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Interpolation from Grid Data

Goal: to make compute-intensive interpolation operation 
faster
§ Input: values at grid points
§ Output: estimated (interpolated) value at a non-grid point
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Target workloads include:
§ medical imaging

– CT reconstruction
– registration etc

§ stencil applications
– particle simulation etc

value 
here?
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Contributions

§ Developed an fast method to interpolate values from 
grid data at a non-grid point

§ Evaluated with 3D Computed Tomography (CT) 
reconstruction benchmark (RabbitCT)

– this technique itself can be applicable for other imaging 
and non-imaging applications

– although we explain the technique using bi-linear 
interpolation in this talk, it is applicable for more accurate 
interpolation algorithms (See paper for detail)
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CT Reconstruction Overview

§ Input: a set of 2D projection images obtained from different 
angles (and geometry information for each image)

§ Output: density values for voxels in a 3D volume
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Source: https://en.wikipedia.org/wiki/CT_scan

Example of output from a CT system

Example of a (C-arm) CT system

Source: http://www.sharpmedical.com/refurbished-
c-arms/ziehm-c-arms/ziehm-exposcop-7000-c-arm/
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Projection in CT Reconstruction
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Flat-panel detector (capturing 2D projection images) 

point source of X-ray �

3D volume 
containing  
the object  
to be imaged�

voxel at (x, y, z)

projected point (u, v)
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Baseline Reconstruction Algorithm Overview [2]

for each projection image In
// reconstruction (projection)
for z = 0 to L-1

for y = 0 to L-1
for x = 0 to L-1
1) project voxel (x,y,z) onto In
2) read values from surrounding four grid points
3) estimate value at projected point by interpolation
4) update density value of voxel (x,y,z)

end
end

end
end
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for each voxel in 3D volume
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Baseline Reconstruction Algorithm Overview [2]

for each projection image In
// reconstruction (projection)
for z = 0 to L-1

for y = 0 to L-1
for x = 0 to L-1
1) project voxel (x,y,z) onto In
2) read values from surrounding four grid points
3) estimate value at projected point by interpolation
4) update density value of voxel (x,y,z)

end
end

end
end
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for each voxel in 3D volume
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Interpolation from Grid Data at Non-Grid Point
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pixel at (i , j) pixel at (i +1, j)

pixel at (i , j +1) pixel at (i +1, j +1)

projected point (u, v)
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Interpolation from Grid Data at Non-Grid Point
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Interpolation from Grid Data at Non-Grid Point
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a (1-a)
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(1-b)

Bilinear interpolation

α = u− i = u− u⎢⎣ ⎥⎦

β = v− j = v− v⎢⎣ ⎥⎦

p̂n u,v( ) = (1−α)(1−β)pn i, j( )+α(1−β)pn i+1, j( )+ (1−α)β pn i, j +1( )+αβ pn i+1, j +1( )
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Do we have any redundancy in this formula?

J Yes, we can simplify it if many interpolation operations 
are done in one grid

– In CT reconstruction, hundreds to thousands of 
interpolations are executed in one grid on average

èNow, think  𝑝" 𝑖, 𝑗 , 𝑝" 𝑖 + 1, 𝑗 , 𝑝" 𝑖, 𝑗 + 1 ,	𝑝" 𝑖 + 1, 𝑗 + 1
as constant values
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p̂n u,v( ) = (1−α)(1−β)pn i, j( )+α(1−β)pn i+1, j( )+ (1−α)β pn i, j +1( )+αβ pn i+1, j +1( )
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Do we have any redundancy in this formula?
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= 𝟏 − 𝜶 − 𝜷 + 𝜶𝜷 . 𝑝" 𝑖, 𝑗
+	 𝜶 − 𝜶𝜷 . 𝑝" 𝑖 + 1, 𝑗
+	 𝜷 − 𝜶𝜷 . 𝑝" 𝑖, 𝑗 + 1
+ 𝜶𝜷 . 𝑝" 𝑖 + 1, 𝑗 + 1

= 𝜶𝜷 . 𝐶0 𝑖, 𝑗 + 𝜶 . 𝐶1 𝑖, 𝑗 + 𝜷 . 𝐶2 𝑖, 𝑗 + 𝐶3 𝑖, 𝑗

Group terms by the number of 𝜶 and 𝜷

𝐶0 𝑖, 𝑗 = 𝑝" 𝑖, 𝑗 − 𝑝" 𝑖 + 1, 𝑗 − 𝑝" 𝑖, 𝑗 + 1 + 𝑝" 𝑖 + 1, 𝑗 + 1

= 𝟏 − 𝜶 − 𝜷 + 𝜶𝜷 . 𝑝" 𝑖, 𝑗
+	 𝜶 − 𝜶𝜷 . 𝑝" 𝑖 + 1, 𝑗
+	 𝜷 − 𝜶𝜷 . 𝑝" 𝑖, 𝑗 + 1
+ 𝜶𝜷 . 𝑝" 𝑖 + 1, 𝑗 + 1

p̂n u,v( ) = (1−α)(1−β)pn i, j( )+α(1−β)pn i+1, j( )+ (1−α)β pn i, j +1( )+αβ pn i+1, j +1( )
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Our Efficient Interpolation Method
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C0 - C3 are independent from 𝜶 and 𝜷 (and hence x, y, z)
è We can pre-compute them at run time before iterating voxels and store 
in memory

èIf we have these four coefficients C0 - C3 , we can compute this 
formula with only three multiply-and-add instructions!

p̂n u,v( ) = (1−α)(1−β)pn i, j( )+α(1−β)pn i+1, j( )+ (1−α)β pn i, j +1( )+αβ pn i+1, j +1( )

