Accelerating UTF-8 Decoding
Using SIMD Instructions

Hiroshi Inoue
IBM Research — Tokyo

Mar 17, 2008

-'III=

© 2008 IBM Corporation

Background and Goal

= Background

— UTF-8 encoding is commonly used to exchange text data (e.g.
HTML, XML)

— But, Java VM uses UTF-16 as its internal representation

: | | | |
CPU time for
UTF8=>
SPECweb2005 UTE16 others
on Tomcat 6 l) | l l
omcf/ 40% 60% 80% 100%

— Conversion between UTF-8 and UTF-16 matters

-=» Goal
— Accelerate conversion from UTF-8 to UTF-16

2 © 2008 IBM Corporation

B ———
UTF-8 and UTF-16

= Whatis UTF-8 and UTF-16
— UTF-8: variable length encoding (from 1 byte to 3 bytes per character)

— UTF-16: constant length encoding (2 bytes, other than surrogate pair)

= Mapping UTF-8 onto UTF-16

range UTF-8 UTF-16
(ASOC(Z)I-IZ:IEar) Oxxxxxxx | 000000000xXXXXXXX
80-7FF
Gy — 110yyyyy 10xxxxxx | 00000yyyyyXXXXXX
800-FFFF
(Chinese, 1110zzzz 10yyyyyy 1OXXXXXX | ZZZZYYYYYYXXXXXX

Japanese char etc)

3 © 2008 IBM Corporation

Decoding UTF-8 to UTF-16

Naive implementation of decoding process based on conditional branches

while (not end of UTF-8 sequence) {
if first byte of UTF-8 starts with ‘0’ then

convert Oxxxxxxx =2 000000000xXXXXXX
else if first byte of UTF-8 starts with ‘110’ then
convert 110yyyyy 10xxxxxx =2 00000yyyyyXXXXXX

else if first byte of UTF-8 starts with ‘1110’ then
convert 1110zzzz 10yyyyyy L1OXXXXXX = ZZZZYYYYYYXXXXXX

Main source of overhead

=» Branch mispredictions caused by data-dependent
conditional branches that are hard to predict
(when having multiple types of characters)

4 © 2008 IBM Corporation

simple encoding format for explanation

We use a simplified format “simple encoding” for ease of

explanation

simple encoding

= variable length encoding for integers up to 30-bits long
= 1 value is encoding to 1 to 4 bytes

= Most significant 2 bits of the first byte show the length

length representation in simple encoding

1 byte 00XXXXXX
2 bytes O1lyyyyyy XXXXXXXX
3 bytes 1027227277 yyyyyyyy XXXXXXXX
4 bytes 1laaaaaa zzzzzzzz yyyyyyyy XXXXXXXX

5 © 2008 IBM Corporation

Our Technique without conditional branches

= Steps for conversion
Step 1: Identify data length for next few data (by scalar)

Step 2: Load required constants based on the data length
identified in Step 1 (by scalar)

Step 3: Move data using permute instruction (by SIMD)
Step 4: Mask off unused bits (by SIMD)

SIMD Permute (Shuffle) instruction

=»reorder input bytes based on a pattern specified by register
at runtime (not compile time!)

=>many SIMD ISAs have similar instructions (e.g. VMX, SSE)

6 | © 2008 IBM Corporation

DseUdO COde for DeCOding N Gather p-re-:fix bits from 4 data

* No hard-to-predict conditional
/I Step 1: Identify data Tength for next branches!

int gathered_prefix = 0;

int position = 0;

for (i=0; i<4; i++) {
prefix = (p[position] >> 6);
gathered_prefix = (gathered_prefix << 2)
position += prefix+1;

» Can be overlapped with the Step 2-
4 of the previous iteration
« Load constants using prefix
values gathered in Stepl
» Each table uses 4 KB memory for

Simple encoding
|

}

/I step 2: Load required constants
vector char pattern = pattern_table[gathered_prefix];
vector char mask = mask_table[gathered_prefix];

/| step 3: Move data using permute instruct
vector char vin = vector_load(p);
vin = vector_permute(vin, pattern);

* Move data using permute
instruction

Il step 4. Mask off unused bits ‘
output = vector_and(vin, mask) ; « Mask off bites

7 © 2008 IBM Corporation

Constant table

load pattern[‘00011011 pattern[0] = {....}
Example P [___-——]— pattern[1] = {....}
-7 pattern[2] = {....}
Wb .
data in simple encoding |01 (|42 ||34({85||67||89||CA||BC||DE||FO||05||F1
————————— I————————_____——
- ——f_ ‘ [f. =‘11,~‘~\
‘.. prefix =00 prefix = ‘01’ prefix = ‘10’ SR _-’

— -—
e __——
B=oe= e [e
T T T

8 | © 2008 IBM Corporation

Constant table

attern[0] = {....
Example Eattern{l} = Ei N
pattern[2] ={....} \
7 \
data in simple encoding |01 |42 |34 ||85||67||89||CA||BC|/DE||FO| 05| F1 ,"

