
IBM Research – Tokyo

December 12, 2017 | IEEE BigData 2017 @ Boston, MA, USA © 2017 IBM Corporation

Fast Interpolation of Grid Data
at a Non-Grid Point

Hiroshi Inoue
IBM Research – Tokyo

IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point © 2017 IBM Corporation

Interpolation from Grid Data

Goal: to make compute-intensive interpolation operation
faster
§ Input: values at grid points
§ Output: estimated (interpolated) value at a non-grid point

2

j

j + 1

i i + 1

()jipn ,1+

()1,1 ++ jipn

()jipn ,

()1, +jipn

Target workloads include:
§ medical imaging

– CT reconstruction
– registration etc

§ stencil applications
– particle simulation etc

value
here?

IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point © 2017 IBM Corporation

Contributions

§ Developed an fast method to interpolate values from
grid data at a non-grid point

§ Evaluated with 3D Computed Tomography (CT)
reconstruction benchmark (RabbitCT)

– this technique itself can be applicable for other imaging
and non-imaging applications

– although we explain the technique using bi-linear
interpolation in this talk, it is applicable for more accurate
interpolation algorithms (See paper for detail)

3

IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point © 2017 IBM Corporation

CT Reconstruction Overview

§ Input: a set of 2D projection images obtained from different
angles (and geometry information for each image)

§ Output: density values for voxels in a 3D volume

4

Source: https://en.wikipedia.org/wiki/CT_scan

Example of output from a CT system

Example of a (C-arm) CT system

Source: http://www.sharpmedical.com/refurbished-
c-arms/ziehm-c-arms/ziehm-exposcop-7000-c-arm/

IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point © 2017 IBM Corporation

Projection in CT Reconstruction

5

Flat-panel detector (capturing 2D projection images)

point source of X-ray �

3D volume
containing
the object
to be imaged�

voxel at (x, y, z)

projected point (u, v)

IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point © 2017 IBM Corporation

Baseline Reconstruction Algorithm Overview [2]

for each projection image In
// reconstruction (projection)
for z = 0 to L-1

for y = 0 to L-1
for x = 0 to L-1
1) project voxel (x,y,z) onto In
2) read values from surrounding four grid points
3) estimate value at projected point by interpolation
4) update density value of voxel (x,y,z)

end
end

end
end

6

for each voxel in 3D volume

IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point © 2017 IBM Corporation

Baseline Reconstruction Algorithm Overview [2]

for each projection image In
// reconstruction (projection)
for z = 0 to L-1

for y = 0 to L-1
for x = 0 to L-1
1) project voxel (x,y,z) onto In
2) read values from surrounding four grid points
3) estimate value at projected point by interpolation
4) update density value of voxel (x,y,z)

end
end

end
end

7

for each voxel in 3D volume

IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point © 2017 IBM Corporation

Interpolation from Grid Data at Non-Grid Point

8

pixel at (i , j) pixel at (i +1, j)

pixel at (i , j +1) pixel at (i +1, j +1)

projected point (u, v)

IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point © 2017 IBM Corporation

Interpolation from Grid Data at Non-Grid Point

9

j

j + 1

i i + 1

()jipn ,1+

()1,1 ++ jipn

()jipn ,

()1, +jipn

p̂n u,v()

IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point © 2017 IBM Corporation

Interpolation from Grid Data at Non-Grid Point

10

j

j + 1

i i + 1

p̂n u,v()

()jipn ,1+

()1,1 ++ jipn

()jipn ,

()1, +jipn

u

v
a (1-a)
b

(1-b)

Bilinear interpolation

α = u− i = u− u⎢⎣ ⎥⎦

β = v− j = v− v⎢⎣ ⎥⎦

p̂n u,v() = (1−α)(1−β)pn i, j()+α(1−β)pn i+1, j()+ (1−α)β pn i, j +1()+αβ pn i+1, j +1()

IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point © 2017 IBM Corporation

Do we have any redundancy in this formula?

J Yes, we can simplify it if many interpolation operations
are done in one grid

– In CT reconstruction, hundreds to thousands of
interpolations are executed in one grid on average

èNow, think 𝑝" 𝑖, 𝑗 , 𝑝" 𝑖 + 1, 𝑗 , 𝑝" 𝑖, 𝑗 + 1 ,	𝑝" 𝑖 + 1, 𝑗 + 1
as constant values

11

p̂n u,v() = (1−α)(1−β)pn i, j()+α(1−β)pn i+1, j()+ (1−α)β pn i, j +1()+αβ pn i+1, j +1()

IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point © 2017 IBM Corporation

Do we have any redundancy in this formula?

