
© 2008 IBM Corporation

Accelerating UTF-8 Decoding

Using SIMD Instructions

Hiroshi Inoue

IBM Research – Tokyo

Mar 17, 2008

© 2008 IBM Corporation2

 Background

– UTF-8 encoding is commonly used to exchange text data (e.g.
HTML, XML)

– But, Java VM uses UTF-16 as its internal representation

– Conversion between UTF-8 and UTF-16 matters

Goal

– Accelerate conversion from UTF-8 to UTF-16

Background and Goal

0% 20% 40% 60% 80% 100%

UTF16

UTF8

UTF8

UTF16
others

CPU time for

SPECweb2005

on Tomcat 6

© 2008 IBM Corporation3

UTF-8 and UTF-16

 What is UTF-8 and UTF-16

– UTF-8: variable length encoding (from 1 byte to 3 bytes per character)

– UTF-16: constant length encoding (2 bytes, other than surrogate pair)

 Mapping UTF-8 onto UTF-16

range UTF-8 UTF-16

00-7F
(ASCII char)

0xxxxxxx 000000000xxxxxxx

80-7FF
(Greece char etc)

110yyyyy 10xxxxxx 00000yyyyyxxxxxx

800-FFFF
(Chinese,

Japanese char etc)

1110zzzz 10yyyyyy 10xxxxxx zzzzyyyyyyxxxxxx

© 2008 IBM Corporation4

Decoding UTF-8 to UTF-16

while (not end of UTF-8 sequence) {

if first byte of UTF-8 starts with ‘0’ then

convert 0xxxxxxx  000000000xxxxxxx

else if first byte of UTF-8 starts with ‘110’ then

convert 110yyyyy 10xxxxxx  00000yyyyyxxxxxx

else if first byte of UTF-8 starts with ‘1110’ then

convert 1110zzzz 10yyyyyy 10xxxxxx  zzzzyyyyyyxxxxxx
}

Naive implementation of decoding process based on conditional branches

Main source of overhead

Branch mispredictions caused by data-dependent

conditional branches that are hard to predict

(when having multiple types of characters)

© 2008 IBM Corporation5

simple encoding format for explanation

We use a simplified format “simple encoding” for ease of

explanation

simple encoding

 variable length encoding for integers up to 30-bits long

 1 value is encoding to 1 to 4 bytes

 Most significant 2 bits of the first byte show the length

length representation in simple encoding

1 byte 00xxxxxx

2 bytes 01yyyyyy xxxxxxxx

3 bytes 10zzzzzz yyyyyyyy xxxxxxxx

4 bytes 11aaaaaa zzzzzzzz yyyyyyyy xxxxxxxx

© 2008 IBM Corporation6

Our Technique without conditional branches

 Steps for conversion

Step 1: Identify data length for next few data (by scalar)

Step 2: Load required constants based on the data length

identified in Step 1 (by scalar)

Step 3: Move data using permute instruction (by SIMD)

Step 4: Mask off unused bits (by SIMD)

SIMD Permute (Shuffle) instruction

reorder input bytes based on a pattern specified by register

at runtime (not compile time!)

many SIMD ISAs have similar instructions (e.g. VMX, SSE)

© 2008 IBM Corporation7

Pseudo Code for Decoding Steps with SIMD

// Step 1: Identify data length for next few data
int gathered_prefix = 0;
int position = 0;
for (i=0; i<4; i++) {

prefix = (p[position] >> 6);
gathered_prefix = (gathered_prefix << 2) | prefix;
position += prefix+1;

}

// step 2: Load required constants
vector char pattern = pattern_table[gathered_prefix];
vector char mask = mask_table[gathered_prefix];

// step 3: Move data using permute instruction
vector char vin = vector_load(p);
vin = vector_permute(vin, pattern);

// step 4: Mask off unused bits
output = vector_and(vin, mask);

• Gather prefix bits from 4 data

• No hard-to-predict conditional

branches!

• Load constants using prefix

values gathered in Step1

• Each table uses 4 KB memory for

Simple encoding

• Move data using permute

instruction

• Mask off bites

• Can be overlapped with the Step 2-

4 of the previous iteration

© 2008 IBM Corporation8

Example

01 42 34 85 67 89 F0CA BC DE 05 F1

prefix = ‘00’
prefix = ‘01’ prefix = ‘10’

prefix = ‘11’



pattern[0] = {....}

pattern[1] = {....}

pattern[2] = {....}

Constant table

load pattern[‘00011011’]

data in simple encoding 01 42 34 85 67 89 F0CA BC DE

© 2008 IBM Corporation9

Example

01 42 34 85 67 89 F0CA BC DE 05 F1

pattern[0] = {....}

pattern[1] = {....}

pattern[2] = {....}

Constant table



01 42 34 85 67 89 F0CA BC DEXXXXXX

01 02 34 05 67 89 F00A BC DE000000000000decoded data

0x0ABCDEF00x567890x02340x01as 32-bit integer values

Reorder bytes using a permute instruction

pattern = { X, X, X, 0, X, X, 1, 2, X, 3, 4, 5, 6, 7, 8, 9}

Mask off unused bits using AND instruction

mask = {0, 0, 0, 3F, 0, 0, 3F, FF, 0, 3F, FF, FF, 3F, FF, FF, FF}

data in simple encoding

© 2008 IBM Corporation10

Apply our technique for UTF-8 to UTF-16 conversion

 Not that different from the case for simple encoding...

