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Abstract  
This paper describes our sampling-based profiler that 
exploits a processor’s HPM (Hardware Performance 
Monitor) to collect information on running Java 
applications for use by the Java VM. Our profiler provides 
two novel features: Java-level event profiling and 
lightweight context-sensitive event profiling. For Java 
events, we propose new techniques to leverage the 
sampling facility of the HPM to generate object creation 
profiles and lock activity profiles. The HPM sampling is 
the key to achieve a smaller overhead compared to profilers 
that do not rely on a hardware help. To sample the object 
creations with the HPM, which can only sample hardware 
events such as executed instructions or cache misses, we 
correlate the object creations with the store instructions for 
Java object headers. For the lock activity profile, we 
introduce an instrumentation-based technique, called 
ProbeNOP, which uses a special NOP instruction whose 
executions are counted by the HPM. For the context-
sensitive event profiling, we propose a new technique 
called CallerChaining, which detects the calling context of 
HPM events based on the call stack depth (the value of the 
stack frame pointer). We show that it can detect the calling 
contexts in many programs including a large commercial 
application. Our proposed techniques enable both 
programmers and runtime systems to get more valuable 
information from the HPM to understand and optimize the 
programs without adding significant runtime overhead. 
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1. Introduction 
Many modern high-performance processors have an HPM 
(Hardware Performance Monitor) to count performance-
related hardware events and to sample events at specified 
sampling intervals. Such hardware events include executed 
instructions, cache misses (at each level of a memory 
hierarchy), and branch mispredictions. Many profilers are 
capable of using an HPM to provide programmers with 
profiles of hardware events. 

In this paper, we introduce new techniques in our 
profiler that extend the scope of HPM-based profilers in 
two ways. First, our profiler can capture Java-level events, 
such as object creation or lock activities, by correlating 
them with the hardware events directly supported by the 
HPM. Second, we make it possible to detect calling context 
in addition to the program location (method name and 
instruction address) for each HPM event with minimal 
additional runtime overhead in many applications. 

As examples of Java-level event profiling, here we 
study object creation profiling and lock activity profiling. 
We show how our profiler can derive object creation 
profiles, including information on both allocated objects 
and allocation sites, from the store instruction profiles 
collected by the HPM. For lock activity profiling, which 
cannot be easily derived from hardware events, we propose 
a new instrumentation-based technique, called ProbeNOP. 
It uses a special NOP instruction, the ProbeNOP 
instruction, which does not affect the program execution, 
but whose executions are counted by the HPM. To 
correlate a piece of code with a hardware event, the JIT 
compiler generates a ProbeNOP instruction in the code of 
interest, such as a lock acquisition code sequence. It also 
encodes information on which register or memory location 



to profile at the location of the ProbeNOP instruction 
within the unused bits of the ProbeNOP instruction. The 
handler for the HPM interrupt decodes the information 
encoded in the ProbeNOP instruction and collects the 
values of the specified targets. Our ProbeNOP technique 
makes it possible to leverage the sampling facility of the 
HPM for value profiling in the JVM with low profiling 
overhead.  

Another new feature in our profiler is an efficient 
context detection technique, CallerChaining. It detects the 
calling context for the HPM event based on the call stack 
depth, calculated from the value in the stack frame pointer. 
It does not incur significant additional runtime overhead 
compared to profiling that is not aware of the context of the 
events. In our CallerChaining, we first collect quadruples 
of {caller method, caller call stack depth, callee method, 
callee call stack depth} using the HPM. We construct a 
CCT (Calling Context Tree) [1] with a call stack depth in 
each CCT node by chaining pairs of a caller and callee that 
have the same call stack depth. We use the call stack depth 
as a hint to distinguish among the calling contexts that 
include the same method. While profiling the HPM events, 
we capture the call stack depth and the instruction address 
for each event and map the event onto a CCT node using 
these values. We found that this simple technique works 
surprisingly well with many tested benchmarks including a 
large application server workload, though it was not able to 
uniquely distinguish the full calling context information in 
those programs which have complicated CCTs.  

We implemented our new profiler in the IBM J9/TR 
Java VM and JIT compiler [2] for Linux running on an 
IBM POWER6 processor [3]. The runtime overhead of 
profiling was 2.2% or less when we controlled the 
sampling interval to generate 16,000 samples/sec. Our 
techniques do not depend heavily on the specific 
environment and thus most of the proposed techniques can 
be applied to other processors and other dynamic language 
runtimes. 

This paper makes the following contributions. (1) We 
demonstrate that the HPM can be used to profile high-level 
events in language runtime systems by correlating them 
with hardware events. We present how our profiler 
generates object creation profiles and lock activity profiles 
with low overhead. (2) We introduce a lightweight context 
detection technique called CallerChaining, which detects 
the calling contexts for events without adding runtime 
overhead. (3) We present efficient techniques to identify 
the Java object that caused an HPM event based on a data 
address captured by the HPM. For example, our technique 
for identifying objects in the Java heap can avoid the 
overhead of costly memory scanning [4].  

Our proposed techniques enable both programmers and 
runtime systems to get more valuable information from the 
HPM to understand and optimize the running programs 

without adding excess runtime overhead. For example, the 
lock activity profiles can help optimizing a lock protocol 
based on its behavior and traits, such as the owner locality 
[5, 6]. Also, it is known that the calling context of the 
allocation site is important to predict object lifetime [7], 
and hence our object creation profiles with the calling 
context can support adaptive optimizations based on the 
objects’ lifetimes [8]. 

The rest of the paper is organized as follows. Section 2 
gives an overview of the hardware performance monitor of 
the POWER6 processor. Section 3 discusses related 
profiling techniques. Section 4 describes our HPM-based 
sampling profiler. Section 5 illustrates our new techniques 
to profile high-level events using the HPM. Section 6 uses 
our technique to detect the calling context using the call 
stack depth. Section 7 describes the experimental 
environment and our results. Finally, Section 8 summarizes 
our new techniques. 

2. HPM of the POWER6 Processor 
In this paper we use the IBM POWER6 processor [3] to 
present our new profiling techniques. Like many other 
processors, POWER6 has a built-in HPM (Hardware 
Performance Monitor) that can monitor and count various 
performance-related events, such as the cache misses or 
instructions executed on the processor. The POWER6 
provides four performance counters (programmable from 
the operating system) so that up to four performance-
related events can be counted simultaneously. 

An HPM counter can be configured to generate an 
interrupt when the counter value overflows. To provide 
detailed information on the HPM event that caused the 
interrupt, POWER6 has two special purpose registers 
called SIAR (sampled instruction address register) and 
SDAR (sampled data address register) [9]. The SIAR 
contains the instruction address of the sampled instruction 
and the SDAR contains the data address if the sampled 
event is a memory-related event†. By using the HPM 
interrupts, we can sample events for specified sampling 
intervals and obtain instruction and data addresses for each 
HPM event.  

The implementation of an HPM depends on the 
processor, but most of today’s processors have similar 
features. For example, recent Intel’s x86 processors 
support PEBS (precise event based sampling), which 
arrows profilers to obtain an architectural state information 
of the processor when a selected event occurs [11] like the 

                                                 
 
 
† To have accurate values in the SIAR and SDAR registers, we need to use 
HPM events named with the prefix PM_MRK. The list of the HPM events 
on POWER6 is available in the Oprofile distribution [10]. 



SIAR and SDAR of the POWER6. The PEBS is useful to 
implement our ProbeNOP technique and CallerChaining. 
However the PEBS does not support the store instruction 
executed event and thus our object creation profiling is not 
directly applicable for the PEBS. To implement the 
ProbeNOP technique with the PEBS, x87 floating-point 
instructions or SIMD instructions can be used as the 
ProbeNOP instruction if these instructions are not used in 
the JVM. 

3. Related Work 
There are existing profilers, such as Oprofile [10] in Linux 
and the tprof command in IBM AIX, which can generate 
hardware events profiles using the HPM. The scope of 
those existing profilers is, however, limited to the profiles 
for hardware events directly supported as an event in the 
HPM, such as cache miss profiles. In contrast, our profiler 
can provide low-overhead Java-level events profiles, such 
as object creation profiles and the lock activity profiles, in 
addition to the hardware event profiles. 