12

= 𝟏 − 𝜶 − 𝜷 + 𝜶𝜷 . 𝑝" 𝑖, 𝑗
+	 𝜶 − 𝜶𝜷 . 𝑝" 𝑖 + 1, 𝑗
+	 𝜷 − 𝜶𝜷 . 𝑝" 𝑖, 𝑗 + 1
+ 𝜶𝜷 . 𝑝" 𝑖 + 1, 𝑗 + 1

= 𝜶𝜷 . 𝐶0 𝑖, 𝑗 + 𝜶 . 𝐶1 𝑖, 𝑗 + 𝜷 . 𝐶2 𝑖, 𝑗 + 𝐶3 𝑖, 𝑗

Group terms by the number of 𝜶 and 𝜷

𝐶0 𝑖, 𝑗 = 𝑝" 𝑖, 𝑗 − 𝑝" 𝑖 + 1, 𝑗 − 𝑝" 𝑖, 𝑗 + 1 + 𝑝" 𝑖 + 1, 𝑗 + 1

= 𝟏 − 𝜶 − 𝜷 + 𝜶𝜷 . 𝑝" 𝑖, 𝑗
+	 𝜶 − 𝜶𝜷 . 𝑝" 𝑖 + 1, 𝑗
+	 𝜷 − 𝜶𝜷 . 𝑝" 𝑖, 𝑗 + 1
+ 𝜶𝜷 . 𝑝" 𝑖 + 1, 𝑗 + 1

p̂n u,v() = (1−α)(1−β)pn i, j()+α(1−β)pn i+1, j()+ (1−α)β pn i, j +1()+αβ pn i+1, j +1()

IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point © 2017 IBM Corporation

Our Efficient Interpolation Method

13

C0 - C3 are independent from 𝜶 and 𝜷 (and hence x, y, z)
è We can pre-compute them at run time before iterating voxels and store
in memory

èIf we have these four coefficients C0 - C3 , we can compute this
formula with only three multiply-and-add instructions!

p̂n u,v() = (1−α)(1−β)pn i, j()+α(1−β)pn i+1, j()+ (1−α)β pn i, j +1()+αβ pn i+1, j +1()

= 𝛼 𝛽 . 𝐶0 𝑖, 𝑗 + 𝐶1 𝑖, 𝑗 + 𝛽 . 𝐶2 𝑖, 𝑗 + 𝐶3 𝑖, 𝑗

original (without pre-computation)
for each projection image

end

with pre-computation
for each projection image

end

projection

projection
pre-computation

In the paper, we group terms
based on u and v instead of 𝜶 and
𝜷 for further performance boost
α = u− i = u− u⎢⎣ ⎥⎦ β = v− j = v− v⎢⎣ ⎥⎦

IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point © 2017 IBM Corporation

In-memory Pre-computed Table

14

C3 ·····

Pre-computed Table
····· C0 C1 C2 C3 C0 C1

è L total size of pre-computed table is 4x larger than original data
è J need to read from only one cache line (w/ one aligned vector load)

for (i, j) for (i, j+1)for (i, j-1)

pn(i, j) pn(i, j+1) pn(i, j+2) pn(i, j+3) pn(i, j+4) pn(i, j+5)pn(i, j-1)

pn(i+1, j) pn(i+1, j+1) pn(i+1, j+2) pn(i+1, j+3) pn(i+1, j+4) pn(i+1, j+5)pn(i+1, j-1)

·····

·····

Original data (Projection image) è L need to read from two cache lines

·····

·····

IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point © 2017 IBM Corporation

Overall Algorithm with Pre-Computation
for each projection image In

// pre-computation
for i = 0 to Sx-1
for j = 0 to Sy-1

calculate and store coefficients C0 to C3 for pixel (i, j)
end

end
// reconstruction (projection)
for x = 0 to L-1

for y = 0 to L-1
for z = 0 to L-1

1) project voxel (x,y,z) onto In
2) read coefficients C0 to C3 from pre-computed table
3) estimate value at projected point by interpolation
4) update density value of voxel (x,y,z)

end
end

end
end

15

for each voxel in 3D volume

for each pixel in 2D projection image

IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point © 2017 IBM Corporation

Performance Evaluation with RabbitCT

§ RabbitCT is a framework for evaluating 3D CT
reconstruction on performance and accuracy

§ It includes:
– benchmark driver
– reference implementations of the backprojection

algorithm
– input data (a C-arm CT dataset of a rabbit)

• 496 projection images of 1248x960 pixels associated with
transformation matrixes

§ Output data is 3-D images of 2563 mm3 space, L3 =
1283, 2563, 5123, 10243 voxels, 12-bit value per voxel

16

IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point © 2017 IBM Corporation

System used for evaluations

§ 2-socket POWER8 3.69 GHz
– 20 cores in total (5 cores / NUMA node)
– 8 SMT threads / core

§ 256 GB system memory
§ Ubuntu Linux 14.10 for Little Endian POWER
§ IBM XL C compiler 13

– all algorithms are implemented with VSX (128-bit SIMD
instructions) using intrinsics

17

IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point © 2017 IBM Corporation

