
EFFICIENT TOMOGRAPHIC RECONSTRUCTION
FOR COMMODITY PROCESSORS WITH LIMITED MEMORY BANDWIDTH

Hiroshi Inoue

IBM Research – Tokyo, 19-21 Nihonbashi Hakozaki-cho, Tokyo, 103-8510, Japan

University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan

ABSTRACT

Three-dimensional (3D) computed tomography (CT) is one
of the key components of many clinical workflows. Because
CT reconstruction has been known as a compute-intensive
workload, accelerating this workload using special-purpose
accelerators, such as GPUs and FPGAs, or multi-socket
server-grade processors has been widely studied. Due to
recent advances in semiconductor technologies, even
commodity processors, such as those used in PCs, can
provide sufficient computing power for CT reconstruction
by multiple cores with vector processing units. Despite their
huge computing power, commodity processors often
provide limited system memory bandwidth compared to
server-grade processors due to constraints in cost and energy
consumption. In this paper, we describe our memory-
optimization technique and its implementation targeting on
general-purpose processors with limited memory bandwidth.
By reducing the memory-bandwidth requirement with batch
processing, the memory optimization achieved up to 80%
performance improvements in RabbitCT, a widely-used CT
benchmark, on a quad-core processor with limited memory
bandwidth. Without the memory optimization, the
performance did not scale with more than two cores. The
implementation can process about 40 projection images per
second for the most common problem size of 512^3 with
only four cores used. It is therefore practical to use such
commodity processors in real CT systems without additional
accelerators, which trade greatly increased cost and energy
consumption for higher throughput.

Index Terms—CT Reconstruction, Memory bandwidth,
Back-projection

1. INTRODUCTION

Three-dimensional (3D) computed-tomography (CT)
reconstruction is known as a compute-intensive workload,
and its performance has a significant effect on many clinical
workflows. Due to its importance, many existing CT
implementations exploit huge computing power of multi-
socket server-grade processors [1, 2], such as Intel’s Xeon,
and accelerators including GPUs [3, 4] and FPGAs [5].

Because of today’s advanced semiconductor
technologies, commodity general-purpose processors, like
those used in PCs or tablets, have multiple cores and vector
(SIMD) processing units. Moreover, many commodity
processors integrate GPU cores to accelerate processing of
compute-intensive workloads. Hence, it is becoming
increasingly realistic to use commodity general-purpose
processors for 3D CT reconstruction. In contrast to their
huge computing power, however, today’s commodity
processors typically provide only limited system memory
bandwidth and cache size compared to multi-socket server-
grade processors due to constraints on cost and energy
consumption. To provide wider memory bandwidth, CT
systems need to be equipped with more memory controllers
in processors and more DIMM sockets on the system board;
consequently, cost, system size, and energy consumption are
all increased. On such commodity processors, as a result, the
computation performance of the processor cores cannot be
fully utilized due to a bottleneck in system memory
bandwidth; that is, the performance does not scale linearly
with increasing number of cores.

In this study, which targets commodity processors with
limited memory bandwidth, we describe a method of
memory optimization for the 3D CT reconstruction. The
memory optimization was implemented on RabbitCT [6], an
open benchmarking framework for benchmarking 3D cone-
beam CT-reconstruction algorithms. Our memory
optimization, which processes multiple projection images at
once, drastically reduced memory-bandwidth requirement
and enabled almost-linear performance scalability with
increasing number of cores in a system with limited memory
bandwidth, while the scalability was much poorer without
the optimization. The performance gain achieved by the
memory optimization was up to 80% when using four cores.

The implemented memory optimization can achieve
3.7x better performance per core compared to the previous
best score on server-grade general-purpose processors [1];
in other words, using only four cores, it processes about 40
projection images per second for the most-common problem
size of 5123. Hence, it makes it possible to use commodity
processors for 3D CT reconstruction without using
additional accelerators such as GPUs.

2. METHODS

2.1. Baseline reconstruction algorithm [6]

RabbitCT evaluates the performance and accuracy of the
back-projection operation for 3D volume reconstruction. It
provides 496 projection images, whose size Sx×Sy is 1248×
960 pixels, with a projection matrix for each image. The n-
th projection image is denoted as In. For each projection
image, the reconstruction algorithm projects all voxels onto
In and updates the density value of the voxel based on the
intensity value at the projected point obtained by bilinear
interpolation. The number of voxels in the volume, i.e., the
problem size, is L3 = 1283, 2563, 5123 or 10243. Among
these sizes, L=512 is the most common one. Although
different numbers of voxels are used, the same In is used as
input for all problem sizes.

