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Abstract—This paper describes our trace-based JIT compiler 
(trace-JIT) for Java developed from a production-quality 
method-based JIT compiler (method-JIT). We first describe the 
design and implementation of our trace-JIT with emphasis on 
how we retrofitted a method-JIT as a trace-based compiler. Then 
we show that the trace-JIT often produces better quality code 
than the method-JIT by extending the compilation scope. 
Forming longer traces that span multiple methods turns out to be 
more powerful than method inlining in extending the compilation 
scope. It reduces method-invocation overhead and also offers 
more compiler optimization opportunities. However, the trace-
JIT incurs additional runtime overhead compared to the method-
JIT that may be offset by gains from the improved code quality. 
Overall, our trace-JIT achieved performance roughly 
comparable to the baseline method-JIT. We also discuss the 
issues in trace-based compilation from the viewpoint of compiler 
optimizations. Our results show the potentials of trace-based 
compilation as an alternative or complementary approach to 
compiling languages with mature method-based compilers. 
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I.  INTRODUCTION  
Trace-based compilation uses dynamically-identified 

frequently-executed code sequences (traces) as units for 
compilation. This approach was first introduced by binary 
translators and optimizers [1, 2], where method structures are 
not available. Recently, trace-based compilation has gained 
popularity in dynamic scripting languages because it provides 
more opportunities for type specialization and concretization [3, 
4, 5, 6] compared to the traditional method-based compilation. 
In spite of the success of trace-based compilation in dynamic 
language runtimes and binary translators, the benefits and 
drawbacks of trace-based compilation against mature method-
based compilation have not yet been studied.  

In this work, we explore trace-based compilation in Java as 
an alternative or complement to method-based compilation. 
Our motivation is to see if a trace-based JIT compiler (trace-
JIT) can address a limitation of traditional method-based JIT 
compilers (method-JITs): limited compilation scope when 
dealing with those with largely flat execution profile. Today's 
method-JITs are very good at handling programs with hot spots, 
but not programs with flat profiles. This is because method-
JITs cannot apply aggressive method inlining to cold methods 
to avoid excessive code duplication. As a result, programs with 
flat profile cannot be fully optimized. In contrast, trace-JIT can 
potentially improve the compiled code quality by forming 

larger compilation scopes than traditional method inlining even 
in cold program regions. 

To identify the benefits and drawbacks of the trace-based 
compilation, we developed a trace-based JIT compiler based on 
the IBM J9/TR Java VM and method-JIT [7]. We extended the 
JVM to monitor the running Java program and to select hot 
code sequences as traces to be compiled. The code generator in 
the method-JIT was enhanced to accept a Java trace, which can 
start from the middle of a method, span multiple methods, and 
end at the middle of a method. We adapted most of the 
optimizers used in the method-JIT for the standard optimization 
level called warm to work in our trace-JIT. We also introduced 
two new techniques, allowing JNI calls in trace and introducing 
a shadow array to reduce hash lookup operations, to reduce the 
runtime overhead in the trace-JIT.  

Prior to our work, it has not been demonstrated that a 
method-based optimization framework can be adapted for trace 
compilation. A recent publication  [8] proved the unsoundness 
of some traditional optimizations such as dead store elimination 
in trace compilation. Our technical challenge is to address the 
unsoundness of method-based optimizations used in the trace-
JIT. We identified that such unsoundness comes mainly from 
the mismatch between the trace compilation scope and the 
method compilation scope (scope mismatch problem). This is 
because some optimizations implicitly rely on properties that 
are only true within a method scope. For example, the dead 
store elimination assumes that local variables are dead after the 
end of the (method) compilation scope, which is no longer 
valid in the trace-JIT. We solve this problem by analyzing the 
bytecode sequence of a method, regardless of the current 
compilation scope. To achieve good optimizations in the trace-
JIT, we need to use information from outside of the current 
(trace) compilation scope. 

Our trace-JIT accelerated the latest DaCapo benchmark 
suite [9] by about 9 times on POWER6 processors over 
interpreted execution in the original JVM. It is about 4.5% 
slower than the warm-opt method-JIT. Although the trace-JIT 
often sped up the execution of compiled code, it incurred 
additional overhead due to monitoring and transitioning 
between compiled traces and the interpreter. The overall effect 
of improved compiled code quality and additional overhead 
depends on the application, but the relative performance of the 
trace-JIT over the method-JIT ranged from 21.5% slower to 
26.4% faster. In the best case, our trace-JIT outperformed even 
the method-JIT with its full optimization capacities by 12.8%. 
We believe that these results are promising for trace-based 



compilation considering the fact that our trace-JIT still has a 
huge optimization space to explore. 

