

IBM Research – Tokyo

Fast Interpolation of Grid Data at a Non-Grid Point

Hiroshi Inoue IBM Research – Tokyo

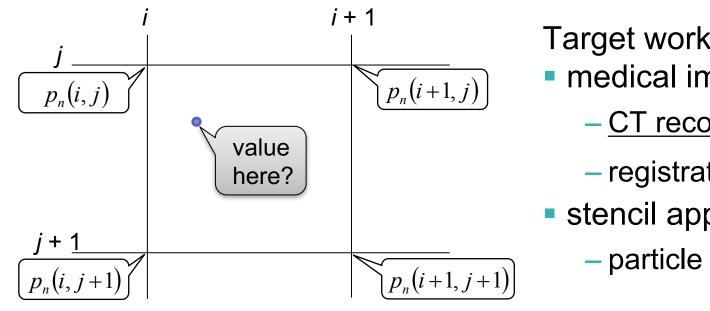
December 12, 2017 | IEEE BigData 2017 @ Boston, MA, USA

© 2017 IBM Corporation

Interpolation from Grid Data

Goal: to make compute-intensive interpolation operation faster

- Input: values at grid points
- Output: estimated (interpolated) value at a non-grid point



Target workloads include:

- medical imaging
 - CT reconstruction
 - registration etc
- stencil applications
 - particle simulation etc

Contributions

- Developed an fast method to interpolate values from grid data at a non-grid point
- Evaluated with 3D Computed Tomography (CT) reconstruction benchmark (RabbitCT)
 - this technique itself can be applicable for other imaging and non-imaging applications
 - although we explain the technique using bi-linear interpolation in this talk, it is applicable for more accurate interpolation algorithms (See paper for detail)

CT Reconstruction Overview

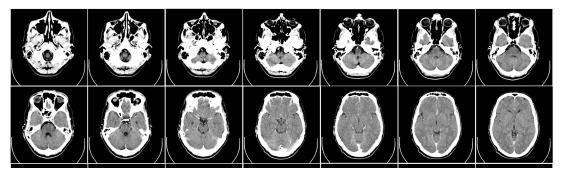
 Input: a set of 2D projection images obtained from different angles (and geometry information for each image)

Output: density values for voxels in a 3D volume

Example of a (C-arm) CT system

Source: http://www.sharpmedical.com/refurbishedc-arms/ziehm-c-arms/ziehm-exposcop-7000-c-arm/

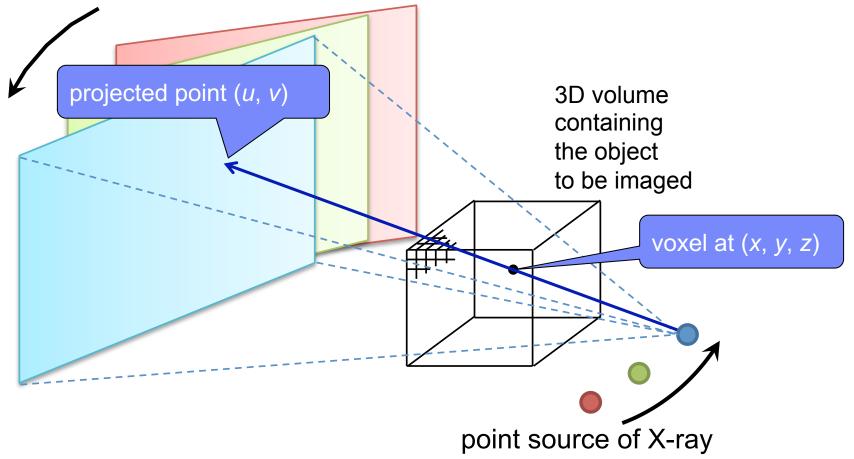
Example of output from a CT system



Source: https://en.wikipedia.org/wiki/CT_scan

Projection in CT Reconstruction

Flat-panel detector (capturing 2D projection images)



