
1

Abstract—We developed a new task scheduling technique that
improves the response times of Web applications. Most of the
high-performance processors used in today’s servers support
thread-level parallelism with multiple hardware threads within
each core using Simultaneous Multi-Threading (SMT). SMT
capabilities can improve the peak throughput of a server by
increasing the utilization of the computing resources in the
processor. However, SMT may degrade the response time of
Web applications if the server does not fully utilize its multicore
CPUs, while SMT improves the response times regardless of the
CPU utilization if the server is equipped with only one core. To
precisely model this behavior, we created a new hierarchical
queuing model to accurately predict the response times on
multicore SMT processors, taking the CPU utilization and the
number of CPU cores into account. Based on this model, we
devised Adaptive SMT control, a technique to control the
number of active SMT threads (SMT level) to minimize the
response time. We measure the current CPU utilization and the
number of cores, predict the response time for each SMT level
and dynamically set the SMT level that yields the best response
times for the Web applications. We show our technique
successfully improves the response time of Web applications
written in PHP, Ruby, and Java by up to 12.9% on Xeon, which
employs 2-way SMT, and 12.4% on POWER7, which employs
4-way SMT, when the CPUs are not fully utilized. It is known
that the CPU utilization levels are typically low in many
commercial servers. Hence our new technique can improve the
response times of many Web applications, thus improving the
users’ experience.

I. INTRODUCTION
More and more server workloads are becoming Web-based

on both the Internet and intranets. Such Web applications
include not only relatively simple applications such as content
management systems or cloud-based mail services, but also
more complex enterprise applications such as online analytics
processing (OLAP). The performance of Web application
servers tends to be measured by peak throughput while
holding the response times reasonably low so as to minimize
the number of servers required to handle the incoming
requests. However, improvements in the response times
greatly affect the user experience with any interactive Web
application [1]. Hence the response time is another important
metric for the server performance.

In this paper, we focus on improving the response times of
Web application servers. We introduce a new task scheduling
technique that minimizes the response time at low CPU
utilization. It is known that the CPU utilization levels are
typically low in many commercial servers because the server
capacity is often determined based on the peak load, which is
much higher than the average load. For example, in 2013

Google reported that servers in their clusters spend most of
their time within the 10% to 50% CPU utilization range [2].
This was unchanged from the data published in 2009. Also,
Delimitrou and Kozyrakis also reported the CPU utilization
was less than 50% at servers in a production cluster at Twitter
[3]. Hence, focusing on relatively low CPU utilization
conditions is reasonable for many real-world servers.

To minimize the response time of the Web applications, this
paper focuses on processors with SMT (Simultaneous
Multi-Threading) capabilities [4, 5], which allow multiple
hardware threads (SMT threads) to run on each CPU core.
Many of today’s high-performance processors used in servers
do support thread-level parallelism with multiple cores and
multiple SMT threads within each core. The SMT capabilities
can improve the peak throughput of the server by increasing
the utilization of the computing resources in the processors.
Since the SMT typically gives higher peak throughput, most
of the servers enable the SMT by default.

We first show how the SMT may degrade the response time
of Web applications when a server equipped with multiple
cores does not fully utilize its CPUs, while the SMT improves
the peak throughput of the same Web applications. We
studied two processors, Intel Xeon with 2-way SMT and IBM
POWER7 with 4-way SMT. We also found that SMT always
improves the response time when the server has only one core,
irrespective of the CPU utilization, as summarized in Table I.

To predict this behavior precisely based on the CPU
utilization and the number of CPU cores available in the
system, we develop a queuing model that models the change in
the single-thread performance due to SMT. We also model the
task migration behavior of the OS task scheduler on multicore
SMT processors, aggressively balancing the load among the
SMT threads in a core but much less aggressively among
different cores.

Our new model allows us to adaptively select the best SMT
level (the number of active SMT threads in each core) based
on the CPU utilization and the number of available cores. We
can decide on the SMT level that yields the best response time
by predicting the response time for each SMT level.

We implemented and evaluated our technique on Linux
using two different processors, Xeon and POWER7. For the
evaluation, we used Web applications written in PHP, Ruby,

Adaptive SMT Control for More Responsive Web Applications

Hiroshi Inoue†‡ and Toshio Nakatani†
 † IBM Research – Tokyo, ‡ University of Tokyo

{inouehrs, nakatani}@jp.ibm.com

TABLE I. SUMMARY OF HOW SMT AFFECTS THE RESPONSE TIME
CPU utilization on many cores on 1 core

Low
degrade

(common case in
today’s servers)

improve

High improve improve

This is the author's version of the work.
The definitive version was published in IISWC 2014.

2

or Java. Our technique selected the most appropriate SMT
level and reduced the response time by up to 12.9% on Xeon
and 12.4% on POWER7 compared to a default configuration
using the maximum SMT level supported by each processor.
When the server load increases, our technique automatically
enables all the SMT threads and hence it can still fully
leverage the benefit of the SMT in improving the peak
throughput.

There are three main contributions in this paper. (1) We
demonstrate that SMT may degrade the response time of the
Web application when the server is equipped with multiple
cores and these cores are not fully utilized. Although previous
studies (such as [6]) have shown that the SMT may degrade
the throughputs of some applications, as far as we know, this is
the first detailed study on how the SMT may hurt the response
times of Web applications. (2) We developed a hierarchical
queuing model that can accurately predict the response times
on multicore SMT processors. (3) We show that our adaptive
SMT control technique based on the model can reduce the
response times of the Web applications. Although we focus on
Web application servers in this paper, our technique is not
specialized for Web applications and hence other types of
interactive workloads may also benefit from using it.

The rest of the paper is organized as follows. Section II
shows how SMT affects the response times of Web applica-
tions on servers with multicore SMT processors. Section III
presents our new model to predict the response times on
multicore SMT processors. Section IV describes our
technique to adaptively control the SMT level. Section V

describes our experiments with Web applications written in
PHP, Ruby, and Java. Section VI covers related work. Section
VII discusses possible future work. Finally, Section VIII
summarizes this paper.

II. HOW SMT AFFECTS THE RESPONSE TIMES
In this section, we describe how the SMT capability of the

processor in the application server affects the response times
and hence the users’ experience with the Web applications,
using a PHP application as an example.

