.|||

IBM Research - Tokyo

A Trace-based Java JIT Compiler / | -‘i:'
Retrofitted from a Method-based Complle .

—

Hiroshi Inoue’, Hiroshige Hayashlzakl’f,

Peng Wu# and Toshio Nakatani® ™ = &
T IBM Research — Tokyo |

I IBM Research — T.J. Watson Research G”

April 6, 2011 | CGO at Chamonix, France © 2011 IBM Corporation

IBM Research - Tokyo

Goal and Motivation

= Goals

1. develop an efficient trace-based Java JIT compiler (trace-JIT)
based on existing mature method-based JIT compiler (method-JIT)

2. understand the benefits and drawbacks of the trace-JIT against the
method-JIT

= Why not method-JIT?

— Limited optimization opportunities in larger application with a flat
execution profile (no hot spots)

=» Can trace-JIT provide more optimization opportunities than
method-JIT for such applications?

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

IBM Research - Tokyo

Background: Trace-based Compilation

= Using a Trace, a hot path identified at runtime, as a basic unit of
compilation

method entry LEAER trace entry trace A

\—> -l if (x 1= 0)
rarely tra(A:’e/exit frequently
executed (side exit) executed
whilef! --~q{while (!end)
do somethind
v :
return trace exit include a hot

path only

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

[[m]]
1|
||\I

I

IBM Research - Tokyo

Motivating Example

= A trace can span multiple methods
— Free from method boundaries
— In large server workloads, there are deep (>100) layers of methods

method | method 2 method 3 method 4

Web JavaServer Enterprise JDBC
Container Pages JavaBeans Driver

4 b error! € b error! q b error! 4 b error!
sefrch for g sefirch for a cgeate an send the
handler bean SQL SQL to DB

¢ b print ¢ b print ¢ b print ¢ » print

(@< o 9 <

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 I1BM Corporation

IBM Research - Tokyo

Outline

= Motivation

= Background

= Trace-JIT Architecture

= Performance Evaluation

= Future work and Summary

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

IBM Research - Tokyo

Baseline Method-JIT Components

’Java VM ~N
- compiled method] ()
: arbage collector
[interpreter H dispatcher | 9 g J
‘ class libraries
\§ | “)
compilation request I
for frequently executed methods code CacheJ
Method-JIT ~ A
- N compiled code
code generator '
v , x :
[IR generator]—) optimizers
K _))

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

IBM Research - Tokyo

Our Trace-JIT Architecture

_

’Java VM

[interpreter](—) trace dispatcher

execution events

\
| garbage collector |

class libraries

—

\

'Tracmg runtlmeV Y ~N

T

trace selection
. <> hash ma <
engine P _

trace (Java bytecode) (e.g. compiled code address)

Trace-JIT

code cache

compiled code

v) 1\
trgﬁﬁ]isri]gﬁ Oeri(it code generator
N2 : A)
[IR generator]—) optimizers)

new component

modified component

| unmodified component |

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

IBM Research - Tokyo

Our Trace-JIT Architecture

/ modified to call a\

’Java VM

[[interpreter

hook at control-flow
events

Trace-JIT

2

~N

\

rbage collector

execution events e branch Class libraries s
_ . ,
Tracing runtime » method invoke
| racing - » method return .
race seilecton :
: exception >
engine <—>l; P / ode cache’
| _ -
k trace (Java bytecode) (e.g. compiled code address)) T

compiled code

A

\
trace side exit i)
RN R T) code generator)

modified component

[IR generator]—) optimizers , ‘
- - “) | unmodified component |

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler

© 2011 IBM Corporation

IBM Research - Tokyo

Our Trace-JIT Architecture

_

’Java VM

[interpreter

l“ e linear trace

execution events

!

y 4

L

/Tracing runtime
[

trace selection —%—
1] \\\\
engine — .

\4

|
trace (Java bytecode)

A

B

(e.

