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Abstract—We developed a new task scheduling technique that 
improves the response times of Web applications. Most of the 
high-performance processors used in today’s servers support 
thread-level parallelism with multiple hardware threads within 
each core using Simultaneous Multi-Threading (SMT). SMT 
capabilities can improve the peak throughput of a server by 
increasing the utilization of the computing resources in the 
processor. However, SMT may degrade the response time of 
Web applications if the server does not fully utilize its multicore 
CPUs, while SMT improves the response times regardless of the 
CPU utilization if the server is equipped with only one core. To 
precisely model this behavior, we created a new hierarchical 
queuing model to accurately predict the response times on 
multicore SMT processors, taking the CPU utilization and the 
number of CPU cores into account. Based on this model, we 
devised Adaptive SMT control, a technique to control the 
number of active SMT threads (SMT level) to minimize the 
response time. We measure the current CPU utilization and the 
number of cores, predict the response time for each SMT level 
and dynamically set the SMT level that yields the best response 
times for the Web applications. We show our technique 
successfully improves the response time of Web applications 
written in PHP, Ruby, and Java by up to 12.9% on Xeon, which 
employs 2-way SMT, and 12.4% on POWER7, which employs 
4-way SMT, when the CPUs are not fully utilized. It is known 
that the CPU utilization levels are typically low in many 
commercial servers. Hence our new technique can improve the 
response times of many Web applications, thus improving the 
users’ experience. 

I. INTRODUCTION 
More and more server workloads are becoming Web-based 

on both the Internet and intranets. Such Web applications 
include not only relatively simple applications such as content 
management systems or cloud-based mail services, but also 
more complex enterprise applications such as online analytics 
processing (OLAP). The performance of Web application 
servers tends to be measured by peak throughput while 
holding the response times reasonably low so as to minimize 
the number of servers required to handle the incoming 
requests. However, improvements in the response times 
greatly affect the user experience with any interactive Web 
application [1]. Hence the response time is another important 
metric for the server performance. 

In this paper, we focus on improving the response times of 
Web application servers. We introduce a new task scheduling 
technique that minimizes the response time at low CPU 
utilization. It is known that the CPU utilization levels are 
typically low in many commercial servers because the server 
capacity is often determined based on the peak load, which is 
much higher than the average load. For example, in 2013 

Google reported that servers in their clusters spend most of 
their time within the 10% to 50% CPU utilization range [2]. 
This was unchanged from the data published in 2009. Also, 
Delimitrou and Kozyrakis also reported the CPU utilization 
was less than 50% at servers in a production cluster at Twitter 
[3]. Hence, focusing on relatively low CPU utilization 
conditions is reasonable for many real-world servers.  

To minimize the response time of the Web applications, this 
paper focuses on processors with SMT (Simultaneous 
Multi-Threading) capabilities [4, 5], which allow multiple 
hardware threads (SMT threads) to run on each CPU core. 
Many of today’s high-performance processors used in servers 
do support thread-level parallelism with multiple cores and 
multiple SMT threads within each core. The SMT capabilities 
can improve the peak throughput of the server by increasing 
the utilization of the computing resources in the processors. 
Since the SMT typically gives higher peak throughput, most 
of the servers enable the SMT by default. 

We first show how the SMT may degrade the response time 
of Web applications when a server equipped with multiple 
cores does not fully utilize its CPUs, while the SMT improves 
the peak throughput of the same Web applications. We 
studied two processors, Intel Xeon with 2-way SMT and IBM 
POWER7 with 4-way SMT. We also found that SMT always 
improves the response time when the server has only one core, 
irrespective of the CPU utilization, as summarized in Table I. 

To predict this behavior precisely based on the CPU 
utilization and the number of CPU cores available in the 
system, we develop a queuing model that models the change in 
the single-thread performance due to SMT. We also model the 
task migration behavior of the OS task scheduler on multicore 
SMT processors, aggressively balancing the load among the 
SMT threads in a core but much less aggressively among 
different cores. 

Our new model allows us to adaptively select the best SMT 
level (the number of active SMT threads in each core) based 
on the CPU utilization and the number of available cores. We 
can decide on the SMT level that yields the best response time 
by predicting the response time for each SMT level. 

We implemented and evaluated our technique on Linux 
using two different processors, Xeon and POWER7. For the 
evaluation, we used Web applications written in PHP, Ruby, 
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or Java. Our technique selected the most appropriate SMT 
level and reduced the response time by up to 12.9% on Xeon 
and 12.4% on POWER7 compared to a default configuration 
using the maximum SMT level supported by each processor. 
When the server load increases, our technique automatically 
enables all the SMT threads and hence it can still fully 
leverage the benefit of the SMT in improving the peak 
throughput. 