This paper makes the following contributions. (1) We 
describe the design and implementation of our trace-JIT for 
Java with emphasis on how we retrofitted a method-based 
compiler as a trace-based compiler. We identified that the 
differences of trace-JIT and method-JIT mainly come from the 
scope mismatch. (2) We evaluate the trace-JIT using the 
method-JIT as a reference point in steady-state performance, 
startup performance, compiled code size, and compilation time. 
Such a comparison sheds light on the effectiveness of the trace-
JIT with respect to a mature, state-of-the-art compiler, which 
has never been done in previous evaluation of trace 
compilation. Since the two compilers share the same interpreter, 
libraries, garbage collector, and compilation framework, the 
evaluation can provide some insights on the potential strength 
of trace compilation over method compilation as well as 
highlights its limitations. (3) We present two new techniques to 
improve the trace-JIT performance by reducing the runtime 
overhead.  

The rest of the paper is organized as follows. Section II 
discusses previous techniques. Section III gives an overview of 
our trace-based JIT. Section IV illustrates our proposed 
techniques to reduce the runtime overhead. Section V describes 
our experimental results. Section VI considers remaining 
problems in the trace-JIT and discusses future directions. 
Finally, Section VII summarizes this work. 

II. RELATED WORK 
Dynamo [1] was the first trace-based optimizing compiler. 

The traces are formed out of binaries by a binary interpreter. 
Dynamo pioneered many early concepts of trace selection and 
trace runtime management. The optimizer is extremely 
lightweight and performs basic redundancy elimination 
optimizations in a forward and a backward pass as well as basic 
register allocation. 

HotpathVM [10], YETI [11] and Maxpath [12] are trace-
JITs that target Java. HotpathVM emphasizes its efficiency in 
domains where resources are quite constrained. It introduces a 
tree-SSA representation for fast analysis. It also introduces 
pseudo-instructions to represent information about the 
surrounding context that is not part of the trace. This is similar 
to the handling of scope mismatch in our trace-JIT. YETI 
showed that the trace-based compilation eased the development 
of a JIT compiler by allowing incremental implementation of 
the compiler on top of the language VM. Maxpath is a trace-
JIT designed for Java environment without an interpreter. It 
first compiles the Java programs using the non-optimizing 
compiler with instrumentations to select hot sequences as traces. 
The traces are then compiled by the optimizing trace compiler. 
Maxpath reuses the code generator of Maxine method-JIT, and 
achieved better performance than the method-JIT.  

Recently, trace compilation has been explored extensively 
in compilation for dynamic scripting languages, such as PyPy 
[5] for Python, SPUR [6] and TraceMonkey [3] for JavaScript, 
and LuaJIT [4] and  [13] for Lua, and Tamarin-Tracing for 
ActionScript  [14]. Such systems tend to recognize more 
complex traces (such as traces representing nested loops). As 

the traces become more complex, so does the functionality of 
the optimizer. TraceMonkey, for example, performs extensive 
type specialization for nested cyclic traces. SPUR performs 
redundant guard elimination, indirect store-load forwarding, 
invariant code motion, and loop unrolling. PyPy uses escape 
analysis, store-load forwarding, and redundant guard 
elimination for its traces. 

One common trait of previous trace-JITs is that the 
optimizer is specifically tailored to the simple topology of 
traces in consideration for compilation speed as well as 
reducing the development cost of the compiler itself. As a 
result, the optimizer is simpler but also less powerful than a 
typical method-based optimizer. In our work, we retrofitted a 
method-based JIT for trace code generation and optimization. 
Our approach can leverage existing mature optimization 
infrastructures. Our trace optimizer is more powerful in the 
sense that it is a true region-based optimizer that can potentially 
optimize traces of arbitrary structures. It also opens up 
opportunities to combine trace- and method-based compilation 
in one framework with minimal maintenance overhead.  

The most relevant theoretical work to ours is  [8], where 
Guo et al studied the soundness of traditional method-based 
optimizations on trace compilation (and vice versa). The work 
proved that traditional forward data-flow optimizations such as 
folding and dead branch elimination are sound for trace 
compilation; whereas backward data-flow optimizations such 
as dead store elimination are not. These conclusions are 
consistent with our experiences in retrofitting the method-JIT 
to the trace-JIT. The unsoundness in backward data-flow, for 
example, is rooted in the scope mismatch problem we pointed 
out in the paper. One contribution of our work is that we 
addressed the unsoundness problem by extending existing 
method-based optimizations with special consideration of 
traces. 

Based on our results, we conclude that generating long 
traces is a key to achieving good performance for a trace-JIT 
because it reduces the transitioning overhead and improves the 
opportunities for compiler optimizations. Zhao et al [15] also 
pointed out that generating longer traces yielded more 
optimization opportunities in their binary translator. 

III. DESIGN OF OUR SYSTEM WITH TRACE-JIT 
In this section, we describe the architecture of our trace-JIT 

for Java, which is based on an IBM J9/TR JVM and method-
JIT. Figure 1 is an overview of the entire system. Our system 
starts its execution using an interpreter until hot traces are 
identified and compiled. We do not use the method-JIT in our 
system, instead relying on mixed execution of the interpreter 
and the trace-JIT.  

A. Tracing Runtime and Trace Selection Algorithm 
We implemented a new software component, a tracing run-

time, to monitor the execution of the running program and to 
select hot code sequences to compile. The tracing runtime is 
driven by execution events sent from the interpreter. To drive 
the tracing runtime, we modified the Java interpreter to call the 
tracing runtime at control-flow events including branches (goto, 
if, or switch), method invocations, method returns, and 



exception throws or catches. By abstracting at the level of 
execution events, our tracing runtime supports multiple 
language runtime systems including the JVM that we describe 
in this paper. 

