1. Statistics for the calling context trees for each benchmark. Our technique cannot uniquely identify the
locations of the children of those nodes in a CCT which have multiple callers with the same frame pointer values, such
as Method D in Figure 7.

number of nodes in CCT ratio of L1 cache miss events

benchmark
total

having multiple
callers with the same

call stack depth

number
of

methods
in CCT

average
number of
nodes per
method

whose callers
were uniquely

identified for at
least one level

whose callers
were uniquely

identified for at
least three levels

SPECjbb2005 346 10 (2.9%) 122 2.8 99.5% 99.2%
compiler.compiler 78,264 20,184 (25.8%) 1,477 53.0 71.0% 52.5%

derby 1,092 8 (0.7%) 432 2.5 98.9% 98.9%
sunflow 1,039 57 (5.5%) 104 10.0 97.6% 94.6%

xml.validation 1,745 59 (3.4%) 442 3.9 97.9% 95.6%
serial 1,813 36 (2.0%) 218 8.3 90.8% 80.2%

mpegaudio 54 0 (0.0%) 50 1.1 99.2% 99.2%
DayTrader 37,616 2,962 (7.9%) 2,983 12.6 91.9% 86.4%

 The ratios in parenthesis show the ratio to the total number of nodes.

descendants generated at least 0.3% of the total cache
misses. Also, we do not show inlined methods as separate
nodes in the CCT. In the CCT, the root of all of the calling
contexts is the TransactionManager.go method.
However this method is not the true root in the program
and it has a caller. However the Java threads did not exit
and reenter the TransactionManager.go method
during the measurement period and so the profiler was not
able to identify the caller of this method. By combing the
results of a few stack-walk-based stack traces with our
profiler, the results give a much better picture of the calling
context tree.

Note that these tree-structured profiles were constructed
from the outputs of the HPM profiler in the post-processing
phase, and the profiler did not generate the trees at runtime.
This post-processing took only a few seconds using a non-
optimized Perl script. An entire tree-structured profile is
not required for the adaptive optimizations, such as when
identifying the callers of selected nodes that cause many
events.

While investigating various workloads with our profiler,
we often observed that collection classes such as hashmap
generated many cache misses. In such cases, more valuable
than the program locations was information about the
calling context of the hashmap functions. The information
about the callers of the hashmap functions is not

satisfactory because programmers often wrap a hashmap
with their own class and all callers of the hashmap
functions become the same. Our technique can provide
enough information to identify the callers of such wrapped
hashmaps, even though it cannot uniquely distinguish the
full calling context information.

When more exact calling context information is required,
we could use the PCC [17], which maintains a value to
identify the current calling context at each method entry
and exit. To read the PCC value from the interrupt handler,
we would need to put the value in a location that the
handler can easily find, such as a slot in the stack with a
constant offset from the frame pointer.

8. Summary
In this paper, we described our sampling-based profiler that
exploits a hardware performance monitor (HPM) available
in the processor to collect information on running Java
applications for use by the Java VM. Our profiler provides
two novel features: Java-level events profiling and
lightweight context-sensitive event profiling. For the
former feature, we showed that the HPM can be used to
profile high-level events in language runtime systems by
correlating them with hardware events. We showed how
our profiler generates object creation profiles and lock
activity profiles with low overhead. For lock activity, we

+-spec/jbb/TransactionManager.go()V:0x160 s:0(0.0%) d:221721(91.6%)
+-spec/jbb/TransactionManager.goManual(ILspec/jbb/TimerData;)J:0x210 s:2953(1.2%) d:221376(91.5%)
+-spec/jbb/CustomerReportTransaction.process()Z:0x2d0 s:74758(30.9%) d:75946(31.4%)
+-spec/jbb/Company.getCustomerByLastName(SBLjava/lang/String;)Lspec/jbb/Customer;:0x340 s:454(0.2%) d:1188(0.5%)