A. System Setup
To study the effects of the number of active SMT threads

(SMT level) on the response times of Web applications, we
choose two systems, one based on Intel Xeon and the other on
IBM POWER7. The first system has two 2.9-GHz Xeon
E5-2690 (SandyBridge-EP) processors with 96 GB of system
memory, running Red Hat Enterprise Linux 6.4 (kernel
2.6.32-358.2.1.el6) as its OS. The POWER7 system we used
is equipped with two 3.55-GHz POWER7 processors with
128 GB of memory and runs the same version of Red Hat
Enterprise Linux. Both systems have 16 processor cores and
hence the total number of SMT threads (logical CPUs) is 32
for Xeon using 2-way SMT and 64 for POWER7 using 4-way
SMT. We disabled the dynamic frequency scaling on both
systems for more consistent and reproducible results. To
control the number of cores and SMT threads, we used the
sysfs interface exported by the Linux kernel
(/sys/devices/system/cpu/). We set the same SMT level for all

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14 16 18 20 22

re
sp

on
se

 ti
m

e
[m

se
c]

number of emulated clients per core (total number)

SMT1 (disabled SMT)

SMT2 (2-way SMT)

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14 16 18 20 22

re
sp

on
se

 ti
m

e
[m

se
c]

number of emulated clients per core (total number)

SMT1 (disabled SMT)

SMT2 (2-way SMT)

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14 16 18 20 22

re
sp

on
se

 ti
m

e
[m

se
c]

number of emulated clients per core (total number)

SMT1 (disabled SMT)

SMT2 (2-way SMT)

on 16 cores of Xeon on 4 cores of Xeon

(32) (64) (96) (128) (160) (192) (224) (256) (288)(0) (8) (16) (24) (32) (40) (48) (56) (64) (72) (80) (88)(0)

higher CPU utilizationlower CPU utilization higher CPU utilizationlower CPU utilization

(320) (352)

on 1 core of Xeon

(2) (4) (6) (8) (10) (12) (14) (16) (18) (20) (22)(0)

lo
w

er
 is

 fa
st

er

higher CPU utilizationlower CPU utilization

on 16 cores of POWER7 on 4 cores of POWER7

(32) (64) (96) (128) (160) (192) (224) (256) (288)(0) (8) (16) (24) (32) (40) (48) (56) (64) (72) (80) (88)(0)

higher CPU utilizationlower CPU utilization higher CPU utilizationlower CPU utilization

(320) (352)

on 1 core of POWER7

(2) (4) (6) (8) (10) (12) (14) (16) (18) (20) (22)(0)

lo
w

er
 is

 fa
st

er

higher CPU utilizationlower CPU utilization

250

300

350

400

450

500

550

600

650

700

0 2 4 6 8 10 12 14 16 18 20 22

re
sp

on
se

 ti
m

e
[m

se
c]

number of emulated clients per core (total number)

SMT1 (disabled SMT)

SMT2 (2-way SMT)

SMT4 (4-way SMT)
250

300

350

400

450

500

550

600

650

700

0 2 4 6 8 10 12 14 16 18 20 22

re
sp

on
se

 ti
m

e
[m

se
c]

number of emulated clients per core (total number)

SMT1 (disabled SMT)
SMT2 (2-way SMT)
SMT4 (4-way SMT)

250

300

350

400

450

500

550

600

650

700

0 2 4 6 8 10 12 14 16 18 20 22

re
sp

on
se

 ti
m

e
[m

se
c]

number of emulated clients per core (total number)

SMT1 (disabled SMT)
SMT2 (2-way SMT)
SMT4 (4-way SMT)

SMT1 SMT2 SMT1 SMT2 SMT2

SMT1 SMT2 SMT4 SMT1 SMT2 SMT4 SMT2 SMT4
Best SMT level

Best SMT level

Best SMT level

Best SMT level

Best SMT level

Best SMT level

Figure 1. Average response time of MediaWiki with different SMT levels on Xeon and POWER7 using various numbers of cores. Error bars show 95%
confidence intervals. The y-axis has a non-zero origin. The circles show the data points that appear in more detail in Figure 2.

3

of the cores used.
As a target Web application, we selected MediaWiki-

1.21.1. We ran MediaWiki on PHP-5.3.3 and Apache-2.2.15,
as included in the Red Hat distribution. MediaWiki is a wiki
server program developed by the WikiMedia foundation for
the Wikipedia online encyclopedia. We used 1,000 articles
from a Wikipedia database dump. We configured MediaWiki
to use memcached-1.4.4 running on the same machine to
cache the results of the database queries. The database server
and the client emulator ran on separate machines. To measure
the performance, the clients opened randomly selected articles.
Between each request, the emulated client introduced a think
time defined by an exponential random value with an average
of three seconds. The number of emulated clients was changed
to control the total workload. The response time is measured
in the emulated clients.

B. Performance Results
Figure 1 shows how the processor’s SMT level affects the

response time of MediaWiki with an increasing number of
emulated clients, increasing the CPU utilization in each server,
on 16 cores, 4 cores, and 1 core of Xeon and POWER7. In
each of the cases shown here, enabling SMT yielded a higher
throughput and hence better response time with higher CPU
utilization (right side of the figures).

When the CPU utilization was low (left side of the figures),
the throughput was not affected by the SMT level because the
server was able to respond to all requests from the clients and
hence the throughput was determined solely by the incoming
request rate. With low CPU utilization, we discovered that the
response times were better with SMT1 (SMT disabled) when
using 16 cores on both platforms. Also, on POWER7, SMT2
(2-way SMT) yielded shorter response times than SMT4
(4-way SMT) if the number of emulated clients was less than
256. In contrast, SMT improved the response times for any
CPU utilization if the server had only 1 core. On one core of
POWER7, SMT2 yielded the best response time at low CPU
utilization and SMT4 gave the best at high CPU utilization.
Because there is a small performance gap among SMT1,
SMT2, and SMT4 even at the lowest CPU utilization, where
the contention among the SMT threads was almost negligible,
the POWER7 system appears to have constant performance
overhead due to SMT4.

When using a small number of cores, such as the 4 cores
shown in the figure, we observed that the response times were
better with the lower SMT level for low CPU utilizations.
However, the crossover point was at lower CPU utilization
compared to the case with 16 cores. These behaviors are not
unique to MediaWiki or PHP applications, but we found the
same trends in the other Web applications (as shown later).

For deeper insight into the causes of the differences in the
response times, Figure 2 shows histograms of the Xeon
response times with a 5-msec width on 16 cores and 1 core.
For both the 16-core and 1-core cases, the peaks of the
histograms appear at a shorter response time for SMT1
compared to SMT2. In general, SMT improves the total
throughput by allowing multiple threads to run in each core in
exchange for some degradation in single-thread performance

due to contention (in the execution units and also in the
caches) among the multiple threads running on the same core.
The lower single-thread performance makes the service times
longer and shifts the peak of the histogram towards slightly
slower response times for SMT2 compared to SMT1.

