
IBM Research - Tokyo

April 6, 2011 | CGO at Chamonix, France © 2011 IBM Corporation

A Trace-based Java JIT Compiler
Retrofitted from a Method-based Compiler

Hiroshi Inoue†, Hiroshige Hayashizaki†,
Peng Wu‡ and Toshio Nakatani†
† IBM Research – Tokyo
‡ IBM Research – T.J. Watson Research Center

2

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Goal and Motivation

� Goals
1. develop an efficient trace-based Java JIT compiler (trace-JIT)

based on existing mature method-based JIT compiler (method-JIT)

2. understand the benefits and drawbacks of the trace-JIT against the
method-JIT

� Why not method-JIT?
– Limited optimization opportunities in larger application with a flat

execution profile (no hot spots)

ÎCan trace-JIT provide more optimization opportunities than
method-JIT for such applications?

3

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Background: Trace-based Compilation

� Using a Trace, a hot path identified at runtime, as a basic unit of
compilation

method fmethod entry

a hot path

if (x != 0)

frequently
executed

while (!end)

trace exit

trace exit
(side exit)

trace entry trace A

return include a hot
path only

if (x != 0)

rarely
executed

while (!end)

do something

frequently
executed

4

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Motivating Example
� A trace can span multiple methods

– Free from method boundaries
– In large server workloads, there are deep (>100) layers of methods

method 1
Web

Container

ok?

search for a
handler

error!

printlog?

method 2
JavaServer
Pages

ok?

search for a
bean

error!

printlog?

method 3
Enterprise
JavaBeans

ok?

create an
SQL

error!

printlog?

method 4
JDBC
Driver

ok?

send the
SQL to DB

error!

printlog?

5

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Outline

� Motivation
� Background
� Trace-JIT Architecture
� Performance Evaluation
� Future work and Summary

6

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Baseline Method-JIT Components

interpreterinterpreter

IR generatorIR generator optimizersoptimizers

code generatorcode generator

compiled method
dispatcher

compiled method
dispatcher garbage collector

code cachecode cache

class libraries

Java VM

compiled code
Method-JIT

compilation request
for frequently executed methods

7

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Our Trace-JIT Architecture

Tracing runtime

interpreterinterpreter

trace (Java bytecode)

trace selection
engine

trace selection
engine

IR generatorIR generator optimizersoptimizers

code generatorcode generator

trace dispatchertrace dispatcher garbage collector

code cachecode cache

class libraries

hash maphash map

(e.g. compiled code address)

Java VM

Trace-JIT

modified componentmodified component

unmodified component

new componentnew component

execution events

compiled code

trace side exit
elimination

trace side exit
elimination

8

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Our Trace-JIT Architecture

Tracing runtime

interpreterinterpreter

trace (Java bytecode)

trace selection
engine

trace selection
engine

IR generatorIR generator optimizersoptimizers

code generatorcode generator

trace dispatchertrace dispatcher garbage collector

code cachecode cache

class libraries

hash maphash map

(e.g. compiled code address)

Java VM

Trace-JIT

modified componentmodified component

unmodified component

new componentnew component

execution events

compiled code

trace side exit
elimination

trace side exit
elimination

modified to call a
hook at control-flow

events

z branch
z method invoke
z method return
z exception

9

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Our Trace-JIT Architecture

Tracing runtime

interpreterinterpreter

trace (Java bytecode)

trace selection
engine

trace selection
engine

IR generatorIR generator optimizersoptimizers

code generatorcode generator

trace dispatchertrace dispatcher garbage collector

code cachecode cache

class libraries

hash maphash map

(e.g. compiled code address)

Java VM

Trace-JIT

modified componentmodified component

unmodified component

new componentnew component

execution events

compiled code

trace side exit
elimination

trace side exit
elimination

AA

BB

exit

exit

z linear trace

AA

BB

exit

z cyclic trace

stub stub

identify two types of hot paths

10

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Trace Selection

1. Identify a hot trace head
� a taken target of a backward branch

� a bytecode that follows a exit point of an existing trace
2. Record next execution path starting from the trace head
3. Stop recording when the trace being recorded:
� forms a cycle (with our false loop filtering)

