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Abstract—Defining data at a non-grid point by interpolating 
grid data is a common operation in many workloads including 
scientific applications and imaging applications. This paper 
describes our technique to accelerate this interpolation 
operation and show its performance benefit using 3D computed 
tomography reconstruction. The 3D CT is one of the compute-
intensive medical imaging applications that frequently 
interpolates grid data (2D images) at a non-grid point. To 
efficiently execute this operation with SIMD instructions, we 
create an in-memory pre-computed table from the input 2D 
image at runtime before projecting voxels onto each image to 1) 
reduce the amount of computation and 2) avoid non-contiguous 
memory accesses that attenuate the benefits of SIMD 
instructions. We implemented and evaluated our pre-
computation technique using a bilinear interpolation and a 3rd-
degree Lagrange interpolation on POWER8 processors; it 
yields up to 75% and 57% performance improvements in the 
RabbitCT benchmark for the two interpolation algorithms 
respectively. 

Keywords - grid-based interpolation, 3D CT reconstruction, 
back projection, SIMD 

I.  INTRODUCTION 

Interpolation of grid data to obtain data at a non-grid point 
is a common operation in many workloads including imaging 
applications and scientific stencil applications. The 
interpolation operation is often quite costly especially for 
large grid data (such as high-resolution images). One reason 
is the large number of arithmetic instructions to calculate the 
interpolated value. Another reason is its scattered memory 
access pattern; reading values from the surrounding pixels 
requires non-contiguous memory accesses, which reduce the 
efficiency of SIMD instructions even with the hardware 
gather/scatter support of the latest processors. In this paper, 
we aim to accelerate the interpolation of grid data using a new 
algorithm. To make the benefits and overhead of our new 
algorithm clear, we conduct throughout evaluations of our 
technique using a three-dimensional (3D) computed 
tomography (CT) workload [1] with two interpolation 
algorithms. 

3D CT is one of the medical imaging workloads that 
frequently interpolate grid data (2D images). It reconstructs a 
structure in a 3D volume by backprojecting multiple 
projection images from different angles into the 3D volume 
using the grid-based interpolation. Figure 1 shows a schematic 
overview of the system of 3D cone-beam CT. An X-ray point 
source and a flat-panel X-ray detector move around the 3D 
object to capture 2D projection images from different angles. 

RabbitCT [2] is an open framework for benchmarking the 
backprojection algorithms in the FDK algorithm [3], a widely 
used non-iterative CT reconstruction algorithm. For each 
projection image, the FDK algorithm projects each volume 
element (voxel) in the 3D volume onto the projection image 
based on the transformation matrix (projection matrix) and 
then obtains the value at the projected point by performing a 
bilinear interpolation of the neighboring four pixels. The 
interpolation is critically important for image quality but 
causes significant overheads in the computation time [4]. Due 
to the advances in imaging hardware, the size and resolution 
of input images are increasing; hence the computation 
performance for the 3D reconstruction is also becoming more 
important to keep the overall CT system usability. 

In this paper, we describe our new technique to accelerate 
the interpolation operation and hence the entire CT workload 
by significantly reducing the number of arithmetic 
instructions required and avoiding non-contiguous memory 
accesses. For each input projection image, we create a pre-
computed table in memory at runtime, and the reconstruction 
loop accesses the pre-computed table instead of the projection 
image. For realistic resolutions, the benefit of using the pre-
computed table in the reconstruction phase is much larger than 
the overhead of pre-computation. We implemented and 
evaluated this new technique on a system with 2-socket 
POWER8 processors; our technique improved the 
performance of the RabbitCT benchmark by up to 75%. We 
also evaluated it using a 3rd-degree Lagrange interpolation by 
enhancing RabbitCT and observed up to 57% speedups. 

The basic idea of our pre-computation technique can be 
applied to a much wider range of applications and hardware 
compared to those we evaluate in this paper. Although we 
evaluated our technique using a non-iterative CT 
reconstruction algorithm, it can be applied to other imaging 
applications. For example, some iterative CT reconstruction 
and image-registration algorithms are good targets for our 
technique because they also interpolate data frequently. The 
key metric of the performance benefits is the ratio of the 
number of grid points (pixels) in data and the number of 
executed interpolation operations. Furthermore, certain non-
imaging stencil applications are also potential targets. For 
instance, particle-in-cell simulations of two-phase flows [5] 
frequently interpolate the surrounding grid (mesh) points to 
obtain the flow parameters at the locations of the particles. 
Hence, they are interesting targets for our pre-computation 
technique. Our technique does not use features specific to the 
processor; hence, it can be implemented on other CPUs or 
GPUs. 



II. OUR PRE-COMPUTATION TECHNIQUE 

In this section, we first describe the baseline 
backprojection algorithm and details on how we enhance it to 
achieve higher performance by pre-computation. 