There are profilers to capture such Java-level events, 
which typically use JVM Tool Interface (JVMTI) [12] to 
communicate with the JVM. However they often incur 
unacceptable overhead during program execution. For 
example, HPROF as included in JRE distributions can 
provide a rich set of useful information including CPU time 
profiles, object creation profiles, and monitor contention 
profiles. Because HPROF incurs significant overhead, the 
performance of profiled applications often degrades by 
more than a factor of 10. Such overhead may make the 
CPU time or monitor contention profiles unreliable and 
different from the unmonitored profiles. Our profiler can 
provide similar Java-level event profiles with much lower 
overhead by exploiting the sampling facility of the HPM.  

Due to the importance of the object creation profiles, 
many profilers have been developed to collect various 
information on object creation. Some profilers insert a 
hook in the object creation code to identify the allocation 
site, while others count the number of objects for each class 
in the Java heap. However a hook incurs significant 
overhead, while object counting cannot capture the 
allocation site information accurately. Compared to these 
techniques, our HPM-based approach can capture 
information on both the created objects and on their 
allocation sites with low overhead by exploiting the 
sampling facility of the HPM. Some software-based 
sampling techniques have been proposed for the object 
creation sampling [13, 14]. The overhead of these 
techniques are typically small, such as less than 3.0% [13]. 
An advantage of our HPM-based object creation sampling 
technique over these software-based sampling techniques is 
that we do not need to generate any additional instructions 
in the JIT compiler and thus our technique does not impose 

additional overhead while the HPM is not configured to 
generate interrupts. 

We created ProbeNOP, an instrumentation technique for 
value profiling, which uses HPM sampling features. In this 
technique, we insert only a special NOP instruction in the 
program code and thus the overhead is negligible while the 
sampling is disabled. In contrast to an existing low-
overhead profiling technique [15], which generates 
duplicated code with instrumentations, our technique does 
not impose significant space overhead because it only adds 
one instruction per sampling point. This advantage makes it 
possible to insert instrumentation code for all locations of 
interest to generate complete profiles. 

Our profiler supports context-sensitive profiling by our 
CallerChaining technique. Profiles with calling context 
information, consisting of current program locations and 
sequences of call sites on the stack, are more informative in 
characterizing the program behaviors compared to profiles 
with only current locations. Often stack walking is used 
when a profiler needs to know the current calling context. 
Alternatively, it is also possible to track the current calling 
context at each method invocation and exit by inserting the 
instrumentation code [1, 16]. However both of these 
techniques are very costly. For example, Oprofile supports 
context-sensitive profiling by walking the stack at each 
invocation of the handler for an HPM interrupt, but this is 
much more work than profiling that ignores the contexts. 
Our technique avoids this work in the interrupt handler by 
not using stack walking.  

There are advanced techniques for context-aware 
profiling [17, 18, 19, 20]. Among them, Bond and 
McKinley’s [17] Probabilistic Calling Context (PCC) can 
be directly applicable for the HPM profiling. The PCC 
allows for lightweight context-sensitive profiling by 
maintaining only one value that represents the current 
calling context. Both the PCC and our CallerChaining are 
probabilistic approaches to detect the calling context. In 
contrast to ours, the PCC generates special code and data 
structure to do context-sensitive profiling and thus imposes 
overhead in both computation time and memory space in 
exchange for higher accuracy. Our CallerChaining does not 
impose visible runtime overhead as long as the HPM is not 
configured to generate interrupts. This advantage makes 
our technique more attractive to use as part of the runtime 
support for adaptive optimizations. Because we only use 
call stack depth to identify the calling context instead of a 
special value in PCC, our technique cannot distinguish 
contexts accurately in programs that have very complicated 
CCTs. For such programs, we can combine our technique 
with the PCC to improve the accuracy in profiling with 
additional overhead. 

Recently, Mytkowicz et al. [21] proposed a technique 
called inferred call path profiling for C and C++ programs. 
Although developed independently, their technique also 



uses pairs of the current instruction pointer and the call 
stack depth to identify the calling context. They focused on 
techniques to disambiguate the calling contexts that had the 
same call stack depth. 

There are some existing techniques that use cache miss 
profiles obtained by the HPM when applying adaptive 
optimizations in compilers and runtime systems [4, 22, 23, 
24]. For example, Adl-Tabatabai et al. [4] exploit cache 
miss statistics in their Java JIT compiler to insert effective 
prefetch instructions on the Intel Itenium2 processor. Later, 
Schneider et al. [22] also used cache miss statistics in the 
garbage collector to optimize the placement of objects in 
the Jikes RVM on the Intel Pentium4 processor. These 
techniques identify the instructions and objects that cause 
many cache misses and exploit the information for 
optimizations. We seek to provide more information on 
running programs, including Java-level event profiles and 
context-sensitive event profiles, without adding significant 
runtime overhead. 

4. Profiling Framework 
In this section, we describe the implementation of our 
profiler to capture the hardware events and generate the 
profiles for those events. In particular, we focus on our 
effective translation techniques to identify the Java object 
that caused an event based on the data address of the event. 
Our new technique to collect Java-level events using the 
HPM and our context-sensitive profiling technique will be 
described in later Sections 5 and 6, respectively. 

4.1 Oprofile device driver in the Linux kernel 

Our profiler consists of two parts: an operating system 
device driver (to access the HPM from the user space) and 
a built-in profiler implemented in the JVM, which accesses 
the HPM via the interface exported by the device driver. 
We used Linux as our target operating system and used the 
existing Oprofile [10] device driver in the Linux kernel as 
the basis of our device driver.  

The Oprofile device driver for the PowerPC architecture 
provides an interface to set the HPM-related special 
purpose registers from user space. By using this interface, 
we can select up to four HPM events to count in the HPM 
counters and also specify a sampling interval for each 
counter to generate an interrupt when that counter reaches 
its sampling interval. We did not modify this interface. 
Oprofile also provides an OS-space buffer to store the 
results of the HPM samples. User-space processes can read 
the OS-space buffer using a read system call to a special 
device file. A user process will block on the system call 
and return when the OS-space buffer becomes full or is 
explicitly flushed. 

4.2 Overview of our profiler 

What we extended in the device driver is the information to 
capture in the HPM interrupt handler as implemented in the 
device driver. The original Oprofile only captures the HPM 
counter ID, to label the source of the interrupt, and the 
instruction address that caused the event for each HPM 
sample. Our extended version also captures a data address 
from the SDAR register (for memory-related events) and 
the value of the stack frame pointer. We use this frame 
pointer value in three ways: (1) to identify the software 
thread that caused the event, (2) to identify the Java object 
that caused an event if that object is allocated on stack, and 
(3) to track the calling context for the events as described 
in Section 6. The JVM has two kinds of stack frame 
pointers, GPR1 for the system stack and GPR14 for the 
Java stack. We use GPR14 in our profiler. 

We create a dedicated thread for the HPM profiler in the 
JVM to read the HPM samples from the OS-space buffer 
and generate the statistics. Though the JVM has another 
profiling mechanism based on timer interrupts to control 
the JIT compilation, our HPM profiler thread only handles 
the HPM-based profiling and does not affect the timer-
based profiling mechanism.  

The HPM profiler thread first sets the HPM events to 
profile, and then synchronously read the OS-space buffer 
for the HPM samples, so the thread blocks on this read 
system call until the OS-space buffer becomes full. When 
the buffer becomes full, then the HPM profiler thread 
returns from the read system call and copies the content 
of the buffer into a user-space buffer.  

Once the data has been copied to user space, the HPM 
profiler thread translates the instruction address of each 
sample into a Java method, when the address is included in 
a JIT-compiled method, or into a JVM module, when the 
address is not in a JIT-compiled method. The JVM module 
will be, for example, the interpreter, the memory manager, 
or the JIT compiler. The original JVM already has the data 
to convert an instruction address of the JIT-compiled 
method into a Java method, so we do not need a new data 
structure for that purpose. Most JVM implementations 
should have similar data structures to identify program 
locations when exceptions occur in JIT-compiled methods.  

For memory-related events, the HPM profiler thread 
also translates the data address to a Java class, an offset in 
the object, and the location of the objects (nursery, survivor, 
tenure, or stack). We give details on the data address to 
Java object translation process in the next sections.  