The voxel, whose 3D position is denoted as {x, y, z}, is
projected onto the point {un, vn} in In as follow. Here, an is a
projection matrix determined by the system geometry and
provided for each In.

() () ()
() () ()
() .,,

,,,,,
,,,,,

11852

10741

9630

azayaxazyxw
zyxwazayaxazyxv
zyxwazayaxazyxu

n

nn

nn

+++=
+++=
+++=

In is defined only at grid points; hence, the intensity
value at projected point {un, vn}, which is denoted as

()nnn vup ,ˆ , is obtained by performing a bilinear interpolation
from intensity values pn(i, j) at the neighboring four pixels:

() () ()
() (),1,11,)1(

,1)1(,)1)(1(,ˆ
++++−+
+−+−−=

jipjip
jipjipvup

nn

nnnnn

βαβα
βαβα

        .,,, nnnnnn vvuuvjui −=−=== βα

Here, pn(i, j) equals In(i, j) if position {i, j} is within In;
otherwise, pn(i, j) is zero. The density value of voxel f (x, y,
z) is calculated as

() ()nnn

N

n n

vup
zyxw

zyxf ,ˆ
),,(

1,,
1

2∑
=

= .

A pseudocode of the baseline reconstruction algorithm
is shown in Figure 1(a). To accelerate the reconstruction, we
preprocessed each projection image and stored the result in
an in-memory pre-computed table. The reconstruction
algorithm is implemented using SIMD instructions for both
the pre-computation and reconstruction phases. Also, it
employs the following three optimizations: (i) replacing
divide instructions by reciprocal estimate instructions, (ii)
skipping voxels that cannot be projected onto the projection
image, and (iii) eliminating conditional branches for
checking out-of-image-bound accesses by creating a copy of
the projection image with zero padding around the image [1,
2].

2.2. Memory optimization technique

The minimum memory-bandwidth requirements for the
baseline algorithm are considered as follows. For each
projection image (each iteration in the outer-most loop in
Figure 1), it is necessary to read the projection image itself
and read and write the density values of voxels that are
projected onto the current projection image. To assess the
minimum memory-bandwidth requirement, it is assumed
that all other accesses, such as those to the pre-computed
table, do not cause cache misses and hence do not consume
system memory bandwidth. The amount of data transfer for
reading and writing the density values of voxels (e.g., 330
MB per projection image for L=512) is much larger than
that for reading the projection image (4.7 MB) for realistic
resolutions. Consequently, it is critical to reuse the density
values of voxels within the cache memory of the processor
to achieve good performance with very limited memory
bandwidth.

A pseudocode of a CT reconstruction algorithm with
our memory optimization is shown in Figure 1(b). To reduce
the memory-bandwidth bottleneck, multiple projection
images are processed at once. As the number of images to
be processed at once (batch size) increases, the memory
bandwidth used to transfer the density values of voxels is
reduced. When batch size is B, the memory bandwidth
required for transferring voxel data becomes only 1/B of the
baseline algorithm since these values must be read and
written only once per B images. In trade for reduced
memory bandwidth required for voxel data, the memory
footprint required for the pre-computed tables and
projection images is increased by B times, potentially
increasing cache misses. However, in total of on the whole,
reduced required bandwidth for the voxel data and increased
required bandwidth for the projection image made it

Figure 1. Pseudocode of reconstruction algorithm without and with
memory optimization by batch processing with batch size B.

for each batch of B proj. images In to In+B-1
// pre-computation phase
for i = 0 to Sx - 1

for j = 0 to Sy - 1
for k = 0 to B - 1

pre-computation for image In+k
end

end
end
// reconstruction phase
for Iz = 0 to L - 1

for Iy = 0 to L - 1
determine range of Ix to iterate
for Ix = Ixstart to Ixend

for k = 0 to B - 1
project and update voxel (Ix, Iy, Iz)
for image In+k

end
end

end
end

end

for each projection image In
// pre-computation phase
for i = 0 to Sx - 1

for j = 0 to Sy - 1
pre-computation for image In

end
end
// reconstruction phase
for Iz = 0 to L - 1

for Iy = 0 to L - 1
determine range of Ix to iterate
for Ix = Ixstart to Ixend

project and update voxel (Ix, Iy, Iz)
for image In

end
end

end
end

(a) Naive reconstruction algoruthm:
processing one image in each iteration (B=1)

(b) Algorithm with memory optimization:
processing multiple (B>1) images at once

RL: resolution (size of a voxel); OL: origin

1
2
3
4
5
6
7
8
9

10
11
12
13

14
15
16
17

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

17
18
19
20
21

possible to significantly reduce memory bandwidth (as
empirically shown later).