� executes a backward branch

� calls or returns to a JNI (native) method

� throws an exception

� reaches pre-defined maximum length (128 basic blocks)

11

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Our Trace-JIT Architecture

Tracing runtime

interpreterinterpreter

trace (Java bytecode)

trace selection
engine

trace selection
engine

IR generatorIR generator optimizersoptimizers

code generatorcode generator

trace dispatchertrace dispatcher garbage collector

code cachecode cache

class libraries

hash maphash map

(e.g. compiled code address)

Java VM

Trace-JIT

modified componentmodified component

unmodified component

new componentnew component

execution events

compiled code

trace side exit
elimination

trace side exit
elimination

12

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Our Trace-JIT Architecture

Tracing runtime

interpreterinterpreter

trace (Java bytecode)

trace selection
engine

trace selection
engine

IR generatorIR generator optimizersoptimizers

code generatorcode generator

trace dispatchertrace dispatcher garbage collector

code cachecode cache

class libraries

hash maphash map

(e.g. compiled code address)

Java VM

Trace-JIT

modified componentmodified component

unmodified component

new componentnew component

execution events

compiled code

trace side exit
elimination

trace side exit
elimination

Java stack design
compatible with

interpreter

to reduce overhead
in JIT ↔ interpreter

transitions

13

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Our Trace-JIT Architecture

Tracing runtime

interpreterinterpreter

trace (Java bytecode)

trace selection
engine

trace selection
engine

IR generatorIR generator optimizersoptimizers

code generatorcode generator

trace dispatchertrace dispatcher garbage collector

code cachecode cache

class libraries

Java VM

modified componentmodified component

unmodified component

new componentnew component

execution events

compiled code
Trace-JIT

trace side exit
elimination

trace side exit
elimination

hash maphash map

(e.g. compiled code address)

14

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Technical challenge in reusing a method-based
compiler for trace-JIT

� In method-JIT,
– local variables must be dead at the start and the end of

compilation scope

� In trace-JIT
– local variables may live at the start and the end of compilation

scope

ÎLive range of local variables does not match with compilation
scope in trace-JIT

Scope mismatch problem

15

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Solving the scope mismatch problem

� dead store elimination (DSE) as an example

void prepend(e) {
p = head;
do {

tail = p;
p = p->next;

} while (p != NULL);
tail->next = e;
e->next = NULL;

}

Is this dead store?
(no use in the trace)

Ð
No!

compilation scope
(= trace)

we analyze outside the
compilation scope to identify

liveness at the end of
compilation scope

16

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Analyze outside the compilation scope
� We identify all live variables at each compilation scope boundary point

– trace head, trace exit points
� For each boundary point, we analyze the method that includes the point

– mostly in live range analyzer and use-def analyzer in the framework,
not in each optimizer

method 1
Web

Container

ok?

search for a
handler

error!

printlog?

method 2
JavaServer
Pages

ok?

search for a
bean

error!

printlog?

method 3
Enterprise
JavaBeans

ok?

create an
SQL

error!

printlog?

method 4
JDBC
Driver

ok?

send the
SQL to DB

error!

printlog?

exit

exit

exit

exit

exit

exit

exit

exit

exit

entry

17

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Our Trace-JIT Architecture

Tracing runtime

interpreterinterpreter

trace (Java bytecode)

trace selection
engine

trace selection
engine

IR generatorIR generator optimizersoptimizers

code generatorcode generator

trace dispatchertrace dispatcher garbage collector

code cachecode cache

class libraries

hash maphash map

(e.g. compiled code address)

Java VM

Trace-JIT

modified componentmodified component

unmodified component

new componentnew component

execution events

compiled code

trace side exit
elimination

trace side exit
elimination

Apply simple one-path value
propagation to exploit simple

topologies of traces

It removes potential side exits
to reduce IR tree size and

compilation time

18

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Our techniques to reduce overhead

� Hash Lookup Reduction Using a Shadow Array
– Allocate a shadow array for each method to store information

corresponding to each bytecode (e.g. start address of compiled
trace starting from that bytecode)

– Lookup the shadow array instead of slow global hash map

� JNI inclusion
– Include certain JNI methods into traces and call JNIs from

traces directly

– Reduced trace enter/exit overhead

– Some recognized JNI methods are further optimized (inlined)