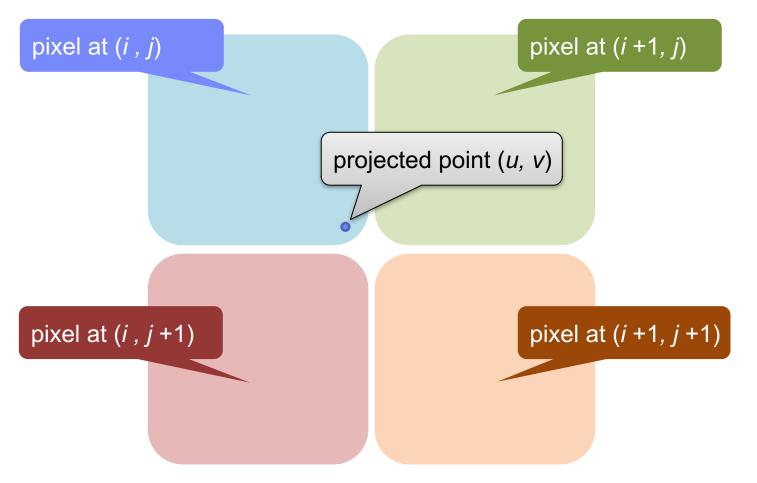
Baseline Reconstruction Algorithm Overview [2]

```
for each projection image I_n
  // reconstruction (projection)
 for z = 0 to L-1
    for y = 0 to L-1
for x = 0 to L-1 
for x = 0 to L-1
        1) project voxel (x,y,z) onto I_n
        2) read values from surrounding four grid points
        3) estimate value at projected point by interpolation
        4) update density value of voxel (x,y,z)
      end
    end
  end
end
```

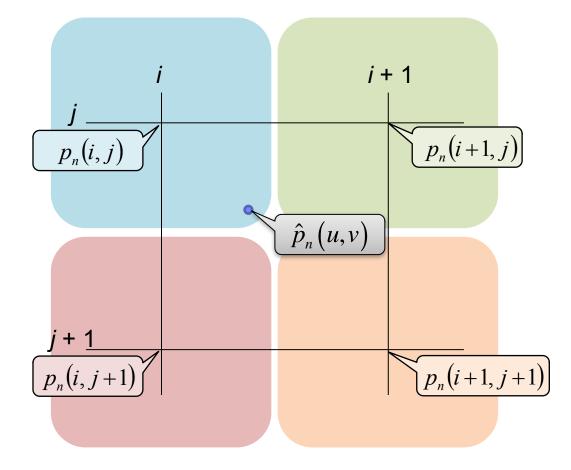

Baseline Reconstruction Algorithm Overview [2]

```
for each projection image I_n
  // reconstruction (projection)
 for z = 0 to L-1
    for y = 0 to L-1
for x = 0 to L-1
                          \rightarrow for each voxel in 3D volume
         1) project voxel (x,y,z) onto I_n
         2) read values from surrounding four grid points
         3) estimate value at projected point by interpolation
         4) update density value of voxel (x,y,z)
      end
    end
  end
end
```

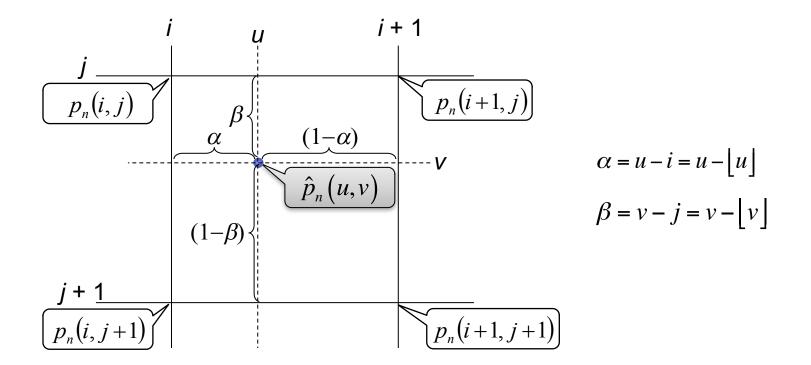

Interpolation from Grid Data at Non-Grid Point



Interpolation from Grid Data at Non-Grid Point



Interpolation from Grid Data at Non-Grid Point



Bilinear interpolation

$$\hat{p}_n(u,v) = (1-\alpha)(1-\beta)p_n(i,j) + \alpha(1-\beta)p_n(i+1,j) + (1-\alpha)\beta p_n(i,j+1) + \alpha\beta p_n(i+1,j+1)$$

Do we have any redundancy in this formula?