= 𝛼 𝛽 . 𝐶0 𝑖, 𝑗 + 𝐶1 𝑖, 𝑗 + 𝛽 . 𝐶2 𝑖, 𝑗 + 𝐶3 𝑖, 𝑗

original (without pre-computation)
for each projection image

end

with pre-computation
for each projection image

end

projection

projection
pre-computation

In the paper, we group terms 
based on u and v instead of 𝜶 and 
𝜷 for further performance boost
α = u− i = u− u⎢⎣ ⎥⎦ β = v− j = v− v⎢⎣ ⎥⎦
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In-memory Pre-computed Table
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C3 ·····

Pre-computed Table
····· C0 C1 C2 C3 C0 C1

è L total size of pre-computed table is 4x larger than original data
è J need to read from only one cache line (w/ one aligned vector load)

for (i, j) for (i, j+1)for (i, j-1)

pn(i, j) pn(i, j+1) pn(i, j+2) pn(i, j+3) pn(i, j+4) pn(i, j+5)pn(i, j-1)

pn(i+1, j) pn(i+1, j+1) pn(i+1, j+2) pn(i+1, j+3) pn(i+1, j+4) pn(i+1, j+5)pn(i+1, j-1)

·····

·····

Original data (Projection image) è L need to read from two cache lines 

·····

·····
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Overall Algorithm with Pre-Computation
for each projection image In

// pre-computation
for i = 0 to Sx-1
for j = 0 to Sy-1

calculate and store coefficients C0 to C3 for pixel (i, j)
end

end
// reconstruction (projection)
for x = 0 to L-1

for y = 0 to L-1
for z = 0 to L-1

1) project voxel (x,y,z) onto In
2) read coefficients C0 to C3 from pre-computed table
3) estimate value at projected point by interpolation
4) update density value of voxel (x,y,z)

end
end

end
end
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for each voxel in 3D volume

for each pixel in 2D projection image
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Performance Evaluation with RabbitCT

§ RabbitCT is a framework for evaluating 3D CT 
reconstruction on performance and accuracy 

§ It includes:
– benchmark driver
– reference implementations of the backprojection 

algorithm
– input data (a C-arm CT dataset of a rabbit) 

• 496 projection images of 1248x960 pixels associated with 
transformation matrixes

§ Output data is 3-D images of 2563 mm3 space, L3 = 
1283, 2563, 5123, 10243 voxels, 12-bit value per voxel

16



IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point © 2017 IBM Corporation

System used for evaluations

§ 2-socket POWER8 3.69 GHz
– 20 cores in total (5 cores / NUMA node)
– 8 SMT threads / core

§ 256 GB system memory
§ Ubuntu Linux 14.10 for Little Endian POWER
§ IBM XL C compiler 13

– all algorithms are implemented with VSX (128-bit SIMD 
instructions) using intrinsics 
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Throughput with and without pre-computation
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Root Mean Squared Error
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Problem 
size

With pre-
computation

Without pre-
computation

Interpolation
disabled

L=128 0.534 0.513 12.088

L=256 0.538 0.517 12.108

L=512 0.538 0.518 12.118

L=1024 0.545 0.526 12.120

(lower is better)

L significant degradation
in image quality

J negligible degradation
in image quality
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Overhead of Pre-Computation
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Problem size
With pre-computation Without pre-

computationprecomputation reconstruction total

L=128 0.93 msec (47%) 1.11 msec 2.01 msec 0.94 msec
L=256 0.94 msec (22%) 3.36 msec 4.19 msec 5.21 msec
L=512 0.94 msec (4.1%) 22.20 msec 22.59 msec 37.90 msec
L=1024 0.93 msec (0.6%) 169.30 msec 167.02 msec 293.87 msec

• The numbers show the execution time per projection image. 
• The percentages shown in parenthesis show the ratios to the total execution time.

• Average numbers of interpolations (i.e # voxles) per pixel
• L=128 è 1.75
• L=1024 è 896
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Vector Unit Utilization
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System memory bandwidth requirements
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Throughput with and without pre-computation
using 3rd degree Lagrange interpolation
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Summary
§ We developed an efficient way of interpolation from 

grid data at a non-grid point
– Our pre-computation simplifies the computation drastically
– The cost of pre-computation is not significant for realistic 

data size
§ This technique is not specialized for CT 

reconstruction and applicable for other applications

§ Refer the paper for more detail including:
– Results for a more accurate interpolation algorithm
– Performance modeling   ― Handling of floating point errors
– NUMA optimization
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backup
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Scalability with Multiple NUMA Nodes
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higher is better

4.9x with 
5 cores

9.0x with 
10 cores

14.2x with 
20 cores

(1 NUMA node)
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Memory Optimization for NUMA Machine

§ Each NUMA node processes a projection image 
independently from other NUMA nodes to avoid remote 
memory accesses

– Within a NUMA node, all threads process one projection 
image by dividing voxels into small blocks

§ We gather the partial results from each NUMA nodes 
after processing all projection images to sum up them
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Scalability with Multiple NUMA Nodes
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Comparing to Previous RabbitCT Scores (L=512)

§ Today’s GPUs support bilinear interpolation in hardware!
§ Our method will be beneficial even for GPUs when a higher-order 

interpolation algorithm is used
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Processor # Core / # Boards Year Source GUPS
POWER8  3.69 GHz 20 cores (2 sockets) 2015 Ours 20.5
POWER8  3.69 GHz 10 cores (1 socket) 2015 Ours 10.6
IvyBridge-EP  2.2 GHz 20 cores (2 sockets) 2014 Paper [4] about 7.0
Westmere-EX  2.4 GHz 40 cores (4 sockets) 2011 Official ranking 8.3
Xeon Phi 5110P 1 board 2014 Paper [4] about 8.5
nVidia GTX 670 2 boards 2014 Official ranking 152.9


