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Goal and Motivation

� Goals
1. develop an efficient trace-based Java JIT compiler (trace-JIT) 

based on existing mature method-based JIT compiler (method-JIT)

2. understand the benefits and drawbacks of the trace-JIT against the 
method-JIT

� Why not method-JIT?
– Limited optimization opportunities in larger application with a flat 

execution profile (no hot spots)

ÎCan trace-JIT provide more optimization opportunities than 
method-JIT for such applications?
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Background: Trace-based Compilation

� Using a Trace, a hot path identified at runtime, as a basic unit of 
compilation

method fmethod entry

a hot path

if (x != 0)

frequently
executed

while (!end)

trace exit

trace exit
(side exit)

trace entry trace A

return include a hot 
path only

if (x != 0)

rarely
executed

while (!end)

do something

frequently
executed
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Motivating Example
� A trace can span multiple methods

– Free from method boundaries
– In large server workloads, there are deep (>100) layers of methods

method 1
Web

Container

ok?

search for a 
handler

error!

printlog?

method 2
JavaServer
Pages

ok?

search for a 
bean

error!

printlog?

method 3
Enterprise
JavaBeans

ok?

create an 
SQL

error!

printlog?

method 4
JDBC
Driver

ok?

send the 
SQL to DB

error!

printlog?
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Outline

� Motivation
� Background
� Trace-JIT Architecture
� Performance Evaluation
� Future work and Summary
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Baseline Method-JIT Components

interpreterinterpreter

IR generatorIR generator optimizersoptimizers

code generatorcode generator

compiled method 
dispatcher

compiled method 
dispatcher garbage collector

code cachecode cache

class libraries

Java VM

compiled code
Method-JIT

compilation request
for frequently executed methods
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Our Trace-JIT Architecture

Tracing runtime

interpreterinterpreter

trace (Java bytecode)

trace selection
engine

trace selection
engine

IR generatorIR generator optimizersoptimizers

code generatorcode generator

trace dispatchertrace dispatcher garbage collector

code cachecode cache

class libraries

hash maphash map

(e.g. compiled code address)

Java VM

Trace-JIT

modified componentmodified component

unmodified component

new componentnew component

execution events

compiled code

trace side exit
elimination

trace side exit
elimination
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Our Trace-JIT Architecture

Tracing runtime

interpreterinterpreter

trace (Java bytecode)

trace selection
engine

trace selection
engine

IR generatorIR generator optimizersoptimizers

code generatorcode generator

trace dispatchertrace dispatcher garbage collector

code cachecode cache

class libraries

hash maphash map

(e.g. compiled code address)

Java VM

Trace-JIT

modified componentmodified component

unmodified component

new componentnew component

execution events

compiled code

trace side exit
elimination

trace side exit
elimination

modified to call a 
hook at control-flow 

events

z branch
z method invoke
z method return
z exception
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Our Trace-JIT Architecture

Tracing runtime

interpreterinterpreter

trace (Java bytecode)

trace selection
engine

trace selection
engine

IR generatorIR generator optimizersoptimizers

code generatorcode generator

trace dispatchertrace dispatcher garbage collector

code cachecode cache

class libraries

hash maphash map

(e.g. compiled code address)

Java VM

Trace-JIT

modified componentmodified component

unmodified component

new componentnew component

execution events

compiled code

trace side exit
elimination

trace side exit
elimination

AA

BB

exit

exit

z linear trace

AA

BB

exit

z cyclic trace

stub stub

identify two types of hot paths



10

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Trace Selection 

1. Identify a hot trace head 
� a taken target of a backward branch

� a bytecode that follows a exit point of an existing trace
2. Record next execution path starting from the trace head
3. Stop recording when the trace being recorded:
� forms a cycle (with our false loop filtering)

� executes a backward branch

� calls or returns to a JNI (native) method 

� throws an exception

� reaches pre-defined maximum length (128 basic blocks)
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Our Trace-JIT Architecture

Tracing runtime

interpreterinterpreter

trace (Java bytecode)

trace selection
engine

trace selection
engine

IR generatorIR generator optimizersoptimizers

code generatorcode generator

trace dispatchertrace dispatcher garbage collector

code cachecode cache

class libraries

hash maphash map

(e.g. compiled code address)

Java VM

Trace-JIT

modified componentmodified component

unmodified component

new componentnew component

execution events

compiled code

trace side exit
elimination

trace side exit
elimination
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Our Trace-JIT Architecture

