
IBM Research - Tokyo

© 2017 IBM Corporation

Bring Apache Spark Closer to Accelerators

Hiroshi Inoue (IBM Research – Tokyo)
in collaboration with
Kazuaki Ishizaki (IBM Research – Tokyo)
Gita Koblents (IBM Toronto Software Lab)
Jan Wróblewski (University of Warsaw)

IBM Research - Tokyo

Spark is Becoming Popular for Parallel Computing
§ Write a Scala/Java/Python program using parallel functions

with distributed in-memory data structures on a cluster

Spark Runtime (written in Java and Scala)

Spark
Streaming
(real-time)

GraphX
(graph)

SparkSQL
(SQL)

MLlib
(machine
learning)

Java virtual machine

Hardware

tasks Executor

Driver

Executor

results

Executor
Data

val dataset = …((x1, y1), (x2, y2), …)… // input points
val model = KMeans.fit(dataset) // train k-means model
...
val vecs = model.clusterCenters.map(vec => (vec(0)*2, vec(1)*2))

// x2 to all centers

Data

Data

2

IBM Research - Tokyo

Opportunities and Challenges

§ Spark programs explicitly show data parallelism for
distributed execution
èWe want to exploit accelerators, such as GPU and SIMD

instruction of CPUs, based on the same parallelism

§ But, JVM hides details of underlying hardware
– We can call optimized native libraries (e.g. written with

CUDA), but it is not easy to accelerate user Spark code;
we need to generate accelerator code at runtime by JIT
compiler

3

IBM Research - Tokyo

4

Our approach: end-to-end software stack optimization

whole stage codegen
(a.k.a. Project Tungsten)

Janino (open source javac alternative)

JIT compilation

in Spark runtime

in
Java JIT
Compiler

Spark user programs

Java source code

Java bytecode

Native code

without modification

generate vectorizer-friendly
loops by Spark

(e.g. w/ less branch)

generate accelerator code
at runtime

(with columnar
storage)

IBM Research - Tokyo

Example: Vectorization of simple reduction code

§ Even a simple reduction user program, we need to
enhance Spark to emit vectorizer-friendly Java code

data.selectExpr("sum(value)")

§ Conditional branches in the loop disturb vectorization

5

IBM Research - Tokyo

6

int inputadapter_rowIdx = columnar_batchIdx;
while (inputadapter_rowIdx < columnar_numRows) {
boolean inputadapter_isNull1 =

inputadapter_col0.isNullAt(inputadapter_rowIdx);
double inputadapter_value1 = inputadapter_isNull1 ? -1.0 :

(inputadapter_col0.getDouble(inputadapter_rowIdx));

// do aggregate
// common sub-expressions

// evaluate aggregate function
boolean agg_isNull13 = true;
double agg_value13 = -1.0;

boolean agg_isNull14 = agg_bufIsNull1;
double agg_value14 = agg_bufValue1;
if (agg_isNull14) {
boolean agg_isNull16 = false;
double agg_value16 = -1.0;
if (!false) {
agg_value16 = (double) 0;
}
if (!agg_isNull16) {
agg_isNull14 = false;
agg_value14 = agg_value16;
}
}

boolean agg_isNull18 = inputadapter_isNull1;
double agg_value18 = -1.0;
if (!inputadapter_isNull1) {
agg_value18 = inputadapter_value1;
}
if (!agg_isNull18) {
agg_isNull13 = false;
agg_value13 = agg_value14 + agg_value18;
}
boolean agg_isNull12 = agg_isNull13;
double agg_value12 = agg_value13;
if (agg_isNull12) {
if (!agg_bufIsNull1) {
agg_isNull12 = false;
agg_value12 = agg_bufValue1;
}
}
// update aggregation buffer
agg_bufIsNull1 = agg_isNull12;
agg_bufValue1 = agg_value12;
inputadapter_rowIdx++;
if (shouldStop()) return;
}

IBM Research - Tokyo

Example: Vectorization of simple reduction code

§ Even a simple reduction user program, we need to enhance
Spark to emit vectorizer-friendly Java code

data.selectExpr("sum(value)")

§ Conditional branches in the loop disturb vectorization

è We eliminate conditional branches as much as possible by
enhancing Spark code generator
– Nullcheck of input is skipped if scheme assure non-null
– Buffer initialization is moved outside the loop
– Output buffer overflow check is not required for reduction

7

IBM Research - Tokyo

JIT Compiler Enhancements

§ Java JIT cannot reorder floating point arithmetic not to affect
the final results as required by language spec.

§ But Spark programming model does not guarantee the order
of computation due to its inherent nature of parallel and
distributed execution
è So we can selectively optimize FP operations for Spark

§ We put a special annotation for Spark generated Java loop
to inform vectorizable loops with floating point arithmetic to
JIT compiler

8

IBM Research - Tokyo

Still we have lots of challenges..

§ Example: Overhead of calling user-defined functions
(lambda) [1]

– Problem: A user-defined function takes plain Java objects
as input; so Spark need boxing/unboxing to call user-
defined functions

– Our Solution: To analyze and rewrite bytecode sequence
of user-defined function (at runtime!) to directly access
Spark’s internal data representation

9

[1] Jan Wróblewski, Kazuaki Ishizaki, Hiroshi Inoue and Moriyoshi Ohara,
"Accelerating Spark Datasets by inlining deserialization", IPDPS 2017

IBM Research - Tokyo

Summary

§ Apache Spark is becoming an important infrastructure
for bigdata analytics and machine learning tasks

§ To fully exploit computing resource based on the data
parallelism available in user programs, we need
optimization technologies in the software stack including
Spark itself and also Java runtime environment

10

IBM Research - Tokyo

References for more detail of our work

§ "Bringing Apache Spark Closer to SIMD and GPU",
Blog post at Spark Technology Center, Dec. 2016
http://www.spark.tc/simd-and-gpu/

§ Jan Wróblewski, Kazuaki Ishizaki, Hiroshi Inoue and
Moriyoshi Ohara, "Accelerating Spark Datasets by
inlining deserialization", IPDPS 2017

§ Kazuaki Ishizaki, "Leverage GPU Acceleration for your
Program on Apache Spark”, GPU Technology
Conference (GTC) 2017

11