With one core, we observed a large number of transactions
suffering from unreasonably long response times, especially
with SMT1, and these long-latency transactions result in the
worsened average and 90-percentile response times of the
SMT1 when running on only one core. In the 16-core case,
such long-latency transactions were not frequent enough to
affect the average response times. The long-latency
transactions occur when the server cannot serve a transaction
immediately because all of the SMT threads are already
executing other transactions. When the server has only one
core, SMT increases the number of runnable threads and
hence reduces the long-latency delayed transactions. When
the server has multiple cores, there tend to be idling SMT
threads in the system at any time that the average CPU
utilization is low (about 25% for SMT1 in Figure 2). Although
the OS randomly picks a server task (a process or a software
thread) to serve the new incoming request, the OS task
scheduler can quickly move the new server task to an idle
SMT thread with little delay on a multicore system if the task
cannot start immediately. Thus the increased number of HW
threads with SMT does not improve the response time on
multicore systems. As a result, on today’s servers with lots of
cores, the lower single-thread performance caused by SMT
tends to degrade the response time of Web applications when
the CPU utilization is low, while SMT improves the response
time on only one core by avoiding the long-latency delayed
transactions.

This observation shows that the response time can be

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

200

220

240

260

280

300

320

340

360

380

400

420

440

460

480

histogram

re
sp

on
se

 tim
e

[m
se

c]

SMT2 (2-way SMT)

SMT1 (disabled SMT)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

200

220

240

260

280

300

320

340

360

380

400

420

440

460

480

histogram

re
sp

on
se

 tim
e

[m
se

c]

SMT2 (2-way SMT)

SMT1 (disabled SMT)

on 16 cores of Xeon on 1 core of Xeon

almost no long‐latency
transactions
on 16 core

many long‐latency
transactions

on 1 core
especially with SMT1

(SMT disabled)

SMT improves
the response time

by reducing
the long‐latency

transactions

lo
w

er
 is

 fa
st

er

lo
w

er
 is

 fa
st

er

Figure 2. Histogram of the response time distribution of MediaWiki with
different SMT configurations on Xeon using 8 emulated clients per core.

4

broken down into two components, service time (CPU time)
and waiting time. SMT degrades the service time due to lower
single-thread performance, but it reduces the waiting time.
However, the waiting time does not matter for the overall
response time on multicore systems with low CPU utilization
as summarized in Table II. Hence to make good predictions of
the response times on multicore servers, we need to consider
contention among the SMT threads to predict the service time
and also the task migration behavior of the task scheduler to
predict the waiting time.

III. HIERARCHICAL QUEUING MODEL
Based on the observations of Section II, we created a

technique that uses queuing theory to predict the response
time for each SMT level based on the measured CPU
utilization and the number of cores available in the system.

A. Overview
To accurately model the complex behaviors of a system

with multicore SMT processors using queuing theory, there
are two challenges: (1) modeling the single-thread perfor-
mance as affected by the resource contention among the SMT
threads running on the same core and (2) modeling the task
migration behavior of the OS task scheduler, which aggres-
sively balances the load among the SMT threads within each
core while minimizing migrations among the cores. Although
existing queuing models such as the standard single queue and
multiple server model (e.g. M/M/s queuing model) have been
used to model systems with multiple processors, they are not
suitable to predict the response times on multicore SMT
processors because they do not take these challenges into
account.

To precisely model the observed response times, we divide
the response time in server Tr into service time (time receiving
services in the CPU) Ts and waiting time in the OS task queue
Tw as

Tr = Ts + Tw. (1)

Here, Tr , Ts , and Tw depend on the SMT level t, the number of
cores p and the current CPU utilization level. As we noted in
Section II, the SMT typically degrades the single-thread
performance and hence the service time Ts , while it improves
the waiting time Tw.

In the new model, we first focus on a core with multiple
SMT threads to calculate the single-thread performance and
the waiting time, both affected by the contention among
multiple SMT threads, without considering task migrations
(In-core modeling step). We employ an iterative method to
predict the average single-thread performance with SMT

using the standard M/M/s queuing model. In each iteration, we
calculate the waiting time and probabilities of the number of
running threads within each core, refine the estimated
single-thread performance as affected by SMT and iterate
until it converges.

Then we update the waiting time Tw taking into account the
effect of the task migration behavior (Out-of-core modeling
step). We calculate the probability that at least one core in the
system is idle. We expect that the task scheduler of the OS will
migrate tasks from the waiting queue of a busy core to an idle
core if one exists. Hence we update the waiting time
calculated in the in-core step by multiplying by the expected
probabilities of task migration. In this model, we assume that
all of the p cores in the system use the same SMT level t.

B. Detailed Steps

1) Normalizing CPU utilization: To evaluate the CPU
utilization without regard to the current SMT level, we
calculate the normalized CPU utilization ρ~ as the input to the
model. This normalized CPU utilization is calculated as the
CPU utilization if this machine processes the current
workload without using SMT (i.e. SMT1). When the current
SMT level is larger than one, the normalized CPU utilization
may exceed 100%.

2) Modeling the effect of SMT (In-core modeling step): To
estimate the response time at SMT level t based on the
queuing theory, we need the service time. However the service
time is affected by the single-thread performance, which is
unknown at this stage due to the nature of an SMT processor.
Hence we first assume that average single-thread performance,
avgThreadPerf, is not affected by the SMT. Because we are
not trying to estimate the absolute performance, we can define
avgThreadPerf as the relative single-thread performance over
SMT1. Thus we first assume that avgThreadPerf = 1.0. Then
we iteratively refine the average single-thread performance.

With the assumed average single-thread performance, we
calculate the queuing model for each core without any effects
from the other cores in the system using the standard M/M/s
queuing model. Here we use the SMT level (the number of
available SMT threads) t as the number of servers s in the
model to solve the service time Ts and the utilization ρ as

Ts = 1.0 / avgThreadPerf, (2)

ρ = ρ~ / (avgThreadPerf × t). (3)

We calculate the waiting time Tw within one core (p = 1),
which is the delay before the start of execution, as

TABLE II. SUMMARY OF HOW SMT AFFECTS THE RESPONSE TIME, CONSISTING OF THE SERVICE TIME AND THE WAITING TIME
CPU

utilization on many cores on 1 core importance of waiting time

Low
response time = service time (+ waiting time)

 degrade degrade negligible
response time = service time + waiting time

 improve degrade improve relatively less important

High
response time = service time + waiting time

 improve degrade improve
response time = service time + waiting time

 improve degrade improve relatively more important

importance of
waiting time

relatively less important (waiting time can be
alleviated by migrating waiting tasks to other cores)

relatively more important
(not alleviated by migrating waiting tasks)

5

()
]0[

1! 12

1

1
π

ρ
ρ
−

⋅⋅
=

−

= t
TtT s

tt

pw . (4)

The probability π1[n] is for the n tasks in this core, which we
calculate based on the standard M/M/s model as shown in (5).
For π1, the number of servers in the model s is the number of
SMT threads within each core (the SMT level) t.