Tracing runtime

interpreterinterpreter

trace (Java bytecode)

trace selection
engine

trace selection
engine

IR generatorIR generator optimizersoptimizers

code generatorcode generator

trace dispatchertrace dispatcher garbage collector

code cachecode cache

class libraries

hash maphash map

(e.g. compiled code address)

Java VM

Trace-JIT

modified componentmodified component

unmodified component

new componentnew component

execution events

compiled code

trace side exit
elimination

trace side exit
elimination

Java stack design 
compatible with 

interpreter

to reduce overhead 
in JIT ↔ interpreter

transitions
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Our Trace-JIT Architecture

Tracing runtime

interpreterinterpreter

trace (Java bytecode)

trace selection
engine

trace selection
engine

IR generatorIR generator optimizersoptimizers

code generatorcode generator

trace dispatchertrace dispatcher garbage collector

code cachecode cache

class libraries

Java VM

modified componentmodified component

unmodified component

new componentnew component

execution events

compiled code
Trace-JIT

trace side exit
elimination

trace side exit
elimination

hash maphash map

(e.g. compiled code address)
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Technical challenge in reusing a method-based 
compiler for trace-JIT

� In method-JIT, 
– local variables must be dead at the start and the end of 

compilation scope

� In trace-JIT
– local variables may live at the start and the end of compilation 

scope

ÎLive range of local variables does not match with compilation 
scope in trace-JIT

Scope mismatch problem
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Solving the scope mismatch problem

� dead store elimination (DSE) as an example

void prepend(e) {
p = head;
do {

tail = p;
p = p->next;

} while (p != NULL);
tail->next = e;
e->next = NULL;

}

Is this dead store?
(no use in the trace)

Ð
No!

compilation scope
(= trace)

we analyze outside the 
compilation scope to identify 

liveness at the end of 
compilation scope



16

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Analyze outside the compilation scope 
� We identify all live variables at each compilation scope boundary point

– trace head, trace exit points
� For each boundary point, we analyze the method that includes the point

– mostly in live range analyzer and use-def analyzer in the framework, 
not in each optimizer

method 1
Web

Container

ok?

search for a 
handler

error!

printlog?

method 2
JavaServer
Pages

ok?

search for a 
bean

error!

printlog?

method 3
Enterprise
JavaBeans

ok?

create an 
SQL

error!

printlog?

method 4
JDBC
Driver

ok?

send the 
SQL to DB

error!

printlog?

exit

exit

exit

exit

exit

exit

exit

exit

exit

entry
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Our Trace-JIT Architecture

Tracing runtime

interpreterinterpreter

trace (Java bytecode)

trace selection
engine

trace selection
engine

IR generatorIR generator optimizersoptimizers

code generatorcode generator

trace dispatchertrace dispatcher garbage collector

code cachecode cache

class libraries

hash maphash map

(e.g. compiled code address)

Java VM

Trace-JIT

modified componentmodified component

unmodified component

new componentnew component

execution events

compiled code

trace side exit
elimination

trace side exit
elimination

Apply simple one-path value 
propagation to exploit simple 

topologies of traces

It removes potential side exits 
to reduce IR tree size and 

compilation time 
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Our techniques to reduce overhead

� Hash Lookup Reduction Using a Shadow Array
– Allocate a shadow array for each method to store information 

corresponding to each bytecode (e.g. start address of compiled 
trace starting from that bytecode)

– Lookup the shadow array instead of slow global hash map

� JNI inclusion
– Include certain JNI methods into traces and call JNIs from 

traces directly

– Reduced trace enter/exit overhead

– Some recognized JNI methods are further optimized (inlined)
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Our Trace-JIT Architecture

Tracing runtime

interpreterinterpreter

trace (Java bytecode)

trace selection
engine

trace selection
engine

IR generatorIR generator optimizersoptimizers

code generatorcode generator

trace dispatchertrace dispatcher garbage collector

code cachecode cache

class libraries

hash maphash map

(e.g. compiled code address)

Java VM

Trace-JIT

modified componentmodified component

unmodified component

new componentnew component

execution events

compiled code

trace side exit
elimination

trace side exit
elimination

key: bytecode 
address
Ð

value:
z start address of 

the compiled code 
z counter to identify 

hot trace head
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Shadow Array

� shadow array is allocated for each method 
lazily (we allocate it on demand)

� the shadow array entry corresponding to a 
bytecode index can be easily found 
without hash calculation.