 Some difference:

– use two permute and two select instructions instead of

just one permute instruction

– use four constant vector values per iteration

– convert 8 characters (2 bytes each) in each iteration

© 2008 IBM Corporation11

UTF-8 to UTF-16 Conversions

// step 1： gather prefix of 8 characters and convert them to length in bytes
for (i=0; i<8; i++) {

prefix = (p[total_length] >> 3);
length = prefix_to_length_table[prefix];
gathered_prefix = (gathered_prefix * 3) + length;
total_length += length;

}

// step 2： load constants from tables
vpattern1 = pattern1_table[gathered_prefix];
vpattern2 = pattern2_table[gathered_prefix];
vmask1 = mask_for_select_table[gathered_prefix];
vmask2 = mask_for_and_table[gathered_prefix];

// step 3： move data bits using constants
vin1 = vector_load(p);
vin2 = vector_load(p+16);
vtmp1 = vector_permute(vin1, vin2, vpattern1);
vtmp2 = vector_permute(vin1, vin2, vpattern2);
vtmp1 = vector_select(vector_shift_left(vtmp1, 4),

vector_shift_left(vtmp1, 6),
vconstant_0x0FC0);

vtmp3 = vector_select(vtmp1, vtmp2, vmask1);

// step 4: mask off unused bits

vout = vector_and(vtmp3, vmask2);

process 8 characters in

each iteration

load 4 constants

use permute, shift, select

instructions for data

movement

load 2 vectors as input to

generate 8 characters as

output

© 2008 IBM Corporation12

Additional optimization for real-world text

 Same type (i.e. same length in UTF-8 representation)
of characters tends to appear repeatedly in real-world
data

If all characters converted in an iteration have same
type, we use specialized code for this data type

• Specialized code for ASCII characters are especially
efficient because it simply inserts 0 before each byte
(0xxxxxxx  00000000 0xxxxxxx)

• Specialized code fall backs to the default code if input
values include a value of other data type

 Applied for both vectorized version and serial version

© 2008 IBM Corporation13

Evaluation

 Tested on PowerPC 970MP 2.5 GHz running Linux

2.6.18

 Implemented using VMX intrinsics

 Compiled with gcc-4.0.1

© 2008 IBM Corporation14

0

5

10

15

20

25

30

random 1-byte data only

input data type

C
y
c
le

s
 p

e
r

3
2

-b
it
 i
n

te
g

e
r Our technique with SIMD

Scalar processing

Decode performance for simple encoding format

x3.6

x1.3

Scalar processing caused frequent branch mispredictions for random input

Performance of our technique does not depend on input data

fa
s
te

r

© 2008 IBM Corporation15

0

5

10

15

20

25

30

ASCII only 3-bytes character

only

random

input text

c
y
c
le

s
 p

e
r

c
h

a
ra

c
te

r
Performance of UTF-8 decoding with artificial text

fa
s
te

r

x15.2

x3.1

x12.3

© 2008 IBM Corporation16

0

1

2

3

4

5

6

7

8

9

10

11

Japanese Chinese Korean German Russian Japanese Japanese

input text

P
e
rf

o
rm

a
n
c
e
 i
m

p
ro

v
e
m

e
n
t

o
v
e
r

s
c
a
la

r

p
ro

c
e
s
s
in

g

Performance of UTF-8 decoding with realistic text

fa
s
te

r

Web (HTML) mail (plain text)

© 2008 IBM Corporation17

Future work

To integrated into Java environment

– Conversion is implemented in Java, where programmer

cannot directly write platform-dependent SIMD code

JIT compiler must generate SIMD instructions for each

platform

UTF-16 to UTF-8 conversion

– As important as UTF-8 to UTF-16 conversion

Our technique is applicable. However, writing UTF-8

sequence to memory require costly unaligned memory

store

© 2008 IBM Corporation18

Summary

 We developed decoding technique for variable-length

encoding format without using hard-to-predict conditional

branches

 We observed significant performance boost in UTF-8 to

UTF-16 conversion with real-world text data

© 2008 IBM Corporation19

backup

© 2008 IBM Corporation20

Comparison with Cameron [PPoPP 2008]

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

英語 ドイツ語WEB 日本語WEB 日本語メール

性
能
向
上
率

本研究の手法

u8u16, Cameron [2008] fa
s
te

r

ours

p
e
rf

o
rm

a
n
c
e
 i
m

p
ro

v
e
m

e
n
t

English Germany

(Web)

Japanese

(Web)
Japanese

(e-mail)