There are three main contributions in this paper. (1) We 
demonstrate that SMT may degrade the response time of the 
Web application when the server is equipped with multiple 
cores and these cores are not fully utilized. Although previous 
studies (such as [6]) have shown that the SMT may degrade 
the throughputs of some applications, as far as we know, this is 
the first detailed study on how the SMT may hurt the response 
times of Web applications. (2) We developed a hierarchical 
queuing model that can accurately predict the response times 
on multicore SMT processors. (3) We show that our adaptive 
SMT control technique based on the model can reduce the 
response times of the Web applications. Although we focus on 
Web application servers in this paper, our technique is not 
specialized for Web applications and hence other types of 
interactive workloads may also benefit from using it. 

The rest of the paper is organized as follows. Section II 
shows how SMT affects the response times of Web applica-
tions on servers with multicore SMT processors. Section III 
presents our new model to predict the response times on 
multicore SMT processors. Section IV describes our 
technique to adaptively control the SMT level. Section V 

describes our experiments with Web applications written in 
PHP, Ruby, and Java. Section VI covers related work. Section 
VII discusses possible future work. Finally, Section VIII 
summarizes this paper. 

II. HOW SMT AFFECTS THE RESPONSE TIMES  
In this section, we describe how the SMT capability of the 

processor in the application server affects the response times 
and hence the users’ experience with the Web applications, 
using a PHP application as an example. 

A. System Setup 
To study the effects of the number of active SMT threads 

(SMT level) on the response times of Web applications, we 
choose two systems, one based on Intel Xeon and the other on 
IBM POWER7. The first system has two 2.9-GHz Xeon 
E5-2690 (SandyBridge-EP) processors with 96 GB of system 
memory, running Red Hat Enterprise Linux 6.4 (kernel 
2.6.32-358.2.1.el6) as its OS. The POWER7 system we used 
is equipped with two 3.55-GHz POWER7 processors with 
128 GB of memory and runs the same version of Red Hat 
Enterprise Linux. Both systems have 16 processor cores and 
hence the total number of SMT threads (logical CPUs) is 32 
for Xeon using 2-way SMT and 64 for POWER7 using 4-way 
SMT. We disabled the dynamic frequency scaling on both 
systems for more consistent and reproducible results. To 
control the number of cores and SMT threads, we used the 
sysfs interface exported by the Linux kernel 
(/sys/devices/system/cpu/). We set the same SMT level for all 
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Figure 1. Average response time of MediaWiki with different SMT levels on Xeon and POWER7 using various numbers of cores. Error bars show 95% 
confidence intervals. The y-axis has a non-zero origin. The circles show the data points that appear in more detail in Figure 2. 
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of the cores used. 
As a target Web application, we selected MediaWiki- 

1.21.1. We ran MediaWiki on PHP-5.3.3 and Apache-2.2.15, 
as included in the Red Hat distribution. MediaWiki is a wiki 
server program developed by the WikiMedia foundation for 
the Wikipedia online encyclopedia. We used 1,000 articles 
from a Wikipedia database dump. We configured MediaWiki 
to use memcached-1.4.4 running on the same machine to 
cache the results of the database queries. The database server 
and the client emulator ran on separate machines. To measure 
the performance, the clients opened randomly selected articles. 
Between each request, the emulated client introduced a think 
time defined by an exponential random value with an average 
of three seconds. The number of emulated clients was changed 
to control the total workload. The response time is measured 
in the emulated clients. 

B. Performance Results 
Figure 1 shows how the processor’s SMT level affects the 

response time of MediaWiki with an increasing number of 
emulated clients, increasing the CPU utilization in each server, 
on 16 cores, 4 cores, and 1 core of Xeon and POWER7. In 
each of the cases shown here, enabling SMT yielded a higher 
throughput and hence better response time with higher CPU 
utilization (right side of the figures).  

When the CPU utilization was low (left side of the figures), 
the throughput was not affected by the SMT level because the 
server was able to respond to all requests from the clients and 
hence the throughput was determined solely by the incoming 
request rate. With low CPU utilization, we discovered that the 
response times were better with SMT1 (SMT disabled) when 
using 16 cores on both platforms. Also, on POWER7, SMT2 
(2-way SMT) yielded shorter response times than SMT4 
(4-way SMT) if the number of emulated clients was less than 
256. In contrast, SMT improved the response times for any 
CPU utilization if the server had only 1 core. On one core of 
POWER7, SMT2 yielded the best response time at low CPU 
utilization and SMT4 gave the best at high CPU utilization. 
Because there is a small performance gap among SMT1, 
SMT2, and SMT4 even at the lowest CPU utilization, where 
the contention among the SMT threads was almost negligible, 
the POWER7 system appears to have constant performance 
overhead due to SMT4.  