Papenhausen et al. [3] employed a similar idea of
processing multiple projection images per kernel invocation
on GPUs to fully utilize the huge computation power of
GPUs by reducing accesses to the global memory and also
reducing the number of kernel invocations. Our results show
that such memory optimization is important to achieve high
performance on commodity processors with limited memory
bandwidth, though their peak throughput is much lower than
that of GPUs and no kernel invocation overhead is incurred.

3 EXPETIMENTAL RESULTS

The proposed memory optimization was implemented and
experimentally evaluated on a POWER8 processor. The
evaluation results illustrate how the memory optimization
affects the performance on two systems with different
memory performances.

The memory optimization implemented was evaluated
on two different systems with POWER8 processors. One
system, called S824L, is a large server system with two
3.69-GHz POWER8 processor with 256 GB of system
memory. It has 20 processor cores (10 cores per socket) in
total. Another (smaller) system, called Palmetto, is equipped
with a quad-core version of a 4.32-GHz POWER8 processor
with 64 GB of system memory. The first system equips four
memory controller chips (called Centaur) per five cores,
while the latter equips only one memory controller chip per
four cores [7]. Hence, there is about 4x gap in the memory
bandwidth per computation performance (FLOPS) of two
systems. A gap in the memory bandwidth also exists
between Intel’s server processors and client processors. For
example, the Xeon E7 v3 series server-grade CPUs
(Haswell-EX) provides 4x wider memory bandwidth per
socket compared to the same generation CPUs for clients
(4th generation Core i7).

The reconstruction algorithms were implemented in
C++ and compiled by using IBM XL C++ compiler v13.1.
We used single-precision floating point numbers in the
implementation. Both systems ran Ubuntu Linux 14.10 LE.
We disabled the dynamic frequency scaling for more
consistent and reproducible results. For each data point, two
configurations, four threads pre core and eight threads per
core, were evaluated, and the better performance was
reported because neither configuration consistently
outperformed the another. We measured the performance 16
times and show the average results.

Figure 2 illustrates the throughput performance (in
GUPS, Giga voxels updates per second) for two problem
sizes, L=512 and L=1024, on the two systems with various
batch size (B); i.e., B projection images were processed in
each iteration of the inner-most loop. The reconstructed
image quality was not affected by this optimization. For
both problem sizes, the naive algorithm without batch
processing (B=1 in the figure) did not scale beyond two

cores on Palmetto due to a memory-bandwidth bottleneck.
By processing multiple projection images at once, i.e., B=2
or B=4, the performance scaled almost linearly because the
proposed optimization makes it possible to use the memory
bandwidth more efficiently. When all four cores are used,
the performance from batch size of 1 to 4 was improved by
about 65% for L=512 and 80% for L=1024.

On S824L, on the contrary, the optimization only
marginally improved performance by up to 4%. This was
because S824L has a huge memory bandwidth, so memory
bandwidth was not a major bottleneck, even when

Figure 2. Performance with various batch size S on two systems
(using 1 NUMA node). S824L has about 4x more memory
bandwidth per processor’s FLOPS than Palmetto.

Figure 3. Amount of data read from system memory for L=512
with various batch sizes measured on Palmetto using four cores.

0

1

2

3

4

5

6

1 2 3 4 5

th
ro

ug
hp

ut
 (G

U
P

S)

cores

batch size B=1 (naive)
batch size B=2 on S824L
batch size B=4
batch size B=1 (naive) on Palmetto
batch size B=2
batch size B=4

higher is faster

problem size: L=512

(w/ lower memory
bandwidth)

0

1

2

3

4

5

6

7

1 2 3 4 5

th
ro

ug
hp

ut
 (G

U
P

S
)

cores

batch size B=1 (naive)
batch size B=2 on S824L
batch size B=4
batch size B=1 (naive) on Palmetto
batch size B=2
batch size B=4

higher is faster

problem size: L=1024

(w/ lower memory
bandwidth)

0

50

100

150

200

250

300

350

batch size B=1 batch size B=2 batch size B=4

am
ou

nt
 o

f d
at

a
re

ad
 fr

om

sy
st

em
 m

em
or

y
(M

B
/ i

m
ag

e)

shorter is better

projection images were processed one by one. On both
systems, the differences in performance for batch sizes of 2
and 4 were quite small, though the batch size of 4
consistently showed slightly higher throughput than the
batch size of 2.