Our trace selection algorithm first determines a point to 
start a trace (a trace head) and then records the next execution 
starting from the trace head as a trace, similar to the well-
known NET (Next Executing Tail) strategy [1]. To focus on the 
basic trace-JIT characteristics, we currently collect only linear 
traces or cyclic traces (where a cyclic trace has a jump to its 
own trace head at the end). Hence we do not have any join 
points in our traces except for the trace head of a cyclic trace. 
Figure 2 shows examples of a linear trace and a cyclic trace. 

To identify a hot trace head, we assign a counter called a 
hotness counter for each potential trace head, which includes 
the target of a taken backward branch and any bytecode that 
immediately follows the exit point of an already formed trace 
to achieve sufficiently high coverage for the JIT compiled code. 
We manage the information associated with the bytecode 
addresses, such as the hotness counter or the compiled code 
address, using a globally synchronized hash map called a trace 
cache. The trace selection engine increments the hotness 
counter when it receives an event for the bytecode address and 
it starts recording the execution to form a trace when the 
hotness counter reaches a predefined threshold. We used 500 as 
the threshold in this paper. For example, a loop head is selected 
as a trace head after 500 iterations. We picked the threshold 
based on the thresholds used in the baseline method-JIT to start 
initial compilation. 

In the recording mode, the trace selection engine records all 
basic blocks (BBs) executed until one of the trace termination 
conditions is satisfied. We terminate a trace when (1) it forms a 
cycle in the recording buffer, (2) it executes a backward branch 
(even it does not form a cycle), (3) it calls a native (JNI) 
method that we cannot include in a trace, (4) it throws an 
exception, or (5) the recording buffer becomes full. The default 
size of the recording buffer is 128 BBs for one recording. As 
we will describe in Section IV, we allow traces to include calls 
to a selected set of JNI methods from the Java standard library 
to maximize the performance. Calls to other JNI methods will 
terminate the recording of a trace. If a trace forms a cycle by 

jumping to its trace head, the trace becomes a cyclic trace. We 
identify a cyclic execution patterns accurately by checking the 
calling context of each BB in the trace [16]. Otherwise, the 
trace becomes a linear trace. A trace collected by the selection 
engine is sent to a shared waiting queue that is processed by the 
compilation thread. 

When the compilation thread compiles the trace, it puts the 
entry point address of the compiled code in the trace cache. 
Once the compiled code address becomes available in the trace 
cache, the interpreter transfers control to the entry point of the 
compiled code when the execution reaches the head of a trace. 
At the exit of the compiled trace, it returns control to the 
interpreter or directly dispatches the next compiled trace using 
a technique called trace linking [1]. Currently we do not 
employ a specialization technique and thus there is at most one 
trace starting from the same bytecode address. 

B. Trace-based JIT Compiler and Scope Mismatch 
We implemented our trace-JIT by enhancing a mature 

method-JIT instead of implementing it from scratch. Our trace-
JIT takes a Java bytecode sequence and the originating location 
(Java method and bytecode index in the method) for each 
bytecode in the trace as input.  

In trace-based compilation, a compilation scope probably 
does not match the method scope. Thus we need to assume that 
local variables and operands in the operand stack may live at 
the beginning and the end of the compilation scope, while all 
these values must be dead in the method-based compilation. 
We call this problem scope mismatch. Scope mismatch is a 
large obstacle when implementing a trace-based compiler from 
a method-based compiler. For example, the first bytecode in a 
trace may require operands on the operand stack, but a 
compiler cannot identify the type of the operands because the 
value comes from outside the current compilation scope. To 
handle problems caused by scope mismatch, we implemented a 
helper function that analyzes the bytecode sequence of a 
method, regardless of the current compilation scope. The helper 
function identifies the type and liveness of operands on stack 
and local variables at the specified program location. The 
liveness information at compilation scope boundaries obtained 
from this helper function is critical for both code generation 
and optimization. For example, the IR (Intermediate 
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Representation) generator, which translates Java bytecode to 
the compiler’s IR, uses this helper function to identify the type 
of the operands at the beginning of a trace and inserts the 
appropriate load instruction before the first instruction. 

C. Optimizers 
Our trace-JIT uses most of the optimizers from the existing 

method-JIT in the standard optimization level called warm. 
Most of the issues in reusing these method-JIT optimizers were 
due to scope mismatch. The problem often appears in 
optimizations that rely on live range information such as dead 
store elimination (DSE). Here, we explain how we modified 
the optimizations of the existing method-based compilers to use 
in the trace-JIT using DSE as an example. DSE for the method-
JIT assumes that all local variables are live only within the 
current compilation scope, but this assumption is not true for 
trace-JIT. Local variables may be accessed after exiting the 
current trace. One naive modification for the trace-JIT is to 
assume all local variables are live at the end of the compilation 
scope, but this naive approach drastically reduces the benefits 
of DSE. To prevent DSE from removing live variables without 
sacrificing the advantages of DSE, we extend the use-def 
analyzer and the live range analyzer, which are shared by 
several optimizations including DSE and GC metadata genera-
tion, to identify the live variables at each trace exit by calling 
the helper function described in Section III-B. In general, to 
achieve good optimizations in the trace-JIT, we need to use 
knowledge from outside of the current compilation scope. 

