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Abstract: This paper studies the performance and energy efficiency of in-memory sorting algorithms. We put 
emphasis on the SIMD (single instruction multiple data) mergesort implemented with different SIMD widths. 
By evaluating the performance, power, and energy with various hardware configurations (achieved by 
changing the memory bandwidth, number of cores, and processor frequency), our results show that SIMD can 
reduce power in addition to enhancing the performance, especially when the memory bandwidth is not 
sufficient to fully drive the cores. We also show that balancing the computation power and the memory 
bandwidth is important to minimize the total energy consumption. (Keywords: SIMD, sorting, memory 
bandwidth, energy efficiency) 

 
Sorting is one of the most fundamental operations in many workloads. Due to its importance, a large number 

of sorting algorithms have been studied. Recently, multiway mergesort implemented with SIMD instructions 
has been used as a high performance in-memory sorting algorithm [1, 2]. Radix sort is another widely used 
sorting algorithm due to its smaller computational complexity. Satish et al. [3] conducted detailed 
comparisons of these two algorithms on CPUs (using SSE) and GPUs. They reported that on both platforms, 
the radix sort slightly outperformed the SIMD mergesort, but they predicted that the SIMD mergesort will be 
the algorithm of choice for future processors. Here, a wider SIMD and a lower bandwidth-to-compute ratio 
of future processors are the key for the superior performance of the SIMD mergesort. 

In this paper, we evaluated the performance of sorting algorithms on a commodity PC with emphasis on 
energy efficiency in addition to execution time. We compared the performances of optimized implementations 
of the SIMD and non-SIMD mergesort, the radix sort, and the quicksort (the parallel version of std::sort 
included in gcc). We implemented the SIMD mergesort using 4-way SIMD (SSE) and 8-way SIMD (AVX) 
to study the effect of the SIMD width. We used the SIMD combsort, also implemented with AVX or SSE, for 
sorting small blocks [1]. For the radix sort, we implemented a cache-conscious radix sort [4], which combines 
the MSB-radix sort and LSB-radix sort to improve the memory-access locality. We also applied the local-
buffer-based optimization proposed by Satish et al. [3] to maximize the write combining opportunities in the 
processor. For the evaluation, we used a desktop PC equipped with a Core i7 4770 (Haswell) processor, which 
had four 3.4-GHz cores and eight hardware threads by Hyper Threading. With turbo boost enabled, the 
frequency was increased to 3.9 GHz (for executions with 1 or 2 cores) or to 3.7 GHz (with 4 cores). It was 
also equipped with 8 GB of system memory (two 4-GB DDR3-1333 DIMMs for dual channel operation). In 
some evaluations, we removed one of the DIMMs installed in the system to reduce the system memory 
bandwidth by half (with single channel). We call the first configuration full bandwidth configuration, and the 
second one half bandwidth configuration. The system ran Redhat Enterprise Linux 6.5 as the operating system. 
We compiled all the programs using gcc-5.2 with the –O3 option. We measured the average system-level 
power using an external power meter (Yokogawa WT210). We evaluated the execution time and power 
consumption of each algorithm while repeatedly sorting 256 million 32-bit random integers (1 GB in total). 

Figure 1 shows the execution time, the average power, and the total energy (power × execution time) using 
1 to 8 threads. Figure 2 shows the number of executed instructions and CPI (cycles per instruction) as 
measured by the performance counter. Regardless of the number of threads, the mergesort with AVX achieved 
the best absolute performance, and the radix sort was a close second best. These two algorithms outperformed 
the quicksort (std::sort) by more than 7 times with 1 thread and by more than 4 times with 8 threads. Compared 
to these huge performance boosts, the increases in the system power were not so significant; the power for 
the mergesort with AVX and the radix sort were higher than that of the quicksort by only up to 12.4% and up 
to 6.3% respectively. As a result, these two algorithms executed the entire sorting with the smallest total 
energy among the tested algorithms regardless of the the number of threads. Among three implementations of 
mergesort with different SIMD widths, scalar (1 way), SSE (4 way), and AVX (8 way), the two SIMD versions 
achieved much higher absolute performance than the scalar version. With 1 thread, for example, the AVX 
version yielded a 9.7x speedup over the scalar version, and the SSE version yielded a 6.8x speedup. Since the 
increases in the system power were much smaller than the speedups, the SIMD versions were much more 
energy efficient than the scalar version. By increasing the SIMD length twice, the AVX version was 42% and 



