EFFICIENT TOMOGRAPHIC RECONSITRUCTION

FOR COMMODITY PROCESSORS WIIH LIMITED MEMORY BANDWIDTH

Hiroshi Inoue (inouehrs@)jp.ibm.com)

» Goal: to use commodity processors (e.g. for PC)
for CT reconstruction without costly accelerators

» Challenge: commodity processors typically have
limited system memory bandwidth

=>»We developed a technique to reduce memory
bandwidth requirement; we achieved up to 80%
speedup in RabbitCT benchmark when memory
bandwidth was not sufficient

1. Introduction

» Today's commodity processors are becoming
more and more powerful in computation power
with multiple cores and vector instructions

* Even smartphones or tablets use quad- or
octa-core processors

* However, memory systems are relatively weak in
such commodity processors

 Question: Can we use (low-cost and low-power)
the commodity processors in CT systems?

2. Workload Analysis

scale linearly on a server
processor with sufficient
4 memory bandwidth

2 does not scale well on a
processor with limited

throughput (GUPS)
w

Throughput (L=512)

1 2 3 4 5
cores

v" Computation power cannot be fully utilized if
memory bandwidth is not sufficient

memory bandwidth

Overview of FDK CT reconstruction algorithm
for each 2D projection image {

for x =0 to L-1{
fory=0 to L-1 {
forz=0 to L-1 {
project voxel (x,y,z) onto 2D projection image
read value from 2D image at projected point
update density value of voxel (x,y,2)

111
J

» Each iteration of outer-loop accesses
v read from 2D projection image (< 10 MB)

v read and write to density values of voxels in 3D
structure (> 300 MB)

We need to reduce accesses to 3D volume data!

Ja)se] s Jaybiy

IBM Research — Tokyo (University of Tokyo)

3. Optimization

* |dea: to process multiple (B) projection images
In each iteration > we need to read and write 3D
volume data only once per B images and hence
bandwidth requirement becomes 1/B

Overview of reconstruction with our technique

for each batch of B projection image {
for x =0 to L-1 {
fory=0 to L-1 {
forz=0 to L-1{
fork =0 to B-1 {

project voxel (x,y,z) onto k-th image of batch
read value from k-th image at projected point
update density value of voxel (x,y,2)

1
111

} /I number of iteration becomes 1/B

4. Performance results

- Evaluated our technique on IBM POWERS using
RabbitCT benchmark

6
Throughput (L=512) %8 ~
S - P Cg_
@
—~ 4 D
S 3
0 7}
= 3 @
-]
=
1
_g 2 — o= batch size B=2 , on a large :
- — A~ batch size B=4 | server system
1 - =®=Dbatch size B=1 (naive) | on Palmetto -
==+=Dbatch size B=2 > (w/lower memory
== Dbatch size B=4) bandwidth)
0 L ! !
1 2 3 4 3
cores
350 ,
. Memory bandwidth
()] 2
£ D 300 . 8—
2 £ bandwidth reduced [
o - 250 Q
T m as expected _
= 77
o< 200 o
© > %
- 2 150 =
C =
£ E 100
° 5
© V>’, 50
n

-

batch size B=1 batch size B=2 batch size B=4

Performance comparisons with previous RabbitCT scores

Category Processor # Core | # Boards GUPS
Low mem.
bandwidth POWERS 4.32 GHz 4 cores (1 socket) 5.1

POWERS 3.69 GHz 20 cores (2 sockets) 21.4

S;"(‘j’:r' POWERS 3.69 GHz 10 cores (1 socket) 10.8
grocessor lvyBridge-EP 2.2 GHz 20 cores (2 sockets) about 7.0
Westmere-EX 2.4 GHz 40 cores (4 sockets) 8.3

1 board about 8.5
2 boards 152.9

Accelerator Xeon Phi 5110P
nVidia GTX 670

ISBI 2016 at Prague