[]

() ()
()

()

()

<
⋅
⋅

≤<
⋅

=

−

⋅
+

⋅

=

−

−
−

=
∑

)(]0[
!

)0(]0[
!

)0(
1!!

1

1

1
1

0

nt
ts

s

tn
n

s

n
s

s
j

s

n

tn

n

n

s

j

tn

πρ

πρ
ρ

ρρ

π

(5)

Then we refine the avgThreadPerf based on π1[n]. To
update the avgThreadPerf, we define threadPerf[n], the
relative single-thread performance when n SMT threads are
running simultaneously in a core relative to the performance
without SMT. Hence, threadPerf[1] = 1.0 and 0 <
threadPerf[n] ≤ 1.0, where 1 < n. For threadPerf[n], we can
use the dynamically measured values for the current workload
or statically defined typical values.

We update avgThreadPerf as the weighted average of
threadPerf[n] with (n × π1[n]) as the weight and repeat the
calculations for the queuing model with the updated
avgThreadPerf until the waiting time converges or the number
of iterations reaches a specified threshold (we used 10).

3) Modeling the task migration (Out-of-core modeling step):
To model the effects of the task migration among the multiple
cores in the system with p cores with SMT level t, we
introduce another step with the standard M/M/s model. We
calculate the probability that m customers (tasks) are in this
system, π2[m], based on (5). This time, the number of servers s
is the total number of SMT threads, p × t. Then we obtain the
probability that at least one core in the system is not executing
any task, migratableRatio. By assuming that m tasks are
randomly distributed among all cores, we can calculate
migratableRatio as

[]
1

1

0.1
−

=

−= ∑

pt

i

iaRatiomigratable (6)

Here, p is the number of cores and a[i] is the probability that i
customers (tasks) are on a core. We calculate it by

[]
[] () ()

[]

=−

<

 −⋅⋅
=

∑

∑
−

=

⋅

=

−

)(0.1

)(1,

1

1

2

tika

ti
p

pijCj
ia

t

k

tp

ij
j

ij

π (7)

For Equations (7), C(n, k) shows a k-combination of n. When j
tasks are randomly distributed among p cores,
C(j, i) (p – 1) j-i / p j shows the probability that i tasks are on a
specified core and (j – i) tasks are on the other (p – 1) cores.

The OS task scheduler should migrate tasks in the waiting
queue of a busy core to an idle core. Hence we update the
waiting time Tw by multiplying (1.0 – migratableRatio) by the

waiting time calculated in (4) where migration was ignored.
We estimate the average waiting time Tw for SMT level t as

)1(
1

RatiomigratableTT
pww −×=

=
 (8)

As we show in (1), we calculate the overall response time Tr
for SMT level t as the sum of this waiting time Tw in (8) and
the service time Ts in (2).

C. Evaluation
To evaluate the response-time predictions of our model, we

calculated the response times for each SMT level. We used
typical static values for threadPerf. On Xeon, we set
threadPerf[n] = {1.0, 0.6}. This means that 2-way SMT gives
a 20% improvement in the aggregate throughput (60% × 2 =
120%), while it degrades the single-thread performance by
40%. On POWER7, we used these values: threadPerf[n] =
{1.0, 0.75, 0.57, 0.45}. This means that the relative aggre-
gated throughputs for each SMT level are 1.0, 1.5, 1.7, and 1.8,
respectively. We originally decided on these values of
threadPerf as typical values for large Web applications
written in Java, but they also worked well for the PHP and
Ruby applications without specific tuning.

Figure 3 shows the predicted response time from our model
on 16 cores, 4 cores, and 1 core of Xeon and POWER7. The
x-axis shows the normalized CPU utilization as described in
Section III-B. We show two lines for each configuration: one
for the overall response time Tr and the other for the service
time Ts. The gap between the two lines shows the waiting time
in the queue Tw.

Comparing Figure 3 to Figure 1, our model successfully
predicts the trends in the observed response times. On 16
cores, SMT1 yields the best response time at low CPU
utilization (left side of the figures) for both processors and
higher SMT levels gave a better response time when the CPU
utilization increased. Other configurations were also
consistent with the results in Figure 1.

Because our model simplifies the real systems, there are
some minor differences between the measured and the
predicted performances. For example, our model emphasizes
the resource contentions among SMT threads in the same core
and does not consider the contention among different cores,
such as in the shared cache or the memory bus. Hence our
model predicts the service time Ts as unchanged by the CPU
utilization for SMT1, but this is somewhat unrealistic for most
of the large applications. Another example in Figure 1 is that
SMT4 on one core of POWER7 shows a slightly slower
response time even at the lowest CPU utilization point and
hence it appears to have constant overhead in the single-thread
performance due to SMT as discussed in Section II. Our
current model did not consider such overhead and so our
model predicts SMT4 performs best on one core regardless of
the CPU utilization, while SMT2 was best for low CPU
utilization in Figure 1.

Comparing our model to the naive M/M/s model, where s is
the total number of SMT threads, p × t, the naive model
strongly favored the higher SMT levels and simply predicts
the maximum SMT level is best even on the 16-core
configuration. This is because the naive model cannot predict

6

the degradation in the service time due to the contention
among SMT threads and hence a higher SMT level always
yields a better response time due to the reduced waiting time.

IV. Adaptive SMT Control BASED ON Our MODEL
Based on our model, we designed an adaptive control

technique for the SMT level to minimize the response times of
Web applications. Our technique targets operating systems
used in Web application servers.

A naive approach to identify the best SMT level is meas-
uring the response time of the Web application for each SMT
level and picking the SMT level that yields the best response
time. However, it is not trivial to find the start and end times of
a transaction to measure its response time in the OS task
scheduler without interlocking with the running applications.
In this paper, instead of relying on profiling, we calculate the
response times for all of the SMT levels t (1 ≤ t ≤ tmax, tmax as
the maximum SMT level supported by the processor, tmax = 2
for Xeon and tmax = 4 for POWER7) using our model and pick
the best SMT level that minimizes the estimated response time.
We assume that all of the cores in the system use the same
SMT level t. We also assume that the number of cores is a
constant during each run.