When using a small number of cores, such as the 4 cores 
shown in the figure, we observed that the response times were 
better with the lower SMT level for low CPU utilizations. 
However, the crossover point was at lower CPU utilization 
compared to the case with 16 cores. These behaviors are not 
unique to MediaWiki or PHP applications, but we found the 
same trends in the other Web applications (as shown later). 

For deeper insight into the causes of the differences in the 
response times, Figure 2 shows histograms of the Xeon 
response times with a 5-msec width on 16 cores and 1 core. 
For both the 16-core and 1-core cases, the peaks of the 
histograms appear at a shorter response time for SMT1 
compared to SMT2. In general, SMT improves the total 
throughput by allowing multiple threads to run in each core in 
exchange for some degradation in single-thread performance 

due to contention (in the execution units and also in the 
caches) among the multiple threads running on the same core. 
The lower single-thread performance makes the service times 
longer and shifts the peak of the histogram towards slightly 
slower response times for SMT2 compared to SMT1. 

With one core, we observed a large number of transactions 
suffering from unreasonably long response times, especially 
with SMT1, and these long-latency transactions result in the 
worsened average and 90-percentile response times of the 
SMT1 when running on only one core. In the 16-core case, 
such long-latency transactions were not frequent enough to 
affect the average response times. The long-latency 
transactions occur when the server cannot serve a transaction 
immediately because all of the SMT threads are already 
executing other transactions. When the server has only one 
core, SMT increases the number of runnable threads and 
hence reduces the long-latency delayed transactions. When 
the server has multiple cores, there tend to be idling SMT 
threads in the system at any time that the average CPU 
utilization is low (about 25% for SMT1 in Figure 2). Although 
the OS randomly picks a server task (a process or a software 
thread) to serve the new incoming request, the OS task 
scheduler can quickly move the new server task to an idle 
SMT thread with little delay on a multicore system if the task 
cannot start immediately. Thus the increased number of HW 
threads with SMT does not improve the response time on 
multicore systems. As a result, on today’s servers with lots of 
cores, the lower single-thread performance caused by SMT 
tends to degrade the response time of Web applications when 
the CPU utilization is low, while SMT improves the response 
time on only one core by avoiding the long-latency delayed 
transactions.  

This observation shows that the response time can be 
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broken down into two components, service time (CPU time) 
and waiting time. SMT degrades the service time due to lower 
single-thread performance, but it reduces the waiting time. 
However, the waiting time does not matter for the overall 
response time on multicore systems with low CPU utilization 
as summarized in Table II. Hence to make good predictions of 
the response times on multicore servers, we need to consider 
contention among the SMT threads to predict the service time 
and also the task migration behavior of the task scheduler to 
predict the waiting time. 

III. HIERARCHICAL QUEUING MODEL  
Based on the observations of Section II, we created a 

technique that uses queuing theory to predict the response 
time for each SMT level based on the measured CPU 
utilization and the number of cores available in the system. 

A. Overview 
To accurately model the complex behaviors of a system 

with multicore SMT processors using queuing theory, there 
are two challenges: (1) modeling the single-thread perfor-
mance as affected by the resource contention among the SMT 
threads running on the same core and (2) modeling the task 
migration behavior of the OS task scheduler, which aggres-
sively balances the load among the SMT threads within each 
core while minimizing migrations among the cores. Although 
existing queuing models such as the standard single queue and 
multiple server model (e.g. M/M/s queuing model) have been 
used to model systems with multiple processors, they are not 
suitable to predict the response times on multicore SMT 
processors because they do not take these challenges into 
account. 

To precisely model the observed response times, we divide 
the response time in server Tr into service time (time receiving 
services in the CPU) Ts and waiting time in the OS task queue 
Tw as 

Tr = Ts + Tw.  (1) 

Here, Tr , Ts , and Tw depend on the SMT level t, the number of 
cores p and the current CPU utilization level. As we noted in 
Section II, the SMT typically degrades the single-thread 
performance and hence the service time Ts , while it improves 
the waiting time Tw.  