A. Baseline Reconstruction Algorithm [2] 

RabbitCT evaluates the performance and accuracy of the 
backprojection operation of the FDK algorithm [3] for 3D 
volume reconstruction. RabbitCT provides 496 projection 
images, whose size Sx × Sy is 1248 × 960 pixels, with a 
projection matrix for each image. The intensity value of each 
pixel is represented by a single-precision floating point value, 
and each element of the 3×4 projection matrix is represented 
by a double-precision floating point value. We denote the n-
th projection image as In. For each of the projection images, 
the reconstruction algorithm projects all voxels onto In and 
updates the density value for the voxel based on the intensity 
value at the projected point obtained by interpolating the 
surrounding pixels. The number of voxels in the volume, i.e., 
the problem size, is L3 = 1283, 2563, 5123, or 10243. Among 
these four problem sizes, L = 512 is the most common, and L 
= 128 is a toy benchmark that is mostly used for debugging 
(hence it is not considered for ranking). Although different 
numbers of voxels are used, the same In are used as input for 
all problem sizes. 

The voxel, whose 3D position is denoted as {x, y, z}, is 
projected onto point {un, vn} in In as follows. Here, a is a 
projection matrix determined by the system geometry and 
provided by the framework for each In. 
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In is defined only at grid points; hence, the intensity value at 
the projected point {un, vn}, which we denote as ( )nnn vup ,ˆ , is 
obtained by performing a bilinear interpolation from the 
intensity values pn at the neighboring four pixels by 
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Here, pn(i, j) equals In(i, j) if position {i, j} is within In; 

otherwise, pn(i, j) is zero. Figure 2 shows an overview of the 
projected point and the neighboring pixels. 

The density value of the voxel f (x, y, z) is calculated as 
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Since this reconstruction algorithm has inherently huge 

parallelism, we can accelerate the execution of the algorithm 
by exploiting thread-level parallelism by multiple cores and 
data parallelism by SIMD instructions.  

In this algorithm, computation performance in processor 
cores is the primary bottleneck. Since the accesses to the 2D 
images have spatial locality, i.e. neighbouring voxels are 
typically mapped onto the same or a nearby pixel in the 2D 
image, they do not cause too frequent cache misses. The 
accesses to the voxel data, which are mostly sequential, may 
become bottleneck depending on the memory system 
performance, but we can reduce this memory bandwidth to the 
voxel data by using a technique similar to temporal blocking 
[6, 7]. 

In addition to the execution time, RabbitCT reports on the 
errors from the reference implementation to evaluate the 
accuracy of the reconstruction algorithm. The reference 
implementation is a straightforward implementation of the 
algorithm using double-precision floating-point numbers 
during the computation. 

B. Our Pre-Computation Technique 

The bilinear interpolation with Equation 2 is the most 
time-consuming part of the overall execution time of the CT 
reconstruction. However, the interpolation is critically 
important for the overall quality of the reconstructed image; 
hence, we cannot simply skip the interpolation. In addition to 
the large number of arithmetic instructions to calculate 
Equation 2, vectorizing this equation is another high hurdle 
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Figure 1. Overview of 3D cone-beam CT. Flat-panel detector and 
X-ray source move around 3D object to be imaged to capture 2D 
projection images from different angles. 
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Figure 2. Overview of projected point {un, vn} and neighboring four 
grid points. 
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for higher performance. It is known that vectorizing Equation 
2 is inefficient with the SIMD instructions while it is almost 
straightforward to efficiently vectorize other parts of the 
algorithm including Equations 1 and 3 [4]. This inefficiency 
is due to the non-contiguous and unaligned memory accesses 
to read In from four pixels. A SIMD load instruction can load 
multiple elements only when they are contiguous in memory; 
hence, non-contiguous memory access incurs the overhead of 
executing multiple load instructions and mixing the loaded 
elements. Although some of the latest processors, such as Intel 
Haswell, support gather and scatter memory access 
instructions to load from or store to non-contiguous memory 
area, they are still slower than contiguous memory accesses.  

To efficiently calculate Equation 2 by reducing the 
redundant computation and non-contiguous memory accesses, 
we group terms by un and vn, the factors that depend on the 
current voxel location; we modify the equation as follows: 
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Here, the coefficients C0 to C3 are calculated as 
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The key point is that these coefficients C0 to C3 for each pixel 
in the 2D projection image are independent of un and vn (hence 
independent of x, y, and z) by the definition. Hence, we can 
pre-compute these coefficients before executing the 
reconstruction and store the results in an in-memory pre-
computed table. Since the number of voxels (L3) is much 
larger than the number of pixels in a projection image (Sx ×	Sy), multiple voxels are projected onto the same pixel position 
{i, j}. Hence, we have a huge opportunity to reuse the 
computed coefficients for interpolation. Once we pre-compute 
the coefficients for each pixel of the 2D input image, we can 
use lightweight interpolation with Equation 4. Equation 4 can 
be computed much more efficiently than Equation 2; it can be 
computed using only three multiply-and-add instructions as 

( ) ( ) ( )( ) ( ) ( )( )jiCjiCvjiCjiCvuvup nnnnnn ,,,,,ˆ 3210 +++= , 

while Equation 2 requires 12 instructions to be computed in 
our implementation even with the multiply-and-add 
instructions. Figure 3 shows the pseudocode of the entire 
reconstruction algorithm with and without our pre-
computation. 