+-spec/jbb/CustomerReportTransaction.processTransactionLog()V:0x2d8 s:1581(0.7%) d:6002(2.5%)
+-spec/jbb/infra/Util/XMLTransactionLog.clear()V:0x370 s:669(0.3%) d:985(0.4%)
+-spec/jbb/infra/Util/XMLTransactionLog.populateXML(Lspec/jbb/infra/Util/TransactionLogBuffer;)V:0x360 s:1432(0.6%) d:1533(0.6%)

+-spec/jbb/DeliveryTransaction.process()Z:0x278 s:122(0.1%) d:77080(31.9%)
+-spec/jbb/DeliveryTransaction.preprocess()Z:0x3b0 s:74438(30.8%) d:76904(31.8%)
+-spec/jbb/District.removeOldNewOrders(I)V:0x418 s:780(0.3%) d:883(0.4%)
+-spec/jbb/District.removeOldOrders(I)V:0x420 s:691(0.3%) d:990(0.4%)

+-spec/jbb/NewOrderTransaction.init()V:0x248 s:777(0.3%) d:860(0.4%)
+-spec/jbb/NewOrderTransaction.process()Z:0x330 s:1486(0.6%) d:20621(8.5%)
+-java/util/TreeMap.rbInsert(Ljava/lang/Object;)Ljava/util/TreeMap$Entry;:0x360 s:2092(0.9%) d:2821(1.2%)
+-spec/jbb/Company.getCustomer(JZ)Lspec/jbb/Customer;:0x388 s:1004(0.4%) d:1004(0.4%)
+-spec/jbb/Order.processLines(Lspec/jbb/Warehouse;SZ)Z:0x4b8 s:7935(3.3%) d:15310(6.3%)
+-spec/jbb/Orderline.<init>(Lspec/jbb/Company;IBSSSZ)V:0x500 s:1393(0.6%) d:1405(0.6%)
+-spec/jbb/Orderline.process(Lspec/jbb/Item;Lspec/jbb/Stock;)V:0x5d8 s:3162(1.3%) d:5232(2.2%)
+-java/math/BigDecimal.multiply(Ljava/math/BigDecimal;)Ljava/math/BigDecimal;:0x640 s:1513(0.6%) d:1513(0.6%)

+-spec/jbb/NewOrderTransaction.processTransactionLog()V:0x2c8 s:3754(1.6%) d:13269(5.5%)
+-spec/jbb/infra/Util/TransactionLogBuffer.putDollars(Ljava/math/BigDecimal;III)V:0x318 s:504(0.2%) d:1040(0.4%)
+-spec/jbb/infra/Util/TransactionLogBuffer.putText(Ljava/lang/String;III)V:0x308 s:1793(0.7%) d:1793(0.7%)
+-spec/jbb/infra/Util/XMLTransactionLog.clear()V:0x360 s:1236(0.5%) d:1630(0.7%)
+-spec/jbb/infra/Util/XMLTransactionLog.populateXML(Lspec/jbb/infra/Util/TransactionLogBuffer;)V:0x350 s:3115(1.3%) d:3482(1.4%)

+-spec/jbb/OrderStatusTransaction.processTransactionLog()V:0x268 s:89(0.0%) d:935(0.4%)
+-spec/jbb/PaymentTransaction.init()V:0x250 s:696(0.3%) d:1078(0.4%)
+-spec/jbb/PaymentTransaction.process()Z:0x2c0 s:1058(0.4%) d:7627(3.2%)
+-spec/jbb/Company.getCustomerByLastName(SBLjava/lang/String;)Lspec/jbb/Customer;:0x330 s:840(0.3%) d:2227(0.9%)
+-spec/jbb/TreeMapDataStorage.getMedianValue(Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object;:0x390 s:28(0.0%) d:1238(0.5%)
+-java/util/TreeMap$AbstractSubMapIterator.<init>(Ljava/util/TreeMap$NavigableSubMap;)V:0x3b0 s:3(0.0%) d:1207(0.5%)