In the new model, we first focus on a core with multiple 
SMT threads to calculate the single-thread performance and 
the waiting time, both affected by the contention among 
multiple SMT threads, without considering task migrations 
(In-core modeling step). We employ an iterative method to 
predict the average single-thread performance with SMT 

using the standard M/M/s queuing model. In each iteration, we 
calculate the waiting time and probabilities of the number of 
running threads within each core, refine the estimated 
single-thread performance as affected by SMT and iterate 
until it converges. 

Then we update the waiting time Tw taking into account the 
effect of the task migration behavior (Out-of-core modeling 
step). We calculate the probability that at least one core in the 
system is idle. We expect that the task scheduler of the OS will 
migrate tasks from the waiting queue of a busy core to an idle 
core if one exists. Hence we update the waiting time 
calculated in the in-core step by multiplying by the expected 
probabilities of task migration. In this model, we assume that 
all of the p cores in the system use the same SMT level t.  

B. Detailed Steps  

1) Normalizing CPU utilization: To evaluate the CPU 
utilization without regard to the current SMT level, we 
calculate the normalized CPU utilization ρ~  as the input to the 
model. This normalized CPU utilization is calculated as the 
CPU utilization if this machine processes the current 
workload without using SMT (i.e. SMT1). When the current 
SMT level is larger than one, the normalized CPU utilization 
may exceed 100%. 

2) Modeling the effect of SMT (In-core modeling step): To 
estimate the response time at SMT level t based on the 
queuing theory, we need the service time. However the service 
time is affected by the single-thread performance, which is 
unknown at this stage due to the nature of an SMT processor. 
Hence we first assume that average single-thread performance, 
avgThreadPerf, is not affected by the SMT. Because we are 
not trying to estimate the absolute performance, we can define 
avgThreadPerf as the relative single-thread performance over 
SMT1. Thus we first assume that avgThreadPerf = 1.0. Then 
we iteratively refine the average single-thread performance. 

With the assumed average single-thread performance, we 
calculate the queuing model for each core without any effects 
from the other cores in the system using the standard M/M/s 
queuing model. Here we use the SMT level (the number of 
available SMT threads) t as the number of servers s in the 
model to solve the service time Ts and the utilization ρ as 

 
Ts = 1.0 / avgThreadPerf,  (2) 
 

ρ = ρ~  / (avgThreadPerf ×  t).  (3) 
 

We calculate the waiting time Tw within one core (p = 1), 
which is the delay before the start of execution, as 

TABLE II. SUMMARY OF HOW SMT AFFECTS THE RESPONSE TIME, CONSISTING OF THE SERVICE TIME AND THE WAITING TIME 
CPU 

utilization on many cores on 1 core importance of waiting time

Low 
response time = service time (+ waiting time) 

  degrade       degrade        negligible 
response time = service time + waiting time 

 improve        degrade        improve relatively less important 

High 
response time = service time + waiting time 

 improve        degrade        improve 
response time = service time + waiting time 

 improve        degrade        improve relatively more important 

importance of 
waiting time 

relatively less important (waiting time can be 
alleviated by migrating waiting tasks to other cores)

relatively more important  
(not alleviated by migrating waiting tasks) 
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Then we refine the avgThreadPerf based on π1[n]. To 
update the avgThreadPerf, we define threadPerf[n], the 
relative single-thread performance when n SMT threads are 
running simultaneously in a core relative to the performance 
without SMT. Hence, threadPerf[1] = 1.0 and 0 < 
threadPerf[n] ≤ 1.0, where 1 < n. For threadPerf[n], we can 
use the dynamically measured values for the current workload 
or statically defined typical values.  

We update avgThreadPerf as the weighted average of 
threadPerf[n] with (n ×  π1[n]) as the weight and repeat the 
calculations for the queuing model with the updated 
avgThreadPerf until the waiting time converges or the number 
of iterations reaches a specified threshold (we used 10).  

3) Modeling the task migration (Out-of-core modeling step): 
To model the effects of the task migration among the multiple 
cores in the system with p cores with SMT level t, we 
introduce another step with the standard M/M/s model. We 
calculate the probability that m customers (tasks) are in this 
system, π2[m], based on (5). This time, the number of servers s 
is the total number of SMT threads, p ×  t. Then we obtain the 
probability that at least one core in the system is not executing 
any task, migratableRatio. By assuming that m tasks are 
randomly distributed among all cores, we can calculate 
migratableRatio as 
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For Equations (7), C(n, k) shows a k-combination of n. When j 
tasks are randomly distributed among p cores,  
C(j, i)  (p – 1) j-i / p j shows the probability that i tasks are on a 
specified core and (j – i) tasks are on the other (p – 1) cores.  

