
IBM Research - Tokyo

June 15, 2012 | ISMM 2012 at Beijing, China © 2012 IBM Corporation

Identifying the Sources of Cache Misses
in Java Programs
Without Relying on Hardware Counters

Hiroshi Inoue and Toshio Nakatani
IBM Research - Tokyo

2

IBM Research - Tokyo

Identifying the Sources of Cache Misses in Java Programs Without Relying on Hardware Counters © 2012 IBM Corporation

Motivation and Goal
� Cache miss information from Hardware Performance

Monitor (HPM) is useful for runtime optimizations
– Prefetch injection: Adl-Tabatabai et al. 2004

– Object placement optimization: Schneider et al. 2007, etc..

/ HPM is difficult to use in the real world
– HPM may require a special device driver and root privilege

– Only one process can use hardware at a time

� To enable runtime optimization by identifying the sources of
cache misses without using HPM

Our Goal

3

IBM Research - Tokyo

Identifying the Sources of Cache Misses in Java Programs Without Relying on Hardware Counters © 2012 IBM Corporation

Presentation Overview

� Motivation and Goal

ÎAnalysis
– Key Observation
– Our Technique
– Evaluation in Coverages

� Optimization
– Object Alignment and Collocation Optimizations
– Our Techniques
– Performance Evaluation

� Summary

4

IBM Research - Tokyo

Identifying the Sources of Cache Misses in Java Programs Without Relying on Hardware Counters © 2012 IBM Corporation

Key Observation

� Many cache misses in Java programs are caused in a
simple idiomatic code pattern

ÎWe can heuristically identify instructions and classes
that may cause frequent cache misses by matching hot
loops with the idiomatic pattern

� load a reference and touch the referenced object in a hot loop

Pattern

5

IBM Research - Tokyo

Identifying the Sources of Cache Misses in Java Programs Without Relying on Hardware Counters © 2012 IBM Corporation

So Simple Basic Code Pattern
Tends to Cause Frequent Cache Misses

ClassA objA;
while (!end) {

...
objA = ...;
...
access to objA;
...

}

access to the referenced object
9a field access (load/store)
9a metadata access

(checkcast, monitor enter)

load a reference from
9a field of an object or
9a return value of a method call

within a hot loop
9detected by software-based profiling

This access to objA tends to cause frequent cache misses

miss

6

IBM Research - Tokyo

Identifying the Sources of Cache Misses in Java Programs Without Relying on Hardware Counters © 2012 IBM Corporation

Anti-Pattern That Rarely Causes Cache Misses

ClassA objA;
while (!end) {

...
objA = ...;
...
access to objA;
...

}

access to the referenced object
9a field access (load/store)
9a metadata access

(checkcast, monitor enter)

within a hot loop
9detected by software-based profiling

This access to objA does NOT cause frequent cache misses

if the first load is loop invariant

7

IBM Research - Tokyo

Identifying the Sources of Cache Misses in Java Programs Without Relying on Hardware Counters © 2012 IBM Corporation

Implementation

� We implemented the analysis in 32-bit IBM J9/TR JVM
Java 6 SR2
� We execute pattern matching in JIT compiler

– after applying optimizations including method inlining and
loop-invariant code motion

– using execution frequency information obtained by
software-based profiling to identify the hot loops

– only for hot methods that are recompiled with higher
optimization levels than the initial level

8

IBM Research - Tokyo

Identifying the Sources of Cache Misses in Java Programs Without Relying on Hardware Counters © 2012 IBM Corporation

Evaluation

Environment
� Processor: POWER6 4.0GHz

– 64-KB L1D cache, 64-KB L1I cache
– 4-MB unified L2 cache
– 128-byte cache line for both L1 and L2 cache

� OS: RedHat Enterprise Linux 5.2
� Benchmark: SPECpower_ssj2008, SPECjbb2005, SPECjvm2008,

DaCapo-9.12

We show coverages by instructions identified by our technique for
9 Static count of load and store instructions
9 L1D cache misses
9 L2 cache data misses
9 Memory accesses

9

IBM Research - Tokyo

Identifying the Sources of Cache Misses in Java Programs Without Relying on Hardware Counters © 2012 IBM Corporation