In contrast, the DSE in the trace-JIT may miss opportunities 
if the trace spans multiple methods. The method shown in 
Figure 3 has an obvious dead store (istore_1 in line 7). The 
method-JIT can easily remove this dead store without costly 
global analysis because it is located at the end of the 
compilation scope and the compilation scope matches the live 
range of the variable. With trace-JIT, however, the live range 
of the variable does not match the compilation scope and hence 
the DSE cannot identify the dead store in the example if this 
method appears in the middle of a trace. To enhance the 
optimizations by expressing the live ranges in IR trees, we 
introduced a new IR opcode to show the end of the live range 
of a local variable (end-of-live-range mark). The IR generator 
inserts the end-of-live-range mark at the end of method scope. 
In the example of Figure 4, the IR generator inserts the end-of-
live-range mark for the two local variables of the getTotal() 
method after Line 7. With the end-of-live-range mark, the DSE 
can easily identify the dead store without costly global analysis 
as in the method-JIT. We minimize the implementation effort 
by defining the end-of-live-range IR opcode as a special case of 
the store opcode, which is ignored in the code generator. 
Because a store kills the live range of the existing variable, 
most of the existing optimizers identify the new IR opcode 
without modification. In general, it is important for trace-JIT 
optimizers to be aware of the live range of local variables 
regardless of the current compilation scope. 

In addition to DSE, we also modified most of the 
optimizations used in the warm-opt method-JIT, such as 
common subexpression elimination, dead code elimination, 
value propagation, and global register allocation. In the current 
implementation, we do not enable some of the loop optimizers 

nor the optimizers that are not applicable for the trace 
compilation, such as method inlining. We will discuss a 
fundamental problem in loop optimizations with the existing 
trace selection algorithm in Section VI. 

D. Java Stack Design and GC 
Because we assume mixed execution of the interpreter and 

the trace-JIT, our trace-JIT employs a Java stack design 
compatible with the interpreter stack design to avoid overhead 
in transition between the interpreter and compiled code caused 
by on-stack replacement [17]. Figure 4 illustrates our Java 
stack. We assure that the Java stack, including local variables, 
stack frames, and operands, is compatible with that of the 
interpreter at the end of a trace. To speed up the common path 
of trace execution, we maintain the Java stack lazily. When a 
method is invoked in the trace, the stack frame for the invoked 
method is created at the end of the trace only when the frame is 
still live at the end. The local variables in memory may become 
invalid during the execution of a trace because we aggressively 
allocate registers for local variables and also reorder loads and 
stores to maximize the performance.  

To ensure that the JVM states are compatible with the 
interpreter at the trace exit points, we prepare an exit code 
sequence for each bytecode that potentially leads to an exit 
from the trace, including conditional branches, switches, 
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 ...
1: aload_0
2: getfield field1
3: aload_0
4: getfield field2
5: iadd
6: dup
7: istore_1 (dead store)
8: ireturn
...

Java code:
public int getTotal() {

int result = field1 + field2;
return result;

}

We insert end-of-live-range marks 
for local variables 
at method boundaries in a trace.

Figure 3. Example of a dead store and end-of-live-range 
marks.



invocations of a virtual or interface method, and method returns. 
If an exception occurs during the execution of a compiled trace, 
we exit from the trace and fall back to the interpreter. Thus we 
also prepare an exit code sequence for each bytecode that can 
potentially throw an exception, such as loads and stores for an 
object’s field or numerical division instructions. Figure 2(b) 
includes an example of an exit caused by a potential exception. 

If a stack walk is required while a Java thread is executing a 
compiled trace, for example when a stop-the-world garbage 
collection begins, we fill in all of the live stack frames in the 
Java stack before the stack walker in the JVM is initiated. We 
prepare special metadata for this construction at the JIT 
compilation time for each GC-safe point. We also provide a 
bitmap to show all live references in the Java stack and the 
registers for each GC-safe point in the same way as the 
method-JIT. To generate this bitmap, we needed to extend the 
live range analyzer in the method-JIT by taking into account 
scope mismatch in the trace-JIT. For example, a local variable 
may be live at the beginning of the compilation scope because 
it is used before entering the trace that starts from the middle of 
a method. Likewise, a local variable with no explicit reference 
in the given scope may be live at the end of the compilation 
scope because it is accessed after the trace ends in the middle 
of a method. In extreme cases, there are live variables that were 
never accessed in the compilation scope. Hence, it is not 
possible to generate accurate live variable information only 
from the bytecode sequence of the trace.  

The changes in stack design affect only the stack walker in 
the JVM. We do not need to modify the garbage collectors. Our 
trace-JIT can run with any of the garbage collectors supported 
in the original JVM. 