Instead of enhancing the task scheduler in the Linux kernel,
we implemented a user-space daemon that controls the SMT
level from user land. The daemon reads the current CPU
utilization of each logical CPU from the proc file system
(/proc/stat) once each 5 seconds. It uses the peak CPU
utilization within the most recent 60 seconds (i.e. the last 12
measured intervals) as the input for the queuing model
calculations to avoid overly frequent changes of the SMT

level. The daemon calculates the best SMT level and sets the
active CPU via sysfs (/sys/devices/system/cpu/). We use the
same SMT level for all of the cores and do not control the
SMT level for individual cores. On the 16-core Xeon system
we used, the logical CPU x and x+16 are running on the same
core. On the 16-core POWER7 system, the logical CPU 4x to
4x+3 are running on the same core. Because the daemon only
runs every 5 seconds, the performance overhead caused by the
model calculation was negligible on both platforms.

We obtain the normalized CPU utilization as the input to
our model from the measured average CPU utilization of each
SMT thread, util[n], 1 ≤ n ≤ tmax. On POWER7, because the
task scheduler of the Linux kernel, the completely fair
scheduler (CFS), uses the SMT thread with a smaller logical
CPU id first within one core (asymmetric SMT scheduling),
util[n1] is typically larger than util[n2] for n1 < n2. Hence, we
expect that CPU time util[n] - util[n+1] will be spent while
executing n SMT threads in a core. For example, when util[1]
= 80% and util[2] = 50%, we expect that a core executes only
one SMT thread in 30% (= util[2] - util[1]) of the CPU time
and two SMT threads in 50% (= util[2]) of the CPU time. The
normalized CPU utilization is calculated as ρ~ =
(threadPerf[1] × 1) × 30% + (threadPerf[2] × 2) × 50%.

On Xeon, we assume that the CPU utilizations of the SMT
threads are uncorrelated, because there is no asymmetric SMT
scheduling. For the above example, we would expect that a
core executes two SMT threads in 40% (= util[1] × util[2]) of
the CPU time and executes one SMT thread in 50% (= util[1]
+ util[2] – 2 × util[1] × util[2]) of the CPU time. Hence, the
normalized CPU utilization is calculated as ρ~ =
(threadPerf[1] × 1) × 50% + (threadPerf[2] × 2) × 40%.

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

no
rm

al
iz

ed
 a

ve
ra

ge
 re

sp
on

se
 tim

e

normalized CPU utilization (1.0 means fully utilized without SMT)

response time (SMT1) service time (SMT1)

response time (SMT2) service time (SMT2)

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

no
rm

al
iz

ed
 a

ve
ra

ge
 re

sp
on

se
 tim

e

normalized CPU utilization (1.0 means fully utilized without SMT)

response time (SMT1) service time (SMT1)
response time (SMT2) service time (SMT2)
response time (SMT4) service time (SMT4)

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

no
rm

al
iz

ed
 a

ve
ra

ge
 re

sp
on

se
 tim

e

normalized CPU utilization (1.0 means fully utilized without SMT)

response time (SMT1) service time (SMT1)
response time (SMT2) service time (SMT2)
response time (SMT4) service time (SMT4)

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

no
rm

al
iz

ed
 a

ve
ra

ge
 re

sp
on

se
 tim

e

normalized CPU utilization (1.0 means fully utilized without SMT)

response time (SMT1) service time (SMT1)

response time (SMT2) service time (SMT2)

on 16 cores of Xeon on 4 cores of Xeon on 1 core of Xeon

lo
w

er
 is

 f
as

te
r

lo
w

er
 is

 f
as

te
r

SMT1 SMT2 SMT1 SMT2 SMT2

on 16 cores of POWER7 on 4 cores of POWER7 on 1 core of POWER7

SMT1 SMT4SMT2 SMT1 SMT4SMT2 SMT4

Best SMT level

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

no
rm

al
iz

ed
 a

ve
ra

ge
 re

sp
on

se
 tim

e

normalized CPU utilization (1.0 means fully utilized without SMT)

response time (SMT1) service time (SMT1)
response time (SMT2) service time (SMT2)
response time (SMT4) service time (SMT4)

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

no
rm

al
iz

ed
 a

ve
ra

ge
 re

sp
on

se
 tim

e

normalized CPU utilization (1.0 means fully utilized without SMT)

response time (SMT1) service time (SMT1)

response time (SMT2) service time (SMT2)

Best SMT level

Best SMT level

Best SMT level

Best SMT level

Best SMT level

Figure 3. Predicted response time Tr and service time (CPU time) Ts with different SMT levels on Xeon and POWER7 using various number of cores. The
gap between two lines for each configuration shows waiting time Tw, because the response time consists of the service time (CPU time) and the waiting time.

7

V. Performance Results
We evaluated the performance benefits of our adaptive

SMT control technique using Web applications written in
PHP, Ruby, or Java on the two systems with 16 cores of Xeon
and POWER7 described in Section II. As a PHP application,
we used MediaWiki from Section II. We measured the
response times of MediaWiki using two different scenarios.
One is reading content as in Section II and the other is
searching for a randomly selected word. For the Ruby
workload, we selected Ruby on Rails-3.2.14 as a workload for
the evaluation. Ruby on Rails is a framework for developing
Web applications. We ran Ruby on Rails on ruby-1.8.7
included in the OS distribution. To drive the workload,
lighttpd-1.4.13 is used as the Web server. It communicates
with the Ruby runtimes using the FastCGI protocol. We built a
simple telephone-directory application on top of the
framework to focus on the performance of the framework. We
generated 100 records in the database and measured the
performance for the following scenario: reading a table of all

of the records, selecting one record randomly, and opening
that record. For this workload, the emulated client added think
times defined by an exponential random value with an average
of one second between each request. For the Java application,
we used Cognos Business Intelligence (BI) v10.2, which
analyzes and visualizes business data stored in a database.
Cognos BI is a commercial application implemented using
both Java and C++. We ran the Cognos BI on IBM
WebSphere Application Server v8.5 as the Java application
server. We used three different scenarios to drive the tests of
the Cognos BI. One balanced the CPU utilization in Java and
native code (scenario 1) and the others emphasized the
performance of the Java part (scenario 2) or the native part
(scenario 3). For all of the tested workloads, the database
server and the client emulator ran on separate machines. Table
III summarizes these workloads.