14% faster than the SSE version with 1 thread and 8 threads, respectively. The performance gain from the 
wider SIMD was less significant with 8 threads because the execution performance was bounded by the 
system memory bandwidth; therefore, the CPI of the AVX version drastically degraded for large thread counts, 
as shown in Figure 2, due to longer memory stalls. The system power was 3.1% higher for AVX compared to 
that of SSE with 1 thread in trade for the higher performance. Interestingly, with 8 threads, the power was 
1.8% lower for AVX compared to SSE despite AVX achieving a 14% higher performance. As shown in Figure 
2, we reduced the number of executed instructions by 1.74x using AVX over SSE. When the memory 
bandwidth was sufficient to fully drive all cores, the reduced instructions resulted in better performance. 
However, when the memory bandwidth limited the performance by increasing the memory access latency, the 
reduced instructions resulted in reduced power in the processor.  

To investigate how the memory bandwidth affects the energy efficiency of the SIMD mergesort, Figure 3 
shows the power (x-axis) and the throughput (y-axis) for mergesort with two memory bandwidth 
configurations. When the memory bandwidth was reduced by half, the performances of the SIMD versions 
were degraded by about 40% due to the bandwidth bottleneck. The performance of the scalar version was not 
significantly affected by the memory bandwidth because of its lower performance and hence lower bandwidth 
requirement. The reduction in power by SIMD was more significant with the half bandwidth configuration 
than with the full bandwidth configuration. When using 4 or 8 threads with the half bandwidth configuration, 
the scalar version showed the highest system power despite having the lowest performance. The AVX version 
yielded the highest performance and the lowest power. This result shows that the power reduction by SIMD 
can be much larger on systems with lower bandwidth-to-compute ratios. Since future systems are predicted 
to have lower bandwidth-to-compute ratios compared to today’s systems, the SIMD instructions will play a 
key role to achieve lower power as well as higher performance in the future. 

For more insight into the effects of the bandwidth-to-compute ratio on energy efficiency, we controlled the 
processor’s core frequency by DVFS (SpeedStep) in addition to changing the bandwidth configurations. 
Figure 4 illustrates the power and performances of the mergesort with AVX with two memory bandwidth 
configurations. The basic trends were common with two configurations. Using more cores with a lower 
frequency improved the energy efficiency as expected, i.e., this yielded higher performance with the same 
power or lower power while keeping the same performance. The SMT capability gave performance gains 
only with the low processor frequencies for the mergesort. The lowest total energy was achieved when using 
four cores of 2.5 GHz and 1.5 GHz with the full and half bandwidth configurations, respectively. The lowest 
energy of the full bandwidth configuration was better than that of the half bandwidth configuration by about 
17.5%. Although we do not show it here, the scalar version achieved the lowest energy with 3.4 GHz even 
with the half bandwidth configuration. This means that it is important to balance the bandwidth and the 
computation performance to achieve the best energy efficiency. Figure 5 shows the differences in the total 
energy between the full and half bandwidth configurations. When the bandwidth requirements were large, i.e., 
with a higher frequency and a larger thread count, using the full bandwidth configuration reduced the energy 
by more than 30%. On the contrary, when the bandwidth requirements were small, the full bandwidth 
configurations increased the total energy by a few percent. In this experiment, we reduced the memory 
bandwidth and energy by removing a DIMM from one channel, but using memory DVFS [5] is an alternative 
way. When we did not use SIMD, the half bandwidth configuration was better even with the highest frequency 
and 8 threads. The SSE version fell between the two. Therefore, to minimize energy consumption, we need 
to control the memory bandwidth and balance it with the demands of the running applications. 
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Fig. 1 Execution time, power, and energy with various 
sorting algorithms with and without SIMD. 
 

 
Fig. 2 Number of executed instructions and CPI with 
various sorting algorithms as measured by HPM. 

 
Fig. 3 Power and performance of mergesort with and 
without SIMD with two bandwidth configurations. 
 

 
Fig. 4 Power and performance of mergesort with AVX 
(8-wide SIMD) with various core frequencies with two 
bandwidth configurations. 
 

 
Fig. 5 Comparisons of total energy consumption with 
mergesort implemented with AVX for full (w/ 2 
memory channels) and half (w/ 1 memory channel) 
bandwidth configurations.  
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