E. Interprocedural Traces Support 
Our trace-JIT takes a trace that might span multiple 

(sometimes tens of) Java methods as input. Because there can 
be multiple targets for a virtual method invocation or a method 
return and the actual target can be different from the target 
recorded on a trace, we insert runtime checks at method 
boundaries. For each virtual method invocation, we insert a 
class equality check as a runtime guard, which compares the 
class of the receiver object and the class at the recording time 
of the trace. If the class equality check fails, we exit from the 
current trace. We also insert a guard for method return by 
comparing the targets of the return at runtime and at recording 
time. We avoid inserting a redundant check at a return 
instruction if the corresponding invocation is also included in 
the same trace. 

F. Other Performance Optimizations 
Our trace-JIT supports trace linking optimizations [1] to 

reduce the overhead in the tracing runtime. We directly link 
each trace exit to the entry point of the next trace without going 
back to the interpreter if the trace exit has only one candidate 
for the next program counter value. This is accomplished by 
code patching to the exit code sequence. At linking time, we 
check the Java stack requirements for both traces. If the 
preceding trace requires a larger Java stack compared to the 
following trace, then we skip the stack overflow check at the 
beginning of the following trace. Such check can be skipped 

because the following trace, which uses smaller Java stack than 
the previous trace, cannot cause a stack overflow. When the 
trace exit has multiple candidates for the next program counter 
value, such as an exit at method return or virtual method 
invocation, we do not use the trace linking. Instead, when a 
trace ends with a method return, we inline the code to find the 
next trace using the shadow array, as described in Section IV, 
to avoid a transition to the interpreter. 

In the IR generation phase, for each trace exit point we 
need to prepare an exit code sequence, which restores the JVM 
state compatible with that of the interpreter. The exit code 
sequences increase the size of the generated compiler IR tree 
and thus affect the compilation time. To minimize the increase 
in the IR tree size, we employ a simple one-path value 
propagation phase before the IR generation phase. We call it 
early redundancy elimination. This phase identifies the 
redundant NULL checks, virtual call guards, and conditional 
branches. The later phase optimizer executes more detailed 
analysis and redundant check elimination, but the earlier 
redundancy elimination contributes to reducing the execution 
time of the optimizers. By exploiting the simple topology of the 
compilation scope, the execution time of the early redundancy 
elimination phase is almost negligible. In the current 
implementation, this phase is integrated with the IR generation 
phase. We generate only one general code sequence to fill in 
the stack frames in each trace and all exit points share the same 
sequence. Because a trace frequently has lots of exit points, this 
sharing greatly reduced the overall compiled code size. 

G. Current Limitations 
Currently we only support one optimization level and we do 

not support upgrade compilation. The method-JIT already 
supports upgrade compilation to higher optimization levels. At 
the higher optimization levels, a profiling mechanism plays an 
important role to generate specialized compiled code. We do 
not yet support any profiling mechanism in the current 
implementation of our trace-JIT. The trace selection itself is a 
kind of profiling and thus more detailed profiling, such as value 
profiling, can be implemented in the trace selection phase with 
little additional overhead.  

We do not specialize the optimizations for the trace-JIT and 
so they can accept any IR trees, including trees containing join 
points in the control flow. Also, we do not carefully tune the 
optimizations for trace compilation. Hence there are huge 
opportunities to improve both the optimized code quality and 
the compilation speed by exploiting a simpler structure of the 
traces that have no inner join points in the control flow. Only 
the early redundancy elimination phase executed prior to the IR 
generator exploits a simple topology of the traces to reduce the 
compilation time. Though we do not employ the trace-specific 
optimization techniques after the IR tree is generated, the 
baseline method-JIT already covers most of the optimizations 
used by the previous trace-based compilers. For example, the 
baseline method-JIT has an optimization to move instructions 
to cold blocks based on execution frequency. In our trace-JIT, 
we treat an exit code sequence as a cold block and hence 
redundant computations are moved to the exit code sequence. 
Even with the same optimizations, the trace-JIT can leverage 
the benefits of the trace, such as a larger compilation scope and 



simpler control flow. For example, basic-block-local 
optimizations are often more effective for trace-JIT than for 
method-JIT, because the main path of a trace forms a large 
extended basic block. 

IV. RUNTIME OVERHEAD REDUCTION  
This section describes two new techniques we introduced to 

reduce the runtime overhead in the trace-JIT. 

A. Hash Lookup Reduction Using a Shadow Array 
In our trace-JIT, the overhead to search the global hash 

table (trace cache) is significant, because we frequently search 
the address of the compiled code or the hotness counter 
associated with the current bytecode address from the trace 
cache. To avoid such overhead, we allocate a shadow array for 
each method to directly find the address of the compiled code 
or the hotness counter. Because we allocate one word (4 bytes) 
for each bytecode index in a method, the size of the shadow 
array entry is four times larger than the bytecode itself. To 
avoid excessive memory consumption by the shadow array, we 
allocate the shadow array entry only when a potential trace 
head is identified in the method for the first time. The shadow 
array element associated with a bytecode index holds the 
address for the hotness counter until compiled code starting 
from that address becomes available. After the compiled code 
becomes available, we replace the address of the hotness 
counter with the compiled code address to maximize the 
steady-state performance. The number of hash table lookups 
becomes negligible when we use the shadow array. We will 
describe the performance improvements and the memory 
overhead for the shadow array in Section V. 