getfield
Ç

Ç

aload0

bytecodes
1 byte / entry

method structure

name/signature

���

length
bytecodes

shadowArray

ireturn

NULL
NULL
NULL

start address of compiled code

NULL

le
ng

th

shadow array
4 bytes / entry

le
ng

th
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Outline

� Motivation
� Background
� Trace-JIT Architecture
� Performance Evaluation
� Future work and Summary
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Performance Evaluation

� Hardware: IBM BladeCenter JS22
– 4 cores (8 SMT threads) of POWER6 4.0GHz 
– 16 GB system memory

� Software:
– AIX 6.1
– Method-JIT: IBM JDK for Java 6 (32 bit)
– Trace-JIT: Our Trace-JIT based on the same IBM JDK 

• used only standard optimization level (-Xjit:optlevel=warm)
• 512 MB Java heap with large page enabled
• generational garbage collector (gencon)

� Benchmark: 
– DaCapo benchmark suite 9.12
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Steady state performance
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� Trace-JIT was 22% slower to 26% faster than method-JIT 
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Execution time breakdown
jython avrora tomcat
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JIT-compiled code

☺ Trace-JIT often (not always) shows better JITted code performance (blue parts)
/ Trace-JIT incurs larger runtime overhead (orange parts)
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Execution time breakdown by trace length 
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these long traces typically crossed 80+ method boundaries
Ð

more inlining effect than method-JIT with inlining
Ð

larger compilation scope yields
☺ less runtime overhead due to transition
☺ more compiler optimization opportunities



26

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

0.0

10.0

20.0

30.0

40.0

50.0

60.0

av
ror

a
ba

tik
ec

lip
se fop h2

jyt
ho

n
lui

nd
ex

lus
ea

rch pm
d

su
nfl

ow
tom

ca
t

tra
de

be
an

s
xa

lan
ge

om
ea

n

av
er

ag
e 

nu
m

be
r o

f m
et

ho
d 

bo
un

da
rie

s 
.

 in
cl

ud
ed

 in
 o

ne
 c

om
pi

la
tio

n 
sc

op
e method-JIT

our trace-JIT

Inlining effect of trace JIT 
(number of method boundaries included in one trace)

Trace-JIT provides larger compilation scope than method-JIT with inlining
☺ Less method invocation overhead, more compiler optimization opportunities
/ Potentially larger JITted code size due to duplicated code among traces
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Compiled code size
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/ The larger code size was mainly caused by the duplicated codes among traces
☺ On the positive side, traces include only frequently executed code sequence

geomean:
trace-JIT 
generated
10% more 
code

4.9
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Effect of hash lookup reduction using a shadow array

� improved performance by 27.4% on average
� using additional memory space: 1.3 MB on average and up to 6.8 

MB (tomcat)
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trace-JIT without JNI inclusion

Effect of JNI inclusion

� improved performance by up to 2.7x (for sunflow) and about 15% 
on average
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Outline

� Motivation
� Background
� Trace-JIT Architecture
� Performance Evaluation
� Future work and Summary
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Optimization opportunities and challenges

� Opportunities
– Potentially larger compilation scope than method-JIT
– Simple control flow

• main path of a trace is a very large extended basic block
– Explicit control flow

• like method inlining
– More specialization

• type specialization, value specialization etc

� Challenges
– Interaction between trace selection and optimizations

• e.g. Loop optimizations
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Future work: Effective Loop Optimization in trace-JIT

� More loop optimizations in trace-JIT
– backward-branch-based cyclic trace identification is not suitable 

for loop optimizations
Îneed to enhance trace selection algorithm to maximize the 

optimization opportunities

...
iconst_0
istore_1

loop: iload_1
iconst_4
if_icmpge exit
iinc 2, 1
iinc 1, 1
goto loop

exit: ...

Java code:
for (int i=0; i<4; i++) {

j ++;
}

a cyclic trace

backw
ard

branch

loop preheader
(e.g. initialization of loop variable)
is not included in a cyclic trace.
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Summary

� We implemented trace-based Java JIT compiler based on the 
existing method-based JIT compiler

– handling scope mismatch problem
– reducing runtime overhead

� Our trace-JIT achieved almost comparable performance to mature 
method-JIT with almost same set opt optimizations

– better JITted code performance in trade for larger runtime 
overhead

– generating longer trace is a key to superior performance

Refer to the paper for
9our new runtime overhead reduction techniques 
9more detailed comparisons including code size, compilation time and so on