Focusing on running Java applications, we do not use 
the HPM sampling during stop-the-world GC. When the 
Java heap becomes full and stop-the-world GC begins, we 
stop the HPM sampling and explicitly flush the OS-space 
buffer. The GC threads must wait for the HPM profiler 
thread to complete the data address translation. This is 



because the HPM profiler thread cannot identify the Java 
object from the data address if the GC threads move the 
object in the Java heap. Figure 1 depicts how the HPM 
profiler thread collaborates with the other threads with and 
without the data address translation. In the current 
implementation, we do not parallelize the HPM profiler 
thread and use only one dedicated thread. 

4.3 Identifying objects in the Java heap 

This section describes our new techniques to effectively 
find the object that caused a memory-related event, such as 
a cache miss, based on a data address obtained from the 
HPM, when the data address points at an address inside the 
Java heap. As already mentioned in Section 4.2, we ensure 

that objects in the Java heap have not been moved by the 
garbage collector before the data address to Java object 
translation completes. 

Adl-Tabatabai et al. [4] do this translation by scanning 
memory backward from the sampled data address to find 
the nearest valid object header, starting with a pointer to a 
virtual function table of the class, in their technique called 
Mississippi delta.  

To avoid the large cost of this backward scan, we 
introduce a new technique, which tries a heuristic before 
the scan. It first checks the instruction that caused the event, 
and if the instruction is a load or store instruction that 
points to an address to access with a value in a register and 
a constant offset, it is likely that the value in the register is 
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generate profiles based on the already translated samples.  

 

Figure 1. Schematics of collaboration among an HPM profiler thread, GC threads, and application threads: (a) when the 
data address to Java object translations are not involved (b) when the translations are involved. 



a pointer to an object and the constant is an offset within 
the object. We then test that location to see if it contains a 
valid object header. Because the IBM JIT compiler 
generates this form of load and store instructions for field 
accesses, this works in many cases. If the instruction is not 
in the form or if the assumed location does not contain a 
valid object header, we fall back to the memory scan to 
find a valid object header. Figure 2 shows pseudocode for 
our technique and the existing memory scanning technique. 
In SPECjbb2005, we successfully identified the objects 
using this heuristic in 84.2% and 83.6% of the L1 and L2 
cache miss events. This technique cannot be used if the JIT 
compiler uses optimization techniques that change the 
object format, such as object inlining [25]. 

4.4 Identifying stack-allocated objects 

This section describes how our profiler identifies a stack-
allocated object that generates an event from a data address. 
We can assure that the location of the object in the Java 
heap is not changed before the HPM profiler executes the 
data address to Java object translations by controlling the 
GC activities. However, it is not possible to retain the state 
of a stack-allocated object because the stack frame that 
included the object was discarded when the application 
thread exited from the method. Thus we need another 
technique to track stack-allocated objects. 

As already described, our profiler captures the value of 
the stack frame pointer for each HPM sample. We use the 
frame pointer value to identify the stack-allocated objects. 
If the sampled data address is in a stack for any Java thread, 
the profiler calculates the offset of the data address in the 
stack frame by subtracting the frame pointer value from the 
data address. Then it looks up a table that contains offsets 
and sizes of all stack-allocated objects for each Java 
method. We modified the JIT compiler to maintain this 
table because the original JVM did not track the 
information. The space overhead for this additional data 
structure is small because the stack allocation of local 

objects based on escape analysis is a costly optimization 
and is applied only to a few very hot methods. 

5. How to Get Java-level Event 
Profiles Using the HPM 
In this section, we give details about our techniques to 
obtain high-level information in a Java VM using the HPM. 
First we describe a simple example for an object creation 
profile. Then we describe our techniques for a more 
complicated example using lock activity profiling.  

5.1 Identifying object creation events by screening 
store instructions 

Here, we show how our profiler derives an object creation 
profile from the HPM samples. Though what we describe 
in this section looks simple and naive, it yields accurate 
statistics, including information for both the created objects 
and allocation sites. 

Our observation is that, in our JVM, the first word in the 
object header, which is the virtual function table pointer, is 
not modified once the object is initialized. Based on this 
observation, we create the object creation profiles by first 
collecting the store instruction profiles using the HPM, 
which includes a data address and an instruction address 
for each sampled store instruction, and then translate the 
data address of each sample into a Java class and offset in 
the object. Here we used the PM_MRK_ST_NEST event 
on POWER6. Next, we filter out any sample whose offset 
value is not zero. After this filtering, the store instruction 
profile has become an object creation profile, because a 
store to the virtual function table pointer appears only when 
the object is created. Of course, the garbage collector also 
writes this word in the headers, but we disable the HPM 
sampling during garbage collection to prevent those store 
instructions during GC from being included in the profile.  

Compared to existing profiling techniques for object 
creation profiling, our HPM-based approach can capture 
information on both the created objects and their allocation 

 Existing Technique

doBackwordMemoryScan (dataAddress) {
p = dataAddress;
count = 0;
while (count < LIMIT) {

if (*p contains a valid object header) {
return p;

}
count++;
p = p – 8;  // assuming object is 8-byte aligned

}
return HEADER_NOT_FOUND;

}

Our Technique 

findObjectHeader (dataAddress, instructionAddress) {
// shortcut path by checking instruction
instruction = *instructionAddress;
if (instruction is a load/store addressed by register + constant) {

if (*(dataAddress – constant) contains valid object header) {
// successfully identified object 
return dataAddress – constant;

}
}
// fall back to memory scanning
return doBackwardMemoryScan (dataAddress); 

}  

Figure 2. Pseudocode of the two methods to identify the Java object that caused an event. 

. 



sites with low overhead by exploiting the sampling facility 
of the HPM. Our technique does not require any special 
code for object allocations nor does it impose limitations in 
compiler optimizations. 

By applying a similar technique to a profile of store 
instructions, we can also create a profile of those objects 
and methods which invoke a write barrier for the 
generational garbage collector. 

5.2  Identifying Lock activities by inserting ProbeNOP 
instructions 

In this section, we introduce a new instrumentation-based 
profiling technique using a special NOP instruction to 
capture Java-level events that cannot be easily associated 
with hardware events. This technique involves the JIT 
compiler generating special NOP instructions whose 
execution is counted by the HPM in the code of interest, 
such as lock acquisition code sequences. 

5.2.1 ProbeNOP 

The basic idea of our technique is that we insert a special 
NOP instruction where we want to probe. This does not 
affect the program meaning or performance but only 
increments an HPM counter when encountered. We call 
this NOP instruction ProbeNOP. We use the ProbeNOP 
instruction to invoke an HPM interrupt and also to send 
context-dependent information to the HPM interrupt 
handler by encoding the information in unused fields in the 
NOP instruction.  

We show a simple example of using ProbeNOP in 
Figure 3. The left side of the figure shows simple 
pseudocode to calculate the sum of the elements in an array 
with a ProbeNOP instruction inserted in the loop. This 
ProbeNOP does not affect the program execution or 

performance if HPM sampling is not active. If the HPM is 
configured to count the ProbeNOP executions and to 
generate an interrupt with a sampling interval of 10, it still 
does not affect the meaning of the code, but it generates an 
HPM interrupt once per ten iterations. The pseudocode for 
the HPM interrupt handler in the OS is shown on the right 
side of the figure. The handler first identifies the 
instruction that generates the interrupt and checks if that 
instruction is a ProbeNOP. Then it decodes the target 
information encoded in the ProbeNOP instruction’s bit 
pattern. Here the target is the val stored in reg3. The 
handler stores the pair of the instruction address and the 
value of the target, reg3, in the OS-space buffer for HPM 
samples instead of the pair of the instruction address and 
the data address as when the HPM handler is tracking a 
memory-related event.  

The profiler can later determine the value of the target 
by reading the HPM samples from the OS-space buffer. As 

 

load_imm reg1, 0                      // i 
load_imm reg2, 0                      // sum
loop:
load          reg3 = array [reg1]   // val
ProbeNOP      reg3
add           reg2 = reg2 + reg3
add           reg1 = reg1 + element_size
compare       reg1, 100 * element_size
jump_if_less loop

User-space pseudocode 

handleInterruptForProbeNOP () {
instructionAddress = read SIAR register;
instruction = *instructionAddress;
if (instruction is ProbeNOP) {

target = decode information encoded in the ProbeNOP;
profiledValue = current value of the target;
store {instructionAddress, profiledValue} in buffer;
return;

}
// should not reach here
return; 

}

HPM interrupt handler in OS
HPM interrupt

sum = 0;
for (i = 0; i < 100; i++) {

val = array[i];
ProbeNOP(val);
sum = sum + val;

}

Corresponding pseudo-assembly code

 

Figure 3. A simple example of ProbeNOP usage. 