19

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Our Trace-JIT Architecture

Tracing runtime

interpreterinterpreter

trace (Java bytecode)

trace selection
engine

trace selection
engine

IR generatorIR generator optimizersoptimizers

code generatorcode generator

trace dispatchertrace dispatcher garbage collector

code cachecode cache

class libraries

hash maphash map

(e.g. compiled code address)

Java VM

Trace-JIT

modified componentmodified component

unmodified component

new componentnew component

execution events

compiled code

trace side exit
elimination

trace side exit
elimination

key: bytecode
address
Ð

value:
z start address of

the compiled code
z counter to identify

hot trace head

20

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Shadow Array

� shadow array is allocated for each method
lazily (we allocate it on demand)

� the shadow array entry corresponding to a
bytecode index can be easily found
without hash calculation.

getfield
Ç

Ç

aload0

bytecodes
1 byte / entry

method structure

name/signature

���

length
bytecodes

shadowArray

ireturn

NULL
NULL
NULL

start address of compiled code

NULL

le
ng

th

shadow array
4 bytes / entry

le
ng

th

21

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Outline

� Motivation
� Background
� Trace-JIT Architecture
� Performance Evaluation
� Future work and Summary

22

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Performance Evaluation

� Hardware: IBM BladeCenter JS22
– 4 cores (8 SMT threads) of POWER6 4.0GHz
– 16 GB system memory

� Software:
– AIX 6.1
– Method-JIT: IBM JDK for Java 6 (32 bit)
– Trace-JIT: Our Trace-JIT based on the same IBM JDK

• used only standard optimization level (-Xjit:optlevel=warm)
• 512 MB Java heap with large page enabled
• generational garbage collector (gencon)

� Benchmark:
– DaCapo benchmark suite 9.12

23

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Steady state performance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

av
ror

a
ba

tik
ec

lip
se fop h2

jyt
ho

n
lui

nd
ex

lus
ea

rch pm
d

su
nfl

ow
tom

ca
t

tra
de

be
an

s
xa

lan
ge

om
ea

n

re
la

tiv
e

pe
rfo

rm
an

ce
 o

ve
r m

et
ho

d-
JI

T
 .

method-JIT
our trace-JIT

hi
gh

er
 is

 fa
st

er

� Trace-JIT was 22% slower to 26% faster than method-JIT

24

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Execution time breakdown
jython avrora tomcat

sh
or

te
r i

s
fa

st
er

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

method-JIT trace-JIT

no
rm

al
iz

ed
 C

P
U

 ti
m

e .

0.0

0.1

0.2

0.3

0.4
0.5

0.6

0.7

0.8

0.9

1.0

method-JIT trace-JIT

no
rm

al
iz

ed
 C

P
U

 ti
m

e .

0.0

0.1

0.2
0.3

0.4

0.5

0.6

0.7
0.8

0.9

1.0

method-JIT trace-JIT

no
rm

al
iz

ed
 C

P
U

 ti
m

e .

OS Kernel

GC

Runtime

Native library

JIT-compiled code

☺ Trace-JIT often (not always) shows better JITted code performance (blue parts)
/ Trace-JIT incurs larger runtime overhead (orange parts)

25

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Execution time breakdown by trace length

0.00

0.05

0.10

0.15
no

rm
al

iz
ed

 C
P

U
 ti

m
e

cyclic trace
linear trace

0.00

0.10

0.20

0.30

0.40

no
rm

al
iz

ed
 C

P
U

 ti
m

e

cyclic trace
linear trace

0.00

0.10

0.20

0.30

0.40

no
rm

al
iz

ed
 C

P
U

 ti
m

e

cyclic trace
linear trace

0 500 1000 1500 2000

trace length in number of Java bytecodes longer traceshorter trace

jython

avrora

tomcat

these long traces typically crossed 80+ method boundaries
Ð

more inlining effect than method-JIT with inlining
Ð

larger compilation scope yields
☺ less runtime overhead due to transition
☺ more compiler optimization opportunities