N

Reorder bytes using a permute instruction
pattern—{XXXOXX12X3456789}

ﬁ%\\\\\\\

XA X || X [|01]] X || X ||42]||34 DE||FO
ey
Mask off unused bits using AND instruction (’
mask = {0, 0, O, 3F, O, O, 3F, FF, 0, 3F, FF, FF, 3F, FF, FF, FF}
S SR S S S S S S SN S SN SR SN S T
decoded data |00|{00||00|/01{{00||00|/02({34|{/00||05||67||89|0A|BC|/DE||FO
as 32-bit integer values Ox01 0x0234 0x56789 OxOABCDEFO

9 © 2008 IBM Corporation

Apply our technique for UTF-8 to UTF-16 conversion

= Not that different from the case for simple encoding...
= Some difference:

— use two permute and two select instructions instead of
just one permute instruction

— use four constant vector values per iteration

— convert 8 characters (2 bytes each) in each iteration

10 © 2008 IBM Corporation

U-

11

-8 to UTF-16 Conversions

/[step 1: gather prefix of 8 characters and convert them to length in byi process 8 characters in

for (i=0; i<8; i++) { ;)
prefix = (p[total_length] >> 3); each iteration
lTength = prefix_to_length_table[prefix];
gathered_prefix = (gathered_prefix * 3) + length;
total_length += length;

}

I/l step 2: load constants from tables
vpatternl = patternl_table[gathered_prefix];
vpattern2 = pattern2_table[gathered_prefix];

load 4 constants

vmaskl = mask_for_select_table[gathered_prefix];
vmask?2 = mask_for_and_table[gathered_prefix]; |
/I step 3: move data bits using constants load 2 vectors as input to
vinl = vector_load(p); generate 8 characters as
vin2 = vector_load(p+16); —_
vtmpl = vector_permute(vinl, vin2, vpatternl); outpu
vtmp2 = vector_permute(vinl, vin2, vpattern2); ‘
vtmpl = vector_select(vector_shift_left(vtmpl, 4),
VeCtOF_Sh1ft_1 eft(Vtmpl, 6)] use permute’ Shlft, Select
vconstant_0Ox0FCO); . ;
vtmp3 = vector_select(vtmpl, vtmp2, vmaskl); Instructions for data
movement

vout = vector_and(vtmp3, vmask2);

Il step 4: mask off unused bits ‘

| © 2008 IBM Corporation

Additional optimization for real-world text

= Same type (i.e. same length in UTF-8 representation)
of characters tends to appear repeatedly in real-world
data

-» If all characters converted in an iteration have same
type, we use specialized code for this data type

 Specialized code for ASCII characters are especially
efficient because it simply inserts O before each byte
(Oxxxxxxx =2 00000000 OXXXXXXX)

» Specialized code fall backs to the default code if input
values include a value of other data type

= Applied for both vectorized version and serial version

12 © 2008 IBM Corporation

Evaluation

= Tested on PowerPC 970MP 2.5 GHz running Linux
2.6.18

= Implemented using VMX intrinsics

= Compiled with gcc-4.0.1

13 | © 2008 IBM Corporation

Decode performance for simple encoding format

w
o

- x3.6 | O Our technique with SIMD I &
1 Scalar processing %

N
o

x1.3

=
o

Cycles per 32-bit integer
|_\
o1

ol

H e

random 1-byte data only
input data type

o

W Scalar processing caused frequent branch mispredictions for random input
W Performance of our technique does not depend on input data

© 2008 IBM Corporation

14

Performance of UTF-8 decoding with artificial text

15

w
o

R P DN DN
o O O

o

cycles per character

o o

|

J915%€)

X15.
x12.3
4& . e
ASCII only 3-bytes character

only

Input text

random

© 2008 IBM Corporation

Performance of UTF-8 decoding with realistic text

o
§ 11
z 0 Q'
3 9 cc%
e 8
c
—

£ 2 7
58 5
E& 4
3 3
8 2
£
s -
o) 0
o

Japanese Chinese Korean German Russian Japanese Japanese

input text
Web (HTML) mail (plain text)

16 | © 2008 IBM Corporation

Future work

WTo integrated into Java environment

— Conversion is implemented in Java, where programmer
cannot directly write platform-dependent SIMD code

= JIT compiler must generate SIMD instructions for each
platform

WUTF-16 to UTF-8 conversion
— As important as UTF-8 to UTF-16 conversion

=» Our technique is applicable. However, writing UTF-8
sequence to memory require costly unaligned memory
store

17 © 2008 IBM Corporation

Summary

= We developed decoding technigue for variable-length
encoding format without using hard-to-predict conditional
branches

= We observed significant performance boost in UTF-8 to
UTF-16 conversion with real-world text data

18 © 2008 IBM Corporation

backup

19 | © 2008 IBM Corporation

Comparison with Cameron [PPoPP 2008]

14

O ours
@ u8ul6, Cameron [2008]

>
19]Se)

performance improvement

English Germany Japanese Japanese
(Web) (Web) (e-mail)

20 | © 2008 IBM Corporation