 Vector Permute VA-form

vperm VRT,VRA,VRB,VRC

4 VRT VRA VRB VRC 43
0 6 11 16 21 26 31

Vector Permute VA-form

vperm VRT,VRA,VRB,VRC

4 VRT VRA VRB VRC 43
0 6 11 16 21 26 31

those 20 bits are used to encode the targets
• first 5 bits: the first target (GPR only)
• next 1 bit: kind of the second target (register or memory)
• next 14 bits: the second target 
- for memory 5 bits for base register (GPR only)

9 bits for offset from the base 
(-1024 to +1020 by assuming 4-byte alignment)

- for register the target register (GPR, Link Register etc.)

Figure 4. ProbeNOP instruction format on POWER6 
using the vector permute instruction [26]. 



a result, the profiler gets the values of the 10th element, 
20th element, .., and the 100th element in the array as a 
result of the sampling.  

This technique using the ProbeNOP enables value 
profiling of the specified target while minimizing the 
performance degradation, especially when the HPM 
sampling is not enabled. Note that the interrupt handler in 
Figure 3 is simplified for ease of explanation. We will 
show the pseudocode for the full interrupt handler in 
Section 6. 

5.2.2 Implementation on POWER6 

To implement this technique on POWER6, we use the 
vector permute (vperm) instruction of the VMX (Altivec) 
instruction set as a ProbeNOP [26]. We selected this 
instruction because our JVM does not use VMX 
instructions and the HPM of the POWER6 can count the 
number of vperm instructions executed by the 
PM_MRK_VMX_PERMUTE_ISSUED event. Also, the 
VMX instructions are executed in a dedicated pipeline and 
thus do not affect the execution of other instructions 
significantly. The vperm instruction format has 20 bits 
that we can use to encode the target information, because it 
uses four registers as operands and each register ID is 5 
bits. In the current implementation, we support up to two 
targets when collecting values in the interrupt handler in 
one ProbeNOP. The first target is dedicated for general 
purpose registers and the second target is for one of the 
general-purpose registers, another register such as the link 
register, or a memory location referenced by the value in 
the specified general-purpose register with an offset. If two 

targets are specified in a ProbeNOP instruction, the 
interrupt handler stores the instruction address and the 
values of both targets for each HPM sample. Figure 4 
depicts the instruction format of the ProbeNOP. 

We have a limitation in implementing our technique on 
POWER6 since the HPM interrupt is not precise; the 
processor state when an event occurs are not preserved 
until the HPM interrupt handler invoked. It means the 
target values, such as those in general purpose registers, 
may change before the profiler read the values in the 
interrupt handler.  We can still determine the correct 
instruction address and data address because the POWER6 
keeps the information in the SIAR and SDAR registers 
until the interrupt handler is invoked. To ensure that the 
interrupt handler reads a valid target value on POWER6, 
we can add a sync instruction after each ProbeNOP as a 
workaround†. In the next section, we insert a ProbeNOP in 
each lock acquisition operation to generate lock acquisition 
profiles. Fortunately, in this case the monitor acquisition 
operation inherently includes a sync operation and thus we 
did not need to explicitly add an expensive sync instruction. 

5.2.3 Lock activity profile using ProbeNOP 

In this section, we use the profiling technique with 
ProbeNOP to generate a detailed lock activity profile.  
                                                 
 
 
† We empirically found this workaround worked on the POWER6 
processor, although the Power Instruction Set Architecture [26] does not 
explicitly require this behavior for the sync instruction. 

 
...
ProbeNOP(obj);    // at monitor enter
// monitor enter for obj
if (obj is in inflated mode || tryLock(obj) == FAILED) {

// tryLock failed if obj is locked by another thread 
// or recursion count overflows
monitorEnterHelper(obj);

}
// critical section begins
...

Monitor enter code sequence in JIT-generated code

monitorEnterHelper(obj) {
caller = read link register;
ProbeNOP(obj, caller);   // at helper enter
sync();
if (obj is in inflated mode) {

inflatedMonitorEnterHelper(obj);
return;

}
for (i=0; i<loopCount1; i++) {

for (j=0; j<loopCount2; j++) {
if (tryLock(obj) == SUCCESS) return;
ProbeNOP(obj, caller);  // at spin loop
sync();
doIdleLoop(); // just consume cycles

}
yield_cpu();

}
inflateTheObject(); // spin locking failed
return;

}

Monitor enter helper in JVM

 

Figure 5. ProbeNOPs for lock activity profile. 



The IBM JVM implements a bimodal locking algorithm 
[27, 28, 29] in which a lock word in the object header has 
one of two modes: a flat mode for spin locking and an 
inflated mode for suspend locking. Each object starts from 
the flat mode and enters the inflated mode when a Java 
thread fails to acquire the lock of the object by spin locking. 
We focus on profiling the flat mode locks with our 
techniques. The IBM JVM supports a powerful lock 
profiling tool named Java Lock Monitor (JLM), included in 
the Performance Inspector [30], which can provide detailed 
information on lock contentions. However the scope of 
JLM is limited to the inflated locks, and it cannot provide 
information on the program locations that caused the lock 
contention. Our technique can overcome these limitations, 
and combining our profiler with the JLM can give a 
complete picture of the lock activities. 

We insert ProbeNOP instructions at the following three 
kinds of locations:  
1) all lock acquisition operations in the JIT-compiled 

methods (labeled monitor enter in the figure) 
2) at the entry point of the monitor enter helper function 

(labeled helper enter) 
3) in the spin loop for flat locks in the helper function 

(labeled spin loop) 
Figure 5 shows the locations of the inserted ProbeNOPs 
using simplified pseudocode for the JIT-compiled code and 
the helper function. Each ProbeNOP has a different 
purpose. The ProbeNOP in the JIT-compiled code is to 
capture all of the lock acquisitions, including the successes 
that do not call the monitor enter helper function. The 
ProbeNOP at the helper entry point is to provide the 
program location information for the inflated monitor 
activities captured by the JLM. The ProbeNOP in the spin 
loop is to identify the locks which consume CPU time in 
this spin loop. Note that the two ProbeNOPs in the helper 
code are followed by sync instructions to assure that an 
HPM interrupt for the ProbeNOP is generated at those 

places. These sync instructions are in rarely executed paths 
and they do not incur significant overhead in most cases. 

The HPM profiler thread can distinguish among the 
samples from these three types of ProbeNOPs by the 
instruction address in each sample. Then it generates high-
level lock activity profiles, such as the hot locks that often 
spent long periods in the spin loop. Programmers can 
combine such information with the output of the JLM to 
understand the lock activities. 

6. How to Get Context-Sensitive Event 
Profiles Using HPM 
In this section we present our technique, called 
CallerChaining, to provide context-sensitive profiles 
without walking a stack for each HPM sample.  

6.1 Frame-pointer-based Calling Context Tree (CCT) 
generation 

We first explain how we generate a calling context tree 
with a call stack depth in each CCT node from the HPM 
samples based on the values in the stack frame pointer. In 
this technique, we assume that the size of stack frame for 
each method is a constant during the measurements. This 
implies we need to stop the JIT compiler during the 
measurements and this particular technique is only suitable 
for working with an application in a steady state, but is not 
suitable for transient states such as those at boot time. 