+-java/util/TreeMap$AscendingSubMapIterator.getBoundaryNode()Ljava/util/TreeMap$Entry;:0x3c8 s:0(0.0%) d:1120(0.5%)
+-java/util/TreeMap$NavigableSubMap.smallerEntry(Ljava/lang/Object;)Ljava/util/TreeMap$Entry;:0x3f0 s:1(0.0%) d:1120(0.5%)
+-java/util/TreeMap$NavigableSubMap.findLowerEntry(Ljava/lang/Object;)Ljava/util/TreeMap$Entry;:0x428 s:2(0.0%) d:1119(0.5%)
+-java/util/TreeMap$NavigableSubMap.findEndNode()Ljava/util/TreeMap$Entry;:0x498 s:1068(0.4%) d:1068(0.4%)

+-spec/jbb/Warehouse.removeOldestHistory()V:0x300 s:49(0.0%) d:1121(0.5%)
+-java/util/TreeMap.find(Ljava/lang/Object;)Ljava/util/TreeMap$Entry;:0x330 s:654(0.3%) d:814(0.3%)

+-spec/jbb/Warehouse.updateHistory(Lspec/jbb/History;)V:0x300 s:321(0.1%) d:2433(1.0%)
+-java/util/TreeMap.put(Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object;:0x320 s:0(0.0%) d:2112(0.9%)
+-java/util/TreeMap.rbInsert(Ljava/lang/Object;)Ljava/util/TreeMap$Entry;:0x350 s:1568(0.6%) d:2112(0.9%)

+-spec/jbb/PaymentTransaction.processTransactionLog()V:0x2e8 s:2242(0.9%) d:7964(3.3%)
+-spec/jbb/infra/Util/XMLTransactionLog.clear()V:0x380 s:1045(0.4%) d:1303(0.5%)
+-spec/jbb/infra/Util/XMLTransactionLog.populateXML(Lspec/jbb/infra/Util/TransactionLogBuffer;)V:0x370 s:1959(0.8%) d:2126(0.9%)

+-spec/jbb/StockLevelTransaction.process()Z:0x2b8 s:4127(1.7%) d:4127(1.7%)

Figure 12. An example of HPM events mapped to the calling context trees (L1 data cache miss profile for SPECjbb2005).
We show only those nodes whose descendants generated at least 0.3% of the total events.

presented a lightweight context detection technique called
CallerChaining, which detects the calling context for
events. Our proposed techniques enable both programmers
and runtime systems to get valuable information from the
HPM to understand and optimize running programs
without adding major overhead.

Based on the insights in this paper, we hope that future
processors support the precise HPM interrupts that allow
the profiling tools to obtain the detailed processor states at
the time of HPM events. Also NOP instructions whose

execution can be counted by the HPM can provide more
freedom for programmers to exploit the HPM sampling
facility and thus offers another interesting extended use of
the HPM.

Acknowledgments
We are grateful to the anonymous reviewers for their
valuable comments and suggestions. We thank Mauricio
Serrano and Peter F. Sweeney for their useful feedback and
detailed comments on earlier drafts.

Appendix
This appendix shows examples of various profiles to show what kind of information is included in the profiles.

(a) An example of CPI profile (for SPECjbb2005).
 RUN CYCLE INSTRUCTION RATIO METHOD============== ============== ======= ==

% samples % samples
32.2% (77637) 9.8% (23753) 1131.31% spec/jbb/DeliveryTransaction.preprocess()Z
13.9% (33441) 9.4% (22828) 507.04% spec/jbb/CustomerReportTransaction.process()Z
4.3% (10255) 9.6% (23263) 152.58% spec/jbb/infra/Util/XMLTransactionLog.populateXML(
2.5% (6049) 1.1% (2572) 814.04% spec/jbb/StockLevelTransaction.process()Z
2.4% (5677) 3.5% (8456) 232.37% spec/jbb/infra/Util/TransactionLogBuffer.putText(L

...

