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ABSTRACT 
 
Three-dimensional (3D) computed tomography (CT) is one 
of the key components of many clinical workflows. Because 
CT reconstruction has been known as a compute-intensive 
workload, accelerating this workload using special-purpose 
accelerators, such as GPUs and FPGAs, or multi-socket 
server-grade processors has been widely studied. Due to 
recent advances in semiconductor technologies, even 
commodity processors, such as those used in PCs, can 
provide sufficient computing power for CT reconstruction 
by multiple cores with vector processing units. Despite their 
huge computing power, commodity processors often 
provide limited system memory bandwidth compared to 
server-grade processors due to constraints in cost and energy 
consumption. In this paper, we describe our memory-
optimization technique and its implementation targeting on 
general-purpose processors with limited memory bandwidth. 
By reducing the memory-bandwidth requirement with batch 
processing, the memory optimization achieved up to 80% 
performance improvements in RabbitCT, a widely-used CT 
benchmark, on a quad-core processor with limited memory 
bandwidth. Without the memory optimization, the 
performance did not scale with more than two cores. The 
implementation can process about 40 projection images per 
second for the most common problem size of 512^3 with 
only four cores used. It is therefore practical to use such 
commodity processors in real CT systems without additional 
accelerators, which trade greatly increased cost and energy 
consumption for higher throughput. 
 

Index Terms—CT Reconstruction, Memory bandwidth, 
Back-projection 
 

1. INTRODUCTION 
 
Three-dimensional (3D) computed-tomography (CT) 
reconstruction is known as a compute-intensive workload, 
and its performance has a significant effect on many clinical 
workflows. Due to its importance, many existing CT 
implementations exploit huge computing power of multi-
socket server-grade processors [1, 2], such as Intel’s Xeon, 
and accelerators including GPUs [3, 4] and FPGAs [5]. 

Because of today’s advanced semiconductor 
technologies, commodity general-purpose processors, like 
those used in PCs or tablets, have multiple cores and vector 
(SIMD) processing units. Moreover, many commodity 
processors integrate GPU cores to accelerate processing of 
compute-intensive workloads. Hence, it is becoming 
increasingly realistic to use commodity general-purpose 
processors for 3D CT reconstruction. In contrast to their 
huge computing power, however, today’s commodity 
processors typically provide only limited system memory 
bandwidth and cache size compared to multi-socket server-
grade processors due to constraints on cost and energy 
consumption. To provide wider memory bandwidth, CT 
systems need to be equipped with more memory controllers 
in processors and more DIMM sockets on the system board; 
consequently, cost, system size, and energy consumption are 
all increased. On such commodity processors, as a result, the 
computation performance of the processor cores cannot be 
fully utilized due to a bottleneck in system memory 
bandwidth; that is, the performance does not scale linearly 
with increasing number of cores. 

In this study, which targets commodity processors with 
limited memory bandwidth, we describe a method of 
memory optimization for the 3D CT reconstruction. The 
memory optimization was implemented on RabbitCT [6], an 
open benchmarking framework for benchmarking 3D cone-
beam CT-reconstruction algorithms. Our memory 
optimization, which processes multiple projection images at 
once, drastically reduced memory-bandwidth requirement 
and enabled almost-linear performance scalability with 
increasing number of cores in a system with limited memory 
bandwidth, while the scalability was much poorer without 
the optimization. The performance gain achieved by the 
memory optimization was up to 80% when using four cores. 

The implemented memory optimization can achieve 
3.7x better performance per core compared to the previous 
best score on server-grade general-purpose processors [1]; 
in other words, using only four cores, it processes about 40 
projection images per second for the most-common problem 
size of 5123. Hence, it makes it possible to use commodity 
processors for 3D CT reconstruction without using 
additional accelerators such as GPUs. 