Figure 4 illustrates how our adaptive SMT control worked
for MediaWiki on 16 cores, 4 cores, and 1 core of Xeon and
on POWER7. In most cases, our technique successfully
selected the best SMT level and improved the response time
of the Web application compared to the default case using all

on 16 cores of Xeon on 4 cores of Xeon

(32) (64) (96) (128) (160) (192) (224) (256) (288)(0) (8) (16) (24) (32) (40) (48) (56) (64) (72) (80) (88)(0)

higher CPU utilizationlower CPU utilization higher CPU utilizationlower CPU utilization

(320) (352)

on 1 core of Xeon

(2) (4) (6) (8) (10) (12) (14) (16) (18) (20) (22)(0)

lo
w

er
 is

 fa
st

er

higher CPU utilizationlower CPU utilization

on 16 cores of POWER7 on 4 cores of POWER7

(32) (64) (96) (128) (160) (192) (224) (256) (288)(0) (8) (16) (24) (32) (40) (48) (56) (64) (72) (80) (88)(0)

higher CPU utilizationlower CPU utilization higher CPU utilizationlower CPU utilization

(320) (352)

on 1 core of POWER7

(2) (4) (6) (8) (10) (12) (14) (16) (18) (20) (22)(0)

lo
w

er
 is

 fa
st

er

higher CPU utilizationlower CPU utilization

250

300

350

400

450

500

550

600

650

700

0 2 4 6 8 10 12 14 16 18 20 22

re
sp

on
se

 ti
m

e
[m

se
c]

number of emulated clients per core (total number)

SMT1 (disabled SMT)
SMT2 (2-way SMT)
SMT4 (4-way SMT)
with Adaptive SMT Control

250

300

350

400

450

500

550

600

650

700

0 2 4 6 8 10 12 14 16 18 20 22

re
sp

on
se

 ti
m

e
[m

se
c]

number of emulated clients per core (total number)

SMT1 (disabled SMT)
SMT2 (2-way SMT)
SMT4 (4-way SMT)
with Adaptive SMT Control

250

300

350

400

450

500

550

600

650

700

0 2 4 6 8 10 12 14 16 18 20 22

re
sp

on
se

 ti
m

e
[m

se
c]

number of emulated clients per core (total number)

SMT1 (disabled SMT)
SMT2 (2-way SMT)
SMT4 (4-way SMT)
with Adaptive SMT Control

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14 16 18 20 22

re
sp

on
se

 ti
m

e
[m

se
c]

number of emulated clients per core (total number)

SMT1 (disabled SMT)
SMT2 (2-way SMT)
with Adaptive SMT Control

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14 16 18 20 22

re
sp

on
se

 ti
m

e
[m

se
c]

number of emulated clients per core (total number)

SMT1 (disabled SMT)

SMT2 (2-way SMT)

with Adaptive SMT Control

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14 16 18 20 22

re
sp

on
se

 ti
m

e
[m

se
c]

number of emulated clients per core (total number)

SMT1 (disabled SMT)
SMT2 (2-way SMT)
with Adaptive SMT Control

Figure 4. Average response time of MediaWiki with our adaptive SMT control on Xeon and POWER7 using various numbers of cores. Error bars show 95%
confidence intervals. The y-axis has a non-zero origin.

TABLE III. WORKLOADS USED IN OUR MEASUREMENTS

Workload Language Descriptions of the workload Avg. Response
time

Transaction
mix

MediaWiki PHP A wiki server program
open a wiki article 230 msec 1 type

search the wiki for a word 185 msec 1 type
Ruby on Rails Ruby A Web application framework list all entries and open one entry 95 msec 2 types

Cognos BI Java + native
(C++)

An interactive OLAP and business
intelligence application

OLAP with balanced workload 210 msec 2 types
OLAP to emphasize Java part 410 msec 2 types

OLAP to emphasize native part 220 msec 7 types
• Transaction mix shows the number of different types of transactions involved in the scenario.
• Response times are measured on Xeon with a lightly loaded condition and averaged the response times for all types of transactions

8

of the SMT threads (SMT2 on Xeon and SMT4 on
POWER7).

When using 16 cores, our model correctly predicted that the
lower SMT level would yield better response times at low
levels of CPU utilization. At higher CPU utilizations, our
technique enabled all of the SMT threads provided by the
hardware and achieved the same peak throughputs. This
means that our technique takes advantage of both the higher
throughput of the high SMT level and also the better response
time of the low SMT level.

When running on only 1 core, our technique enabled all the
SMT threads regardless of the current CPU utilization, as
expected. On one core of POWER7, our technique selected
SMT4 even though SMT2 achieved the best response time.
This is because our model does not consider that the

single-thread performance of SMT4 can be slower even
without contentions among the SMT threads.

When comparing the results from 1 core to 16 cores, we
have more optimization opportunities with larger numbers of
cores. As illustrated in Figure 4, the range of the CPU
utilization where our technique can give the improvements
was smaller when using a smaller number of cores. Hence our
technique is especially efficient on larger servers.

To show that our technique is not specialized for the
specific MediaWiki application or for PHP applications,
Figure 5 shows how our technique worked with other
applications written in Ruby (Ruby on Rails) and Java
(Cognos BI scenario 1). We show the average response time
on 16 cores of Xeon and POWER7. The results were very
similar to what we show for MediaWiki in Figure 4. Our

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

MediaWiki MediaWiki
Search

Ruby on
rails

Cognos BI
scenario 1

Cognos BI
scenario 2

Cognos BI
scenario 3

MediaWiki MediaWiki
Search

Ruby on
rails

Cognos BI
scenario 1

Cognos BI
scenario 2

Cognos BI
scenario 3

re
la

tiv
e

re
sp

on
se

 ti
m

e

lo
w

er
 is

 fa
st

er

on Xeon, 1.0 means the response time for SMT2

on 16 cores of Xeon (2-way SMT) on 16 cores of POWER7 (4-way SMT)

on POWER7, 1.0 means the response time for SMT4

Figure 6. Maximum improvements in the average response times from our adaptive SMT control compared to the default SMT level (SMT2 for Xeon
and SMT4 for POWER7) for all of the tested workloads on 16 cores of Xeon and POWER7.