Our pre-computation technique uses additional memory 
space for the pre-computed table. The size of the table is four 
times as large as In because we hold four values, C0(i, j) to 
C3(i, j), per pixel for the bilinear interpolation. However, the 
overheads in memory space and in memory bandwidth are not 
significant compared to the space and bandwidth for other 
data structures, especially the density values of voxels. Access 
to the pre-computed table causes more cache misses due to its 
larger footprint than that of In. However, the benefit of reduced 
computations was much more significant than the drawback 
of an increased number of cache misses.  

In addition to the reduced computation, which is beneficial 
regardless of the processor type, another benefit of using the 
pre-computed table is SIMD friendliness. By storing C0 to C3 
for each pixel contiguously in memory aligned on 128-bit 
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Figure 3. Pseudocode of reconstruction with and without our pre-computation technique 

for each projection image In (n = 0 to N - 1)
// pre-computation phase
for i = 0 to Sx - 1

for j = 0 to Sy - 1
calculate C0 to C3 by Equation 5 and store into pre-computed table

end
end
// reconstruction phase
for Iz = 0 to L - 1

for Iy = 0 to L - 1
determine range of Ix to iterate
for Ix = Ixstart to Ixend

project voxel at (Ix, Iy, Iz) onto In

calculate      by Equation 4
update density of voxel 

end
end

end
end

np̂

with our pre-computation 
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RL: resolution (size of a voxel), OL: origin

without our pre-computation 

for each projection image In (n = 0 to N - 1)
// create zero-padded copy [4]
for i = 0 to Sx - 1

for j = 0 to Sy - 1
copy In(i, j) into separate memory buffer (Section 3.1)

end
end
// reconstruction phase
for Iz = 0 to L - 1

for Iy = 0 to L - 1
determine range of Ix to iterate
for Ix = Ixstart to Ixend

project voxel at (Ix, Iy, Iz) onto In

calculate      by Equation 2
update density of voxel 

end
end

end
end

np̂

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19



address boundaries, we can totally avoid non-contiguous or 
unaligned memory accesses for In because these four values 
are enough to compute ( )nnn vup ,ˆ , as shown in Equation 4, and 
we do not need to access In after the pre-computation phase. 
To fully exploit the data parallelism of SIMD instructions, 
each iteration of the inner-most loop of our algorithm loads C0 
to C3 for four points by using four vector load instructions and 
then transposes the values in vector registers using the 
permutation instructions to pack the same coefficient of four 
points in one vector register. This transposition is also used by 
a previous implementation [4] and our baseline 
implementation for efficient use of SIMD instructions. 

Although C0 to C3 stored in the pre-computed table are 
single-precision numbers, we execute the pre-computation 
phase using double-precision numbers and convert the 
resulting numbers to single precision numbers just before 
storing them in the pre-computed table. When we use single-
precision numbers during the pre-computation, we observe 
degradation in accuracy. This is because rounding errors in the 
coefficients are magnified by multiplying by un and vn in 
Equation 4. This degradation is not significant when we use 
double-precision numbers in the pre-computation phase. 

C. Application to Higher Degree Interpolation Algorithms 

We can apply the basic idea of our pre-computation to 
higher degree interpolation algorithms. In many scientific and 
imaging applications, bilinear interpolation cannot provide 
sufficient accuracy; hence, higher order interpolation 
algorithms are often used in real-world applications [5]. In this 
paper, we implemented and evaluated a 3rd-degree Lagrange 
polynomial interpolation, which uses 4×4 pixels (instead of 
2 × 2 pixels of the bilinear interpolation) to obtain the 
interpolated value. For the 3rd-degree Lagrange interpolation, 
we need 16 coefficients per pixel in the pre-computed table. 
In general, the number of coefficients is equivalent to the 
number of pixels used in the interpolation. Hence, for a Kth-
degree polynomial interpolation of a D-dimensional grid, the 
number of coefficients per pixel is (K+1)D. 

When we naively apply the transformation of Equation 4 
to higher order algorithms, we experience accuracy problems. 
With the 3rd-degree Lagrange interpolation, the interpolated 
value is calculated as ( )nnn vup ,ˆ = un

3vn
3C0(i, j) + un

3vn
2C1(i, j) 

+ …, but products of un and vn, such as un
3vn

3, can potentially 
become huge; hence, this formula suffers from huge floating-
point errors. To avoid this problem, we modify the equation 
of the interpolation by grouping terms by α and β instead of 
un and vn as follows: 
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Here,    nnnn vvuu −=−= βα , . 

