
© 2008 IBM Corporation

Accelerating UTF-8 Decoding

Using SIMD Instructions

Hiroshi Inoue

IBM Research – Tokyo

Mar 17, 2008

© 2008 IBM Corporation2

 Background

– UTF-8 encoding is commonly used to exchange text data (e.g.
HTML, XML)

– But, Java VM uses UTF-16 as its internal representation

– Conversion between UTF-8 and UTF-16 matters

Goal

– Accelerate conversion from UTF-8 to UTF-16

Background and Goal

0% 20% 40% 60% 80% 100%

UTF16

UTF8

UTF8

UTF16
others

CPU time for

SPECweb2005

on Tomcat 6

© 2008 IBM Corporation3

UTF-8 and UTF-16

 What is UTF-8 and UTF-16

– UTF-8: variable length encoding (from 1 byte to 3 bytes per character)

– UTF-16: constant length encoding (2 bytes, other than surrogate pair)

 Mapping UTF-8 onto UTF-16

range UTF-8 UTF-16

00-7F
(ASCII char)

0xxxxxxx 000000000xxxxxxx

80-7FF
(Greece char etc)

110yyyyy 10xxxxxx 00000yyyyyxxxxxx

800-FFFF
(Chinese,

Japanese char etc)

1110zzzz 10yyyyyy 10xxxxxx zzzzyyyyyyxxxxxx

© 2008 IBM Corporation4

Decoding UTF-8 to UTF-16

while (not end of UTF-8 sequence) {

if first byte of UTF-8 starts with ‘0’ then

convert 0xxxxxxx 000000000xxxxxxx

else if first byte of UTF-8 starts with ‘110’ then

convert 110yyyyy 10xxxxxx 00000yyyyyxxxxxx

else if first byte of UTF-8 starts with ‘1110’ then

convert 1110zzzz 10yyyyyy 10xxxxxx zzzzyyyyyyxxxxxx
}

Naive implementation of decoding process based on conditional branches

Main source of overhead

Branch mispredictions caused by data-dependent

conditional branches that are hard to predict

(when having multiple types of characters)

© 2008 IBM Corporation5

simple encoding format for explanation

We use a simplified format “simple encoding” for ease of

explanation

simple encoding

 variable length encoding for integers up to 30-bits long

 1 value is encoding to 1 to 4 bytes

 Most significant 2 bits of the first byte show the length

length representation in simple encoding

1 byte 00xxxxxx

2 bytes 01yyyyyy xxxxxxxx

3 bytes 10zzzzzz yyyyyyyy xxxxxxxx

4 bytes 11aaaaaa zzzzzzzz yyyyyyyy xxxxxxxx

© 2008 IBM Corporation6

Our Technique without conditional branches

 Steps for conversion

Step 1: Identify data length for next few data (by scalar)

Step 2: Load required constants based on the data length

identified in Step 1 (by scalar)

Step 3: Move data using permute instruction (by SIMD)

Step 4: Mask off unused bits (by SIMD)

SIMD Permute (Shuffle) instruction

reorder input bytes based on a pattern specified by register

at runtime (not compile time!)

many SIMD ISAs have similar instructions (e.g. VMX, SSE)

© 2008 IBM Corporation7

Pseudo Code for Decoding Steps with SIMD

// Step 1: Identify data length for next few data
int gathered_prefix = 0;
int position = 0;
for (i=0; i<4; i++) {

prefix = (p[position] >> 6);
gathered_prefix = (gathered_prefix << 2) | prefix;
position += prefix+1;

}

// step 2: Load required constants
vector char pattern = pattern_table[gathered_prefix];
vector char mask = mask_table[gathered_prefix];

// step 3: Move data using permute instruction
vector char vin = vector_load(p);
vin = vector_permute(vin, pattern);

// step 4: Mask off unused bits
output = vector_and(vin, mask);

• Gather prefix bits from 4 data

• No hard-to-predict conditional

branches!

• Load constants using prefix

values gathered in Step1

• Each table uses 4 KB memory for

Simple encoding

• Move data using permute

instruction

• Mask off bites

• Can be overlapped with the Step 2-

4 of the previous iteration

© 2008 IBM Corporation8

Example

01 42 34 85 67 89 F0CA BC DE 05 F1

prefix = ‘00’
prefix = ‘01’ prefix = ‘10’

prefix = ‘11’

pattern[0] = {....}

pattern[1] = {....}

pattern[2] = {....}

Constant table

load pattern[‘00011011’]

data in simple encoding 01 42 34 85 67 89 F0CA BC DE

© 2008 IBM Corporation9

Example

01 42 34 85 67 89 F0CA BC DE 05 F1

pattern[0] = {....}

pattern[1] = {....}

pattern[2] = {....}

Constant table

01 42 34 85 67 89 F0CA BC DEXXXXXX

01 02 34 05 67 89 F00A BC DE000000000000decoded data

0x0ABCDEF00x567890x02340x01as 32-bit integer values

Reorder bytes using a permute instruction

pattern = { X, X, X, 0, X, X, 1, 2, X, 3, 4, 5, 6, 7, 8, 9}

Mask off unused bits using AND instruction

mask = {0, 0, 0, 3F, 0, 0, 3F, FF, 0, 3F, FF, FF, 3F, FF, FF, FF}

data in simple encoding

© 2008 IBM Corporation10

Apply our technique for UTF-8 to UTF-16 conversion

 Not that different from the case for simple encoding...