B. JNI Inclusion in Trace 
In HotpathVM [10], a trace is always terminated when the 

trace encounters a native (JNI) method call. When a JNI call 
appears frequently on hot paths of a running program, this stop-
at-JNI approach causes frequent trace exits. This incurs 
significant transition overhead. In our trace selection algorithm, 
we allow some JNI methods in traces (JNI inclusion): to 
continue a trace at a method call to certain native methods, and 
to allow a trace to call such native methods without exiting 
from the trace. The JNI inclusion can reduce the runtime 
overhead and improve the compiled code quality by generating 
longer traces. Also, the baseline method-JIT inlines the 
frequently used JNI methods, such as the methods of the 
java.lang.StrictMath class, into the compiled code. By allowing 
these JNI calls in the traces, our trace-JIT can leverage this JNI 
call inlining capability of the baseline method-JIT. 

To simplify the implementation, we allow JNI inclusion 
only for certain JNI methods in the standard libraries that are 
known to never cause Java-related events (GC, exceptions, or 
any other JNI interface calls including Java method callbacks). 
We do not need to modify the native methods to be called from 
a trace. JNI method calls in traces are handled in a similar way 
to those of the method-JIT. The benefits of JNI inclusion are 
quite significant in some programs and the maximum 
acceleration we observed solely from this technique was about 
2.7 times. 

V. PERFORMANCE EVALUATION  
This section evaluates our trace-JIT by comparing it to the 

method-JIT. We ran the evaluation on an IBM BladeCenter 
JS22 using 4 cores of 4.0-GHz POWER6 processors with 2 
SMT threads per core. The system has 16 GB of system 
memory and runs AIX 6.1. The size of the Java heap was 512 
MB using 16-MB pages and we used the generational garbage 
collector. To focus on the differences between method-based 
and trace-based compilations, we compare the performance of 
our trace-JIT against the method-JIT with the warm 
optimization level, which uses almost the same set of 
optimizations as the trace-JIT. For this configuration of the 
method-JIT, we add a JVM option: -Xjit:optLevel=warm. We 
also compared the trace-JIT against the method-JIT with its full 
optimization capacities by enabling the upgrade compilation to 
higher optimization levels (full opt). In our evaluation, we used 
DaCapo 9.12 [9] running with the default data size in our tests. 
We did not include the tradesoap benchmark because the 
baseline system with the method-JIT sometimes caused an 
error for this benchmark. For each result, we report the average 
of 16 runs along with the 95% confidence interval.  

A. Performance of Trace-JIT and Method-JIT 
Figure 5 compares the steady-state performance of our 

trace-JIT to the method-JIT with two optimization levels. We 
took the average of 5 iterations after 20 iterations of warm up 
in each run (but 5 iterations of warm up for eclipse and 50 
iterations for fop because they run much longer and shorter, 
respectively, compared to the other benchmarks). Compared to 
the warm-opt method-JIT, our trace-JIT outperformed the 
method-JIT in three benchmarks, while it was slower in seven 
benchmarks. The overall average performance of our trace-JIT 
was 95.5% of the warm-opt method-JIT. Compared to the full-
opt method-JIT, the performance of our trace-JIT was 92.8% 
on average. For the jython benchmark, which is a python 
runtime implemented on top of the JVM, our trace-JIT 
outperformed the warm-opt method-JIT by 26.4% and the full 
opt by 12.8%. In contrast, our trace-JIT was slower than the 
warm-opt method-JIT by more than 15% for three benchmarks 
(eclipse, sunflow, and tomcat). 
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For further insight into the causes of the performance 
differences between the trace-JIT and the method-JIT, Figure 
6(a) shows profiles of the CPU time for three benchmarks 
broken down into the JVM components based on how much 
active CPU time was spent in each component as measured by 
using the hardware performance monitor of the processor. We 
normalized the profiles based on the peak performance of the 
warm-opt method-JIT shown in Figure 5. We show the results 
for jython, in which our trace-JIT was 26.4% faster than the 
warm-opt method-JIT, for avrora, in which the trace-JIT was 
roughly tied with the method-JIT, and for tomcat, in which the 
trace-JIT was 15.6% slower than the method-JIT.  

In jython and avrora, the JIT-generated code components 
for trace-JIT were shorter than those for the warm-opt and full-
opt method-JIT. Since in all of the benchmarks more than 99% 
of the bytecode is executed out of compiled traces, this means 
that the trace-JIT generated better code for these two 
benchmarks. However, the JIT-generated code component for 
tomcat was larger than the method-JIT. Thus, for this 
benchmark, our trace-JIT failed to generate better code 
compared to the method-JIT. Note that the longer CPU time in 
the Native library component for trace-JIT was because some 
native methods were not inlined into the compiled code in the 
trace-JIT, while they were inlined into the compiled code in the 
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Figure 6. (a) CPU time breakdown into JVM components and (b) detailed breakdown of CPU time spent in JIT-
compiled code by trace length and type. 



method-JIT. Hence we added this component to the JIT-
compiled code component for a fair comparison.  

