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Goal and Motivation

= Goals

1. develop an efficient trace-based Java JIT compiler (trace-JIT)
based on existing mature method-based JIT compiler (method-JIT)

2. understand the benefits and drawbacks of the trace-JIT against the
method-JIT

= Why not method-JIT?

— Limited optimization opportunities in larger application with a flat
execution profile (no hot spots)

=» Can trace-JIT provide more optimization opportunities than
method-JIT for such applications?
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Background: Trace-based Compilation

= Using a Trace, a hot path identified at runtime, as a basic unit of
compilation

method entry LEAER trace entry trace A

\—> -l if (x 1= 0)
rarely tra(A:’e/exit frequently
executed (side exit) executed
whilef! --~q{while (!end)
do somethind
v :
return trace exit include a hot

path only
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Motivating Example

= A trace can span multiple methods
— Free from method boundaries
— In large server workloads, there are deep (>100) layers of methods

method | method 2 method 3 method 4

Web JavaServer Enterprise JDBC
Container Pages JavaBeans Driver

4 b error! € b error! q b error! 4 b error!
sefrch for g sefirch for a cgeate an send the
handler bean SQL SQL to DB

¢ b print ¢ b print ¢ b print ¢ » print

( @< o 9 <
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Outline

= Motivation

= Background

= Trace-JIT Architecture

= Performance Evaluation

= Future work and Summary
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Baseline Method-JIT Components

’Java VM ~N
- compiled method ] ( )
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[ interpreter H dispatcher | 9 g J
‘ class libraries
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for frequently executed methods code CacheJ
Method-JIT ~ A
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Our Trace-JIT Architecture
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Our Trace-JIT Architecture
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Our Trace-JIT Architecture
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Trace Selection

1. ldentify a hot trace head

a taken target of a backward branch

a bytecode that follows a exit point of an existing trace

2. Record next execution path starting from the trace head
3. Stop recording when the trace being recorded:

forms a cycle (with our false loop filtering)
executes a backward branch

calls or returns to a JNI (native) method
throws an exception

reaches pre-defined maximum length (128 basic blocks)
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Our Trace-JIT Architecture

’Java VM ~
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Our Trace-JIT Architecture
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Our Trace-JIT Architecture
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Technical challenge in reusing a method-based
compiler for trace-JIT

/ Scope mismatch problem \

= |In method-JIT,

— local variables must be dead at the start and the end of
compilation scope

= |n trace-JIT

— local variables may live at the start and the end of compilation
scope

=»Live range of local variables does not match with compilation

k scope in trace-JIT /
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Solving the scope mismatch problem

= dead store elimination (DSE) as an example

Is this dead store?
(no use in the trace)

void prepend(e) { v
p = head:; No!
do { A
tail = p; compilation scope
p = p->next; (= trace)
} while (p != NULL);
tail->next = e; A
e->next = NULL; we analyze outside the
1 v compilation scope to identify

liveness at the end of
compilation scope
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Analyze outside the compilation scope

= We identify all live variables at each compilation scope boundary point
— trace head, trace exit points
= For each boundary point, we analyze the method that includes the point
— mostly in live range analyzer and use-def analyzer in the framework,
not in each optimizer

entry
method | method 2 method 3 method 4
I *Neb . lav-Server . Er-=rprise MBC
exit exit exit —

exit —

: , . oiror! B airor! : , . oiror! : oo wiror!
[ [ | L |
nd the
handler SQ@L to DB
exit ot

exit
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Our Trace-JIT Architecture

’Java VM ~

[ interpreter ](—) trace dispatcher garbage collector

| class libraries

\ execution events —)
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Our techniques to reduce overhead

= Hash Lookup Reduction Using a Shadow Array

— Allocate a shadow array for each method to store information
corresponding to each bytecode (e.g. start address of compiled
trace starting from that bytecode)

— Lookup the shadow array instead of slow global hash map

= JNI inclusion

— Include certain JNI methods into traces and call JNIs from
traces directly

— Reduced trace enter/exit overhead
— Some recognized JNI methods are further optimized (inlined)
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Our Trace-JIT Architecture