The OS task scheduler should migrate tasks in the waiting 
queue of a busy core to an idle core. Hence we update the 
waiting time Tw by multiplying (1.0 – migratableRatio) by the 

waiting time calculated in (4) where migration was ignored. 
We estimate the average waiting time Tw for SMT level t as  

)1(
1

RatiomigratableTT
pww −×=

=
 (8) 

As we show in (1), we calculate the overall response time Tr 
for SMT level t as the sum of this waiting time Tw in (8) and 
the service time Ts in (2). 

C. Evaluation  
To evaluate the response-time predictions of our model, we 

calculated the response times for each SMT level. We used 
typical static values for threadPerf. On Xeon, we set 
threadPerf[n] = {1.0, 0.6}. This means that 2-way SMT gives 
a 20% improvement in the aggregate throughput (60% ×  2 = 
120%), while it degrades the single-thread performance by 
40%. On POWER7, we used these values: threadPerf[n] = 
{1.0, 0.75, 0.57, 0.45}. This means that the relative aggre-
gated throughputs for each SMT level are 1.0, 1.5, 1.7, and 1.8, 
respectively. We originally decided on these values of 
threadPerf as typical values for large Web applications 
written in Java, but they also worked well for the PHP and 
Ruby applications without specific tuning. 

Figure 3 shows the predicted response time from our model 
on 16 cores, 4 cores, and 1 core of Xeon and POWER7. The 
x-axis shows the normalized CPU utilization as described in 
Section III-B. We show two lines for each configuration: one 
for the overall response time Tr and the other for the service 
time Ts. The gap between the two lines shows the waiting time 
in the queue Tw. 

Comparing Figure 3 to Figure 1, our model successfully 
predicts the trends in the observed response times. On 16 
cores, SMT1 yields the best response time at low CPU 
utilization (left side of the figures) for both processors and 
higher SMT levels gave a better response time when the CPU 
utilization increased. Other configurations were also 
consistent with the results in Figure 1.  

Because our model simplifies the real systems, there are 
some minor differences between the measured and the 
predicted performances. For example, our model emphasizes 
the resource contentions among SMT threads in the same core 
and does not consider the contention among different cores, 
such as in the shared cache or the memory bus. Hence our 
model predicts the service time Ts as unchanged by the CPU 
utilization for SMT1, but this is somewhat unrealistic for most 
of the large applications. Another example in Figure 1 is that 
SMT4 on one core of POWER7 shows a slightly slower 
response time even at the lowest CPU utilization point and 
hence it appears to have constant overhead in the single-thread 
performance due to SMT as discussed in Section II. Our 
current model did not consider such overhead and so our 
model predicts SMT4 performs best on one core regardless of 
the CPU utilization, while SMT2 was best for low CPU 
utilization in Figure 1. 

Comparing our model to the naive M/M/s model, where s is 
the total number of SMT threads, p ×  t, the naive model 
strongly favored the higher SMT levels and simply predicts 
the maximum SMT level is best even on the 16-core 
configuration. This is because the naive model cannot predict 
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the degradation in the service time due to the contention 
among SMT threads and hence a higher SMT level always 
yields a better response time due to the reduced waiting time.  

IV. Adaptive SMT Control BASED ON Our MODEL 
Based on our model, we designed an adaptive control 

technique for the SMT level to minimize the response times of 
Web applications. Our technique targets operating systems 
used in Web application servers. 

A naive approach to identify the best SMT level is meas-
uring the response time of the Web application for each SMT 
level and picking the SMT level that yields the best response 
time. However, it is not trivial to find the start and end times of 
a transaction to measure its response time in the OS task 
scheduler without interlocking with the running applications. 
In this paper, instead of relying on profiling, we calculate the 
response times for all of the SMT levels t (1 ≤ t ≤ tmax, tmax as 
the maximum SMT level supported by the processor, tmax = 2 
for Xeon and tmax = 4 for POWER7) using our model and pick 
the best SMT level that minimizes the estimated response time. 
We assume that all of the cores in the system use the same 
SMT level t. We also assume that the number of cores is a 
constant during each run. 

Instead of enhancing the task scheduler in the Linux kernel, 
we implemented a user-space daemon that controls the SMT 
level from user land. The daemon reads the current CPU 
utilization of each logical CPU from the proc file system 
(/proc/stat) once each 5 seconds. It uses the peak CPU 
utilization within the most recent 60 seconds (i.e. the last 12 
measured intervals) as the input for the queuing model 
calculations to avoid overly frequent changes of the SMT 

level. The daemon calculates the best SMT level and sets the 
active CPU via sysfs (/sys/devices/system/cpu/). We use the 
same SMT level for all of the cores and do not control the 
SMT level for individual cores. On the 16-core Xeon system 
we used, the logical CPU x and x+16 are running on the same 
core. On the 16-core POWER7 system, the logical CPU 4x to 
4x+3 are running on the same core. Because the daemon only 
runs every 5 seconds, the performance overhead caused by the 
model calculation was negligible on both platforms. 