In all three benchmarks, there is a net increase of CPU time 
in the runtime component for the trace-JIT. Most of this 
increased CPU time in the runtime was spent in transitioning 
code between the traces and the interpreter and in the hook 
interface that monitors the control-flow events for the trace 
selection. In jython, the reduction in the JIT-generated code 
components was more significant than the increase in the 
runtime components due to the additional runtime overhead. As 
a result, the trace-JIT outperformed the method-JIT. In avrora, 
the improvement in the JIT-compiled code and the increased 
runtime overhead were almost comparable and hence the trace-
JIT achieved similar performance to the method-JIT. For 
tomcat, the trace-JIT was not able to compete with the method-
JIT due to the additional runtime overhead and the inferior JIT-
compiled code performance. 

To show the causes of the differences among the three 
benchmarks, we show a detailed breakdown of the CPU time 
spent in the JIT-compiled code within the trace-JIT by the trace 
length (in number of Java bytecodes) and the topology (cyclic 
or linear) in Figure 6(b). In the figure, the x-axis shows the 
trace length and a larger value means a longer trace. Obviously, 
jython spent much more CPU time in the long traces compared 
to the other two benchmarks. For example, the ratio of CPU 
time spent in traces longer than 1,000 bytecodes was 40.1% for 
jython, while it was only 11.4% for avrora and 6.4% for 
tomcat. A longer trace tends to span more methods, and hence 
it reduces method invocation overheads and offers more 
optimization opportunities to the JIT compiler by extending the 
compilation scope. Also, longer traces (or highly iterated cyclic 
traces) mean less transitioning between traces, and thus less 
runtime overhead. In contrast, shorter linear traces cause 
frequent transitioning between compiled traces and the 
interpreter. In tomcat, about a half of the CPU time was spent 
in linear traces shorter than 400 bytecodes. Such transitioning 
overhead is charged in both the JIT-compiled code component 
and the runtime component in the breakdowns. In the JIT-
compiled code, we ensure that the JVM states are compatible 
with those of the interpreter before exiting the compiled code. 
Then we find the next trace to execute in the runtime. The trace 
linking and our shadow array technique greatly reduce this 
runtime overhead, but the overhead still matters for the overall 
performance of some benchmarks.  

These results show that generating longer traces is quite 
important for trace-based compilers to achieve superior 
performance. The method-JIT also extends the compilation 
scope by method inlining to some extent, but the trace-JIT is 
more capable to extend the compilation scope. That is the main 
potential area where the trace-based compilation may beat 
method-based compilation in certain scenarios. 

B. Compiled Code Size and Total Compilation Time 
Figure 7 shows the relative compiled code size of our trace-

JIT and the method-JIT. The relative size of the generated code 
from the trace-JIT ranged from 52% smaller (luindex) to 4.9 
times larger (pmd) relative to the warm-opt method-JIT. 
Averaging all of the benchmarks, the trace-JIT generated 

10.5% more code. The larger code size for the trace-JIT was 
caused by the redundant trace selection and the extra code size 
used for exit stubs. 

The trace selection algorithm in our trace-JIT emphasizes 
the performance over the code size by allowing duplication 
among traces. For example, the same method called from many 
different places may appear in many traces because it achieves 
an effect equivalent to method inlining. The warm-opt and full-
opt method-JIT also allow duplication by method inlining, but 
we found that duplication by method inlining was more limited 
than duplication by our trace selection. Method inlining in the 
method-JIT is well tuned to inline only important methods 
without significant code bloat. We observed that the compiled 
code size for trace-JIT was smaller than that of the method-JIT 
when we use the NET [1] selection algorithm, which greatly 
reduces the duplications, but the performance of the trace-JIT 
was degraded. How to design selection algorithms that balance 
between trace length and space efficiency is still future work. 
For example, adaptively combining the current selection 
algorithm with another selection algorithm with good space 
efficiency, such as NET, might be a good approach to reduce 
the code size in the trace-JIT.  

In the compiled traces, the exit stubs occupy on average 
44.9% of the total code size. Because we need to prepare an 
exit code sequence for each potential trace exit, reducing the 
number of instructions in each exit stub could greatly reduce 
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method-JIT for each benchmark. 
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the overall code size. We already minimized the exit stubs by 
omitting unnecessary exit stubs and also by sharing the same 
code among the stubs, as described in Section III. On the 
positive side of the trace-based compilation, traces include only 
frequently executed code sequence and hence rarely executed 
code blocks such as error handlers are not compiled. Because 
the method-JIT compiles the entire method including these 
cold blocks, the trace-JIT can potentially reduce the code size 
compared to the method-JIT. 

