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 Background

– UTF-8 encoding is commonly used to exchange text data (e.g. 
HTML, XML)

– But, Java VM uses UTF-16 as its internal representation

– Conversion between UTF-8 and UTF-16 matters

Goal

– Accelerate conversion from UTF-8 to UTF-16

Background and Goal
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UTF-8 and UTF-16

 What is UTF-8 and UTF-16

– UTF-8: variable length encoding (from 1 byte to 3 bytes per character)

– UTF-16: constant length encoding (2 bytes, other than surrogate pair)

 Mapping UTF-8 onto UTF-16

range UTF-8 UTF-16

00-7F
(ASCII char)

0xxxxxxx 000000000xxxxxxx

80-7FF
(Greece char etc)

110yyyyy 10xxxxxx 00000yyyyyxxxxxx

800-FFFF
(Chinese, 

Japanese char etc)

1110zzzz 10yyyyyy 10xxxxxx zzzzyyyyyyxxxxxx
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Decoding UTF-8 to UTF-16

while (not end of UTF-8 sequence) {

if first byte of UTF-8 starts with ‘0’ then

convert 0xxxxxxx  000000000xxxxxxx

else if first byte of UTF-8 starts with ‘110’ then

convert 110yyyyy 10xxxxxx  00000yyyyyxxxxxx

else if first byte of UTF-8 starts with ‘1110’ then

convert    1110zzzz 10yyyyyy 10xxxxxx  zzzzyyyyyyxxxxxx
}

Naive implementation of decoding process based on conditional branches

Main source of overhead

Branch mispredictions caused by data-dependent 

conditional branches that are hard to predict 

(when having multiple types of characters)
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simple encoding format for explanation

We use a simplified format “simple encoding” for ease of 

explanation

simple encoding

 variable length encoding for integers up to 30-bits long

 1 value is encoding to 1 to 4 bytes

 Most significant 2 bits of the first byte show the length

length representation in simple encoding

1 byte 00xxxxxx

2 bytes 01yyyyyy xxxxxxxx

3 bytes 10zzzzzz yyyyyyyy xxxxxxxx

4 bytes 11aaaaaa zzzzzzzz yyyyyyyy xxxxxxxx
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Our Technique without conditional branches

 Steps for conversion

Step 1: Identify data length for next few data (by scalar)

Step 2: Load required constants based on the data length 

identified in Step 1 (by scalar)

Step 3: Move data using permute instruction (by SIMD)

Step 4: Mask off unused bits (by SIMD)

SIMD Permute (Shuffle) instruction

reorder input bytes based on a pattern specified by register 

at runtime (not compile time!)

many SIMD ISAs have similar instructions (e.g. VMX, SSE)
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Pseudo Code for Decoding Steps with SIMD

// Step 1: Identify data length for next few data
int gathered_prefix = 0;
int position = 0;
for (i=0; i<4; i++) {

prefix = (p[position] >> 6);
gathered_prefix = (gathered_prefix << 2) | prefix;
position += prefix+1;

}

// step 2: Load required constants 
vector char pattern = pattern_table[gathered_prefix];
vector char mask    = mask_table[gathered_prefix];

// step 3: Move data using permute instruction 
vector char vin = vector_load(p);
vin = vector_permute(vin, pattern);

// step 4: Mask off unused bits 
output = vector_and(vin, mask);

• Gather prefix bits from 4 data

• No hard-to-predict conditional 

branches!

• Load constants using prefix 

values gathered in Step1

• Each table uses 4 KB memory for 

Simple encoding

• Move data using permute 

instruction

• Mask off bites

• Can be overlapped with the Step 2-

4 of the previous iteration
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Example

01 42 34 85 67 89 F0CA BC DE 05 F1

prefix = ‘00’
prefix = ‘01’ prefix = ‘10’

prefix = ‘11’



pattern[0] = {....}

pattern[1] = {....}

pattern[2] = {....}

Constant table

load pattern[‘00011011’]

data in simple encoding 01 42 34 85 67 89 F0CA BC DE
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Example

01 42 34 85 67 89 F0CA BC DE 05 F1

pattern[0] = {....}

pattern[1] = {....}

pattern[2] = {....}

Constant table



01 42 34 85 67 89 F0CA BC DEXXXXXX

01 02 34 05 67 89 F00A BC DE000000000000decoded data

0x0ABCDEF00x567890x02340x01as 32-bit integer values

Reorder bytes using a permute instruction

pattern = { X, X, X, 0, X, X, 1, 2, X, 3, 4, 5, 6, 7, 8, 9}

Mask off unused bits using AND instruction

mask = {0, 0, 0, 3F, 0, 0, 3F, FF, 0, 3F, FF, FF, 3F, FF, FF, FF}

data in simple encoding
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Apply our technique for UTF-8 to UTF-16 conversion

 Not that different from the case for simple encoding...

 Some difference:

– use two permute and two select instructions instead of 

just one permute instruction

– use four constant vector values per iteration

– convert 8 characters (2 bytes each) in each iteration 
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UTF-8 to UTF-16 Conversions 

// step 1： gather prefix of 8 characters and convert them to length in bytes
for (i=0; i<8; i++) {

prefix = (p[total_length] >> 3);                  
length = prefix_to_length_table[prefix];          
gathered_prefix = (gathered_prefix * 3) + length; 
total_length += length;                           

}

// step 2： load constants from tables
vpattern1 = pattern1_table[gathered_prefix];
vpattern2 = pattern2_table[gathered_prefix];
vmask1    = mask_for_select_table[gathered_prefix];
vmask2    = mask_for_and_table[gathered_prefix];

// step 3： move data bits using constants
vin1  = vector_load(p);      
vin2  = vector_load(p+16);   
vtmp1 = vector_permute(vin1, vin2, vpattern1);     
vtmp2 = vector_permute(vin1, vin2, vpattern2);     
vtmp1 = vector_select(vector_shift_left(vtmp1, 4), 

vector_shift_left(vtmp1, 6), 
vconstant_0x0FC0);

vtmp3 = vector_select(vtmp1, vtmp2, vmask1);

// step 4: mask off unused bits

vout  = vector_and(vtmp3, vmask2);

process 8 characters in 

each iteration

load 4 constants

use permute, shift, select 

instructions for data 

movement

load 2 vectors as input to 

generate 8 characters as 

output 
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Additional optimization for real-world text

 Same type (i.e. same length in UTF-8 representation) 
of characters tends to appear repeatedly in real-world 
data

If all characters converted in an iteration have same 
type, we use specialized code for this data type

• Specialized code for ASCII characters are especially 
efficient because it simply inserts 0 before each byte 
(0xxxxxxx  00000000 0xxxxxxx)

• Specialized code fall backs to the default code if input 
values include a value of other data type 

 Applied for both vectorized version and serial version
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Evaluation

 Tested on PowerPC 970MP 2.5 GHz running Linux 

2.6.18

 Implemented using VMX intrinsics 

 Compiled with gcc-4.0.1
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Future work

To integrated into Java environment

– Conversion is implemented in Java, where programmer 

cannot directly write platform-dependent SIMD code

JIT compiler must generate SIMD instructions for each 

platform

UTF-16 to UTF-8 conversion

– As important as UTF-8 to UTF-16 conversion

Our technique is applicable. However, writing UTF-8 

sequence to memory require costly unaligned memory 

store 
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Summary

 We developed decoding technique for variable-length 

encoding format without using hard-to-predict conditional 

branches

 We observed significant performance boost in UTF-8 to 

UTF-16 conversion with real-world text data
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backup
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Comparison with Cameron [PPoPP 2008]
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