Throughput with and without pre-computation

18

0

1

2

3

4

5

6

7

8

L=128 L=256 L=512 L=1024

th
ro

ug
hp

ut
 (G

U
P

S
)

problem size

with our pre-computation
without pre-computation
interporation disabled (upper bound for us)

higher is better

up to 75%
improvements

IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point © 2017 IBM Corporation

Root Mean Squared Error

19

Problem
size

With pre-
computation

Without pre-
computation

Interpolation
disabled

L=128 0.534 0.513 12.088

L=256 0.538 0.517 12.108

L=512 0.538 0.518 12.118

L=1024 0.545 0.526 12.120

(lower is better)

L significant degradation
in image quality

J negligible degradation
in image quality

IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point © 2017 IBM Corporation

Overhead of Pre-Computation

20

Problem size
With pre-computation Without pre-

computationprecomputation reconstruction total

L=128 0.93 msec (47%) 1.11 msec 2.01 msec 0.94 msec
L=256 0.94 msec (22%) 3.36 msec 4.19 msec 5.21 msec
L=512 0.94 msec (4.1%) 22.20 msec 22.59 msec 37.90 msec
L=1024 0.93 msec (0.6%) 169.30 msec 167.02 msec 293.87 msec

• The numbers show the execution time per projection image.
• The percentages shown in parenthesis show the ratios to the total execution time.

• Average numbers of interpolations (i.e # voxles) per pixel
• L=128 è 1.75
• L=1024 è 896

IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point © 2017 IBM Corporation

Vector Unit Utilization

21

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

L=128 L=256 L=512 L=1024

ve
ct

or
 u

ni
t u

til
iz

at
io

n

problem size

with pre-computation
without pre-computation
interporation disabled higher is better

IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point © 2017 IBM Corporation22

System memory bandwidth requirements

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

L=128 L=256 L=512 L=1024

to
ta

l n
um

be
r

of
 L

3
ca

ch
e

m
is

se
s

problem size

with pre-computation
without pre-computation
interpolation disabled

low
er is better

IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point © 2017 IBM Corporation

Throughput with and without pre-computation
using 3rd degree Lagrange interpolation

23

0

0.5

1

1.5

2

2.5

3

3.5

L=128 L=256 L=512 L=1024

th
ro

ug
hp

ut
 (

G
U

P
S

)

problem size

with pre-computation
without pre-computation
interpolation disabled (upper bound for us)

higher is faster

up to 57%
improvements

IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point © 2017 IBM Corporation

Summary
§ We developed an efficient way of interpolation from

grid data at a non-grid point
– Our pre-computation simplifies the computation drastically
– The cost of pre-computation is not significant for realistic

data size
§ This technique is not specialized for CT

reconstruction and applicable for other applications

§ Refer the paper for more detail including:
– Results for a more accurate interpolation algorithm
– Performance modeling ― Handling of floating point errors
– NUMA optimization

24

IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point © 2017 IBM Corporation

backup

25

IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point © 2017 IBM Corporation

0

5

10

15

20

25

0 5 10 15 20

th
ro

ug
hp

ut
 (G

UP
S)

number of cores

L=256

L=512

L=1024

Scalability with Multiple NUMA Nodes

26

higher is better

4.9x with
5 cores

9.0x with
10 cores

14.2x with
20 cores

(1 NUMA node)

IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point © 2017 IBM Corporation

Memory Optimization for NUMA Machine

§ Each NUMA node processes a projection image
independently from other NUMA nodes to avoid remote
memory accesses

– Within a NUMA node, all threads process one projection
image by dividing voxels into small blocks

§ We gather the partial results from each NUMA nodes
after processing all projection images to sum up them

27

IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point © 2017 IBM Corporation

Scalability with Multiple NUMA Nodes

28

0

5

10

15

20

25

0 5 10 15 20

th
ro

ug
hp

ut
 (G

UP
S)

number of cores

L=256
L=512 with NUMA opt
L=1024
L=256
L=512 without NUMA opt
L=1024

18.9x with
20 cores higher is better

(1 NUMA node)

IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point © 2017 IBM Corporation

Comparing to Previous RabbitCT Scores (L=512)

§ Today’s GPUs support bilinear interpolation in hardware!
§ Our method will be beneficial even for GPUs when a higher-order

interpolation algorithm is used

29

Processor # Core / # Boards Year Source GUPS
POWER8 3.69 GHz 20 cores (2 sockets) 2015 Ours 20.5
POWER8 3.69 GHz 10 cores (1 socket) 2015 Ours 10.6
IvyBridge-EP 2.2 GHz 20 cores (2 sockets) 2014 Paper [4] about 7.0
Westmere-EX 2.4 GHz 40 cores (4 sockets) 2011 Official ranking 8.3
Xeon Phi 5110P 1 board 2014 Paper [4] about 8.5
nVidia GTX 670 2 boards 2014 Official ranking 152.9

