
How SIMD Width Affects Energy Efficiency: A Case Study on Sorting
Hiroshi Inoue

IBM Research – Tokyo

19-21 Nihonbashi Hakozaki-cho, Tokyo, 103-8510, Japan
E-mail: inouehrs@jp.ibm.com

Abstract: This paper studies the performance and energy efficiency of in-memory sorting algorithms. We put
emphasis on the SIMD (single instruction multiple data) mergesort implemented with different SIMD widths.
By evaluating the performance, power, and energy with various hardware configurations (achieved by
changing the memory bandwidth, number of cores, and processor frequency), our results show that SIMD can
reduce power in addition to enhancing the performance, especially when the memory bandwidth is not
sufficient to fully drive the cores. We also show that balancing the computation power and the memory
bandwidth is important to minimize the total energy consumption. (Keywords: SIMD, sorting, memory
bandwidth, energy efficiency)

Sorting is one of the most fundamental operations in many workloads. Due to its importance, a large number

of sorting algorithms have been studied. Recently, multiway mergesort implemented with SIMD instructions
has been used as a high performance in-memory sorting algorithm [1, 2]. Radix sort is another widely used
sorting algorithm due to its smaller computational complexity. Satish et al. [3] conducted detailed
comparisons of these two algorithms on CPUs (using SSE) and GPUs. They reported that on both platforms,
the radix sort slightly outperformed the SIMD mergesort, but they predicted that the SIMD mergesort will be
the algorithm of choice for future processors. Here, a wider SIMD and a lower bandwidth-to-compute ratio
of future processors are the key for the superior performance of the SIMD mergesort.

In this paper, we evaluated the performance of sorting algorithms on a commodity PC with emphasis on
energy efficiency in addition to execution time. We compared the performances of optimized implementations
of the SIMD and non-SIMD mergesort, the radix sort, and the quicksort (the parallel version of std::sort
included in gcc). We implemented the SIMD mergesort using 4-way SIMD (SSE) and 8-way SIMD (AVX)
to study the effect of the SIMD width. We used the SIMD combsort, also implemented with AVX or SSE, for
sorting small blocks [1]. For the radix sort, we implemented a cache-conscious radix sort [4], which combines
the MSB-radix sort and LSB-radix sort to improve the memory-access locality. We also applied the local-
buffer-based optimization proposed by Satish et al. [3] to maximize the write combining opportunities in the
processor. For the evaluation, we used a desktop PC equipped with a Core i7 4770 (Haswell) processor, which
had four 3.4-GHz cores and eight hardware threads by Hyper Threading. With turbo boost enabled, the
frequency was increased to 3.9 GHz (for executions with 1 or 2 cores) or to 3.7 GHz (with 4 cores). It was
also equipped with 8 GB of system memory (two 4-GB DDR3-1333 DIMMs for dual channel operation). In
some evaluations, we removed one of the DIMMs installed in the system to reduce the system memory
bandwidth by half (with single channel). We call the first configuration full bandwidth configuration, and the
second one half bandwidth configuration. The system ran Redhat Enterprise Linux 6.5 as the operating system.
We compiled all the programs using gcc-5.2 with the –O3 option. We measured the average system-level
power using an external power meter (Yokogawa WT210). We evaluated the execution time and power
consumption of each algorithm while repeatedly sorting 256 million 32-bit random integers (1 GB in total).

Figure 1 shows the execution time, the average power, and the total energy (power × execution time) using
1 to 8 threads. Figure 2 shows the number of executed instructions and CPI (cycles per instruction) as
measured by the performance counter. Regardless of the number of threads, the mergesort with AVX achieved
the best absolute performance, and the radix sort was a close second best. These two algorithms outperformed
the quicksort (std::sort) by more than 7 times with 1 thread and by more than 4 times with 8 threads. Compared
to these huge performance boosts, the increases in the system power were not so significant; the power for
the mergesort with AVX and the radix sort were higher than that of the quicksort by only up to 12.4% and up
to 6.3% respectively. As a result, these two algorithms executed the entire sorting with the smallest total
energy among the tested algorithms regardless of the the number of threads. Among three implementations of
mergesort with different SIMD widths, scalar (1 way), SSE (4 way), and AVX (8 way), the two SIMD versions
achieved much higher absolute performance than the scalar version. With 1 thread, for example, the AVX
version yielded a 9.7x speedup over the scalar version, and the SSE version yielded a 6.8x speedup. Since the
increases in the system power were much smaller than the speedups, the SIMD versions were much more
energy efficient than the scalar version. By increasing the SIMD length twice, the AVX version was 42% and