 Some difference:

– use two permute and two select instructions instead of

just one permute instruction

– use four constant vector values per iteration

– convert 8 characters (2 bytes each) in each iteration

© 2008 IBM Corporation11

UTF-8 to UTF-16 Conversions

// step 1： gather prefix of 8 characters and convert them to length in bytes
for (i=0; i<8; i++) {

prefix = (p[total_length] >> 3);
length = prefix_to_length_table[prefix];
gathered_prefix = (gathered_prefix * 3) + length;
total_length += length;

}

// step 2： load constants from tables
vpattern1 = pattern1_table[gathered_prefix];
vpattern2 = pattern2_table[gathered_prefix];
vmask1 = mask_for_select_table[gathered_prefix];
vmask2 = mask_for_and_table[gathered_prefix];

// step 3： move data bits using constants
vin1 = vector_load(p);
vin2 = vector_load(p+16);
vtmp1 = vector_permute(vin1, vin2, vpattern1);
vtmp2 = vector_permute(vin1, vin2, vpattern2);
vtmp1 = vector_select(vector_shift_left(vtmp1, 4),

vector_shift_left(vtmp1, 6),
vconstant_0x0FC0);

vtmp3 = vector_select(vtmp1, vtmp2, vmask1);

// step 4: mask off unused bits

vout = vector_and(vtmp3, vmask2);

process 8 characters in

each iteration

load 4 constants

use permute, shift, select

instructions for data

movement

load 2 vectors as input to

generate 8 characters as

output

© 2008 IBM Corporation12

Additional optimization for real-world text

 Same type (i.e. same length in UTF-8 representation)
of characters tends to appear repeatedly in real-world
data

If all characters converted in an iteration have same
type, we use specialized code for this data type

• Specialized code for ASCII characters are especially
efficient because it simply inserts 0 before each byte
(0xxxxxxx 00000000 0xxxxxxx)

• Specialized code fall backs to the default code if input
values include a value of other data type

 Applied for both vectorized version and serial version

© 2008 IBM Corporation13

Evaluation

 Tested on PowerPC 970MP 2.5 GHz running Linux

2.6.18

 Implemented using VMX intrinsics

 Compiled with gcc-4.0.1

© 2008 IBM Corporation14

0

5

10

15

20

25

30

random 1-byte data only

input data type

C
y
c
le

s
 p

e
r

3
2

-b
it
 i
n

te
g

e
r Our technique with SIMD

Scalar processing

Decode performance for simple encoding format

x3.6

x1.3

Scalar processing caused frequent branch mispredictions for random input

Performance of our technique does not depend on input data

fa
s
te

r

© 2008 IBM Corporation15

0

5

10

15

20

25

30

ASCII only 3-bytes character

only

random

input text

c
y
c
le

s
 p

e
r

c
h

a
ra

c
te

r
Performance of UTF-8 decoding with artificial text

fa
s
te

r

x15.2

x3.1

x12.3

© 2008 IBM Corporation16

0

1

2

3

4

5

6

7

8

9

10

11

Japanese Chinese Korean German Russian Japanese Japanese

input text

P
e
rf

o
rm

a
n
c
e
 i
m

p
ro

v
e
m

e
n
t

o
v
e
r

s
c
a
la

r

p
ro

c
e
s
s
in

g

Performance of UTF-8 decoding with realistic text

fa
s
te

r

Web (HTML) mail (plain text)

© 2008 IBM Corporation17

Future work

To integrated into Java environment

– Conversion is implemented in Java, where programmer

cannot directly write platform-dependent SIMD code

JIT compiler must generate SIMD instructions for each

platform

UTF-16 to UTF-8 conversion

– As important as UTF-8 to UTF-16 conversion

Our technique is applicable. However, writing UTF-8

sequence to memory require costly unaligned memory

store

© 2008 IBM Corporation18

Summary

 We developed decoding technique for variable-length

encoding format without using hard-to-predict conditional

branches

 We observed significant performance boost in UTF-8 to

UTF-16 conversion with real-world text data

© 2008 IBM Corporation19

backup

© 2008 IBM Corporation20

Comparison with Cameron [PPoPP 2008]

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

英語 ドイツ語WEB 日本語WEB 日本語メール

性
能
向
上
率

本研究の手法

u8u16, Cameron [2008] fa
s
te

r

ours

p
e
rf

o
rm

a
n
c
e
 i
m

p
ro

v
e
m

e
n
t

English Germany

(Web)

Japanese

(Web)
Japanese

(e-mail)