26

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

0.0

10.0

20.0

30.0

40.0

50.0

60.0

av
ror

a
ba

tik
ec

lip
se fop h2

jyt
ho

n
lui

nd
ex

lus
ea

rch pm
d

su
nfl

ow
tom

ca
t

tra
de

be
an

s
xa

lan
ge

om
ea

n

av
er

ag
e

nu
m

be
r o

f m
et

ho
d

bo
un

da
rie

s
.

 in
cl

ud
ed

 in
 o

ne
 c

om
pi

la
tio

n
sc

op
e method-JIT

our trace-JIT

Inlining effect of trace JIT
(number of method boundaries included in one trace)

Trace-JIT provides larger compilation scope than method-JIT with inlining
☺ Less method invocation overhead, more compiler optimization opportunities
/ Potentially larger JITted code size due to duplicated code among traces

27

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Compiled code size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

av
ror

a
ba

tik
ec

lip
se fop h2

jyt
ho

n
lui

nd
ex

lus
ea

rch pm
d

su
nfl

ow
tom

ca
t

tra
de

be
an

s
xa

lan
ge

om
ea

n

re
la

tiv
e

co
m

pi
le

d
co

de
 s

iz
e

ov
er

 m
et

ho
d-

JI
T.

method-JIT

our trace-JIT

sh
or

te
r i

s
be

tte
r

/ The larger code size was mainly caused by the duplicated codes among traces
☺ On the positive side, traces include only frequently executed code sequence

geomean:
trace-JIT
generated
10% more
code

4.9

28

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

av
ror

a
ba

tik
ec

lip
se fop h2

jyt
ho

n
lui

nd
ex

lus
ea

rch pm
d

su
nfl

ow
tom

ca
t

tra
de

be
an

s
xa

lan
ge

om
ea

nre
la

tiv
e

pe
rfo

rm
an

ce
 o

ve
r m

et
ho

d-
JI

T .

trace-JIT
trace-JIT without shadow array

Effect of hash lookup reduction using a shadow array

� improved performance by 27.4% on average
� using additional memory space: 1.3 MB on average and up to 6.8

MB (tomcat)

hi
gh

er
 is

 fa
st

er

29

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

av
ror

a
ba

tik
ec

lip
se fop h2

jyt
ho

n
lui

nd
ex

lus
ea

rch pm
d

su
nfl

ow
tom

ca
t

tra
de

be
an

s
xa

lan
ge

om
ea

nre
la

tiv
e

pe
rfo

rm
an

ce
 o

ve
r m

et
ho

d-
JI

T .

trace-JIT
trace-JIT without JNI inclusion

Effect of JNI inclusion

� improved performance by up to 2.7x (for sunflow) and about 15%
on average

hi
gh

er
 is

 fa
st

er

30

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Outline

� Motivation
� Background
� Trace-JIT Architecture
� Performance Evaluation
� Future work and Summary

31

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Optimization opportunities and challenges

� Opportunities
– Potentially larger compilation scope than method-JIT
– Simple control flow

• main path of a trace is a very large extended basic block
– Explicit control flow

• like method inlining
– More specialization

• type specialization, value specialization etc

� Challenges
– Interaction between trace selection and optimizations

• e.g. Loop optimizations

32

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Future work: Effective Loop Optimization in trace-JIT

� More loop optimizations in trace-JIT
– backward-branch-based cyclic trace identification is not suitable

for loop optimizations
Îneed to enhance trace selection algorithm to maximize the

optimization opportunities

...
iconst_0
istore_1

loop: iload_1
iconst_4
if_icmpge exit
iinc 2, 1
iinc 1, 1
goto loop

exit: ...

Java code:
for (int i=0; i<4; i++) {

j ++;
}

a cyclic trace

backw
ard

branch

loop preheader
(e.g. initialization of loop variable)
is not included in a cyclic trace.

33

IBM Research - Tokyo

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

Summary

� We implemented trace-based Java JIT compiler based on the
existing method-based JIT compiler

– handling scope mismatch problem
– reducing runtime overhead

� Our trace-JIT achieved almost comparable performance to mature
method-JIT with almost same set opt optimizations

– better JITted code performance in trade for larger runtime
overhead

– generating longer trace is a key to superior performance

Refer to the paper for
9our new runtime overhead reduction techniques
9more detailed comparisons including code size, compilation time and so on