higher CPU utilizationlower CPU utilization

higher CPU utilizationlower CPU utilization

higher CPU utilizationlower CPU utilization

higher CPU utilizationlower CPU utilization

higher CPU utilizationlower CPU utilization

higher CPU utilizationlower CPU utilization

lo
w

er
 is

 fa
st

er
lo

w
er

 is
 fa

st
er

lo
w

er
 is

 fa
st

er
lo

w
er

 is
 fa

st
er

80

90

100

110

120

130

140

150

160

170

180

0 32 64 96 128 160 192 224 256 288 320 352 384

re
sp

on
se

 ti
m

e
[m

se
c]

number of emulated clients per core (total number)

disabled SMT
enabled 2-way SMT
with Adaptive SMT Control

150

200

250

300

350

400

450

500

0 32 64 96 128 160 192 224 256 288 320

re
sp

on
se

 ti
m

e
[m

se
c]

number of emulated clients per core (total number)

disabled SMT
enabled 2-way SMT
enabled 4-way SMT
with Adaptive SMT Control

200
220
240
260
280
300
320
340
360
380
400
420
440

0 4 8 12 16 20 24 28 32 36 40 44 48

re
sp

on
se

 ti
m

e
[m

se
c]

number of emulated clients per core (total number)

disabled SMT

enabled 2-way SMT

with Adaptive SMT Control

250

300

350

400

450

500

550

600

650

700

750

0 8 16 24 32 40 48 56 64

re
sp

on
se

 ti
m

e
[m

se
c]

number of emulated clients per core (total number)

disabled SMT
enabled 2-way SMT
enabled 4-way SMT
with Adaptive SMT Control

200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500

0 4 8 12 16 20 24 28 32 36 40 44 48

re
sp

on
se

 ti
m

e
[m

se
c]

number of emulated clients per core (total number)

disabled SMT

enabled 2-way SMT

with Adaptive SMT Control

250

300

350

400

450

500

550

600

650

700

750

800

0 8 16 24 32 40 48 56 64

re
sp

on
se

 ti
m

e
[m

se
c]

number of emulated clients per core (total number)

disabled SMT
enabled 2-way SMT
enabled 4-way SMT
with Adaptive SMT Control

average response time of
Cognos BI (Java) on 16 cores of Xeon

average response time of
Ruby on Rails on 16 cores of Xeon

90-percentile response time of
Cognos BI (Java) on 16 cores of Xeon

average response time of
Cognos BI (Java) on 16 cores of POWER7

average response time of
Ruby on Rails on 16 cores of POWER7

90-percentile response time of
Cognos BI (Java) on 16 cores of POWER7

Figure 5. Average and 90-percentile response times of Cognos BI (scenario 1) and Ruby on Rails with our adaptive SMT control on 16 cores of Xeon and
POWER7. The error bars show the 95% confidence intervals.

9

technique selected the best SMT levels regardless of the CPU
utilization for both applications.

Figure 5 also shows the 90-percentile response times for the
Java workload on both platforms using 16 cores. Our
technique improved the 90-percentile response times as well
as the average response times.

Figure 6 shows the maximum improvements in the response
times from our adaptive SMT control compared to the
response time with the default SMT levels (SMT2 for Xeon
and SMT4 for POWER7) for all of the workloads on both
Xeon and POWER7 using 16 cores. We observed improve-
ments for all of the tested workloads, with improvements
ranging from 6.0% (Cognos BI scenario 2 on Xeon) to 12.9%
(Ruby on Rails on Xeon). We did not observed significant
differences in the improvements in the response times for
Xeon and POWER7, even though they are completely
different implementations and support different numbers of
SMT threads per core.

VI. RELATED WORK
In this paper, we focused on how we improved the response

times of Web applications by improving the task scheduling
on the multicore SMT processors. The performance of
server-side software tends to be measured by peak throughput
as long as the response times remain reasonably low. However
additional (sub-second) improvements in the response times
of Web applications are essential for better user experiences
and matters for Web services [1]. Therefore, improving the
general response times of Web servers deserves more study.

To improve the single-thread performance and response
time at low CPU utilization, recent versions of the AIX
Operating System use a scheduling policy called raw
throughput mode [7]. This does not use the second or higher
SMT threads until the primary SMT threads of all of the cores
in the system are loaded to at least 50% utilization. This policy
has the same goal as our technique, but is based on a static and
predefined threshold. Our technique uses a queuing model to
adaptively decide on the best SMT level for the number of
cores available in the system and considering the current CPU
utilization. As already discussed in this paper, the effects of
the SMT level on the response time of Web applications
heavily depends on the number of the CPU cores. Hence we
can use our model to find the best threshold for the raw
throughput mode for each CPU count in the system and the
maximum SMT level supported by the processor.

Previous work on task scheduling for SMT processors
focused on such aspects as achieving higher throughputs [6,
8-13] or satisfying real-time constraints on the SMT
processors [14-19]. Identifying the best tasks to co-schedule
on the SMT threads in one core (symbiotic job scheduling) has
been an important topic for task scheduling on SMT
processors. Typically, a symbiotic task scheduler first profiles
the characteristics of each task running in the system by using
existing hardware performance monitor or custom hardware.
Then it decides on the best tasks to schedule together to
minimize the resource contention. In our work, we focused on
controlling the SMT level and did not control the scheduling

for each task. A Web application server dedicated to only one
Web application typically does not have enough variety in its
microarchitectural characteristics to find opportunities for
symbiotic job scheduling, because each task in the machine
independently executes the same program for different users.
For servers that simultaneously host a variety of different Web
applications, we can integrate the ideas of task-sensitive
symbiotic scheduling into our technique by finding the best
task to co-schedule after our model selects the best SMT level.

Funston et al. [6] pointed out that the SMT-based im-
provements in the throughputs depend on the benchmark and
that SMT sometimes degraded the throughput for a variety of
compute-intensive programs. They proposed a metric to
identify the best SMT level to achieve the highest throughput
based on the performance events tracked with the hardware
performance monitor of the processors using POWER7 and
core i7. They showed that their new metric successfully
predicted the benefits from SMT and this model can help the
task scheduler to decide on the best SMT level and pick tasks
to co-schedule. We also developed a model to decide on the
best SMT level, but with a different focus, response time, not
throughput.

Because SMT causes unpredictable single-thread perfor-
mance, guaranteeing fairness and real-time constraints, such
as the deadlines for task completion or the lowest guaranteed
single-thread performance, on SMT processors is another
challenging topic for task schedulers. For example, He and
Hong [19] controlled the hardware priority of each SMT
thread, which determines the distribution of the shared
resources among the threads, by using a hardware perfor-
mance monitor to guarantee the lowest single-thread
performance on POWER7.

VII. FUTURE WORK
Though our model correctly predicts the response times of

the tested Web applications, our model still simplifies the
actual behavior of the systems. For example, we use a
first-come first-served discipline in the model similar to the
standard queuing models and ignore the effects of time slicing
among multiple tasks. To add the effects of such features
should make the model more accurate. Also, testing more
workloads, such as applications with frequent lock conten-
tions or interactive workloads other than server-side Web
applications, will help to identify important features for better
models.