 $\hat{p}_n(u,v) = (1-\alpha)(1-\beta)p_n(i,j) + \alpha(1-\beta)p_n(i+1,j) + (1-\alpha)\beta p_n(i,j+1) + \alpha\beta p_n(i+1,j+1)$

Yes, we can simplify it if many interpolation operations are done in one grid

 In CT reconstruction, hundreds to thousands of interpolations are executed in one grid on average

→Now, think $p_n(i,j)$, $p_n(i+1,j)$, $p_n(i,j+1)$, $p_n(i+1,j+1)$ as constant values

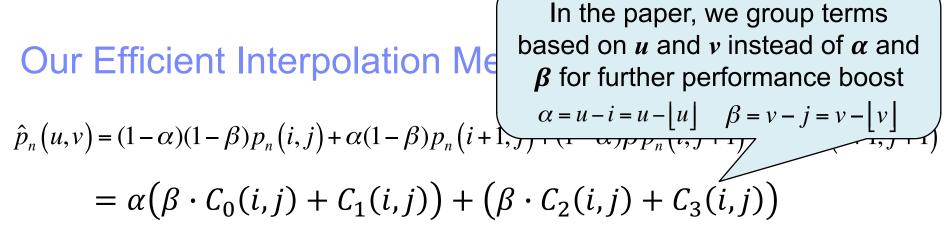
Do we have any redundancy in this formula?

$$\hat{p}_n(u,v) = (1-\alpha)(1-\beta)p_n(i,j) + \alpha(1-\beta)p_n(i+1,j) + (1-\alpha)\beta p_n(i,j+1) + \alpha\beta p_n(i+1,j+1)$$

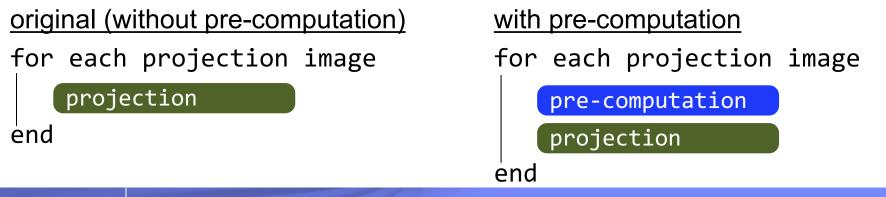
$$= (\mathbf{1} - \boldsymbol{\alpha} - \boldsymbol{\beta} + \boldsymbol{\alpha}\boldsymbol{\beta}) \cdot p_n(i,j)$$

+ $(\boldsymbol{\alpha} - \boldsymbol{\alpha}\boldsymbol{\beta}) \cdot p_n(i+1,j)$
+ $(\boldsymbol{\beta} - \boldsymbol{\alpha}\boldsymbol{\beta}) \cdot p_n(i,j+1)$
+ $\boldsymbol{\alpha}\boldsymbol{\beta} \cdot p_n(i+1,j+1)$

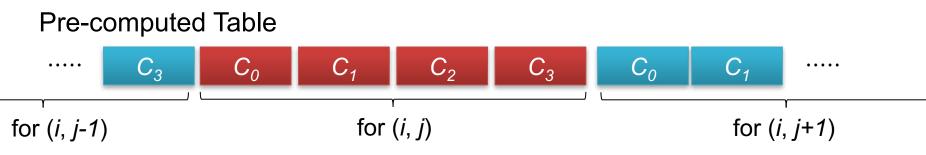
Group terms by the number of α and β $= \alpha \beta \cdot C_0(i,j) + \alpha \cdot C_1(i,j) + \beta \cdot C_2(i,j) + C_3(i,j)$ $C_0(i,j) = p_n(i,j) - p_n(i+1,j) - p_n(i,j+1) + p_n(i+1,j+1)$



- ➔ If we have these four coefficients C₀ C₃, we can compute this formula with only <u>three multiply-and-add instructions!</u>
- $C_0 C_3$ are independent from α and β (and hence x, y, z) → We can pre-compute them at run time before iterating voxels and store in memory



In-memory Pre-computed Table



→ ⊗ total size of pre-computed table is 4x larger than original data
 → ☺ need to read from only one cache line (w/ one aligned vector load)

Original data (Projection image) $\rightarrow \otimes$ need to read from two cache lines

$$\dots p_{n}(i, j-1) p_{n}(i, j) p_{n}(i, j+1) p_{n}(i, j+2) p_{n}(i, j+3) p_{n}(i, j+4) p_{n}(i, j+5) \dots$$

$$\dots p_{n}(i+1, j-1) p_{n}(i+1, j) p_{n}(i+1, j+1) p_{n}(i+1, j+2) p_{n}(i+1, j+3) p_{n}(i+1, j+4) p_{n}(i+1, j+5) \dots$$