The coefficients C0 to C15 can be obtained by grouping 
terms in the equation of the Lagrange interpolation by the 
numbers of α and β  included in each term. For example,  
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Since α and β are in the range between 0.0 and 1.0 by 
definition regardless of un and vn, this equation does not suffer 
from huge floating-point errors. However, there is the 
drawback that this equation requires two additional vector 
arithmetic instructions to calculate α and β in the inner-most 
reconstruction loop, but this additional cost of the two 
instructions does not matter for higher order interpolation 
algorithms severely because they use a much larger number of 
instructions than simple bilinear interpolation. When we apply 
this accurate version of the pre-computation to the bilinear 
interpolation, we observed about 10% performance reductions 
in a trade-off for better accuracy.  

In summary, we introduced two different approaches to 
improve the accuracy for the bilinear and the 3rd-degree 
Lagrange interpolation algorithms by reducing the floating-
point errors. For the bilinear interpolation, we use double-
precision floating point numbers in the pre-computation 
phase. It increases the cost of pre-computation by up to twice, 
but it incurs no overhead in the reconstruction phase. Since the 
cost of the pre-computation is quite small compared to the 
reconstruction, the additional cost of using double precision in 
the pre-computation is less than 1% of the total execution time 
for large problem sizes. For the 3rd-degree Lagrange 
interpolation, we use an alternative equation (6) by grouping 
terms by α and β instead of un and vn. This approach yields 
better accuracy in trade for the higher overhead in the 
reconstruction phase compared to the first approach of using 
double-precision numbers only in the pre-computation phase; 
the alternative equation requires two additional instructions in 
the reconstruction loop to calculate α and β. However, the 
additional overhead is about 3% and is much less significant 
compared to the benefits of the pre-computation. 

D. Performance Modeling 

As we empirically show later, the vector unit utilization is 
the primary bottleneck in this workload; hence, the number of 
executed vector instructions is the key to model the execution 
performance. We first show the numbers of vector instructions 
included in the inner-most loops of the reconstruction phase 
with and without pre-computation to estimate the benefit of 
our pre-computation technique. Then, we discuss the number 
of vector instructions for the pre-computation phase to 
evaluate the overhead of our pre-computation technique. 

Each iteration of the inner-most loop of the reconstruction 
phase (lines 13-15 in Figure 3) executes the following steps 
for four voxels at once using SIMD instructions: 
i) project each voxel onto a 2D image (calculate un, vn, wn), 
ii) calculate i, j to find indices in the pre-computed table, 
iii) load data from the pre-computed table (or image In), 
iv) transpose data for four voxels in vector registers, 
v) execute interpolation, and 
vi) update density values of the voxels. 

(6) 



These steps are not unique to our implementation and quite 
similar to the previous implementations [4]. Table 1 
summarizes the number of instructions that consume the 
vector unit resource in each step of our implementation for 
two interpolation algorithms. From Table 1, we estimate that 
our pre-computation technique gives 1.68x (=42/25) 
performance gain for the bilinear interpolation and 1.77x 
(=108/61) gain for the 3rd-degree Lagrange interpolation with 
large problem sizes. On the little-endian PowerPC platform, 
an unaligned load instruction consumes vector unit resource 
while an aligned load instruction does not [8]. If an unaligned 
load instruction does not consume the vector unit resource, the 
benefit of our pre-computation will be smaller. However, even 
in such a case, our pre-computation still provides significant 
reduction in vector unit utilization; we estimate the 
performance gain will be 1.36x (=34/25) for the bilinear 
interpolation and 1.51x (=92/61) for the 3rd-degree Lagrange 
interpolation. As we discussed later, these estimates explain 
our experimental results well especially for bilinear 
interpolation. Table 1 assumes a 128-bit SIMD instruction set 
such as VSX of POWER or SSE of x86. When the vector 
length becomes longer, such as AVX of x86, the relative cost 
of transposition is increased. For the bilinear interpolation 
with 256-bit SIMD instructions, for example, we estimate the 
transposition uses 12 instructions while the numbers of 
instructions for other steps are unchanged (assuming the 
processor provides sufficiently flexible permutation 
instructions). This increased cost of transposition may 
attenuate the benefit of our technique slightly, but our 
technique can still give good reduction in the vector 
instructions in the inner-most loop. 

In the current implementation of the pre-computation 
phase for the bilinear interpolation, we use both single-
precision and double-precision floating-point vector 
arithmetic instructions to keep the accuracy as already 
discussed. In total, we use 85 vector instructions (including 
two unaligned load instructions) for each iteration of the 
inner-most loop, which processes four pixels. For the 3rd-
degree Lagrange interpolation, we use 124 single-precision 
arithmetic instructions (including four unaligned load 
instructions) per four pixels in the pre-computation loop. 

From these numbers and the sizes of the input image and 
3D volume, we estimate the overhead of pre-computation as 

follows. For the problem sizes of L = 512 and 1024, the ratios 
of the numbers of vector instructions consumed for the pre-
computation are less than 3% and 0.5%, respectively, with 
either interpolation algorithm. Hence, the overhead caused by 
the pre-computation is much smaller than the benefit of the 
reduced computation time in the reconstruction phase unless 
the number of voxels is unrealistically small compared to the 
size of the projection images. As we experimentally show 
later, the ratios of the execution time of the pre-computation 
phase reasonably match these estimates.  

