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Motivation and Goal
� Cache miss information from Hardware Performance 

Monitor (HPM) is useful for runtime optimizations 
– Prefetch injection: Adl-Tabatabai et al. 2004

– Object placement optimization: Schneider et al. 2007, etc..

/ HPM is difficult to use in the real world
– HPM may require a special device driver and root privilege

– Only one process can use hardware at a time

� To enable runtime optimization by identifying the sources of 
cache misses without using HPM

Our Goal
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Presentation Overview

� Motivation and Goal

ÎAnalysis
– Key Observation
– Our Technique
– Evaluation in Coverages

� Optimization
– Object Alignment and Collocation Optimizations
– Our Techniques
– Performance Evaluation

� Summary
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Key Observation

� Many cache misses in Java programs are caused in a 
simple idiomatic code pattern

ÎWe can heuristically identify instructions and classes 
that may cause frequent cache misses by matching hot 
loops with the idiomatic pattern

� load a reference and touch the referenced object in a hot loop

Pattern
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So Simple Basic Code Pattern 
Tends to Cause Frequent Cache Misses

ClassA objA;
while (!end) { 

...
objA = ...;
...
access to objA; 
...

}

access to the referenced object
9a field access (load/store)
9a metadata access 

(checkcast, monitor enter)

load a reference from 
9a field of an object or 
9a return value of a method call

within a hot loop
9detected by software-based profiling

This access to objA tends to cause frequent cache misses

miss
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Anti-Pattern That Rarely Causes Cache Misses

ClassA objA;
while (!end) { 

...
objA = ...;
...
access to objA; 
...

}

access to the referenced object
9a field access (load/store)
9a metadata access 

(checkcast, monitor enter)

within a hot loop
9detected by software-based profiling

This access to objA does NOT cause frequent cache misses

if the first load is loop invariant
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Implementation

� We implemented the analysis in 32-bit IBM J9/TR JVM 
Java 6 SR2
� We execute pattern matching in JIT compiler

– after applying optimizations including method inlining and 
loop-invariant code motion

– using execution frequency information obtained by 
software-based profiling to identify the hot loops

– only for hot methods that are recompiled with higher 
optimization levels than the initial level
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Evaluation

Environment
� Processor: POWER6 4.0GHz

– 64-KB L1D cache, 64-KB L1I cache
– 4-MB unified L2 cache
– 128-byte cache line for both L1 and L2 cache

� OS: RedHat Enterprise Linux 5.2
� Benchmark: SPECpower_ssj2008, SPECjbb2005, SPECjvm2008, 

DaCapo-9.12

We show coverages by instructions identified by our technique for
9 Static count of load and store instructions
9 L1D cache misses
9 L2 cache data misses
9 Memory accesses
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Coverages by Instructions Selected by Our Technique
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☺ Our technique selects only 2.8% of load and store instructions and 
they cover about 50% of the total cache misses compared to total in JIT-compiled code
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Coverages by Instructions Selected by Our Technique
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☺ Our technique selects 14% of load and store instructions and 
they cover 64% in L1 miss and 69% in L2 miss compared to total in hot methods
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☺ Instructions selected by our technique causes 
about 2x more cache misses per execution
than the instructions not selected 
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Presentation Overview

� Motivation and Goal

� Analysis
– Key Observation
– Our Technique
– Evaluation in Coverages

ÎOptimization
– Object Alignment and Collocation Optimizations
– Our Techniques
– Performance Evaluation

� Summary
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Application in Runtime Optimization

� We implemented two object placement optimizations to 
reduce cache misses

– Object alignment

– Object collocation

•••

cache line (128 byte)

objA
hot fields

••• ••• ObjA
hot fields

•••padding

align 
object

••••••

cache line (128 byte) reference

••••••

reference

objA
collocate

two objectsobjB objBobjA

ÎBoth techniques can reduce cache misses from two to one 
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Our Approach for Optimizations

� We identify target classes for optimization based on our analysis in 
JIT compiler

– If two accesses to distinct fields of a object are selected in a hot 
loop
Îselect the class for target of alignment optimization

– If two accesses to objects, where one has a reference to 
another, are selected in a hot loop
Îselect the pair of classes for targets of collocation 

optimization

� We do optimizations both in garbage collector (for objects in tenure 
space) or at allocation time (for objects in nursery space)
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Pattern for Alignment Optimization

� Derived from the basic pattern 

ClassA objA;
while (!end) { // in a hot loop

...
// 1) first, load a reference to a ClassA’s instance
objA = ...;
...
// 2) then, access at least two different fields of objA
access to objA.field1; 
...
access to objA.field2;
...

}

objA

loop variant load

ÎClassA is selected for target of alignment optimization
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Pattern for Collocation Optimization

ClassA objA;
ClassB objB;
while (!end) { // in a hot loop

...
// 1) first, load a reference to a ClassA’s instance
objA = ...;
...
// 2) next, load a reference of ClassB from objA
objB = objA.referenceToClassB;
...
// 3) then, access at least one field of objB
access to objB.field1; 
...

}

objA

objB

loop variant load

Îpair of ClassA and ClassB is selected for target of collocation optimization
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Special Handling For checkcast Operation
ClassA objA;
ClassS objS;  // ClassS is a super class of ClassA
while (!end) { // in a hot loop

...
// 1) first, load a reference of a super class of ClassA
objS = ...;
...
// 2) next, cast objC to ClassA (access to object header)
objA = (ClassA) objS;
...
// 3) then, access at least one field of objA
access to objA.field1;
...

}

objA

loop variant load

header accessed by
checkcast

ÎClassA (not ClassS) is selected for target of alignment optimization
ÎCommon pattern in HashMap or TreeMap accesses in Java
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Performance Improvements by Optimizations
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Remaining Challenges

� For Optimizations
– Pattern matching in compiler cannot tell us the location of the 

objects in the Java heap (e.g. tenure or nursery)
– An instance of a subclass of the identified target may cause 

cache misses 
ÎMore detailed software-based profiling can help (in trade for 

additional overhead)

� For Analysis
– Current pattern matching cannot identify frequent cache misses 

caused by conflicting writes from multiple thread
ÎDifferent patterns and profiling information is required to 

achieve higher coverage
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Summary

� We present a technique to identify the instructions and 
objects that frequently cause cache misses in Java 
programs without relying on the HPM
ÎMatching hot loops with simple idiomatic patterns worked 

very well for many Java programs

� We showed the effectiveness of our approach using two 
types of optimizations
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backup
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Coverage for each benchmark (L1D cache misses)
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