(b) An example of cache miss profile (L1 data cache miss profile for SPECjbb2005).
L1D$ MISS MRKD INSTRUCTION RATIO METHOD
============== ============== ======= ==

% samples % samples
30.6% (74107) 11.2% (15992) 2.93% spec/jbb/CustomerReportTransaction.process()Z
30.1% (72905) 11.4% (15178) 2.83% spec/jbb/DeliveryTransaction.preprocess()Z
4.7% (11480) 2.8% (4371) 1.84% spec/jbb/Order.processLines(Lspec/jbb/Warehouse;SZ
3.0% (7251) 8.7% (15535) 0.37% spec/jbb/infra/Util/XMLTransactionLog.populateXML(

...

spec/jbb/DeliveryTransaction.preprocess()Z 30.1% (72905)
L1D$ MISS MRKD LOCATION OFFSET CLASS
============== ======== ====== ===============================

% samples
4.0% (9720) tenure 0 spec/jbb/Stock
2.5% (6108) tenure 32 spec/jbb/Stock
2.0% (4847) nursery 8 spec/jbb/Orderline
1.9% (4552) nursery 0 java/math/BigDecimal

...

(c) An example of lock activity profile (for DayTrader).
MONITOR ENTER INSTRUCTION RATIO METHOD
============== ============== ======= ==

% samples % samples
9.0% (22629) 0.5% (1258) 1.29% org/apache/openjpa/jdbc/sql/SQLBuffer.append(Ljava
4.5% (11287) 0.5% (1143) 0.71% org/apache/openjpa/jdbc/meta/strats/HandlerFieldSt
4.3% (10778) 0.6% (1399) 0.55% org/apache/openjpa/jdbc/sql/SelectImpl.getTableInd
2.9% (7397) 0.3% (606) 0.88% org/apache/openjpa/jdbc/sql/SelectImpl$SelectResul

...

org/apache/openjpa/jdbc/sql/SQLBuffer.append(Ljava 9.0% (22629)
MONITOR ENTER LOCATION CLASS
============== ======== ===============================

% samples
9.0% (22625) nursery java/lang/StringBuffer

...

SPIN LOOP INSTRUCTION RATIO METHOD
============== ============== ======= ==

% samples % samples
36.9% (75) 0.0% (90) 0.06% com/ibm/ejs/ras/Tr.register(Ljava/lang/Class;Ljava
14.3% (29) 0.1% (187) 0.01% org/apache/openjpa/meta/MetaDataRepository.getMeta
6.4% (13) 0.2% (455) 0.00% com/ibm/io/async/ResultHandler.runEventProcessingL
3.0% (6) 0.0% (58) 0.01% com/ibm/ws/persistence/EntityManagerImpl.createNam

...

com/ibm/ejs/ras/Tr.register(Ljava/lang/Class;Ljava 36.9% (75)
SPIN LOOP LOCATION CLASS
============== ======== ===============================

% samples
36.9% (75) tenure com/ibm/ws/bootstrap/WsLogManager
...

HELPER ENTER INSTRUCTION RATIO METHOD
============== ============== ======= ==

% samples % samples
44.9% (48) 0.1% (185) 0.01% org/apache/openjpa/meta/MetaDataRepository.getMeta
13.1% (14) 0.3% (650) 0.00% java/util/Hashtable.put(Ljava/lang/Object;Ljava/la
6.5% (7) 0.0% (5) 0.08% com/ibm/ws/util/BoundedBuffer.waitGet_(J)V
5.6% (6) 0.2% (377) 0.00% java/util/Hashtable.get(Ljava/lang/Object;)Ljava/l

...

org/apache/openjpa/meta/MetaDataRepository.getMeta 44.9% (48)
HELPER ENTER LOCATION CLASS
============== ======== ===============================

% samples
44.9% (48) tenure org/apache/openjpa/jdbc/meta/MappingRepository
...