We expect that the overhead of the pre-computation will 
become more insignificant on future CT systems that use 
higher resolution in both 2D projection images and 3D volume 
because the execution time of the pre-computation phase is 
proportional to the square of the 2D image resolution while 
the reconstruction phase follows the cube of the 3D volume 
resolution. 

III. IMPLEMENTATION AND EVALUATIONS 

In this section, we detail the implementation of our pre-
computation technique for RabbitCT. Then, we show the 
experimental results on POWER8 processors to illustrate the 
benefit of our pre-computation technique. We implemented 
our technique on POWER8, but it does not use POWER-
specific features; hence, it is applicable to other processors, 
such as Intel Xeon, or to GPUs. 

A. Implementaion 

We implemented the reconstruction algorithms in C++ 
and vectorized them by hand using the SIMD intrinsics 
provided by the IBM XL C++ compiler 13.1. We used single-
precision floating point numbers in the implementation unless 
we explicitly denoted another data type. Because the vector 
registers of the underlying processor are 128-bit in length, one 
SIMD instruction can execute four operations for different 
values at once.  

Our baseline implementation follows FastRabbit [4, 7], a 
state-of-the-art implementation for Intel processors. The 
baseline optimizations include: 1) replacing divide 
instructions with a reciprocal estimate instruction, 2) skipping 
the voxels that cannot be projected onto In in the inner-most 
loop, and 3) eliminating the conditional branches to check the 
out-of-image-bound accesses by creating a copy of In with 

Table 1. Number of instructions that consume vector unit resource in each step of inner-most loop 

 

Step
bilinear interpolation 3rd-degree Lagrange interpolation

with pre-
computation 

without pre-
computation 

with pre-
computation 

without pre-
computation 

i) calculate u, v, w (equation 1)
ii) calculate i, j
iii) load from pre-computed table 

or 2D image
iv) transpose in vector registers
v) execute interpolation
vi) update density values

6
5

0 (4 aligned load 
instructions)

8
3
3

6
6

8 (8 unaligned 
load insts)

8
12
2

6
6

0 (16 aligned 
load insts)

32
15
2

6
6

16 (16 unaligned 
load insts)

32
46
2

total 25 42 (34 + 8†) 61 108 (92 + 16†)

Note that some additional vector instructions can be inserted by compiler for register copying etc. / † means for unaligned load instructions. 



zero padding around the image. These three optimizations 
were enabled even when we did not enable our pre-
computation technique. In optimization 2, we solve the 
inequalities to determine the necessary range of Ix before 
executing the inner-most loop (line 11 in Figure 3). In 
optimization 3, we prepare a memory buffer of 1648×1000 
pixels. In is copied into this buffer before executing the 
reconstruction (line 3-7 of “without pre-computation” in 
Figure 3). We use the same idea of padding zeros outside the 
image boundary to avoid conditional branches in the pre-
computed table.  

Many recent multi-socket systems have non-uniform 
memory architecture (NUMA); accesses to the directly 
attached (local) memory are faster than accesses to the remote 
memory attached to other sockets. Hence, it is important to 
reduce the remote memory accesses to achieve good 
performance scalability. To reduce remote memory accesses, 
we allocate the pre-computed table and density values of 
voxels for each NUMA node, and each worker thread is bound 
to a NUMA node. Then, all the threads in each NUMA node 
process different projection images rather than multiple 
NUMA nodes cooperating on one image. Hence, during the 
reconstruction phase, we do not need to access data in the 
remote memory. In the pre-computation phase, we might need 
to read an input 2D image from remote memory since we do 
not control the location of the input images. However, the size 
of an input image is much smaller than the density values of 
the voxels; hence, the accesses to the input images do not 

severely degrade the performance scalability. For better load 
balancing, each node picks a new input image from the global 
work queue after processing one input image rather than 
statically assigning images for each NUMA node. After 
processing all the projection images, we calculate the final 
density value for each voxel by summing up the partial results 
from all NUMA nodes. This final calculation is included in 
the execution time. Within a NUMA node, all threads 
cooperate to process one projection image; each thread picks 
a small block of voxels one by one and updates these values. 
An atomic operation (atomic add) is used only when a thread 
picks the next block from the node-local work queue. Because 
only one projection image is processed per node at a time, we 
do not need to use atomic operation to update values for 
voxels. 

B. Evaluations 

We evaluated our technique on POWER8 processors. The 
system has two 3.69-GHz POWER8 processors with 256 GB 
of system memory running Ubuntu Linux 14.10 for Little 
Endian POWER as its OS. The system has 20 processor cores 
(10 cores per socket), and the total number of SMT threads 
(logical CPUs) is 160 using an 8-way SMT. Since one 
POWER8 processor is a dual chip module, one socket is 
divided into two NUMA nodes; hence, each NUMA node is 
equipped with 5 cores (or 40 SMT threads). While we use all 
8 SMT threads per core for experiments with the bilinear 
interpolation, we use only 4 SMT threads per core for the 3rd-
degree Lagrange interpolation. This was because the SMT4 
configuration outperformed SMT8 for the 3rd-degree 
Lagrange interpolation regardless of the use of the pre-
computation. Each core is equipped with 256 KB L2 cache 
and 8 MB L3 cache memory. Also, the system has 256 MB 
shared L4 cache memory in total. We disabled the dynamic 
frequency scaling to obtain more consistent and reproducible 
results. We measured the performance 16 times and explain 
the average results. 

