IBM Research - Tokyo

"/ o v "
T

Bring Apache Spark Closer to Acceleratc

APACHE Hiroshi Inoue (IBM Research — T@

Spr K iIn collaboration with

Kazuaki Ishizaki (IBM Research = TOKyE) ®
Gita Koblents (IBM Toronto Software Cab)%
Jan Wroblewski (University of Warsaw)

© 2017 IBM Corporation



. IBM Research - Tokyo

Spark is Becoming Popular for Parallel Computing

= Write a Scala/Java/Python program using parallel functions

with on a cluster
val = ..((x1, y1), (x2, y2), ..).. // input points
val model = KMeans.tit(dataset) // train k-means model
val = model.clusterCenters.map(vec => (vec(@)*2, vec(1)*2))

// x2 to all centers

SparkSQL Jille GraphX Sl

results

gl

e

(machine
learning)

Streaming
(real-time)

(SQL) (graph)

Spark Runtime (written in Java and Scala)

Java virtual machine

[ﬁﬁ; Hardware

| =




. IBM Research - Tokyo

Opportunities and Challenges

= Spark programs explicitly show data parallelism for
distributed execution

=>We want to exploit accelerators, such as GPU and SIMD
instruction of CPUs, based on the same parallelism

= But, JVM hides details of underlying hardware

— We can call optimized native libraries (e.g. written with
CUDA), but it is not easy to accelerate user Spark code;
we need to generate accelerator code at runtime by JIT
compiler




\ IBM Research - Tokyo

Our approach: end-to-end software stack optimization

[

Spark user programs \ without modification

J

whole stage codegen
‘ (a.k.a. Project Tungsten)
generate vectorizer-friendly
Java source code loops by Spark
(e.g. w/ less branch)
‘ Janino (open source javac alternative)

Java bytecode

‘ JIT compilation
_ N generate accelerator code
Nat|Ve COde at runtime

\

J \

Spo‘llg

> in Spark runtime
(with columnar
storage)

in ((

> Java JIT =’

-

Compiler |ava



\ IBM Research - Tokyo

Example: Vectorization of simple reduction code

= Even a simple reduction user program, we need to
enhance Spark to emit vectorizer-friendly Java code

data.selectExpr("sum(value)")

= Conditional branches in the loop disturb vectorization




. IBM Research - Tokyo

int inputadapter rowldx = columnar_batchldx;

while (inputadapter rowldx < columnar numRows) {

boolean inputadapter_isNulll =
inputadapter_col0.isNullAt(inputadapter rowldx);

double inputadapter valuel = inputadapter isNulll ? -1.0 :

(inputadapter col0.getDouble(inputadapter rowldx));

// do aggregate
// common sub-expressions

// evaluate aggregate function
boolean agg isNulll13 = true;
double agg valuel3 =-1.0;

boolean agg isNull14 = agg buflsNulll;
double agg valuel4 = agg bufValuel;
if (agg_isNull14) {
boolean agg isNulll6 = false;
double agg valuel6 =-1.0;
if (!false) {
agg valuel6 = (double) 0;
b
if (lagg isNull16) {
agg isNull14 = false;
agg valuel4 = agg valuel6;

b
b

boolean agg isNull18 = inputadapter isNulll;
double agg valuel8 =-1.0;
if (!inputadapter isNulll) {
agg valuel8 = inputadapter valuel;
f
if (lagg_isNull18) {
agg isNull13 = false;
agg valuel3 =agg valuel4 + agg valuels§;
h
boolean agg isNulll12 = agg 1sNulll3;
double agg valuel2 = agg valuel3;
if (agg 1sNulll12) {
if (lagg buflsNulll) {
agg isNulll12 = false;
agg valuel2 =agg bufValuel;

}

b
// update aggregation buffer

agg buflsNulll = agg isNull12;
agg bufValuel = agg valuel2;
inputadapter rowldx++;

if (shouldStop()) return;



. IBM Research - Tokyo

Example: Vectorization of simple reduction code

= Even a simple reduction user program, we need to enhance
Spark to emit vectorizer-friendly Java code

data.selectExpr("sum(value)")

= Conditional branches in the loop disturb vectorization

=» We eliminate conditional branches as much as possible by
enhancing Spark code generator

— Nullcheck of input is skipped if scheme assure non-null
— Buffer initialization is moved outside the loop

— Output buffer overflow check is not required for reduction




. IBM Research - Tokyo

JIT Compiler Enhancements

= Java JIT cannot reorder floating point arithmetic not to affect
the final results as required by language spec.

= But Spark programming model does not guarantee the order
of computation due to its inherent nature of parallel and
distributed execution

=» S0 we can selectively optimize FP operations for Spark

= We put a special annotation for Spark generated Java loop
to inform vectorizable loops with floating point arithmetic to
JIT compiler




. IBM Research - Tokyo

Still we have lots of challenges..

= Example: Overhead of calling user-defined functions
(lambda) [1]

— Problem: A user-defined function takes plain Java objects
as input; so Spark need boxing/unboxing to call user-
defined functions

— Our Solution: To analyze and rewrite bytecode sequence
of user-defined function (at runtime!) to directly access
Spark’s internal data representation

[1] Jan Wroblewski, Kazuaki Ishizaki, Hiroshi Inoue and Moriyoshi Ohara,
"Accelerating Spark Datasets by inlining deserialization", IPDPS 2017




. IBM Research - Tokyo

Summary Spm‘,’(?

= Apache Spark is becoming an important infrastructure
for bigdata analytics and machine learning tasks

= To fully exploit computing resource based on the data
parallelism available in user programs, we need
optimization technologies in the software stack including
Spark itself and also Java runtime environment

.= =
|y -




. IBM Research - Tokyo

References for more detail of our work

= "Bringing Apache Spark Closer to SIMD and GPU",
Blog post at Spark Technology Center, Dec. 2016

= Jan Wrdblewski, Kazuaki Ishizaki, Hiroshi Inoue and
Moriyoshi Ohara, "Accelerating Spark Datasets by
inlining deserialization", IPDPS 2017

= Kazuaki Ishizaki, "Leverage GPU Acceleration for your
Program on Apache Spark”, GPU Technology
Conference (GTC) 2017