_

Trace-JIT

v P
A
elimination exit \l/

exitV

2

e cyclic trace :]

4\L

A

B

~
~
~
~
~
~
!
1

stub

exit \

/ identify two types of hot pathﬁ_\

[/

_jm

[IR generator]—) optimizers] J

modified component

| unmodified component |

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler

© 2011 IBM Corporation

IBM Research - Tokyo

Trace Selection

1. ldentify a hot trace head

a taken target of a backward branch

a bytecode that follows a exit point of an existing trace

2. Record next execution path starting from the trace head
3. Stop recording when the trace being recorded:

forms a cycle (with our false loop filtering)
executes a backward branch

calls or returns to a JNI (native) method
throws an exception

reaches pre-defined maximum length (128 basic blocks)

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

IBM Research - Tokyo

Our Trace-JIT Architecture

’Java VM ~

[interpreter](—) trace dispatcher garbage collector

| . .

- class libraries
execution events pu
_)

Tracing runtimey 7 N \
trace selection N hash map < code cache
engine ~ >

| ,
k trace (Java bytecode) (e.g. compiled code address)J T

compiled code
/ Trace-JIT 7 \\

trace side exit i)
RN R T) code generator)
v x

[IR generator]—) optimizers , ‘
- - *)j | unmodified component |

modified component

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

IBM Research - Tokyo

Our Trace-JIT Architecture

’Java VM
[interpreter]<—> trace dispatcher / \

| Java stack design
_ execution events compatible with

Tracmg runtimey, interpreter
trace selectlon —
englne hash map to reduce overhead

t J b d (e.g. compiled code address inJIT < ’{7?9" preter
. et) transitions

Trace-JIT /. /
trzﬁﬁ]ﬁgﬁoeﬁ It [code generator J
- :

14 an

a2 N

[IR generator]—) optimizers ,)
: *) | unmodified component |

modified component

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

IBM Research - Tokyo

Our Trace-JIT Architecture

’Java VM

\ execution events

[interpreter](—) trace dispatcher

\
| garbage collector |

class libraries

—

Tracing runtimeV
[

|
- trace (Java bytecode)

(e.g. compiled code address)

Y

trace selection
. <> hash ma <
engine P _

~N

T

Trace-JIT

code cache

|

compiled code

L

v)
trgﬁﬁ]isr'lgﬁ oeri(lt code generator
¥ - A :
k [[IR generator]]—{ optimizers

new component

modified component

| unmodified component |

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

IBM Research - Tokyo

Technical challenge in reusing a method-based
compiler for trace-JIT

/ Scope mismatch problem \

= |In method-JIT,

— local variables must be dead at the start and the end of
compilation scope

= |n trace-JIT

— local variables may live at the start and the end of compilation
scope

=»Live range of local variables does not match with compilation

k scope in trace-JIT /

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

IBM Research - Tokyo

Solving the scope mismatch problem

= dead store elimination (DSE) as an example

Is this dead store?
(no use in the trace)

void prepend(e) { v
p = head:; No!
do { A
tail = p; compilation scope
p = p->next; (= trace)
} while (p != NULL);
tail->next = e; A
e->next = NULL; we analyze outside the
1 v compilation scope to identify

liveness at the end of
compilation scope

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

IBM Research - Tokyo

Analyze outside the compilation scope

= We identify all live variables at each compilation scope boundary point
— trace head, trace exit points
= For each boundary point, we analyze the method that includes the point
— mostly in live range analyzer and use-def analyzer in the framework,
not in each optimizer

entry
method | method 2 method 3 method 4
I *Neb . lav-Server . Er-=rprise MBC
exit exit exit —

exit —

: , . oiror! B airor! : , . oiror! : oo wiror!
[[| L |
nd the
handler SQ@L to DB
exit ot

exit
A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 I1BM Corporation

IBM Research - Tokyo

Our Trace-JIT Architecture

’Java VM ~

[interpreter](—) trace dispatcher garbage collector

| class libraries

\ execution events —)
Tracing runtimey ¥ N \
trace selectlon _ \
englne < Apply simple one-path value

propagation to exploit simple

(0.9. co topologies of traces

k trace (Java bytecode)