Overall Algorithm with Pre-Computation

```
for each projection image I_n
   // pre-computation
   for i = 0 to Sx-1
         \begin{array}{c} i = 0 \quad co \quad 3x-1 \\ r \quad j = 0 \quad to \quad Sy-1 \\ \hline calculate \quad and \quad store \quad coefficients \quad C_{\theta} \quad to \quad C_{3} \quad for \quad pixel \quad (i, j) \\ \end{array} 
     for j = 0 to Sy-1
      end
   end
   // reconstruction (projection)
   for x = 0 to L-1
                                                for each voxel in 3D volume
      for y = 0 to L-1
for z = 0 to L-1
            1) project voxel (x,y,z) onto I_n
            2) read coefficients C<sub>a</sub> to C<sub>3</sub> from pre-computed table
               estimate value at projected point by interpolation
            3)
            4) update density value of voxel (x,y,z)
         end
      end
   end
end
```

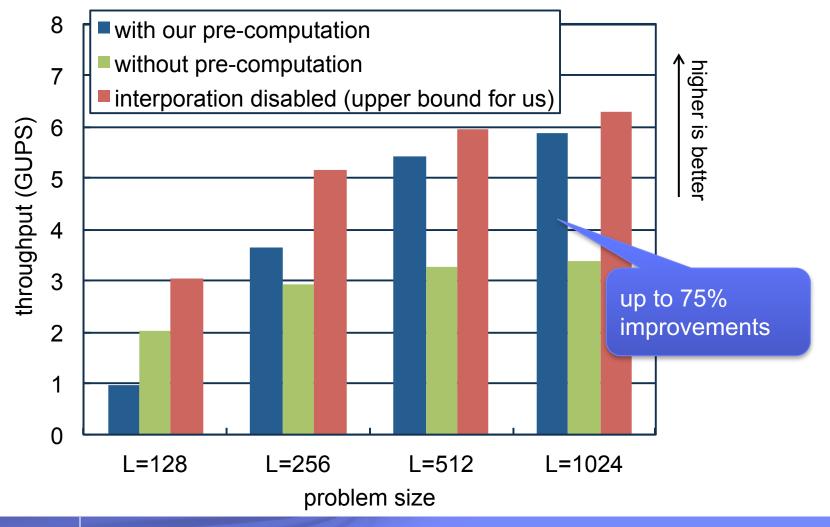
Performance Evaluation with RabbitCT

- RabbitCT is a framework for evaluating 3D CT reconstruction on performance and accuracy
- It includes:
 - benchmark driver
 - reference implementations of the backprojection algorithm
 - input data (a C-arm CT dataset of a rabbit)
 - 496 projection images of 1248x960 pixels associated with transformation matrixes
- Output data is 3-D images of 256^3 mm³ space, $L^3 = 128^3$, 256^3 , 512^3 , 1024^3 voxels, 12-bit value per voxel

System used for evaluations

- 2-socket POWER8 3.69 GHz
 - 20 cores in total (5 cores / NUMA node)
 - -8 SMT threads / core
- 256 GB system memory
- Ubuntu Linux 14.10 for Little Endian POWER
- IBM XL C compiler 13
 - all algorithms are implemented with VSX (128-bit SIMD instructions) using intrinsics

Throughput with and without pre-computation



Root Mean Squared Error

(lower is better)

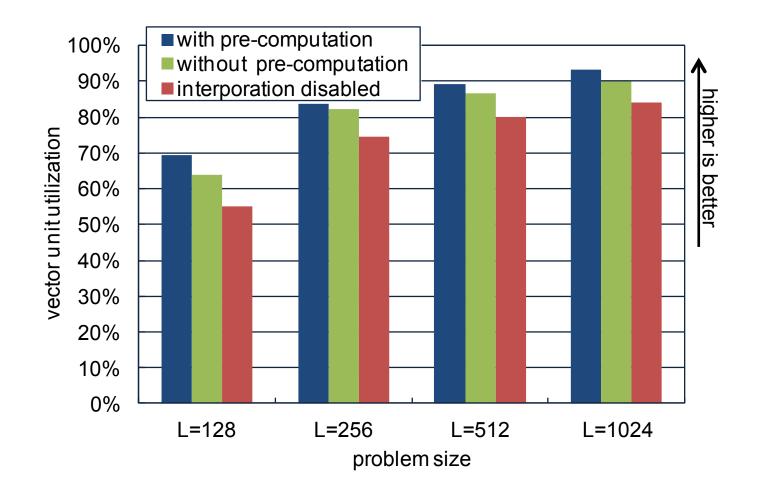
Problem size	With pre- computation	Without pre- computation	Interpolation disabled
<i>L</i> =128	0.534	0.513	12.088
L=256	0.538	0.517	12.108
<i>L</i> =512	0.538	0.518	12.118
<i>L</i> =1024	0.545	0.526	12.120
	negligible of in image qual		nificant degradation age quality