For this technique, we need to collect samples as 
quadruples of {caller method, caller call stack depth, callee 
method, callee call stack depth}. The sampling of those 
values does not require complicated operations and is much 
less expensive than the stack walking. Figure 6 shows 
examples of HPM sample profiles and a constructed CCT. 
In the table, the call stack depths for the callee and caller 
are shown as offsets from the base of the stack area of the 
thread. Though the stack grows downward in our JVM, we 
show the offset value as positive in the figure. We 
construct the CCT by chaining the callers and callees based 
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Figure 6. Constructing calling context tree from HPM samples based on call stack depths. 



on call stack depths. From the HPM samples shown in the 
table, it is obvious that Methods B and C are called from 
Method A. Also, Method D is called from Methods B and 
C via the paths A-B-D and A-C-D, respectively. The 
method E is called from Method C and D, but for Method 
D we cannot tell whether the method E is called via path 
A-B-D-E or path A-C-D-E from the callee and caller 
relationship data alone. For such a case, we can use the call 
stack depth to distinguish the paths. In the example, 
Method D has a call stack depth of 90 only when it is 
called from Method B and thus we can determine that 
method E is called via the path A-B-D-E rather than A-C-
D-E. The right side of figure 6 shows the constructed CCT 
with the call stack depth in each node. Note that because 
this technique distinguishes among the call sites based on 
the call stack depth, it cannot distinguish between call sites 
in the same method if a method has multiple call sites for 
the same callee. 

A good way to collect these quadruples is to insert a 
ProbeNOP at each method entry point to profile the link 
register value (caller address) and the call stack depth. On 
the POWER6 processor, however, we need to add a sync 
instruction for each ProbeNOP to assure a precise interrupt. 
Adding a sync instruction for each method entry point 
incurs unacceptable overhead and so we took a different 
approach as a workaround. We first configure the HPM to 
generate an interrupt after a certain number of instructions 
are executed. In this configuration, interrupts are generated 
almost randomly throughout the program. If an interrupt 
happens in a method prologue, while the link register still 
has the caller address, we capture the link register value 
(caller address) and the frame pointer value (call stack 
depth). This approach does not require ProbeNOP and sync 
instructions for each method, but it requires more samples 
because we throw away most of the samples that miss the 
method prologues. That means that we need a long time to 
generate the CCT. 

If the stack frame structure allows the interrupt handler 
to access the caller address stored in the stack frame, we 
can use the samples that do not hit the method prologue. In 
the current stack frame structure in our JVM, however, the 
location of the stack slot which contains the caller address 
is different from method to method, so it is difficult to 
obtain the caller address stored on the stack in the interrupt 
handler. 

Another disadvantage of not using ProbeNOP is that the 
number of samples cannot always be used as an indicator 
for the hotness of the edge in the CCT. In Figure 6, for 
example, the edges A-B and A-C have the same number of 
samples (10) as shown in the table, but that does not mean 
that Method A calls Methods B and C with the same 
frequency, because the size of prologue differs for each 
methods. However it is still possible to use the number of 
samples to determine the relative hotness of the edges, as 

long as those edges point at the same callee. For example, 
we can estimate that Method D calls Method E eight times 
more often than Method C based on numbers of samples in 
the table (10 and 80). We can use these estimates of edge 
hotness to distribute the HPM events. 

Figure 7 illustrates two cases where our technique fails 
to identify the context based on call stack depths. The first 
case is one in which some methods, B and F in the figure, 
have the same stack frame size. This can be generalized as 
to cases where two call sequences, each consisting of 
multiple methods, have the same total stack frame size. The 
other case is when some methods, B and C here, appear in 
the calling context in different orders. In both cases, we 
add a node as needed in this phase.  

6.2 Mapping HPM events on Calling Context Tree 

In this section, we map the HPM events, such as cache 
misses, onto the generated CCT. Because our profiler 
collects a value in the stack frame pointer for each sample, 
it is mostly straightforward to map the events based on the 
instruction addresses and the call stack depth. For example, 
if Method E caused a cache miss when the call stack depth 
was 100, the event is mapped on the node of Method E on 
the path A-B-D-E.  

When there are multiple nodes having the same pair of a 
method and call stack depth, such as the cases shown in 
Figure 7, we distribute the HPM events based on hotness of 
the edges as many existing profilers, such as gprof [31], do 
when distributing the events or execution times for the 
callers. In the example of Figure 7(A), cache miss events 
generated by Method D are distributed into two paths A-B-
D and A-F-D in proportion to the estimated hotnesses of 
the edges B-D and F-D, which we have already calculated 
when we built the CCT. If this uncertainty affects the 
overall profile too greatly, we can change the stack frame 
size of a method by simply adding padding in the stack 
frame and retry the profiling [21]. 
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Figure 7.  Two examples of calling context trees for 
which our techniques cannot uniquely identify the calling 
context of the Method E. 



The lack of precision of the HPM interrupts in 
POWER6 is a more severe problem. As already mentioned, 
we can get the exact instruction and data addresses that 
caused an event, but the frame pointer value (call stack 
depth) at the time of the event may have already changed 
when the interrupt handler is invoked. Due to this problem, 
some HPM events do not have a corresponding node in the 
CCT. We try to find the correct nodes for such HPM events 
by changing the call stack depth to that of a possible caller 
or callee in the CCT. In the CCT of Figure 6, for example, 
a cache miss generated by Method E with a call stack depth 
of 40 is mapped to the node of Method E in the path A-C-E, 
because the node’s caller also has the call stack depth of 40. 
This can happen when Method E causes a cache miss but 
the HPM interrupt for the cache miss occurs after returning 
to the caller, method C. With this fitting process, we 
successfully found the corresponding nodes for most of the 
samples, even in the very large application.  

Complete pseudocode for the entire HPM interrupt 
handler appears in Figure 8. 

7. Experimental Results 
This section evaluates our profiling techniques by using 
standard benchmarks and a very large Web application 
server, the IBM WebSphere Application Server.  

7.1 Profiling overhead 

We evaluate our profiler using SPECjbb2005 [32], 
SPECjvm2008 (compiler.compiler, derby, sunflow, 
xml.validation, serial, and mpegaudio) [33] and DayTrader 
2.0 [34] running on IBM WebSphere Application Server 
version 7.0 [35]. We implemented our profiler in the 32-bit 
JVM included in the IBM SDK for Java 6 SR2. We ran the 
benchmarks on an IBM BladeCenter JS22 using 2 cores of 
the 4.0-GHz POWER6 processors with 2 SMT threads per 
core. This means SPECjbb2005 and SPECjvm2008 were 
configured to run with 4 threads. Each core has 64 KB of 
L1 data cache and 64 KB of L1 instruction cache and 4 MB 
of L2 cache. The size of the Java heap was 2 GB using 16-
MB large pages and the generational garbage collector was 
selected. The full JVM command line options were  
-Xgcpolicy:gencon -Xms2000m -Xmx2000m -Xmo400m  
-Xgcthreads4 -Xlp. The system has 16 GB of system 
memory and runs RedHat Enterprise Linux 5.2. For 
DayTrader, the DB2 database server and the client 
emulator ran on separate machines.  

Figure 9 compares the performance of programs with 
and without the profiler attached to determine the overhead 
of the profiler. The overhead of the profiling depends on 
the sampling interval. Shorter intervals (higher interrupt 
frequencies) give higher accuracies and larger overheads. 
We controlled the sampling interval to generate 8,000 
samples/sec for each event (one sample per 500 µsec per 
HW thread, or per 2-million CPU cycles) or 2,000 

 handleInterrupt () {
for each HPM counter which overflows {

instructionAddress = read SIAR register; // instruction address which caused the interrupt

if (running in Oprofile compatible mode) {         // to allow the original Oprofile running with this driver
store {instructionAddress, counterID} in buffer;

}
else if (the counter is counting ProbeNOPs) {    // handler for the ProbeNOP profiling (see section 4)

instruction = *instructionAddress;
if (the instruction is a ProbeNOP) {           // to wipe out irregular samples

targets = decode information encoded in the ProbeNOP; // one ProbeNOP includes up to two targets 
profiledValue1 = current value of the target1;
profiledValue2 = current value of the target2;
store {instructionAddress, profiledValue1, profiledValue2, framePointerValue, counterID} in buffer;

}
}
else if (generating a calling context tree) {      // handler for the CCT reconstruction (see section 5)

currentInstAddr = current instruction address  // to get the address consistent with the frame pointer
store {currentInstAddr, linkRegisterValue, framePointerValue, counterID} in buffer;

}
else if (SDAR register contains a valid value) {   // by checking a flag in a special purpose register

dataAddress = read SDAR register;              // handler for memory-related events
store {instructionAddress, dataAddress, framePointerValue, counterID} in buffer;