Trace-JIT It removes potential side exits

2

[traf_e sid? exit fo reduce IR tree size and
elimination compilation time

v b\ P B

[IR generator]_> optimizers] \ modified component ‘
- | unmodified component |

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

IBM Research - Tokyo

Our techniques to reduce overhead

= Hash Lookup Reduction Using a Shadow Array

— Allocate a shadow array for each method to store information
corresponding to each bytecode (e.g. start address of compiled
trace starting from that bytecode)

— Lookup the shadow array instead of slow global hash map

= JNI inclusion

— Include certain JNI methods into traces and call JNIs from
traces directly

— Reduced trace enter/exit overhead
— Some recognized JNI methods are further optimized (inlined)

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

IBM Research - Tokyo

Our Trace-JIT Architecture

’Java VM ~
[interpreter](—) trace dispatcher | garbage collector |
| class libraries
\ execution events —)
Tracing runtimey \
e
glne address
trace (Java bvtecode (e.g. compiled code address) \ *
_ iladiey) y value:
Trace-JIT e start address of
: d ; _ ,\ the compiled code
race side exi : :
) code generator) e counter to identify

v x ! hot trace head ;
. [IR generator]—) optimizers i

- *) unmodified component]

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

IBM Research - Tokyo

Shadow Array

method structure

name/signature

length

bytecodes

shadowArray

bytecodes

1 byte / entry
<>

aload0
getfield
N
N

ireturn

length

length

= shadow array is allocated for each method
lazily (we allocate it on demand)

= the shadow array entry corresponding to a
bytecode index can be easily found
without hash calculation.

shadow array

4 bytes / entry

start address of compiled code

NULL

NULL

NULL

NULL

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

IBM Research - Tokyo

Outline

= Motivation

= Background

= Trace-JIT Architecture

= Performance Evaluation

= Future work and Summary

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

IBM Research - Tokyo

Performance Evaluation

= Hardware: IBM BladeCenter JS22
— 4 cores (8 SMT threads) of POWERG 4.0GHz
— 16 GB system memory

= Software:
— AIX 6.1

— Method-JIT: IBM JDK for Java 6 (32 bit)

— Trace-JIT: Our Trace-JIT based on the same IBM JDK

+ used only standard optimization level (-Xjit:optlevel=warm)
* 512 MB Java heap with large page enabled
* generational garbage collector (gencon)

= Benchmark:

— DaCapo benchmark suite 9.12

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

IBM Research - Tokyo

Steady state performance

1.4
15 method-JIT

%At ' M bur trace-JIT
S
o |g107 B
515

(O]
_C —

= 0.6

3

%0.4

S

502

()

o

o 0.0

=

8 RIS 2 L& AR & QRS & S

L (b&o ° oc‘}\Q A § @06 \)%ef& & %\\,«\% \0<°° épefb © O&Q’

N O Q
S)

= Trace-JIT was 22% slower to 26% faster than method-JIT

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

IBM Research - Tokyo

Execution time breakdown

jython avrora tomcat
1.0 1.0 1.3 o
0.9 09 - 1? @
Y
O OS Kernel - | :
o 0.8 o 0.8 o 1.0 »
B GC E 07 E 07 | - E 09 5
D -
@ Runtime 2 06 2 06 > 038 -
(&) O O 07 V'C
B Native library & @ o 0.6
= 04 = 04 = 05
B JIT-compiled code €03 £ 03 € 04
2 2 2 0.3
<02 0.2 .
0.2
0.1 0.1 0.1
0.0 0.0 0.0
method-JIT trace-JIT method-JIT trace-JIT method-JIT trace-JIT

© Trace-JIT often (not always) shows better JITted code performance (blue parts)
@ Trace-JIT incurs larger runtime overhead (orange parts)

