EFFICIENT TOMOGRAPHIC RECONSITRUCTION

FOR COMMODITY PROCESSORS WIIH LIMITED MEMORY BANDWIDTH

Hiroshi Inoue (inouehrs@)jp.ibm.com)

» Goal: to use commodity processors (e.g. for PC)
for CT reconstruction without costly accelerators

» Challenge: commodity processors typically have
limited system memory bandwidth

=>»We developed a technique to reduce memory
bandwidth requirement; we achieved up to 80%
speedup in RabbitCT benchmark when memory
bandwidth was not sufficient

1. Introduction

» Today's commodity processors are becoming
more and more powerful in computation power
with multiple cores and vector instructions

* Even smartphones or tablets use quad- or
octa-core processors

* However, memory systems are relatively weak in
such commodity processors

 Question: Can we use (low-cost and low-power)
the commodity processors in CT systems?

2. Workload Analysis
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Overview of FDK CT reconstruction algorithm
for each 2D projection image {

for x =0 to L-1{
fory=0 to L-1 {
forz=0 to L-1 {
project voxel (x,y,z) onto 2D projection image
read value from 2D image at projected point
update density value of voxel (x,y,2)
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» Each iteration of outer-loop accesses
v read from 2D projection image (< 10 MB)

v read and write to density values of voxels in 3D
structure (> 300 MB)

We need to reduce accesses to 3D volume data!

Ja)se] s Jaybiy

IBM Research — Tokyo (University of Tokyo)

3. Optimization

* |dea: to process multiple (B) projection images
In each iteration > we need to read and write 3D
volume data only once per B images and hence
bandwidth requirement becomes 1/B

Overview of reconstruction with our technique

for each batch of B projection image {
for x =0 to L-1 {
fory=0 to L-1 {
forz=0 to L-1{
fork =0 to B-1 {

project voxel (x,y,z) onto k-th image of batch
read value from k-th image at projected point
update density value of voxel (x,y,2)
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} /I number of iteration becomes 1/B

4. Performance results

- Evaluated our technique on IBM POWERS using
RabbitCT benchmark
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Performance comparisons with previous RabbitCT scores

Category Processor # Core | # Boards GUPS
Low mem.
bandwidth POWERS 4.32 GHz 4 cores (1 socket) 5.1

POWERS 3.69 GHz 20 cores (2 sockets) 21.4

S;"(‘j’:r' POWERS 3.69 GHz 10 cores (1 socket) 10.8
grocessor lvyBridge-EP 2.2 GHz 20 cores (2 sockets) about 7.0
Westmere-EX 2.4 GHz 40 cores (4 sockets) 8.3

1 board about 8.5
2 boards 152.9

Accelerator Xeon Phi 5110P
nVidia GTX 670
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