}
else {                                             // handler for non-memory events

store {instructionAddress, framePointerValue, counterID} in buffer;
}
reset the counter according to the sampling interval;

}
}  

Figure 8. Pseudocode for the HPM interrupt handler. 



samples/sec for each event. The figure shows the overhead 
of three different configurations for the profiler. In the first 
configuration (labeled CPI), the profiler counts the active 
CPU cycles (PM_RUN_CYC event) and the instructions 
executed (PM_INST_CMPL event) simultaneously and 
calculates the CPI (cycles per instruction) for each method. 
The profiler generated a CPI value for each method every 
30 sec. In the second configuration (labeled L1miss), the 
profiler counts the L1 cache misses (PM_MRK_ 
LD_MISS_L1 event) and the instructions executed 
(PM_MRK_INST_FIN event). This configuration involved 
the expensive data address to Java object translation for the 
cache miss events, which requires stopping the GC threads 
during the translation and consumed more CPU time in the 
HPM profiler. Then the profiler generated a summary of 
the cache miss ratios and a sorted list of the objects and 
fields that caused the cache misses for each method. The 
additional statistics led to more overhead compared to the 
first configuration. The overhead to generate an object 
creation profile is almost the same as the overhead of the 
second configuration because the HPM profiler thread 
executes similar operations. In the third configuration 
(labeled lock), we inserted ProbeNOPs to monitor the lock 
activities as described in Section 5 and the profiler counts 
the ProbeNOP instructions executed and all of the 
instructions executed in the same interval. In this 
configuration, the overhead due to the HPM profiler thread 
was similar to the second configuration, confirming that the 
inserted ProbeNOPs (vperm instructions) do not 
significantly affect the performance. For SPECjbb2005 and 
SPECjvm2008, we ran the performance measurements 24 
times with four iterations each and averaged the best score 
of each run. For DayTrader, we ran and averaged four 

measurements. We also show a 95% confidence interval 
for each data in the figure. Examples for each type of the 
profiles appears in appendix. 

From Figure 9, the overhead of the profiler is generally 
small, within 2.2%, even for the second and the third 
configurations that involve the costly data address to Java 
object translations. The difference between the first 
configuration and the other configurations mostly comes 
from the overhead of the translation. For the third 
configuration, the inserted ProbeNOPs did not affect the 
performance of the tested programs. The increase in the 
code size of JIT-compiled code due to the ProbeNOP, one 
instruction per lock acquisition operation, was fairly small 
and smaller than the fluctuations due to the dynamic nature 
of the JIT compiler. In some programs, the overhead of the 
third configuration was slightly smaller than the second 
configuration because the data address of each HPM 
sample, as captured by the ProbeNOP technique, always 
pointed at the Java object header, and the overhead of the 
data address to Java object translation was smaller than the 
translation in the second configuration. 

The sampling frequencies in the configurations were 
high enough to generate accurate profiles in most cases. 
Actually much lower sampling frequencies, which would 
impose much smaller overheads, would provide 
sufficiently accurate profiles for most purposes. For 
example, Schneider et al. [22] proposed 200 samples/sec as 
a reasonable choice on a single-core Pentium4 processor 
for their optimizations, while we used 8,000 samples/sec 
on the two POWER6 cores. We used a higher sampling 
frequency here because some of our advanced techniques, 
such as creating the object creation profiles, require a large 
number of samples compared to simple cache miss profiles. 
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Figure 9.  Average throughputs without profiler and with three profiler configurations. The error bars show 95% 
confidence intervals. 



7.2 Accuracy of the object creation profiling 

To confirm the accuracy of our object creation profiling 
technique, Figure 10 compares the breakdowns of the 
numbers of objects created in the Java heap as measured by 
our profiler for two benchmarks, SPECjbb2005 and 
compiler.compiler, to the numbers counted in the garbage 
collector. The figure shows that the object creation profiles 
from our profiler were consistent with those generated by 
the more accurate method.  

To quantitatively evaluate the accuracy of our technique, 
we use the overlap metric [15] as calculated by the 
following formula: 

 
overlap(profile1, profile2) =  

∑ ∈profilesclass
min(ratio(class) in profile1, ratio(class) in profile2) 

 
where 

ratio(class) =  
number_of_samples(class) / total_number_of_samples 
 

The overlap metric shows how large portion of the samples 
are included in both profiles. This metric becomes 100% 
for a pair of identical profiles. Figure 11 show the overlap 
metric of the profiles generated by our profiler and the 
profiles generated by counting objects in the garbage 
collector. We show the average overlap metric calculated 
from samples gathered in 30 seconds of measurements with 
the sampling rates of 8,000 samples/sec and 2,000 
samples/sec. We also show the overlap metric calculated 
from 4 minutes measurements with the 8,000 samples/sec 
sampling rate. The accuracy was limited for mpegaudio 
because the number of newly created objects was so small 
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that it was not possible to sample a lot of events required to 
generate an accurate profile. 

These results show our simple technique to derive the 
object creation profile from the store instruction profile is 
an effective and accurate way to capture the object creation 
behavior with very low overhead. Note that, though Figure 
10 shows only the breakdown of object classes, our profiler 
got information on the allocation sites for every sampled 
object at the same time as shown in an example in 
appendix. 

7.3 Accuracy of the context-sensitive profiling 

To evaluate how accurately our CallerChaining technique 
can generate the calling context tree (CCT) based on the 
call stack depths, we compare the number of nodes in the 
generated CCT and the number of nodes that have multiple 
callers with the same call stack depth for each benchmark 
in the first two columns of Table 1. As described in Section 
5, our technique cannot uniquely identify the locations of 
the children of such nodes in a CCT and we distribute the 
HPM events based on the edge hotness in the CCT for the 
calling contexts that include such nodes. From the table, at 
most 7.9% of the nodes were problematic for the bench-
marks other than compiler.compiler. For compiler.compiler, 
more than 25% of the nodes have multiple callers with the 
same call stack depth, and thus our technique has limited 
accuracy for the calling context in each sample. The 
compiler.compiler has a very complicated CCT consisting 
of the largest number of nodes among the benchmarks even 
though the number of methods involved in the CCT is 
smaller compared to DayTrader, as shown in the next two 
columns of Table 1. This means that each method was 
called from a variety of calling contexts, which led to 
frequent conflicts of the call stack depths in the different 
calling contexts. Note that we enabled the HPM sampling 

for five minutes to generate the CCT. This measurement 
time can be much shorter if the processor supports precise 
HPM interrupts so we could use the ProbeNOP technique 
for this purpose. 

To evaluate how accurately our technique can identify 
the calling context of each HPM event, we show the 
number of L1 cache miss events for which we can track 
their calling contexts accurately against the total cache miss 
events occurring in the JIT-compiled code in the last two 
columns of Table 1. For the programs other than 
compiler.compiler, we can identify the call sites for at least 
one level in more than 90% of the cache miss events, and 
for at least three levels in more than 80% of the cache miss 
events without ambiguity. Jones and Ryder [7] reported 
that only one level of the calling context improved the 
prediction of object lifetime though predictions based on 
allocation site alone were not accurate enough. Because of 
its low overhead and good accuracy, we believe that our 
CallerChaining is an attractive way to provide valuable 
information to use with adaptive optimizations. For 
mpegaudio, we failed to identify the calling contexts for 
0.8% of the cache miss events, even though the benchmark 
did not suffer from any call stack depth conflicts. These 
failures were caused by the imprecise HPM interrupts that 
returned mismatched pairs of an instruction address and a 
call stack depth. For benchmarks other than 
compiler.compiler, the ratios of such failures were 0.1% to 
1.3%, while it was 4.4% for compiler.compiler. 