In the current implementation, we statically use typical
values as the performance gain from SMT in threadPerf in our
model. These values may depend on the current workload and
hence using dynamically measured values may improve the
model’s accuracy in exchange for additional runtime overhead
to measure the single-thread performance for each SMT level.

Our queuing model correctly predicts the best SMT level
with the current Linux kernel task scheduler (CFS). Though
our queuing model does not include features specific to CFS,
the load balancing behaviors of task schedulers are very
complicated [20]. Therefore testing our technique with other
task scheduler implementations is an important future project.

10

Although we implemented our technique as a user-space
daemon without modifying the Linux kernel in this paper, an
alternative implementation approach could be done inside the
OS task scheduler to reduce the overhead of setting the SMT
level by individually enabling or disabling the logical CPUs
via sysfs.

VIII. SUMMARY
In this paper, we describe our technique to dynamically

control the SMT level in Web application servers to minimize
the response times of the applications. Most of the
high-performance processors used in today’s servers provide
SMT capabilities that can improve the peak throughput of the
server by increasing the utilization of the computing resources
in the processor. However, we found that SMT may actually
degrade the response times of our Web applications when the
server is not fully utilizing its multicore CPUs, while SMT
improves the response times regardless of the CPU utilization
when the server uses only one core. Based on these observa-
tions, we introduce a new hierarchical queuing model that can
accurately predict the response times on multicore SMT
processors. We devised a new technique to adaptively control
the number of active SMT threads using this new model to
minimize the response times of Web applications. Our
evaluations showed that the new technique improved the
response times of Web applications written in PHP, Ruby, and
Java by up to 12.9% on Xeon, which has 2-way SMT, and on
POWER7, which has 4-way SMT, when the CPUs are not
fully utilized. It is known that the CPU utilization levels are
typically low in many commercial servers. Hence our new
technique can improve the response times of many Web
applications, improving the users’ experience.

REFERENCES
[1] Nicole Sullivan. Design Fast Websites. Slideshare. Oct 14, 2008.

http://www.slideshare.net/stubbornella/designing-fast-websites-presen
tation

[2] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. The Datacenter
as a Computer: An Introduction to the Design of Warehouse-Scale
Machines, Second Edition. 2013.

[3] Christina Delimitrou and Christos Kozyrakis. Quasar: re-
source-efficient and QoS-aware cluster management. In Proceedings of
the 19th international conference on Architectural support for pro-
gramming languages and operating systems pp. 127-144. 2014

[4] Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L.
Lo, and Rebecca L. Stamm. Exploiting choice: Instruction fetch and
issue on an implementable simultaneous multithreading processor. In
Proceedings of the 23rd Annual International Symposium on Com-
puter Architecture. pp. 191-202. 1996.

[5] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous
multithreading: maximizing on-chip parallelism. In 25 Years of the

International Symposia on Computer Architecture (selected papers).
pp. 533-544

[6] Justin R. Funston, Kaoutar El Maghraoui, Joefon Jann, Pratap Pattnaik,
and Alexandra Fedorova. An SMT-Selection Metric to Improve Mul-
tithreaded Applications' Performance. In Proceedings of the 2012
IEEE 26th International Parallel and Distributed Processing Sympo-
sium. pp. 1388-1399. 2012.

[7] Steve Nasypany. Optimizing for POWER7 & AIX What's New,
Michigan IBM i and AIX Technical Education Conference. 2013.

[8] Allan Snavely and Dean M. Tullsen. Symbiotic job scheduling for a
simultaneous multithreaded processor. In Proceedings of the Ninth
International Conference on Architectural Support for Programming
Languages and Operating Systems. pp. 234-244. 2000.

[9] Sujay Parekh, Susan Eggers, Henry Levy, and Jack Lo.
Thread-sensitive scheduling for SMT processors. Technical report,
Dept. of Computer Science & Engineering, Univ. of Washington.
2000.

[10] Allan Snavely, Dean M. Tullsen, and Geoff Voelker. Symbiotic job
scheduling with priorities for a simultaneous multithreading processor.
SIGMETRICS Perform. Eval. Rev. 30(1). pp. 66-76. 2002.

[11] Alex Settle, Joshua Kihm, Andrew Janiszewski, and Dan Connors.
Architectural Support for Enhanced SMT Job Scheduling. In Pro-
ceedings of the 13th International Conference on Parallel
Architectures and Compilation Techniques. pp. 63-73. 2004.

[12] Stijn Eyerman and Lieven Eeckhout. Probabilistic job symbiosis
modeling for SMT processor scheduling. In Proceedings of Architec-
tural Support for Programming Languages and Operating Systems. pp.
91-102. 2010.

[13] Stijn Eyerman and Lieven Eeckhout. Probabilistic modeling for job
symbiosis scheduling on SMT processors. ACM Trans. Archit. Code
Optim. 9(2), Article 7. 2012.

[14] Kun Luo, Jayanth Gummaraju, and Manoj Franklin. Balancing
thoughput and fairness in SMT processors. In Proceedings of IEEE
International Symposium on Performance Analysis of Systems and
Software. pp. 164-171. 2001.

[15] Rohit Jain, Christopher J. Hughes, and Sarita V. Adve. Soft Real-Time
Scheduling on Simultaneous Multithreaded Processors. In Proceedings
of the 23rd IEEE Real-Time Systems Symposium. pp. 134-145. 2002.

[16] Francisco J. Cazorla, Peter M. W. Knijnenburg, Rizos Sakellariou,
Enrique Fernandez, Alex Ramirez, and Mateo Valero. Architectural
support for real-time task scheduling in SMT processors. In Proceed-
ings of the 2005 International Conference on Compilers, Architectures
and Synthesis for Embedded Systems. pp. 166-176. 2005.

[17] Hiroshi Inoue, Takao Moriyama, Yasushi Negishi, and Moriyoshi
Ohara. CPU Resource Reservation for Simultaneous Multi-Thread
Systems. IBM Research Report. 2006.

[18] Carlos Boneti, Francisco J. Cazorla, Roberto Gioiosa, and Mateo
Valero. Soft real-time scheduling on SMT processors with explicit
resource allocation. In Proceedings of the 21st International Confer-
ence on Architecture of Computing Systems. pp. 173-187. 2008.

[19] Zhengyu He and Bo Hong. PMU-guided Priority Adjustment to
Guarantee Thread Performance on IBM POWER SMT Processor. IEEE
26th International Parallel and Distributed Processing Symposium
Workshops & PhD Forum IPDPSW. 2012.

[20] Joseph T. Meehean, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, and Miron Livny. Uncovering CPU load balancing
policies with harmony. In Proceedings of the ACM International
Conference on Computing Frontiers. Article 13. 2013.