Figure 4 and Table 2 illustrate the performance 
(throughput in GUPS, giga voxels updates per second) and 
accuracy (root-mean-square error from the reference result in 

 

Figure 4. Performance (throughput in GUPS) with and without our 
pre-computation technique for bilinear interpolation on 5 cores (1 
NUMA node) of POWER8.  
 
Table 2. Accuracy (root-mean-squared error in HU) with and 
without our pre-computation technique  
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Root -Mean-Square Error (HU)

Problem 
size

With pre-
computation

Without pre-
computation

Interpolation
disabled

L=128 0.534 0.513 12.088

L=256 0.538 0.517 12.108

L=512 0.538 0.518 12.118

L=1024 0.545 0.526 12.120

 

Figure 5. Performance (throughput in GUPS) with and without our 
pre-computation technique for Lagrange interpolation on 5 cores (1 
NUMA node) of POWER8.  
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HUs, Hounsfield units) for bilinear interpolation with the 
problem sizes of L = 128, 256, 512, and 1024 with and without 
our pre-computation technique using one NUMA node 
equipped with 5 cores. GUPS is calculated by the number of 
voxels in the 3D volume (L3) ×  the number of projection 
images (N) / execution time / 10243. It also illustrates the 
performance when we totally disabled the interpolation, i.e., 
we used ( ) ),(,ˆ jipvup nnn =  instead of Equation 2. This gives 
the upper-limit performance for our pre-computation 
technique, which reduces the overhead of the interpolation. 
Our pre-computation technique exhibited up to 75% 
performance improvements (for L = 1024) over the baseline 
(without pre-computation) without significant reduction in 
accuracy. When the interpolation was disabled, unlike with 
our technique, the accuracy was significantly degraded as a 
trade-off for higher performance. As described in Section II.B, 
we used double-precision numbers in the pre-computation 
phase. If we had used single-precision numbers, the accuracy 
would become as poor as about 2.75 HU. On the platform we 
used for evaluation, an unaligned load instruction consumes 
vector unit resource. To estimate the benefit of our pre-
computation technique on platforms without such additional 
penalty in unaligned load instructions, we evaluated the 
performance without pre-computation by replacing all 
unaligned load instructions in the inner-most loop with 
aligned load instructions. This resulted in inaccurate results, 
but it allowed us to estimate the overhead due to the penalty 
in unaligned load instructions. Compared to this version, our 
pre-computation still gave up to 43% performance gains. 
These performance gains match the estimation from the 
performance model explained in Section II.D. 

Figure 5 evaluates our pre-computation technique using 
the 3rd-order Lagrange interpolation. The gains due to our 
pre-computation were up to 57%. The gains were slightly 
lower than the estimation from the performance model. One 
possible reason for the difference between the measurements 
and the estimation is the overhead due to additional vector 
instructions for register copies inserted by the compiler since 
the higher degree interpolation algorithm involves more 
values and incurs higher register pressure. For the 3rd-order 
Lagrange interpolation, the changes in the accuracy caused by 
our pre-computation were negligible since we used an 
accurate version of the pre-computation with Equation 6. 

The performance improvements with the pre-computation 
are more significant for a large problem size. When the 

problem size is tiny compared to the input size, e.g., L = 128 
in Figures 4 and 5, the pre-computation degrades 
performance. Table 3 shows the execution time broken down 
into the pre-computation phase and reconstruction phase for 
each problem size. Because the size of the projection images 
is the same for all problem sizes, the time for the pre-
computation phase is almost constant regardless of the 
problem size, while the larger problem sizes increase the time 
for the reconstruction phase. Therefore, the execution time of 
pre-computation is negligible for large problem sizes, but it 
matters for the total performance when the problem size is 
very small. These performance overheads almost match the 
estimations from the performance model. The estimations 
from the model were slightly smaller than the measured 
overhead partially because of a performance optimization in 
the reconstruction phase. We skip the voxels that cannot be 
projected onto the projection image in the inner-most loop of 
the reconstruction phase, but we do not consider this (data-
dependent) optimization in the performance model.  

For more insight into the improvements with our pre-
computation technique, we show the vector unit utilization 
and the number of cache misses measured by the performance 
counter of the processor. We select these two metrics because 
our technique reduces the number of vector instructions in a 
trade-off for increased cache misses. 