Overhead of Pre-Computation

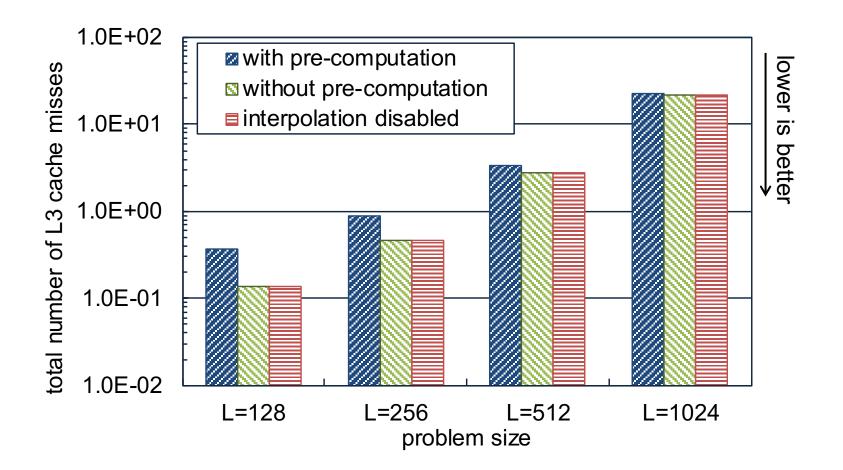
Problem size	With pre-computation			Without pre-
	precomputation	reconstruction	total	computation
<i>L</i> =128	0.93 msec (47%)	1.11 msec	2.01 msec	0.94 msec
L=256	0.94 msec (22%)	3.36 msec	4.19 msec	5.21 msec
<i>L</i> =512	0.94 msec (4.1%)	22.20 msec	22.59 msec	37.90 msec
<i>L</i> =1024	0.93 msec (0.6%)	169.30 msec	167.02 msec	293.87 msec

- The numbers show the execution time per projection image.
- The percentages shown in parenthesis show the ratios to the total execution time.
- Average numbers of interpolations (i.e # voxles) per pixel
 - L=128 → 1.75
 - L=1024 **→** 896

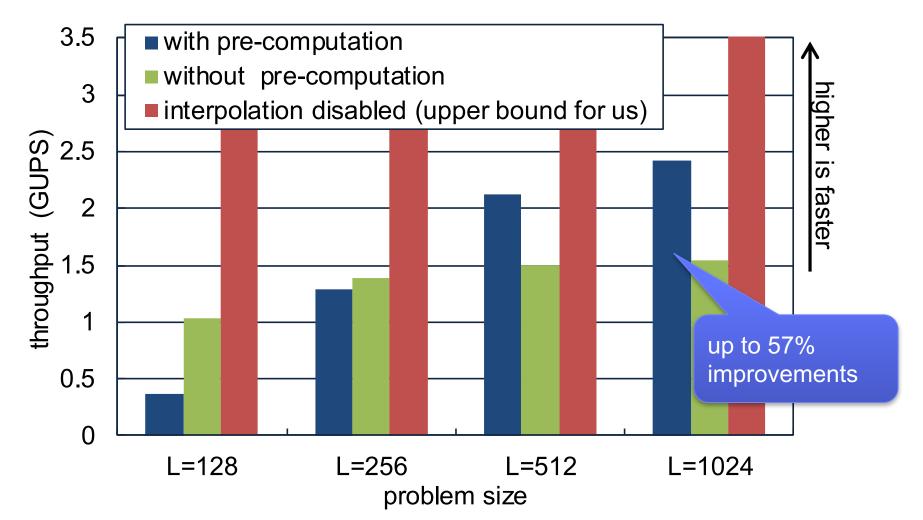
Vector Unit Utilization



System memory bandwidth requirements



Throughput with and without pre-computation using 3rd degree Lagrange interpolation