(d) An example of object creation profile (for SPECjbb2005).
OBJ. CREATION LOCATION CLASS
============== ======== ===============================

% samples
36.4% (40780) nursery [C
27.5% (30820) nursery java/lang/String
16.7% (18726) nursery java/math/BigDecimal
4.1% (4595) stack java/lang/Integer
1.8% (2013) nursery java/lang/Integer
...

spec/jbb/infra/Util/XMLTransactionLog.populateXML(31.9% (35628)
OBJ. CREATION LOCATION CLASS
============== ======== ===============================

% samples
15.8% (17695) nursery [C
14.9% (16734) nursery java/lang/String
0.9% (1014) stack java/lang/String
...

References
[1] G. Ammons, T. Ball, and J. R. Larus. “Exploiting hardware

performance counters with flow and context sensitive
profiling”. In Proceedings of the ACM Conference on
Programming Language Design and Implementation, pp. 85–
96, 1997.

[2] N. Grcevski, A. Kielstra, K. Stoodley, M. Stoodley, and V.
Sundaresan. “Java just-in-time compiler and virtual machine
improvements for server and middleware applications”. In
Proceedings of the USENIX Virtual Machine Research and
Technology Symposium, pp. 151–162, 2004.

[3] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q.
Nguyen, B. J. Ronchetti, W. M. Sauer, E. M. Schwarz, and

M. T. Vaden. “IBM POWER6 microarchitecture”. IBM
Journal of Research and Development, Vol. 51 (6), pp. 639–
662, 2007.

[4] A. Adl-Tabatabai, R. L. Hudson, M. J. Serrano, and S.
Subramoney. “Prefetch injection based on hardware
monitoring and object metadata”. In Proceedings of the ACM
Conference on Programming Language Design and
Implementation, pp. 267–276, 2004.

[5] T. Ogasawara, H. Komatsu, and T. Nakatani. “To-lock:
Removing lock overhead using the owners’ temporal
locality”. In Proceedings of the Conference on Parallel
Architectures and Compilation Techniques, pp. 255-266,
2004.

[6] K. Kawachiya, A. Koseki, and T. Onodera. “Lock
reservation: Java locks can mostly do without atomic
operations”. In Proceedings of the Conference on Object-
Oriented Programming, Systems, Languages, and
Applications, pp. 292–310, 2002.

[7] R. Jones and C. Ryder. “A Study of Java Object
Demographics”. In Proceedings of the ACM International
Symposium on Memory Management, pp. 121-130, 2008.

[8] M. L. Seidl and B. G. Zorn. “Segregating heap objects by
reference behavior and lifetime”. In Proceedings of the
eighth Architectural Support for Programming Languages
and Operating Systems, pp 12-23, 1998.

[9] F. E. Levine. “A programmer's view of performance
monitoring in the PowerPC microprocessor”. IBM Journal of
Research and Development, Vol 41 (3), pp. 345-356, 1997.

[10] OProfile - A System Profiler for Linux.
http://oprofile.sourceforge.net/news/

[11] Intel Corp. IA-32 Intel Architecture Software Developer's
Manual.

[12] JVM Tool Interface version 1.0.
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/jvmti.html

[13] M. Jump, S. M. Blackburn, and K.S. McKinley. “Dynamic
object sampling for pretenuring”, In Proceedings of the
International Symposium on Memory Management, pp. 152–
162, 2004.

[14] M. Hauswirth and T. M. Chilimbi. “Low-overhead memory
leak detection using adaptive statistical profiling”, in
Proceedings of the international conference on Architectural
support for programming languages and operating systems
table of contents, pp. 156–164, 2004.

[15] M. Arnold, and B. G. Ryder. “A framework for reducing the
cost of instrumented code”. In Proceedings of the ACM
Conference on Programming Language Design and
Implementation, pp. 168–179, 2001.