Figure 6 shows the vector unit utilization for the bilinear 
interpolation. The utilization becomes 100% when one core 

Table 3. Execution time breakdown on 5 cores of POWER8 

 
 

Problem
size

Linear interpolation

With pre-computation Without
pre-

computation
pre-

computation
recon

struction
total

L=128 0.93 ( 47%) 1.11 2.01 0.94

L=256 0.94 ( 22%) 3.36 4.19 5.21

L=512 0.94 (4.1%) 22.20 22.59 37.90

L=1024 0.93 (0.6%) 169.30 167.02 293.87

- Numbers show execution time per projection image (in msec). 
- Percentages shown in parenthesis show ratios of pre-computation to total execution time.

3rd-degree Lagrange interpolation

With pre-computation Without
pre-

computation
pre-

computation
recon

struction
total

2.81 ( 53%) 2.48 5.29 1.83

2.83 ( 23%) 9.24 12.07 11.22

2.84 (4.9%) 55.55 58.39 83.56

2.81 (0.7%) 410.13 412.94 649.50

 

Figure 6. The vector unit utilization with and without our pre-
computation technique for the bilinear interpolation on 5 cores of 
POWER8.  
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executes two vector instructions every cycle. As shown in the 
figure, the vector unit utilization is quite high: more than 85% 
for L = 512 and 1024 with or without pre-computation. This 
means that the vector unit is the primary bottleneck in this 
workload even with the increased cache misses with the pre-
computation; hence, the performance gain due to the reduced 
vector instructions is much more significant than the overhead 
due to the increased cache misses. 

Figure 7 compares the numbers of total L3 cache data 
misses and L3 cache demand data misses. We show the total 
misses, which includes cache misses caused by the hardware 
memory prefetcher, to evaluate how our technique affects the 
total amount of data fetched into the processors. We estimated 
the total cache misses caused by using the demand cache 
misses when the hardware memory prefetcher was disabled; 
hence, these estimates may slightly underestimate the real 
values. Our technique increased the L3 demand cache misses 
regardless of the problem size as a trade-off for reducing the 
number of executed vector instructions. The pre-computed 
table is 4x or 16x as large as the original 2D image; hence, the 
larger memory footprint of the pre-computed table increased 
demand cache misses. However, the increases in the total 
amount of data transfer were much less significant. These 
characteristics were common between two interpolation 
algorithms. The current algorithm reads and writes the density 
values of the all voxels for each projection image, and these 

accesses for the density values of voxels dominate the 
memory bandwidth of the system memory. Because the 
accesses to the voxel data are mostly sequential, the hardware 
memory prefetcher of the processor works well; the accesses 
to the voxel data do not cause frequent demand cache misses. 
Hence, the effect of our pre-computation on the amount of the 
data transfer between processors and memory is much less 
significant compared to the effects on the demand cache 
misses. If the memory bandwidth becomes the major 
performance bottleneck, we can use a technique similar to 
temporal blocking to reduce memory bandwidth requirements 
for accessing the voxel data [6, 7]. 

The POWER8 processor we used in the experiments 
supports 8 SMT threads per core, while other general-purpose 
processors typically support a smaller number of SMT 
threads; e.g. the latest x86 processors of Intel or AMD support 
2-way SMT by hyper-threading. By increasing SMT level 
(threads per core), it is possible to hide the cache miss latency 
and improve the vector unit utilization. To confirm that our 
pre-computation is effective on other processors that only 
support a smaller number of SMT threads per core, we show 
the performance and the vector unit utilization for the bilinear 
interpolation using configurations with 1 to 8 SMT threads per 
core on POWER8 in Figure 8 and 9. Our pre-computation 
improved the performance regardless of the SMT level. The 
performance gain by the pre-computation was 57% with 

 

Figure 7.  Total L3 cache misses (including cache misses caused by hardware prefetcher) and demand misses on 5 cores for bilinear 
interpolation and 3rd-degree Lagrange interpolation per input image. Y-axis is in logarithmic scale. 
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SMT1 (1 SMT thread per core) and 46% with SMT2. The best 
performance without the pre-computation was achieved with 
SMT4, and using SMT8 slightly degraded the performance 
due to increased cache misses caused by a larger memory 
footprint. With the pre-computation, we obtained the best 
result with SMT8, and SMT4 was the close second best.  

The improvements in vector unit utilization with 
increasing SMT level was most significant when increasing 
the SMT level from 1 to 2 regardless of the use of the pre-
computation. Since the numbers of executed vector 
instructions were almost constant when changing the SMT 
level, the changes in the vector unit utilization caused by the 
SMT level shown in Figure 8 were correlated with the changes 
in the execution time. Hence, the performance improvements 
were also most significant from SMT1 to SMT2. 
Improvements from using more SMT threads over SMT2 
were relatively small compared to the changes between SMT1 
and SMT2. For the 3rd-degree Lagrange interpolation, these 
trends were mostly similar. These results show that our pre-
computation technique can improve the performance of this 
workload even on systems with fewer SMT threads per core. 