We obtain the normalized CPU utilization as the input to 
our model from the measured average CPU utilization of each 
SMT thread, util[n], 1 ≤ n ≤ tmax. On POWER7, because the 
task scheduler of the Linux kernel, the completely fair 
scheduler (CFS), uses the SMT thread with a smaller logical 
CPU id first within one core (asymmetric SMT scheduling), 
util[n1] is typically larger than util[n2] for n1 < n2. Hence, we 
expect that CPU time util[n] - util[n+1] will be spent while 
executing n SMT threads in a core. For example, when util[1] 
= 80% and util[2] = 50%, we expect that a core executes only 
one SMT thread in 30% (= util[2] - util[1]) of the CPU time 
and two SMT threads in 50% (= util[2]) of the CPU time. The 
normalized CPU utilization is calculated as ρ~  = 
(threadPerf[1] ×  1) ×  30% + (threadPerf[2] ×  2) ×  50%.  

On Xeon, we assume that the CPU utilizations of the SMT 
threads are uncorrelated, because there is no asymmetric SMT 
scheduling. For the above example, we would expect that a 
core executes two SMT threads in 40% (= util[1] ×  util[2]) of 
the CPU time and executes one SMT thread in 50% (= util[1] 
+ util[2] – 2 ×  util[1] ×  util[2]) of the CPU time. Hence, the 
normalized CPU utilization is calculated as ρ~ = 
(threadPerf[1] ×  1) ×  50% + (threadPerf[2] ×  2) ×  40%. 
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Figure 3. Predicted response time Tr and service time (CPU time) Ts with different SMT levels on Xeon and POWER7 using various number of cores. The 
gap between two lines for each configuration shows waiting time Tw, because the response time consists of the service time (CPU time) and the waiting time.
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V. Performance Results 
We evaluated the performance benefits of our adaptive 

SMT control technique using Web applications written in 
PHP, Ruby, or Java on the two systems with 16 cores of Xeon 
and POWER7 described in Section II. As a PHP application, 
we used MediaWiki from Section II. We measured the 
response times of MediaWiki using two different scenarios. 
One is reading content as in Section II and the other is 
searching for a randomly selected word. For the Ruby 
workload, we selected Ruby on Rails-3.2.14 as a workload for 
the evaluation. Ruby on Rails is a framework for developing 
Web applications. We ran Ruby on Rails on ruby-1.8.7 
included in the OS distribution. To drive the workload, 
lighttpd-1.4.13 is used as the Web server. It communicates 
with the Ruby runtimes using the FastCGI protocol. We built a 
simple telephone-directory application on top of the 
framework to focus on the performance of the framework. We 
generated 100 records in the database and measured the 
performance for the following scenario: reading a table of all 

of the records, selecting one record randomly, and opening 
that record. For this workload, the emulated client added think 
times defined by an exponential random value with an average 
of one second between each request. For the Java application, 
we used Cognos Business Intelligence (BI) v10.2, which 
analyzes and visualizes business data stored in a database. 
Cognos BI is a commercial application implemented using 
both Java and C++. We ran the Cognos BI on IBM 
WebSphere Application Server v8.5 as the Java application 
server. We used three different scenarios to drive the tests of 
the Cognos BI. One balanced the CPU utilization in Java and 
native code (scenario 1) and the others emphasized the 
performance of the Java part (scenario 2) or the native part 
(scenario 3). For all of the tested workloads, the database 
server and the client emulator ran on separate machines. Table 
III summarizes these workloads. 

Figure 4 illustrates how our adaptive SMT control worked 
for MediaWiki on 16 cores, 4 cores, and 1 core of Xeon and 
on POWER7. In most cases, our technique successfully 
selected the best SMT level and improved the response time 
of the Web application compared to the default case using all 
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Figure 4. Average response time of MediaWiki with our adaptive SMT control on Xeon and POWER7 using various numbers of cores. Error bars show 95% 
confidence intervals. The y-axis has a non-zero origin. 
 