2. METHODS 
 
2.1. Baseline reconstruction algorithm [6] 
 
RabbitCT evaluates the performance and accuracy of the 
back-projection operation for 3D volume reconstruction. It 
provides 496 projection images, whose size Sx×Sy is 1248×
960 pixels, with a projection matrix for each image. The n-
th projection image is denoted as In. For each projection 
image, the reconstruction algorithm projects all voxels onto 
In and updates the density value of the voxel based on the 
intensity value at the projected point obtained by bilinear 
interpolation. The number of voxels in the volume, i.e., the 
problem size, is L3 = 1283, 2563, 5123 or 10243. Among 
these sizes, L=512 is the most common one. Although 
different numbers of voxels are used, the same In is used as 
input for all problem sizes. 

The voxel, whose 3D position is denoted as {x, y, z}, is 
projected onto the point {un, vn} in In as follow. Here, an is a 
projection matrix determined by the system geometry and 
provided for each In.  
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In is defined only at grid points; hence, the intensity 
value at projected point {un, vn}, which is denoted as 

( )nnn vup ,ˆ , is obtained by performing a bilinear interpolation 
from intensity values pn(i, j) at the neighboring four pixels: 
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Here, pn(i, j) equals In(i, j) if position {i, j} is within In; 
otherwise, pn(i, j) is zero. The density value of voxel f (x, y, 
z) is calculated as 
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A pseudocode of the baseline reconstruction algorithm 
is shown in Figure 1(a). To accelerate the reconstruction, we 
preprocessed each projection image and stored the result in 
an in-memory pre-computed table. The reconstruction 
algorithm is implemented using SIMD instructions for both 
the pre-computation and reconstruction phases. Also, it 
employs the following three optimizations: (i) replacing 
divide instructions by reciprocal estimate instructions, (ii) 
skipping voxels that cannot be projected onto the projection 
image, and (iii) eliminating conditional branches for 
checking out-of-image-bound accesses by creating a copy of 
the projection image with zero padding around the image [1, 
2].  
 

2.2. Memory optimization technique 
 
The minimum memory-bandwidth requirements for the 
baseline algorithm are considered as follows. For each 
projection image (each iteration in the outer-most loop in 
Figure 1), it is necessary to read the projection image itself 
and read and write the density values of voxels that are 
projected onto the current projection image. To assess the 
minimum memory-bandwidth requirement, it is assumed 
that all other accesses, such as those to the pre-computed 
table, do not cause cache misses and hence do not consume 
system memory bandwidth. The amount of data transfer for 
reading and writing the density values of voxels (e.g., 330 
MB per projection image for L=512) is much larger than 
that for reading the projection image (4.7 MB) for realistic 
resolutions. Consequently, it is critical to reuse the density 
values of voxels within the cache memory of the processor 
to achieve good performance with very limited memory 
bandwidth.  

A pseudocode of a CT reconstruction algorithm with 
our memory optimization is shown in Figure 1(b). To reduce 
the memory-bandwidth bottleneck, multiple projection 
images are processed at once. As the number of images to 
be processed at once (batch size) increases, the memory 
bandwidth used to transfer the density values of voxels is 
reduced. When batch size is B, the memory bandwidth 
required for transferring voxel data becomes only 1/B of the 
baseline algorithm since these values must be read and 
written only once per B images. In trade for reduced 
memory bandwidth required for voxel data, the memory 
footprint required for the pre-computed tables and 
projection images is increased by B times, potentially 
increasing cache misses. However, in total of on the whole, 
reduced required bandwidth for the voxel data and increased 
required bandwidth for the projection image made it 

 

Figure 1. Pseudocode of reconstruction algorithm without and with 
memory optimization by batch processing with batch size B. 