Figure 12 shows the L1 cache miss profiles mapped for 
the calling contexts for SPECjbb2005. Each line of the 
profile shows a method signature, the call stack depth 
shown in the offset from the stack base of the thread, the 
number of samples in the method (labeled s:), the ratio of 
the total samples, the number and ratio for all descendants 
and itself (labeled d:). We only show those nodes whose 

Table 1.  Statistics for the calling context trees for each benchmark. Our technique cannot uniquely identify the 
locations of the children of those nodes in a CCT which have multiple callers with the same frame pointer values, such 
as Method D in Figure 7. 

number of nodes in CCT ratio of L1 cache miss events 

benchmark 
total 

having multiple 
callers with the same 

call stack depth 

number 
of 

methods 
in CCT

average 
number of 
nodes per 
method 

whose callers 
were uniquely 

identified for at 
least one level 

whose callers 
were uniquely 

identified for at 
least three levels

SPECjbb2005 346 10 (2.9%) 122 2.8 99.5% 99.2% 
compiler.compiler 78,264 20,184 (25.8%) 1,477 53.0 71.0% 52.5% 

derby 1,092 8 (0.7%) 432 2.5 98.9% 98.9% 
sunflow 1,039 57 (5.5%) 104 10.0 97.6% 94.6% 

xml.validation 1,745 59 (3.4%) 442 3.9 97.9% 95.6% 
serial 1,813 36 (2.0%) 218 8.3 90.8% 80.2% 

mpegaudio 54 0 (0.0%) 50 1.1 99.2% 99.2% 
DayTrader 37,616 2,962 (7.9%) 2,983 12.6 91.9% 86.4% 

 The ratios in parenthesis show the ratio to the total number of nodes. 



descendants generated at least 0.3% of the total cache 
misses. Also, we do not show inlined methods as separate 
nodes in the CCT. In the CCT, the root of all of the calling 
contexts is the TransactionManager.go method. 
However this method is not the true root in the program 
and it has a caller. However the Java threads did not exit 
and reenter the TransactionManager.go method 
during the measurement period and so the profiler was not 
able to identify the caller of this method. By combing the 
results of a few stack-walk-based stack traces with our 
profiler, the results give a much better picture of the calling 
context tree.  

Note that these tree-structured profiles were constructed 
from the outputs of the HPM profiler in the post-processing 
phase, and the profiler did not generate the trees at runtime. 
This post-processing took only a few seconds using a non-
optimized Perl script. An entire tree-structured profile is 
not required for the adaptive optimizations, such as when 
identifying the callers of selected nodes that cause many 
events. 

While investigating various workloads with our profiler, 
we often observed that collection classes such as hashmap 
generated many cache misses. In such cases, more valuable 
than the program locations was information about the 
calling context of the hashmap functions. The information 
about the callers of the hashmap functions is not 

satisfactory because programmers often wrap a hashmap 
with their own class and all callers of the hashmap 
functions become the same. Our technique can provide 
enough information to identify the callers of such wrapped 
hashmaps, even though it cannot uniquely distinguish the 
full calling context information.  

When more exact calling context information is required, 
we could use the PCC [17], which maintains a value to 
identify the current calling context at each method entry 
and exit. To read the PCC value from the interrupt handler, 
we would need to put the value in a location that the 
handler can easily find, such as a slot in the stack with a 
constant offset from the frame pointer. 

8. Summary 
In this paper, we described our sampling-based profiler that 
exploits a hardware performance monitor (HPM) available 
in the processor to collect information on running Java 
applications for use by the Java VM. Our profiler provides 
two novel features: Java-level events profiling and 
lightweight context-sensitive event profiling. For the 
former feature, we showed that the HPM can be used to 
profile high-level events in language runtime systems by 
correlating them with hardware events. We showed how 
our profiler generates object creation profiles and lock 
activity profiles with low overhead. For lock activity, we 

+-spec/jbb/TransactionManager.go()V:0x160 s:0(0.0%) d:221721(91.6%)
+-spec/jbb/TransactionManager.goManual(ILspec/jbb/TimerData;)J:0x210 s:2953(1.2%) d:221376(91.5%)
+-spec/jbb/CustomerReportTransaction.process()Z:0x2d0 s:74758(30.9%) d:75946(31.4%)
+-spec/jbb/Company.getCustomerByLastName(SBLjava/lang/String;)Lspec/jbb/Customer;:0x340 s:454(0.2%) d:1188(0.5%)

+-spec/jbb/CustomerReportTransaction.processTransactionLog()V:0x2d8 s:1581(0.7%) d:6002(2.5%)
+-spec/jbb/infra/Util/XMLTransactionLog.clear()V:0x370 s:669(0.3%) d:985(0.4%)
+-spec/jbb/infra/Util/XMLTransactionLog.populateXML(Lspec/jbb/infra/Util/TransactionLogBuffer;)V:0x360 s:1432(0.6%) d:1533(0.6%)

+-spec/jbb/DeliveryTransaction.process()Z:0x278 s:122(0.1%) d:77080(31.9%)
+-spec/jbb/DeliveryTransaction.preprocess()Z:0x3b0 s:74438(30.8%) d:76904(31.8%)
+-spec/jbb/District.removeOldNewOrders(I)V:0x418 s:780(0.3%) d:883(0.4%)
+-spec/jbb/District.removeOldOrders(I)V:0x420 s:691(0.3%) d:990(0.4%)

+-spec/jbb/NewOrderTransaction.init()V:0x248 s:777(0.3%) d:860(0.4%)
+-spec/jbb/NewOrderTransaction.process()Z:0x330 s:1486(0.6%) d:20621(8.5%)
+-java/util/TreeMap.rbInsert(Ljava/lang/Object;)Ljava/util/TreeMap$Entry;:0x360 s:2092(0.9%) d:2821(1.2%)
+-spec/jbb/Company.getCustomer(JZ)Lspec/jbb/Customer;:0x388 s:1004(0.4%) d:1004(0.4%)
+-spec/jbb/Order.processLines(Lspec/jbb/Warehouse;SZ)Z:0x4b8 s:7935(3.3%) d:15310(6.3%)
+-spec/jbb/Orderline.<init>(Lspec/jbb/Company;IBSSSZ)V:0x500 s:1393(0.6%) d:1405(0.6%)
+-spec/jbb/Orderline.process(Lspec/jbb/Item;Lspec/jbb/Stock;)V:0x5d8 s:3162(1.3%) d:5232(2.2%)
+-java/math/BigDecimal.multiply(Ljava/math/BigDecimal;)Ljava/math/BigDecimal;:0x640 s:1513(0.6%) d:1513(0.6%)

+-spec/jbb/NewOrderTransaction.processTransactionLog()V:0x2c8 s:3754(1.6%) d:13269(5.5%)
+-spec/jbb/infra/Util/TransactionLogBuffer.putDollars(Ljava/math/BigDecimal;III)V:0x318 s:504(0.2%) d:1040(0.4%)
+-spec/jbb/infra/Util/TransactionLogBuffer.putText(Ljava/lang/String;III)V:0x308 s:1793(0.7%) d:1793(0.7%)
+-spec/jbb/infra/Util/XMLTransactionLog.clear()V:0x360 s:1236(0.5%) d:1630(0.7%)
+-spec/jbb/infra/Util/XMLTransactionLog.populateXML(Lspec/jbb/infra/Util/TransactionLogBuffer;)V:0x350 s:3115(1.3%) d:3482(1.4%)

+-spec/jbb/OrderStatusTransaction.processTransactionLog()V:0x268 s:89(0.0%) d:935(0.4%)
+-spec/jbb/PaymentTransaction.init()V:0x250 s:696(0.3%) d:1078(0.4%)
+-spec/jbb/PaymentTransaction.process()Z:0x2c0 s:1058(0.4%) d:7627(3.2%)
+-spec/jbb/Company.getCustomerByLastName(SBLjava/lang/String;)Lspec/jbb/Customer;:0x330 s:840(0.3%) d:2227(0.9%)
+-spec/jbb/TreeMapDataStorage.getMedianValue(Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object;:0x390 s:28(0.0%) d:1238(0.5%)
+-java/util/TreeMap$AbstractSubMapIterator.<init>(Ljava/util/TreeMap$NavigableSubMap;)V:0x3b0 s:3(0.0%) d:1207(0.5%)

+-java/util/TreeMap$AscendingSubMapIterator.getBoundaryNode()Ljava/util/TreeMap$Entry;:0x3c8 s:0(0.0%) d:1120(0.5%)
+-java/util/TreeMap$NavigableSubMap.smallerEntry(Ljava/lang/Object;)Ljava/util/TreeMap$Entry;:0x3f0 s:1(0.0%) d:1120(0.5%)
+-java/util/TreeMap$NavigableSubMap.findLowerEntry(Ljava/lang/Object;)Ljava/util/TreeMap$Entry;:0x428 s:2(0.0%) d:1119(0.5%)
+-java/util/TreeMap$NavigableSubMap.findEndNode()Ljava/util/TreeMap$Entry;:0x498 s:1068(0.4%) d:1068(0.4%)