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

IBM Research - Tokyo

Execution time breakdown by trace length

th £ 0.15
Jython -) I_I O cyclic trace
0 0.10] .
o | linear trace
5
S 0.05
®
£
2 0.00
()
g 040
avrora = % — in trace
2 0.30 °
% these long traces typically crossed 80+ method boundaries
N
5 more inlining effect than method-JIT with inlining
0 v
tomcat 5 larger compilation scope yields
= © less runtime overhead due to transition
N © more compiler optimization opportunities
g 0.1¢
2 0.00 0

500 1000 1500 2000
shorter trace «<——— trace length in number of Java bytecodes ——— longer trace

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

IBM Research - Tokyo

Inlining effect of trace JIT
(number of method boundaries included in one trace)

60.0

B method-JIT
50.0 W our trace-JIT |

40.0 |

30.0

20.0

10.0

0.0

average number of method boundaries .
included in one compilation scope

o o .
NN

Trace-JIT provides larger compilation scope than method-JIT with inlining
© Less method invocation overhead, more compiler optimization opportunities
® Potentially larger JITted code size due to duplicated code among traces

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

(]|

IBM Research - Tokyo

Compiled code size

@& ¥ 2 L & &9
®) (‘}\Q <O A 06

QO
. %\ N <
NN \0"0

4.9
3.0
51 E
% > ® method-JIT
925 —
ol M our trace-JIT
D e
| E
g < 2.0
o (O]
Z 015
N |
L10- A geomean:
Q trace-JIT
305 generated
3 10% more
3 0.0 code
(O]
>
©
o

@ The larger code size was mainly caused by the duplicated codes among traces
© On the positive side, traces include only frequently executed code sequence

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

IBM Research - Tokyo

Effect of hash lookup reduction using a shadow array

1.4
M trace-JIT

% A 1.2 W trace-JIT without shadow array| |
@
@ 1.0 —
2 0.8
(@)
2

o

relative performance over method-JIT
o

= improved performance by 27.4% on average
= using additional memory space: 1.3 MB on average and up to 6.8
MB (tomcat)

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

IBM Research - Tokyo

Effect of JNI inclusion

1.4

M trace-JIT

g/‘\ 1.2 w trace-J1T without JNI inclusion
&

” 1.0 -

2 0.8

(@))

I

o
~

O
N

relative performance over method-JIT
o
D

@ F L K ¢
@4«0 @ @é\Q A

= improved performance by up to 2.7x (for sunflow) and about 15%
on average

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

IBM Research - Tokyo

Outline

= Motivation

= Background

= Trace-JIT Architecture

= Performance Evaluation

» Future work and Summary

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

IBM Research - Tokyo

Optimization opportunities and challenges

= Opportunities
— Potentially larger compilation scope than method-JIT

— Simple control flow
* main path of a trace is a very large extended basic block

— Explicit control flow
* like method inlining
— More specialization
* type specialization, value specialization etc

= Challenges
— Interaction between trace selection and optimizations

* e.g. Loop optimizations

© 2011 IBM Corporation

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler

IBM Research - Tokyo

Future work: Effective Loop Optimization in trace-JIT

= More loop optimizations in trace-JIT
— backward-branch-based cyclic trace identification is not suitable
for loop optimizations

-»need to enhance trace selection algorithm to maximize the
optimization opportunities

loop: iload_1 <<

m -
iconst_4 o o Java code:
o : oo ‘g . . .
if_icmpge exit (g2 = for (int[i805 i<4; i++) {
iinc 2,1 o3 i j ++;
s 5
iinc 1,1 a3 = }

()

goto loop _
exit:

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 IBM Corporation

IBM Research - Tokyo

Summary

= We implemented trace-based Java JIT compiler based on the
existing method-based JIT compiler

— handling scope mismatch problem
— reducing runtime overhead

= Qur trace-JIT achieved almost comparable performance to mature
method-JIT with almost same set opt optimizations

— better JITted code performance in trade for larger runtime
overhead

— generating longer trace is a key to superior performance

Refer to the paper for
our new runtime overhead reduction techniques

more detailed comparisons including code size, compilation time and so on

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler © 2011 I1BM Corporation