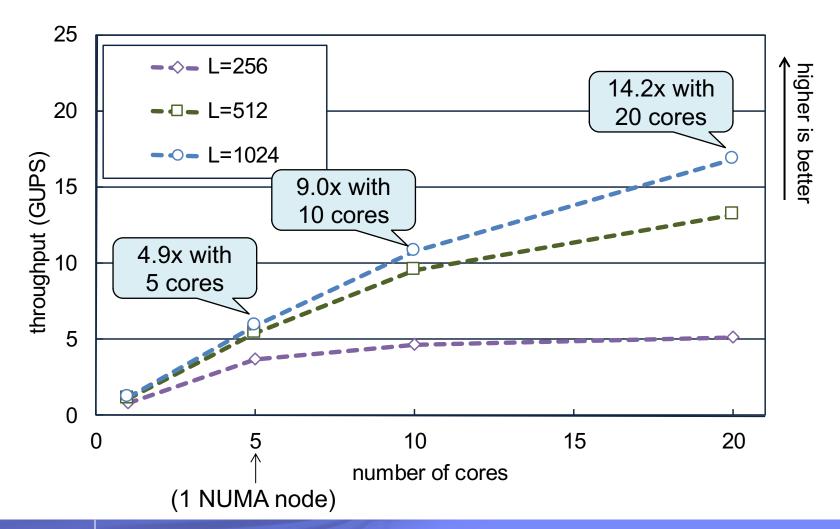
Summary

- We developed an efficient way of interpolation from grid data at a non-grid point
 - Our pre-computation simplifies the computation drastically
 - The cost of pre-computation is not significant for realistic data size
- This technique is not specialized for CT reconstruction and applicable for other applications
- Refer the paper for more detail including:
 - Results for a more accurate interpolation algorithm
 - Performance modeling Handling of floating point errors
 - NUMA optimization

IBM

backup

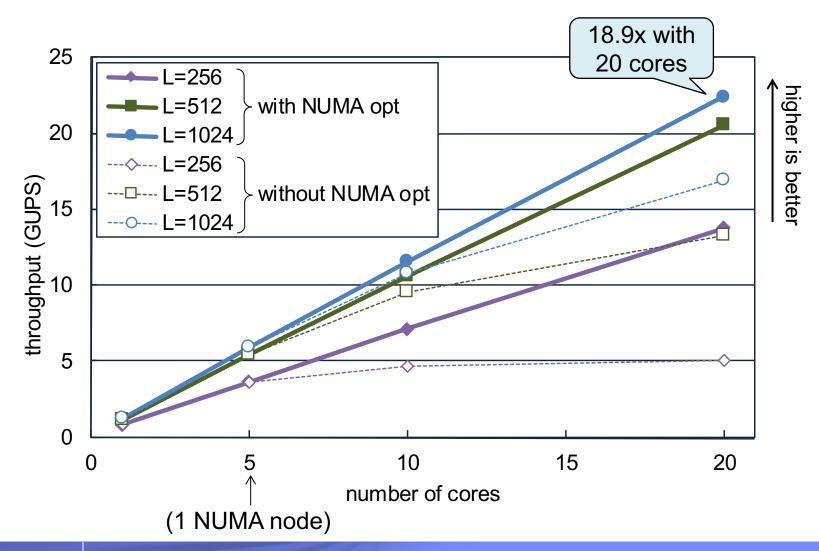
Scalability with Multiple NUMA Nodes



Memory Optimization for NUMA Machine

- Each NUMA node processes a projection image independently from other NUMA nodes to avoid remote memory accesses
 - Within a NUMA node, all threads process one projection image by dividing voxels into small blocks
- We gather the partial results from each NUMA nodes after processing all projection images to sum up them

Scalability with Multiple NUMA Nodes



Comparing to Previous RabbitCT Scores (L=512)

Processor	# Core / # Boards	Year	Source	GUPS
POWER8 3.69 GHz	20 cores (2 sockets)	2015	Ours	20.5
POWER8 3.69 GHz	10 cores (1 socket)	2015	Ours	10.6
lvyBridge-EP 2.2 GHz	20 cores (2 sockets)	2014	Paper [4]	about 7.0
Westmere-EX 2.4 GHz	40 cores (4 sockets)	2011	Official ranking	8.3
Xeon Phi 5110P	1 board	2014	Paper [4]	about 8.5
nVidia GTX 670	2 boards	2014	Official ranking	152.9

Today's GPUs support bilinear interpolation in hardware!

 Our method will be beneficial even for GPUs when a higher-order interpolation algorithm is used