14% faster than the SSE version with 1 thread and 8 threads, respectively. The performance gain from the
wider SIMD was less significant with 8 threads because the execution performance was bounded by the
system memory bandwidth; therefore, the CPI of the AVX version drastically degraded for large thread counts,
as shown in Figure 2, due to longer memory stalls. The system power was 3.1% higher for AVX compared to
that of SSE with 1 thread in trade for the higher performance. Interestingly, with 8 threads, the power was
1.8% lower for AVX compared to SSE despite AVX achieving a 14% higher performance. As shown in Figure
2, we reduced the number of executed instructions by 1.74x using AVX over SSE. When the memory
bandwidth was sufficient to fully drive all cores, the reduced instructions resulted in better performance.
However, when the memory bandwidth limited the performance by increasing the memory access latency, the
reduced instructions resulted in reduced power in the processor.

To investigate how the memory bandwidth affects the energy efficiency of the SIMD mergesort, Figure 3
shows the power (x-axis) and the throughput (y-axis) for mergesort with two memory bandwidth
configurations. When the memory bandwidth was reduced by half, the performances of the SIMD versions
were degraded by about 40% due to the bandwidth bottleneck. The performance of the scalar version was not
significantly affected by the memory bandwidth because of its lower performance and hence lower bandwidth
requirement. The reduction in power by SIMD was more significant with the half bandwidth configuration
than with the full bandwidth configuration. When using 4 or 8 threads with the half bandwidth configuration,
the scalar version showed the highest system power despite having the lowest performance. The AVX version
yielded the highest performance and the lowest power. This result shows that the power reduction by SIMD
can be much larger on systems with lower bandwidth-to-compute ratios. Since future systems are predicted
to have lower bandwidth-to-compute ratios compared to today’s systems, the SIMD instructions will play a
key role to achieve lower power as well as higher performance in the future.

For more insight into the effects of the bandwidth-to-compute ratio on energy efficiency, we controlled the
processor’s core frequency by DVFS (SpeedStep) in addition to changing the bandwidth configurations.
Figure 4 illustrates the power and performances of the mergesort with AVX with two memory bandwidth
configurations. The basic trends were common with two configurations. Using more cores with a lower
frequency improved the energy efficiency as expected, i.e., this yielded higher performance with the same
power or lower power while keeping the same performance. The SMT capability gave performance gains
only with the low processor frequencies for the mergesort. The lowest total energy was achieved when using
four cores of 2.5 GHz and 1.5 GHz with the full and half bandwidth configurations, respectively. The lowest
energy of the full bandwidth configuration was better than that of the half bandwidth configuration by about
17.5%. Although we do not show it here, the scalar version achieved the lowest energy with 3.4 GHz even
with the half bandwidth configuration. This means that it is important to balance the bandwidth and the
computation performance to achieve the best energy efficiency. Figure 5 shows the differences in the total
energy between the full and half bandwidth configurations. When the bandwidth requirements were large, i.e.,
with a higher frequency and a larger thread count, using the full bandwidth configuration reduced the energy
by more than 30%. On the contrary, when the bandwidth requirements were small, the full bandwidth
configurations increased the total energy by a few percent. In this experiment, we reduced the memory
bandwidth and energy by removing a DIMM from one channel, but using memory DVFS [5] is an alternative
way. When we did not use SIMD, the half bandwidth configuration was better even with the highest frequency
and 8 threads. The SSE version fell between the two. Therefore, to minimize energy consumption, we need
to control the memory bandwidth and balance it with the demands of the running applications.

[1] H. Inoue, T. Moriyama, H. Komatsu, and T. Nakatani. AA-Sort: A New Parallel Sorting Algorithm for Multi-
Core SIMD Processors. In Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques, pp. 189–198, 2007.

[2] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog, Y.-K. Chen, A. Baransi, S. Kumar, and P. Dubey.
Efficient implementation of sorting on multi-core SIMD CPU architecture. In Proceedings of VLDB Endow.,
1 (2), pp. 1313–1324, 2008.

[3] N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. Lee, D. Kim, and P. Dubey. Fast sort on CPUs and GPUs:
a case for bandwidth oblivious SIMD sort. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, pp. 351–362, 2010.

[4] D. J. González, J.-L. Larriba-Pey, and J. J. Navarro. Communication conscious radix sort. In Proceedings of
the 13th International Conference on Supercomputing, pp. 76–82, 1999.

[5] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu. Memory power management via dynamic
voltage/frequency scaling. In Proceedings of the 8th ACM international conference on Autonomic computing,
pp. 31–40, 2011.

Fig. 1 Execution time, power, and energy with various
sorting algorithms with and without SIMD.