TABLE III. WORKLOADS USED IN OUR MEASUREMENTS 

Workload Language Descriptions of the workload Avg. Response 
time 

Transaction 
mix 

MediaWiki PHP A wiki server program 
open a wiki article 230 msec 1 type 

search the wiki for a word 185 msec 1 type 
Ruby on Rails Ruby A Web application framework list all entries and open one entry 95 msec 2 types 

Cognos BI Java + native 
(C++) 

An interactive OLAP and business 
intelligence application 

OLAP with balanced workload 210 msec 2 types 
OLAP to emphasize Java part 410 msec 2 types 

OLAP to emphasize native part 220 msec 7 types 
• Transaction mix shows the number of different types of transactions involved in the scenario. 
• Response times are measured on Xeon with a lightly loaded condition and averaged the response times for all types of transactions 



8 
 

of the SMT threads (SMT2 on Xeon and SMT4 on 
POWER7).  

When using 16 cores, our model correctly predicted that the 
lower SMT level would yield better response times at low 
levels of CPU utilization. At higher CPU utilizations, our 
technique enabled all of the SMT threads provided by the 
hardware and achieved the same peak throughputs. This 
means that our technique takes advantage of both the higher 
throughput of the high SMT level and also the better response 
time of the low SMT level.  

When running on only 1 core, our technique enabled all the 
SMT threads regardless of the current CPU utilization, as 
expected. On one core of POWER7, our technique selected 
SMT4 even though SMT2 achieved the best response time. 
This is because our model does not consider that the 

single-thread performance of SMT4 can be slower even 
without contentions among the SMT threads. 

When comparing the results from 1 core to 16 cores, we 
have more optimization opportunities with larger numbers of 
cores. As illustrated in Figure 4, the range of the CPU 
utilization where our technique can give the improvements 
was smaller when using a smaller number of cores. Hence our 
technique is especially efficient on larger servers. 

To show that our technique is not specialized for the 
specific MediaWiki application or for PHP applications, 
Figure 5 shows how our technique worked with other 
applications written in Ruby (Ruby on Rails) and Java 
(Cognos BI scenario 1). We show the average response time 
on 16 cores of Xeon and POWER7. The results were very 
similar to what we show for MediaWiki in Figure 4. Our 
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Figure 6. Maximum improvements in the average response times from our adaptive SMT control compared to the default SMT level (SMT2 for Xeon 
and SMT4 for POWER7) for all of the tested workloads on 16 cores of Xeon and POWER7.  
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Figure 5. Average and 90-percentile response times of Cognos BI (scenario 1) and Ruby on Rails with our adaptive SMT control on 16 cores of Xeon and 
POWER7. The error bars show the 95% confidence intervals.  
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technique selected the best SMT levels regardless of the CPU 
utilization for both applications. 

Figure 5 also shows the 90-percentile response times for the 
Java workload on both platforms using 16 cores. Our 
technique improved the 90-percentile response times as well 
as the average response times. 

Figure 6 shows the maximum improvements in the response 
times from our adaptive SMT control compared to the 
response time with the default SMT levels (SMT2 for Xeon 
and SMT4 for POWER7) for all of the workloads on both 
Xeon and POWER7 using 16 cores. We observed improve-
ments for all of the tested workloads, with improvements 
ranging from 6.0% (Cognos BI scenario 2 on Xeon) to 12.9% 
(Ruby on Rails on Xeon). We did not observed significant 
differences in the improvements in the response times for 
Xeon and POWER7, even though they are completely 
different implementations and support different numbers of 
SMT threads per core. 

VI. RELATED WORK 
In this paper, we focused on how we improved the response 

times of Web applications by improving the task scheduling 
on the multicore SMT processors. The performance of 
server-side software tends to be measured by peak throughput 
as long as the response times remain reasonably low. However 
additional (sub-second) improvements in the response times 
of Web applications are essential for better user experiences 
and matters for Web services [1]. Therefore, improving the 
general response times of Web servers deserves more study.  

To improve the single-thread performance and response 
time at low CPU utilization, recent versions of the AIX 
Operating System use a scheduling policy called raw 
throughput mode [7]. This does not use the second or higher 
SMT threads until the primary SMT threads of all of the cores 
in the system are loaded to at least 50% utilization. This policy 
has the same goal as our technique, but is based on a static and 
predefined threshold. Our technique uses a queuing model to 
adaptively decide on the best SMT level for the number of 
cores available in the system and considering the current CPU 
utilization. As already discussed in this paper, the effects of 
the SMT level on the response time of Web applications 
heavily depends on the number of the CPU cores. Hence we 
can use our model to find the best threshold for the raw 
throughput mode for each CPU count in the system and the 
maximum SMT level supported by the processor. 