 

for each batch of B proj. images In to In+B-1
// pre-computation phase
for i = 0 to Sx - 1

for j = 0 to Sy - 1
for k = 0 to B - 1

pre-computation for image In+k
end

end
end
// reconstruction phase
for Iz = 0 to L - 1

for Iy = 0 to L - 1
determine range of Ix to iterate
for Ix = Ixstart to Ixend

for k = 0 to B - 1
project and update voxel (Ix, Iy, Iz)
for image In+k

end
end

end
end

end

for each projection image In
// pre-computation phase
for i = 0 to Sx - 1

for j = 0 to Sy - 1
pre-computation for image In

end
end
// reconstruction phase
for Iz = 0 to L - 1

for Iy = 0 to L - 1
determine range of Ix to iterate
for Ix = Ixstart to Ixend

project and update voxel (Ix, Iy, Iz)
for image In

end
end

end
end

(a) Naive reconstruction algoruthm: 
processing one image in each iteration (B=1)

(b) Algorithm with memory optimization:
processing multiple (B>1) images at once

RL: resolution (size of a voxel); OL: origin

1
2
3
4
5
6
7
8
9

10
11
12
13

14
15
16
17

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

17
18
19
20
21



possible to significantly reduce memory bandwidth (as 
empirically shown later). 

Papenhausen et al. [3] employed a similar idea of 
processing multiple projection images per kernel invocation 
on GPUs to fully utilize the huge computation power of 
GPUs by reducing accesses to the global memory and also 
reducing the number of kernel invocations. Our results show 
that such memory optimization is important to achieve high 
performance on commodity processors with limited memory 
bandwidth, though their peak throughput is much lower than 
that of GPUs and no kernel invocation overhead is incurred. 
 

3 EXPETIMENTAL RESULTS 
 
The proposed memory optimization was implemented and 
experimentally evaluated on a POWER8 processor. The 
evaluation results illustrate how the memory optimization 
affects the performance on two systems with different 
memory performances. 

The memory optimization implemented was evaluated 
on two different systems with POWER8 processors. One 
system, called S824L, is a large server system with two 
3.69-GHz POWER8 processor with 256 GB of system 
memory. It has 20 processor cores (10 cores per socket) in 
total. Another (smaller) system, called Palmetto, is equipped 
with a quad-core version of a 4.32-GHz POWER8 processor 
with 64 GB of system memory. The first system equips four 
memory controller chips (called Centaur) per five cores, 
while the latter equips only one memory controller chip per 
four cores [7]. Hence, there is about 4x gap in the memory 
bandwidth per computation performance (FLOPS) of two 
systems. A gap in the memory bandwidth also exists 
between Intel’s server processors and client processors. For 
example, the Xeon E7 v3 series server-grade CPUs 
(Haswell-EX) provides 4x wider memory bandwidth per 
socket compared to the same generation CPUs for clients 
(4th generation Core i7). 

The reconstruction algorithms were implemented in 
C++ and compiled by using IBM XL C++ compiler v13.1. 
We used single-precision floating point numbers in the 
implementation. Both systems ran Ubuntu Linux 14.10 LE. 
We disabled the dynamic frequency scaling for more 
consistent and reproducible results. For each data point, two 
configurations, four threads pre core and eight threads per 
core, were evaluated, and the better performance was 
reported because neither configuration consistently 
outperformed the another. We measured the performance 16 
times and show the average results.  

Figure 2 illustrates the throughput performance (in 
GUPS, Giga voxels updates per second) for two problem 
sizes, L=512 and L=1024, on the two systems with various 
batch size (B); i.e., B projection images were processed in 
each iteration of the inner-most loop. The reconstructed 
image quality was not affected by this optimization. For 
both problem sizes, the naive algorithm without batch 
processing (B=1 in the figure) did not scale beyond two 

cores on Palmetto due to a memory-bandwidth bottleneck. 
By processing multiple projection images at once, i.e., B=2 
or B=4, the performance scaled almost linearly because the 
proposed optimization makes it possible to use the memory 
bandwidth more efficiently. When all four cores are used, 
the performance from batch size of 1 to 4 was improved by 
about 65% for L=512 and 80% for L=1024. 