Coverages by Instructions Selected by Our Technique

total in
JIT-
compiled
code

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

static count of
load/store

instructions

L1D miss L2 data miss

total in
hot methods
(upper bound
for us)

selected
by our
technique

(average of all benchmarks, see the paper for more detail)

☺ Our technique selects only 2.8% of load and store instructions and
they cover about 50% of the total cache misses compared to total in JIT-compiled code

10

IBM Research - Tokyo

Identifying the Sources of Cache Misses in Java Programs Without Relying on Hardware Counters © 2012 IBM Corporation

Coverages by Instructions Selected by Our Technique

total in
JIT-
compiled
code

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

static count of
load/store

instructions

L1D miss L2 data miss

total in
hot methods
(upper bound
for us)

selected
by our
technique

(average of all benchmarks, see the paper for more detail)

☺ Our technique selects 14% of load and store instructions and
they cover 64% in L1 miss and 69% in L2 miss compared to total in hot methods

11

IBM Research - Tokyo

Identifying the Sources of Cache Misses in Java Programs Without Relying on Hardware Counters © 2012 IBM Corporation

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Memory access L1D miss L2 data miss

Not Only Accessed Frequently

total in
JIT-
compiled
code

total in
hot methods
(upper bound
for us)

selected
by our
technique

(average of all benchmarks, see the paper for more detail)

☺ Instructions selected by our technique causes
about 2x more cache misses per execution
than the instructions not selected

12

IBM Research - Tokyo

Identifying the Sources of Cache Misses in Java Programs Without Relying on Hardware Counters © 2012 IBM Corporation

Presentation Overview

� Motivation and Goal

� Analysis
– Key Observation
– Our Technique
– Evaluation in Coverages

ÎOptimization
– Object Alignment and Collocation Optimizations
– Our Techniques
– Performance Evaluation

� Summary

13

IBM Research - Tokyo

Identifying the Sources of Cache Misses in Java Programs Without Relying on Hardware Counters © 2012 IBM Corporation

Application in Runtime Optimization

� We implemented two object placement optimizations to
reduce cache misses

– Object alignment

– Object collocation

•••

cache line (128 byte)

objA
hot fields

••• ••• ObjA
hot fields

•••padding

align
object

••••••

cache line (128 byte) reference

••••••

reference

objA
collocate

two objectsobjB objBobjA

ÎBoth techniques can reduce cache misses from two to one

14

IBM Research - Tokyo

Identifying the Sources of Cache Misses in Java Programs Without Relying on Hardware Counters © 2012 IBM Corporation

Our Approach for Optimizations

� We identify target classes for optimization based on our analysis in
JIT compiler

– If two accesses to distinct fields of a object are selected in a hot
loop
Îselect the class for target of alignment optimization

– If two accesses to objects, where one has a reference to
another, are selected in a hot loop
Îselect the pair of classes for targets of collocation

optimization

� We do optimizations both in garbage collector (for objects in tenure
space) or at allocation time (for objects in nursery space)

15

IBM Research - Tokyo

Identifying the Sources of Cache Misses in Java Programs Without Relying on Hardware Counters © 2012 IBM Corporation

Pattern for Alignment Optimization

� Derived from the basic pattern

ClassA objA;
while (!end) { // in a hot loop

...
// 1) first, load a reference to a ClassA’s instance
objA = ...;
...
// 2) then, access at least two different fields of objA
access to objA.field1;
...
access to objA.field2;
...

}

objA

loop variant load

ÎClassA is selected for target of alignment optimization

16

IBM Research - Tokyo

Identifying the Sources of Cache Misses in Java Programs Without Relying on Hardware Counters © 2012 IBM Corporation

Pattern for Collocation Optimization

ClassA objA;
ClassB objB;
while (!end) { // in a hot loop

...
// 1) first, load a reference to a ClassA’s instance
objA = ...;
...
// 2) next, load a reference of ClassB from objA
objB = objA.referenceToClassB;
...
// 3) then, access at least one field of objB
access to objB.field1;
...