To confirm that larger batch sizes really reduced the
memory bandwidth requirements, we show the amount of
data read from the system memory (as measured by using
the processor’s performance counter on Palmetto) in Figure
3. For this measurement, the hardware prefetcher of the
processor was disabled to capture all memory accesses
accurately with the performance counter. According to the
figure, the amount of the system memory accesses was
reduced in the case of larger batch size as expected. This
reduction in memory bandwidth resulted in better scalability
with our memory optimization on Palmetto shown in Figure
2.

By using the memory optimization by the batch
processing described in this paper, our implementation
exhibited significantly higher performance than the
previously achieved results of the RabbitCT benchmark on
general-purpose processors. Table 1 compares the
performance of various implementations for problem size of
L=512. Our current implementation on the Palmetto system
achieved about 3.7x higher performance per core than the
previous best score on a two-socket machine (Intel
IvyBridge) [1]. Our implementation on S824L outperformed
this previous best score by more than 3x using the same
number of cores. The throughput on Palmetto was more than
5 GUPS using only four cores despite of its limited memory
bandwidth. Although the total performance on Palmetto still
falls behind that of implementations running on server-grade
processors or GPUs, using the commodity processor yields
much lower system costs and lower energy consumptions.
These are both very important characteristics in real systems.

4. CONCLUSION

A memory optimization technique for accelerating 3D
volume reconstruction with back-projection on processors
with limited memory bandwidth, such as commodity
processors for client systems, was developed. The
implemented algorithm scaled well on a system with limited
memory bandwidth per FLOPS as well as on a system with
larger memory bandwidth. It exhibited performance of more

than 5.0 GUPS on RabbitCT on a quad-core system with
limited memory bandwidth. Due to recent advances in the
computation power of commodity processors with increased
number of cores and widening vector hardware, limited
system memory performance is the largest obstacle to use
commodity processors in a wider range of medical imaging
applications. Our results presented in this study show that
algorithms optimized for commodity processors with limited
memory bandwidth make it more practical to use such
commodity processors in real systems instead of costly
server-grade processors or specialized hardware.

5. REFERENCES

1. J. Hofmann, J. Treibig, G. Hager, and G. Wellein: Comparing
the performance of different x86 SIMD instruction sets for a
medical imaging application on modern multi- and many-core
chips, In Proceedings of Workshop on Programming models
for SIMD/Vector processing (2014).

2. J. Treibig, G. Hager, H. G. Hofmann, J. Hornegger, and G.
Wellein: Pushing the limits for medical image reconstruction
on recent standard multicore processors, Int. J. High Perform.
Comput. Appl. 27, 2, pp. 162-177 (2013)

3. E. Papenhausen, Z. Zheng, K. Mueller: GPU-accelerated
back-projection revisited: squeezing performance by careful
tuning, In Workshop on High Performance Image
Reconstruction (2011)

4. T. Zinßer and B. Keck: Systematic Performance Optimization
of Cone-Beam Back-Projection on the Kepler Architecture, In
Proceedings of Fully Three-Dimensional Image
Reconstruction in Radiology and Nuclear Medicine, pp. 225-
228 (2013)

5. B. Heigl and M. Kowarschik: High-Speed Reconstruction for
C-Arm Computed Tomography, In Proceedings of Fully
Three-Dimensional Image Reconstruction in Radiology and
Nuclear Medicine, pp. 25-28 (2007)

6. C. Rohkohl, B. Keck, H. G. Hofmann, and J. Hornegger:
RabbitCT – An Open Platform for Benchmarking 3-D Cone-
beam Reconstruction Algorithms, Medical Physics, vol. 36,
pp. 3940-3944 (2009)

7. The Linley Group: POWER8 Hits the Merchant Market,
(2014) accessed November 2015 at http://www-
03.ibm.com/systems/power/advantages/smartpaper/memory-
bandwidth.html

POWER8 is a registered trademark of IBM Corporation. Other
company, product and service marks may be trademarks or
services marks of IBM or others.

Table 1. Summary of performances of various implementations on RabbitCT (L = 512)

Category Processor # Core / # Boards Year Source GUPS

Low memory
bandwidth

(Palmetto) POWER8 4.32 GHz 4 cores (1 socket) 2015 Ours 5.1

Server-grade
processor

(S824L) POWER8 3.69 GHz 20 cores (2 sockets) 2015 Ours 21.4

(S824L) POWER8 3.69 GHz 10 cores (1 socket) 2015 Ours 10.8

IvyBridge-EP 2.2 GHz 20 cores (2 sockets) 2014 Paper [1] about 7.0

Westmere-EX 2.4 GHz 40 cores (4 sockets) 2011 Official ranking 8.3

Accelerator
Xeon Phi 5110P 1 board 2014 Paper [1] about 8.5

nVidia GTX 670 2 boards 2014 Official ranking 152.9