Figure 10 illustrates the performance scalability with and 
without the optimization for the NUMA architecture 
described in Section III.A. With the NUMA optimization, the 
performances of both interpolation algorithms scaled well, 

even with 20 cores (2 sockets, 4 NUMA nodes). The increase 
in speed over the single core execution was up to 18.9x and 
18.7x by 20 cores (for L = 1024) for the bilinear and Lagrange 
interpolations, respectively. However, the scalability was 
much poorer without the NUMA optimization when we used 
multiple NUMA nodes due to the overhead of remote memory 
accesses. The performance improvements caused by the 
NUMA optimization were more significant for the bilinear 
interpolation compared to the 3rd-degree Lagrange 
interpolation. The number of total memory accesses were not 
that different for the two algorithms as shown in Figure 7, but 
the execution time was much longer for the 3rd-degree 
Lagrange interpolation due to higher computation cost. Hence 
the higher communication-and-computation ratio of the 
bilinear interpolation resulted in more significant gains caused 
by the NUMA optimization. 

IV. RELATED WORK 

In many applications, pre-processing of input data is a 
common technique to improve the end-to-end performance of 
the workload; hence, a variety of pre-processing techniques 
have been studied. For example, pre-conditioning techniques 
to improve memory access locality and vector utilization have 
been widely studied for sparse matrix systems. However, 

Figure 8. Performance (throughput (GUPS)) with and without our 
pre-computation technique for linear interpolation with different 
SMT levels on 5 cores of POWER8 for problem size of L = 512. 
SMT level means number of threads per core. 

Figure 9. Vector unit utilization with and without our pre-
computation technique for linear interpolation with different SMT 
levels on 5 cores of POWER8 for problem size of L = 512. 
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Figure 10. Performance scalability with and without optimization 
for NUMA on up to 20 cores (4 NUMA nodes) of POWER8. Since 
POWER8 chip has two dies on one socket, a system with two 
sockets has four NUMA nodes.  
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there is no known pre-processing technique to make the grid-
based interpolation more efficient. Also, the costs of the 
existing pre-processing techniques are often high; hence, the 
use of such pre-processing techniques may be justified only 
when the input data is repeatedly used. In the case of the pre-
conditioning for sparse matrix systems, for example, a pre-
conditioned matrix is often repeatedly used in an iterative 
method such as the conjugate gradient method; hence, the cost 
of pre-conditioning is amortized. Unlike such pre-processing 
techniques, our pre-computation technique incurs a much 
smaller overhead compared to the benefit we can obtain in one 
execution of the reconstruction phase. Hence, we can use the 
pre-computation technique even if each projection image is 
processed only once. 

Due to its importance, the 3D cone-beam CT 
reconstruction has been studied for a long time. The FDK 
algorithm by Feldkamp et al. [3] is one of the most popular 
reconstruction algorithms. The FDK algorithm and its variants 
have been implemented on various hardware platforms 
including general-purpose processors [4, 8, 9], FPGAs [10], 
Xeon Phi [4], Cell BE processors [11], and GPUs [6, 12-13]. 
However, it was difficult to conduct fair comparisons of such 
implementations on different hardware with various 
optimization techniques involved in terms of the execution 
performance and the quality of reconstructed images. 
Recently, RabbitCT [2], an open framework for 
benchmarking the 3D cone-beam CT reconstruction, has 
provided a way to fairly compare algorithms and 
implementations by providing a benchmark framework and 
also high-quality input images and reference results.  

Although our baseline implementation follows FastRabbit 
[4, 9], a state-of-the-art implementation for Intel’s processors, 
our implementation outperformed FastRabbit running on a 2-
socket machine (Intel IvyBridge) [4] by 2.9x using the same 
number of cores as for L = 512. Although this higher 
performance is partially due to hardware differences (with a 
higher frequency and larger number of SMT threads, but 
without 256-bit vector instructions), our technique plays a 
critical role in exhibiting superior performance, as shown in 
Figure 4. FastRabbit uses a naive formula to calculate the 
bilinear interpolations like our baseline implementation. 

Although we implemented our pre-computation technique 
only on POWER8 processors, our technique can be applied 
for other processors. In RabbitCT benchmark, which uses 
bilinear interpolation, GPUs achieved much higher 
throughput compared to general-purpose CPUs such as 
POWER8 since GPUs support bilinear interpolation by 
hardware [6,12-13]. Because our pre-computation is not 
limited to bilinear interpolation, our technique is also 
beneficial for GPUs if a higher order interpolation algorithm, 
which is not supported by GPU hardware, is used to achieve 
higher image quality. Real-world CT systems often use higher 
order interpolation algorithms. 

V. CONCLUSION 

We developed a technique to accelerate interpolation of 
grid data (2D projection images) at a non-grid point. We 
argued that our pre-computation technique significantly 
improves the throughput of a medical imaging workload 
without degrading the accuracy; it exhibited up to 75% and 
57% speed ups in the RabbitCT benchmark for bilinear and 
3rd-degree Lagrange interpolation algorithms respectively. 
Since the interpolation of grid data to obtain data at a non-grid 
point is a common operation in many workloads, our new 
technique can contribute to a wider range of workloads and 
algorithms than just the 3D CT reconstruction we described in 
this paper. 
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