}

objA

objB

loop variant load

Îpair of ClassA and ClassB is selected for target of collocation optimization

17

IBM Research - Tokyo

Identifying the Sources of Cache Misses in Java Programs Without Relying on Hardware Counters © 2012 IBM Corporation

Special Handling For checkcast Operation
ClassA objA;
ClassS objS; // ClassS is a super class of ClassA
while (!end) { // in a hot loop

...
// 1) first, load a reference of a super class of ClassA
objS = ...;
...
// 2) next, cast objC to ClassA (access to object header)
objA = (ClassA) objS;
...
// 3) then, access at least one field of objA
access to objA.field1;
...

}

objA

loop variant load

header accessed by
checkcast

ÎClassA (not ClassS) is selected for target of alignment optimization
ÎCommon pattern in HashMap or TreeMap accesses in Java

18

IBM Research - Tokyo

Identifying the Sources of Cache Misses in Java Programs Without Relying on Hardware Counters © 2012 IBM Corporation

Performance Improvements by Optimizations

hi
gh

er
 is

 fa
st

er

Object collocationObject alignment

ÎOur technique achieved comparable performance gains
in cache-miss-intensive programs without relying on the hardware help

0.9

0.95

1

1.05

1.1

1.15

SPECpo
wer_

ss
j20

08

SPECjbb
20

05

SPECjvm
20

08

DaC
ap

o-9
.12

re
la

tiv
e

th
ro

ug
hp

ut
 .

Baseline (w/o alignment optimization)
Our software-only optimization
HPM-based optmization

0.9

0.95

1

1.05

1.1

1.15

SPECpo
wer_

ss
j20

08

SPECjbb
20

05

SPECjvm
20

08

DaC
ap

o-9
.12

Baseline (w/o collocation optimization)
Our software-only optimization
HPM-based optmization

(non-zero
origin)

non intensivecache miss intensivecache miss intensive non intensive

19

IBM Research - Tokyo

Identifying the Sources of Cache Misses in Java Programs Without Relying on Hardware Counters © 2012 IBM Corporation

Remaining Challenges

� For Optimizations
– Pattern matching in compiler cannot tell us the location of the

objects in the Java heap (e.g. tenure or nursery)
– An instance of a subclass of the identified target may cause

cache misses
ÎMore detailed software-based profiling can help (in trade for

additional overhead)

� For Analysis
– Current pattern matching cannot identify frequent cache misses

caused by conflicting writes from multiple thread
ÎDifferent patterns and profiling information is required to

achieve higher coverage

20

IBM Research - Tokyo

Identifying the Sources of Cache Misses in Java Programs Without Relying on Hardware Counters © 2012 IBM Corporation

Summary

� We present a technique to identify the instructions and
objects that frequently cause cache misses in Java
programs without relying on the HPM
ÎMatching hot loops with simple idiomatic patterns worked

very well for many Java programs

� We showed the effectiveness of our approach using two
types of optimizations

21

IBM Research - Tokyo

Identifying the Sources of Cache Misses in Java Programs Without Relying on Hardware Counters © 2012 IBM Corporation

backup

22

IBM Research - Tokyo

Identifying the Sources of Cache Misses in Java Programs Without Relying on Hardware Counters © 2012 IBM Corporation

Coverage for each benchmark (L1D cache misses)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

SPECpo
wer_

ss
j20

08
SPECjbb

20
05

co
mpil

er.
co

mpil
er

co
mpil

er.
su

nfl
ow

co
mpre

ss
de

rby
mpe

ga
ud

io
se

ria
l

su
nfl

ow
xm

l.tr
an

sfo
rm

xm
l.v

ali
da

tio
n

av
ror

a
ba

tik
ec

lip
se fop h2

jyt
ho

n
lui

nd
ex

lus
ea

rch pm
d

su
nfl

ow
tom

ca
t

tra
de

be
an

s
tra

de
so

ap
xa

lan
av

era
ge

co
ve

ra
ge

 (r
at

io
 to

 th
e

to
ta

l n
um

be
r o

f e
ve

nt
s

 c
au

se
d

in
 J

IT
-c

om
pi

le
d

co
de

)

Our technique with Aggressive threshold All in hot methods (upper bound for us) All in JITted code