[16] J. M. Spivey. “Fast, Accurate Call Graph Profiling”.
Software: Practice and Experience, Vol. 34 (3), pp. 249–264,
2004.

[17] M. D. Bond, and K. S. McKinley. “Probabilistic Calling
Context”. In Proceedings of the ACM Conference on Object
Oriented Programming Systems Languages and Applications,
pp. 97–112, 2007.

[18] X. Zhuang, M. J. Serrano, H. W. Cain, and J Choi.
“Accurate, efficient, and adaptive calling context profiling”.
In Proceedings of the ACM Conference on Programming
Language Design and Implementation, pp. 263–271, 2006.

[19] M. Arnold and P. F. Sweeney. “Approximating the calling
context tree via sampling”. IBM Research Report, 2000.

[20] J. Whaley. “A portable sampling-based profiler for java
virtualmachines”. In Proceedings of ACM Java Grande, pp.
78–87, 2000.

[21] T. Mytkowicz, D. Coughlin, and A. Diwan. “Inferred Call
Path Profiling”, In Proceedings of the Conference on Object-

Oriented Programming, Systems, Languages, and
Applications, pp. 175–189, 2009.

[22] F. T. Schneider, M. Payer, and T. R. Gross. “Online
optimizations driven by hardware performance monitoring”.
In Proceedings of the ACM Conference on Programming
Language Design and Implementation, pp. 373–382, 2007.

[23]J. Cuthbertson, S. Viswanathan, K. Bobrovsky, A. Astapchuk,
E. Kaczmarek, and U. Srinivasan. “A Practical Approach to
Hardware Performance Monitoring Based Dynamic
Optimizations in a Production JVM”. In Proceedings of the
International Symposium on Code Generation and
Optimization, pp. 190–199, 2009.

[24] M. Serrano and X. Zhuang, “Placement Optimization Using
Data Context Collected During Garbage Collection”, In
Proceedings of the International Symposium on Memory
Management, pp. 69–78, 2009.

[25] J. Dolby. “Automatic Inline Allocation of Objects”, In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp 7–
17, 1997.

[26] Power.org, Power Instruction Set Architecture Version 2.05.
http://www.power.org/resources/reading/PowerISA_V2.05.p
df

[27] N. Grcevski, “Effective method for Java Lock Reservation
for Java Virtual Machines that Have Cooperative
Multithreading” 6th Workshop on Compiler-Driven
Performance, 2007.

[28] D. F. Bacon, R. Konuru, C. Murthy, and M. Serrano. “Thin
Locks: Featherweight Synchronization for Java”. In
Proceedings of the ACM Conference on Programming
Language Design and Implementation, pp. 258–268, 1998.

[29] T. Onodera and K. Kawachiya. “A study of locking objects
with bimodal fields”. In Proceedings of the ACM Conference
on Object Oriented Programming Systems Languages and
Applications, pp. 223–237, 1999.

[30] Performance Inspector, http://perfinsp.sourceforge.net/

[31] S. L. Graham, P. B. Kessler, and M K. McKusick. “An
execution profiler for modular programs”. Software: Practice
and Experience, Vol. 13 (8), pp. 671–685, 1983.

[32] Standard Performance Evaluation Corporation.
SPECjbb2005. http://www.spec.org/jbb2005/

[33] Standard Performance Evaluation Corporation.
SPECjvm2008. http://www.spec.org/jvm2008/

[34] The Apache Software Foundation. DayTrader.
http://cwiki.apache.org/GMOxDOC20/daytrader.html

[35] IBM Corporation. WebSphere Application Server.
http://www-01.ibm.com/software/webservers/appserv/was/

Java is a trademark of Sun Microsystems, Inc. IBM, WebSphere,
AIX, and POWER6 are registered trademarks of International
Business Machines Corporation. Other company, product, and
service names may be trademarks or service marks of others.