Previous work on task scheduling for SMT processors 
focused on such aspects as achieving higher throughputs [6, 
8-13] or satisfying real-time constraints on the SMT 
processors [14-19]. Identifying the best tasks to co-schedule 
on the SMT threads in one core (symbiotic job scheduling) has 
been an important topic for task scheduling on SMT 
processors. Typically, a symbiotic task scheduler first profiles 
the characteristics of each task running in the system by using 
existing hardware performance monitor or custom hardware. 
Then it decides on the best tasks to schedule together to 
minimize the resource contention. In our work, we focused on 
controlling the SMT level and did not control the scheduling 

for each task. A Web application server dedicated to only one 
Web application typically does not have enough variety in its 
microarchitectural characteristics to find opportunities for 
symbiotic job scheduling, because each task in the machine 
independently executes the same program for different users. 
For servers that simultaneously host a variety of different Web 
applications, we can integrate the ideas of task-sensitive 
symbiotic scheduling into our technique by finding the best 
task to co-schedule after our model selects the best SMT level.  

Funston et al. [6] pointed out that the SMT-based im-
provements in the throughputs depend on the benchmark and 
that SMT sometimes degraded the throughput for a variety of 
compute-intensive programs. They proposed a metric to 
identify the best SMT level to achieve the highest throughput 
based on the performance events tracked with the hardware 
performance monitor of the processors using POWER7 and 
core i7. They showed that their new metric successfully 
predicted the benefits from SMT and this model can help the 
task scheduler to decide on the best SMT level and pick tasks 
to co-schedule. We also developed a model to decide on the 
best SMT level, but with a different focus, response time, not 
throughput. 

Because SMT causes unpredictable single-thread perfor-
mance, guaranteeing fairness and real-time constraints, such 
as the deadlines for task completion or the lowest guaranteed 
single-thread performance, on SMT processors is another 
challenging topic for task schedulers. For example, He and 
Hong [19] controlled the hardware priority of each SMT 
thread, which determines the distribution of the shared 
resources among the threads, by using a hardware perfor-
mance monitor to guarantee the lowest single-thread 
performance on POWER7. 

VII. FUTURE WORK 
Though our model correctly predicts the response times of 

the tested Web applications, our model still simplifies the 
actual behavior of the systems. For example, we use a 
first-come first-served discipline in the model similar to the 
standard queuing models and ignore the effects of time slicing 
among multiple tasks. To add the effects of such features 
should make the model more accurate. Also, testing more 
workloads, such as applications with frequent lock conten-
tions or interactive workloads other than server-side Web 
applications, will help to identify important features for better 
models. 

In the current implementation, we statically use typical 
values as the performance gain from SMT in threadPerf in our 
model. These values may depend on the current workload and 
hence using dynamically measured values may improve the 
model’s accuracy in exchange for additional runtime overhead 
to measure the single-thread performance for each SMT level. 

Our queuing model correctly predicts the best SMT level 
with the current Linux kernel task scheduler (CFS). Though 
our queuing model does not include features specific to CFS, 
the load balancing behaviors of task schedulers are very 
complicated [20]. Therefore testing our technique with other 
task scheduler implementations is an important future project.  
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Although we implemented our technique as a user-space 
daemon without modifying the Linux kernel in this paper, an 
alternative implementation approach could be done inside the 
OS task scheduler to reduce the overhead of setting the SMT 
level by individually enabling or disabling the logical CPUs 
via sysfs. 

VIII. SUMMARY 
In this paper, we describe our technique to dynamically 

control the SMT level in Web application servers to minimize 
the response times of the applications. Most of the 
high-performance processors used in today’s servers provide 
SMT capabilities that can improve the peak throughput of the 
server by increasing the utilization of the computing resources 
in the processor. However, we found that SMT may actually 
degrade the response times of our Web applications when the 
server is not fully utilizing its multicore CPUs, while SMT 
improves the response times regardless of the CPU utilization 
when the server uses only one core. Based on these observa-
tions, we introduce a new hierarchical queuing model that can 
accurately predict the response times on multicore SMT 
processors. We devised a new technique to adaptively control 
the number of active SMT threads using this new model to 
minimize the response times of Web applications. Our 
evaluations showed that the new technique improved the 
response times of Web applications written in PHP, Ruby, and 
Java by up to 12.9% on Xeon, which has 2-way SMT, and on 
POWER7, which has 4-way SMT, when the CPUs are not 
fully utilized. It is known that the CPU utilization levels are 
typically low in many commercial servers. Hence our new 
technique can improve the response times of many Web 
applications, improving the users’ experience. 
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