’Java VM ~
[ interpreter ](—) trace dispatcher | garbage collector |
| class libraries
\ execution events —)
Tracing runtimey \
e
glne address
trace (Java bvtecode (e.g. compiled code address) \ *
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v x ! hot trace head ;
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Shadow Array

method structure

name/signature

length

bytecodes

shadowArray

bytecodes

1 byte / entry
<>

aload0
getfield
N
N

ireturn

length

length

= shadow array is allocated for each method
lazily (we allocate it on demand)

= the shadow array entry corresponding to a
bytecode index can be easily found
without hash calculation.

shadow array

4 bytes / entry

start address of compiled code

NULL

NULL

NULL

NULL
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Outline

= Motivation

= Background

= Trace-JIT Architecture

= Performance Evaluation

= Future work and Summary

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation




IBM Research - Tokyo

Performance Evaluation

= Hardware: IBM BladeCenter JS22
— 4 cores (8 SMT threads) of POWERG 4.0GHz
— 16 GB system memory

= Software:
— AIX 6.1

— Method-JIT: IBM JDK for Java 6 (32 bit)

— Trace-JIT: Our Trace-JIT based on the same IBM JDK

+ used only standard optimization level (-Xjit:optlevel=warm)
* 512 MB Java heap with large page enabled
* generational garbage collector (gencon)

= Benchmark:

— DaCapo benchmark suite 9.12
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Steady state performance
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= Trace-JIT was 22% slower to 26% faster than method-JIT
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Execution time breakdown
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© Trace-JIT often (not always) shows better JITted code performance (blue parts)
@ Trace-JIT incurs larger runtime overhead (orange parts)
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Execution time breakdown by trace length
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Inlining effect of trace JIT
(number of method boundaries included in one trace)

60.0

B method-JIT
50.0 W our trace-JIT |

40.0 |

30.0

20.0

10.0

0.0

average number of method boundaries .
included in one compilation scope

o o .
NN

Trace-JIT provides larger compilation scope than method-JIT with inlining
© Less method invocation overhead, more compiler optimization opportunities
® Potentially larger JITted code size due to duplicated code among traces
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Compiled code size
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@ The larger code size was mainly caused by the duplicated codes among traces
© On the positive side, traces include only frequently executed code sequence
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Effect of hash lookup reduction using a shadow array
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relative performance over method-JIT
o

= improved performance by 27.4% on average
= using additional memory space: 1.3 MB on average and up to 6.8
MB (tomcat)
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Effect of JNI inclusion

1.4

M trace-JIT

g/‘\ 1.2 w trace-J1T without JNI inclusion
&

” 1.0 -

2 0.8

(@))

I

o
~

O
N

relative performance over method-JIT
o
D

@ F L K ¢
@4«0 @ @é\Q A

= improved performance by up to 2.7x (for sunflow) and about 15%
on average
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» Future work and Summary
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Optimization opportunities and challenges

= Opportunities
— Potentially larger compilation scope than method-JIT

— Simple control flow
* main path of a trace is a very large extended basic block

— Explicit control flow
* like method inlining
— More specialization
* type specialization, value specialization etc

= Challenges
— Interaction between trace selection and optimizations

* e.g. Loop optimizations

© 2011 IBM Corporation
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Future work: Effective Loop Optimization in trace-JIT

= More loop optimizations in trace-JIT
— backward-branch-based cyclic trace identification is not suitable
for loop optimizations

-»need to enhance trace selection algorithm to maximize the
optimization opportunities

loop: iload_1 <<

m -
iconst_4 o o Java code:
o : oo ‘g . . .
if_icmpge exit (g2 = for (int[i805 i<4; i++) {
iinc 2,1 o3 i j ++;
s 5
iinc 1,1 a3 = }

()

goto loop _
exit:
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Summary

= We implemented trace-based Java JIT compiler based on the
existing method-based JIT compiler

— handling scope mismatch problem
— reducing runtime overhead

= Qur trace-JIT achieved almost comparable performance to mature
method-JIT with almost same set opt optimizations

— better JITted code performance in trade for larger runtime
overhead

— generating longer trace is a key to superior performance

Refer to the paper for
our new runtime overhead reduction techniques

more detailed comparisons including code size, compilation time and so on
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