Fig. 2 Number of executed instructions and CPI with
various sorting algorithms as measured by HPM.

Fig. 3 Power and performance of mergesort with and
without SIMD with two bandwidth configurations.

Fig. 4 Power and performance of mergesort with AVX
(8-wide SIMD) with various core frequencies with two
bandwidth configurations.

Fig. 5 Comparisons of total energy consumption with
mergesort implemented with AVX for full (w/ 2
memory channels) and half (w/ 1 memory channel)
bandwidth configurations.

0
20
40
60
80

100
120
140
160
180
200

mergesort
with AVX

mergesort
with SSE

mergesort
without SIMD

quicksort
(std::sort)

radix sort
without SIMD

en
er

gy
 (j

ou
le

)

1 thread 2 threads 4 threads 8 threads (4 cores with 2-way SMT)

0

20

40

60

80

100

120

mergesort
with AVX

mergesort
with SSE

mergesort
without SIMD

quicksort
(std::sort)

radix sort
without SIMD

po
w

er
 (w

at
t)

1 thread 2 threads 4 threads 8 threads (4 cores with 2-way SMT)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

mergesort
with AVX

mergesort
with SSE

mergesort
without SIMD

quicksort
(std::sort)

radix sort
without SIMD

ex
ec

ut
io

n
tim

e
(s

ec
)

1 thread 2 threads 4 threads 8 threads (4 cores with 2-way SMT)

better
faster

(27.7 sec, 14.0 sec, 7.4 sec, 5.0 sec) (21.0 sec, 11.0 sec, 5.8 sec)

better

(1180 J, 818 J, 646 J, 463 J) (883J, 642 J, 495 J, 391 J)

execution time
(sec)

power
(watt)

energy
(joule)

idle power (19.6 W)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

mergesort
with AVX

mergesort
with SSE

mergesort
without SIMD

quicksort
(std::sort)

radix sort
without SIMD

cy
cl

es
 p

er
 in

st
ru

ct
on

1 thread
2 threads
4 threads
8 threads (4 cores with SMT)

0

20

40

60

80

100

120

mergesort
with AVX

mergesort
with SSE

mergesort
without SIMD

quicksort
(std::sort)

radix sort
without SIMD

nu
m

be
r o

f i
ns

tru
ct

io
ns

 (b
illi

on
) 1 thread

2 threads
4 threads
8 threads (4 cores with SMT)

better
better

execution instructions

cycles per instruction (CPI)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

10 20 30 40 50 60 70 80 90 100 110

th
ro

ug
hp

ut
 (1

/s
ec

)

power (watt)

with AVX (8-way SIMD)
with SSE (4-way SIMD)
without SIMD
with AVX (8-way SIMD)
with SSE (4-way SIMD)
without SIMD

faster

better (lower power)

with 2 memory
channels
(full bandwidth)

with 1 memory
channel
(half bandwidth)

idle power
19.6 W (w/ 2ch)
19.3 W (w/ 1ch)

1 thread

2 threads

4 threads

8 threads
(4 cores w/ SMT)

SSE shows higher
power dissipation
than AVX

scalar version
shows higher
power dissipation
than SSE or AVX

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100 110

th
ro

ug
hp

ut
 (1

/s
ec

)

power (watt)

1 thread
2 threads
4 threads
8 threads (4 cores with SMT)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 10 20 30 40 50 60 70 80 90 100 110

th
ro

ug
hp

ut
 (1

/s
ec

)

power (watt)

1 thread
2 threads
4 threads
8 threads (4 cores with SMT)

faster
faster

better (lower power)

better (lower power)

full bandwidth configuration
(with 2 memory channels)

half bandwidth configuration
(with 1 memory channel)

2.5 GHz

3.4 GHz

Turbo boost
3.7 - 3.9 GHz

800 MHz

1.5 GHz

2.5 GHz
3.4 GHz

Turbo boost
3.7 - 3.9 GHz

800 MHz

1.5 GHz

configuration that yields
minimum energy consumption

configuration that yields
minimum energy consumption

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

ch
an

ge
 in

 th
e

en
er

gy
 w

ith

fu
ll

m
em

or
y

ba
nd

w
id

th
 c

on
fig

ur
at

io
n

fro
m

 h
al

f b
an

dw
id

th
 c

on
fig

ur
at

io
n

1 thread
2 threads
4 threads
8 threads (4 cores with SMT)

full bandw
idth configuration is

better (m
ore energy efficient)

half BW

is better

800	MHz 1.5	GHz 2.5	GHz 3.4	GHz 3.7	- 3.9	GHz
(Turbo	boost)