+-spec/jbb/Warehouse.removeOldestHistory()V:0x300 s:49(0.0%) d:1121(0.5%)
+-java/util/TreeMap.find(Ljava/lang/Object;)Ljava/util/TreeMap$Entry;:0x330 s:654(0.3%) d:814(0.3%)

+-spec/jbb/Warehouse.updateHistory(Lspec/jbb/History;)V:0x300 s:321(0.1%) d:2433(1.0%)
+-java/util/TreeMap.put(Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object;:0x320 s:0(0.0%) d:2112(0.9%)
+-java/util/TreeMap.rbInsert(Ljava/lang/Object;)Ljava/util/TreeMap$Entry;:0x350 s:1568(0.6%) d:2112(0.9%)

+-spec/jbb/PaymentTransaction.processTransactionLog()V:0x2e8 s:2242(0.9%) d:7964(3.3%)
+-spec/jbb/infra/Util/XMLTransactionLog.clear()V:0x380 s:1045(0.4%) d:1303(0.5%)
+-spec/jbb/infra/Util/XMLTransactionLog.populateXML(Lspec/jbb/infra/Util/TransactionLogBuffer;)V:0x370 s:1959(0.8%) d:2126(0.9%)

+-spec/jbb/StockLevelTransaction.process()Z:0x2b8 s:4127(1.7%) d:4127(1.7%)

Figure 12.  An example of HPM events mapped to the calling context trees (L1 data cache miss profile for SPECjbb2005). 
We show only those nodes whose descendants generated at least 0.3% of the total events.  



presented a lightweight context detection technique called 
CallerChaining, which detects the calling context for 
events. Our proposed techniques enable both programmers 
and runtime systems to get valuable information from the 
HPM to understand and optimize running programs 
without adding major overhead. 

Based on the insights in this paper, we hope that future 
processors support the precise HPM interrupts that allow 
the profiling tools to obtain the detailed processor states at 
the time of HPM events. Also NOP instructions whose 

execution can be counted by the HPM can provide more 
freedom for programmers to exploit the HPM sampling 
facility and thus offers another interesting extended use of 
the HPM. 
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Appendix  
This appendix shows examples of various profiles to show what kind of information is included in the profiles. 
 
(a) An example of CPI profile (for SPECjbb2005). 
 RUN CYCLE       INSTRUCTION    RATIO      METHOD==============  ============== =======  ==================================================

%    samples    %    samples  
32.2%  (77637)   9.8%  (23753) 1131.31% spec/jbb/DeliveryTransaction.preprocess()Z
13.9%  (33441)   9.4%  (22828) 507.04%  spec/jbb/CustomerReportTransaction.process()Z
4.3%  (10255)   9.6%  (23263) 152.58%  spec/jbb/infra/Util/XMLTransactionLog.populateXML(
2.5%   (6049)   1.1%   (2572) 814.04%  spec/jbb/StockLevelTransaction.process()Z
2.4%   (5677)   3.5%   (8456) 232.37%  spec/jbb/infra/Util/TransactionLogBuffer.putText(L

...  
 
(b) An example of cache miss profile (L1 data cache miss profile for SPECjbb2005). 
L1D$ MISS MRKD  INSTRUCTION    RATIO    METHOD
==============  ============== =======  ==================================================

%    samples    %    samples  
30.6%  (74107)  11.2%  (15992)   2.93%  spec/jbb/CustomerReportTransaction.process()Z
30.1%  (72905)  11.4%  (15178)   2.83%  spec/jbb/DeliveryTransaction.preprocess()Z
4.7%  (11480)   2.8%   (4371)   1.84%  spec/jbb/Order.processLines(Lspec/jbb/Warehouse;SZ
3.0%   (7251)   8.7%  (15535)   0.37%  spec/jbb/infra/Util/XMLTransactionLog.populateXML(

...

spec/jbb/DeliveryTransaction.preprocess()Z 30.1%  (72905)
L1D$ MISS MRKD  LOCATION  OFFSET  CLASS
==============  ========  ======  ===============================

%    samples  
4.0%   (9720)  tenure       0    spec/jbb/Stock
2.5%   (6108)  tenure      32    spec/jbb/Stock
2.0%   (4847)  nursery      8    spec/jbb/Orderline
1.9%   (4552)  nursery      0    java/math/BigDecimal

...  
 
(c) An example of lock activity profile (for DayTrader). 
MONITOR ENTER   INSTRUCTION    RATIO    METHOD
==============  ============== =======  ==================================================

%    samples    %    samples  
9.0%  (22629)   0.5%   (1258)   1.29%  org/apache/openjpa/jdbc/sql/SQLBuffer.append(Ljava
4.5%  (11287)   0.5%   (1143)   0.71%  org/apache/openjpa/jdbc/meta/strats/HandlerFieldSt
4.3%  (10778)   0.6%   (1399)   0.55%  org/apache/openjpa/jdbc/sql/SelectImpl.getTableInd
2.9%   (7397)   0.3%    (606)   0.88%  org/apache/openjpa/jdbc/sql/SelectImpl$SelectResul

...

org/apache/openjpa/jdbc/sql/SQLBuffer.append(Ljava 9.0%  (22629)
MONITOR ENTER   LOCATION  CLASS
==============  ========  ===============================

%    samples  
9.0%  (22625)  nursery   java/lang/StringBuffer

...  
 



SPIN LOOP       INSTRUCTION    RATIO    METHOD
==============  ============== =======  ==================================================

%    samples    %    samples  
36.9%     (75)   0.0%     (90)   0.06%  com/ibm/ejs/ras/Tr.register(Ljava/lang/Class;Ljava
14.3%     (29)   0.1%    (187)   0.01%  org/apache/openjpa/meta/MetaDataRepository.getMeta
6.4%     (13)   0.2%    (455)   0.00%  com/ibm/io/async/ResultHandler.runEventProcessingL
3.0%      (6)   0.0%     (58)   0.01%  com/ibm/ws/persistence/EntityManagerImpl.createNam

...

com/ibm/ejs/ras/Tr.register(Ljava/lang/Class;Ljava 36.9%  (75)
SPIN LOOP       LOCATION  CLASS
==============  ========  ===============================

%    samples  
36.9%     (75)  tenure    com/ibm/ws/bootstrap/WsLogManager
...  

 
HELPER ENTER    INSTRUCTION    RATIO    METHOD
==============  ============== =======  ==================================================

%    samples    %    samples  
44.9%     (48)   0.1%    (185)   0.01%  org/apache/openjpa/meta/MetaDataRepository.getMeta
13.1%     (14)   0.3%    (650)   0.00%  java/util/Hashtable.put(Ljava/lang/Object;Ljava/la
6.5%      (7)   0.0%      (5)   0.08%  com/ibm/ws/util/BoundedBuffer.waitGet_(J)V
5.6%      (6)   0.2%    (377)   0.00%  java/util/Hashtable.get(Ljava/lang/Object;)Ljava/l

...

org/apache/openjpa/meta/MetaDataRepository.getMeta 44.9%  (48)
HELPER ENTER    LOCATION  CLASS
==============  ========  ===============================

%    samples  
44.9%     (48)  tenure    org/apache/openjpa/jdbc/meta/MappingRepository
...  

 
(d) An example of object creation profile (for SPECjbb2005). 
OBJ. CREATION   LOCATION  CLASS
==============  ========  ===============================

%    samples  
36.4%  (40780)  nursery   [C
27.5%  (30820)  nursery   java/lang/String
16.7%  (18726)  nursery   java/math/BigDecimal
4.1%   (4595)  stack     java/lang/Integer
1.8%   (2013)  nursery   java/lang/Integer
...

spec/jbb/infra/Util/XMLTransactionLog.populateXML(  31.9%  (35628)
OBJ. CREATION   LOCATION  CLASS
==============  ========  ===============================

%    samples  
15.8%  (17695)  nursery   [C
14.9%  (16734)  nursery   java/lang/String
0.9%   (1014)  stack     java/lang/String
...  
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