On S824L, on the contrary, the optimization only 
marginally improved performance by up to 4%. This was 
because S824L has a huge memory bandwidth, so memory 
bandwidth was not a major bottleneck, even when 

 

Figure 2. Performance with various batch size S on two systems 
(using 1 NUMA node). S824L has about 4x more memory 
bandwidth per processor’s FLOPS than Palmetto. 
 

Figure 3. Amount of data read from system memory for L=512 
with various batch sizes measured on Palmetto using four cores. 
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projection images were processed one by one. On both 
systems, the differences in performance for batch sizes of 2 
and 4 were quite small, though the batch size of 4 
consistently showed slightly higher throughput than the 
batch size of 2. 

To confirm that larger batch sizes really reduced the 
memory bandwidth requirements, we show the amount of 
data read from the system memory (as measured by using 
the processor’s performance counter on Palmetto) in Figure 
3. For this measurement, the hardware prefetcher of the 
processor was disabled to capture all memory accesses 
accurately with the performance counter. According to the 
figure, the amount of the system memory accesses was 
reduced in the case of larger batch size as expected. This 
reduction in memory bandwidth resulted in better scalability 
with our memory optimization on Palmetto shown in Figure 
2. 

By using the memory optimization by the batch 
processing described in this paper, our implementation 
exhibited significantly higher performance than the 
previously achieved results of the RabbitCT benchmark on 
general-purpose processors. Table 1 compares the 
performance of various implementations for problem size of 
L=512. Our current implementation on the Palmetto system 
achieved about 3.7x higher performance per core than the 
previous best score on a two-socket machine (Intel 
IvyBridge) [1]. Our implementation on S824L outperformed 
this previous best score by more than 3x using the same 
number of cores. The throughput on Palmetto was more than 
5 GUPS using only four cores despite of its limited memory 
bandwidth. Although the total performance on Palmetto still 
falls behind that of implementations running on server-grade 
processors or GPUs, using the commodity processor yields 
much lower system costs and lower energy consumptions. 
These are both very important characteristics in real systems.  

 
4. CONCLUSION 

 
A memory optimization technique for accelerating 3D 
volume reconstruction with back-projection on processors 
with limited memory bandwidth, such as commodity 
processors for client systems, was developed. The 
implemented algorithm scaled well on a system with limited 
memory bandwidth per FLOPS as well as on a system with 
larger memory bandwidth. It exhibited performance of more 

than 5.0 GUPS on RabbitCT on a quad-core system with 
limited memory bandwidth. Due to recent advances in the 
computation power of commodity processors with increased 
number of cores and widening vector hardware, limited 
system memory performance is the largest obstacle to use 
commodity processors in a wider range of medical imaging 
applications. Our results presented in this study show that 
algorithms optimized for commodity processors with limited 
memory bandwidth make it more practical to use such 
commodity processors in real systems instead of costly 
server-grade processors or specialized hardware. 
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Table 1. Summary of performances of various implementations on RabbitCT (L = 512) 

 
 

Category Processor # Core / # Boards  Year Source GUPS 

Low memory 
bandwidth 

(Palmetto) POWER8  4.32 GHz  4 cores (1 socket) 2015 Ours 5.1 

Server-grade 
processor 

(S824L) POWER8  3.69 GHz 20 cores (2 sockets) 2015 Ours 21.4 

(S824L) POWER8  3.69 GHz 10 cores (1 socket) 2015 Ours 10.8 

IvyBridge-EP  2.2 GHz 20 cores (2 sockets) 2014 Paper [1] about 7.0 

Westmere-EX  2.4 GHz 40 cores (4 sockets) 2011 Official ranking 8.3 

Accelerator 
Xeon Phi 5110P 1 board 2014 Paper [1] about 8.5 

nVidia GTX 670 2 boards 2014 Official ranking 152.9 