Figure 8 shows the total compilation time of our trace-JIT 
and the method-JIT. On average, our trace-JIT consumed 
27.0% more compilation time than the warm-opt method-JIT. 
The full-opt method-JIT had much longer compilation time due 
to more aggressive optimizations used in upgrade compilation 
for hot methods. In general, trace-based compilers sometimes 
had much shorter compilation time than method-based 
compilers by exploiting a simpler topology of the compilation 
scope. However, because our trace-JIT reuses the optimizers 
originally developed for the method-JIT, the compilation time 
for our trace-JIT was not shorter than that of the method-JIT. 
For the worst case, the trace-JIT consumed 2.5 times more 
compilation time than the warm-opt method-JIT in jython and 
pmd. In jython our trace-JIT formed very long traces, as shown 
in Figure 6. The long traces tend to require more compilation 
time than shorter traces in exchange for more optimization 
opportunities, even if the total amounts of code to compile 
were comparable. The long compilation time in pmd was due 
to a large amount of duplicated code among traces. 

C. Startup Performance 
Figure 9 compares the startup performance of the trace-JIT 

and the method-JIT. Here, we use the performance of the first 
iteration of each benchmark as the startup performance. In 
Figure 5 we show the startup performance relative to the 
steady-state performance of the warm-opt method-JIT. 
Obviously, the startup performance of the trace-JIT is strongly 
correlated with the total compilation time shown in Figure 8 
because the execution time of the first iteration includes much 
of the total compilation time. Faster startup performance with 
the full-opt method-JIT was due to the fact that it starts 
compilation with a lower optimization level (cold) and then 
gradually upgrades only the important methods. 

D. Memory Usage 
Figure 10 shows breakdowns of the memory usage into 

major data structures related to the JIT compilers, averaged for 
all of the benchmarks. Because we built our trace-JIT on top of 
the method-JIT, the trace-JIT consumes more memory than the 
method-JIT due to additional data structures specific to the 
trace-JIT. In the figure, trace structure is a data structure that 
manages the current status of an already formed trace. It is 
allocated for each trace. BB structure is a data structure that 
represents each basic block included in a trace. BB structure is 
not required for execution after the trace including the BB is 
compiled. In the current implementation, however, we do not 
delete BB structures after compilation as we collect statistics. 
As already described, the trace cache is a large hash table to 
manage information associated with each byte code address, 
and the shadow array is used to reduce the number of searches 

in the trace cache. These trace-specific structures were about 
twice as large as the total compiled code. We also saw 
increases in the unaccountable memory consumption (others in 
the figure) for our trace-JIT. We suspect that this was due to 
the fact that our trace-JIT required more working memory to 
compile targets having larger compilation scope than the 
method-JIT. In fact, we found the largest increases for jython, 
in which the trace-JIT formed long traces.  

E. Effect of Maximum Trace Length 
In our trace-JIT, the maximum trace length is limited by the 

size of the trace recording buffer as described in Section III and 
the default size of the buffer is 128 BBs. We decided on this 
default value based on our experiments. The trace buffer size 
involves a trade off between the compiled code size, which 
often dominates the startup performance, and the steady-state 
performance. For example, using 256 BBs as the recording 
buffer size increased the compiled code size by 7.9% while it 
increased the steady-state performance by 0.4%. Most of the 
tested benchmarks were not accelerated by using a larger buffer 
size. Among the benchmarks jython showed the largest speed 
up of 6.2%. In jython, many hot traces are terminated due to 
the buffer size limitation and hence the buffer size larger than 
128 BBs increased the performance. Because jython 
benchmark in the DaCapo suite executes rather simple python 
programs, many long traces that span both translated python 
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opt) for each benchmark. 
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code and jython runtime code are formed without hitting a loop, 
which terminates the trace. This is one of the best possible 
cases for the trace-based compilation over method-based 
compilation. When using 64 BBs as the recording buffer size, 
we observed about 2.2% performance degradation in exchange 
for 10.6% smaller compiled code size on average. 

F. Effect of Our Runtime Overhead Reduction Techniques in 
Trace-JIT 
Figure 11 compares the performance of our trace-JIT with 

and without our hash lookup reduction technique. The graph 
shows that this technique enhanced the performance of the 
trace-JIT in all of the programs, with an average improvement 
of 27.4%. This was because the number of hash lookups was 
quite significant in the trace-JIT without our hash lookup 
reduction technique. In fact, we observed more than one 
million lookups per second during our evaluations. With our 
reduction technique, however, we observed only negligible 
number of lookups. Our technique used some additional 
memory for the shadow array for each method to achieve this 
performance improvement. Figure 12 illustrates the total size of 
the allocated shadow arrays for each benchmark. The total size 
of the shadow arrays was 1.3 MB on average, as shown in 
Figure 10, and up to 6.8 MB. We believe that this memory 
consumption was reasonable for the achieved performance 
improvements. 

Figure 13 shows how the JNI inclusion affected the overall 
performance of the trace-JIT. The improvement was quite 
significant in sunflow (2.7 times improvement), while the 
improvement was not significant in some other benchmarks. 
Terminating a trace at each JNI call increased the runtime 
overhead and also reduced the opportunities for compiler 
optimizations by shortening the trace lengths. In sunflow, a JNI 
call appears in a hot loop and hence the effect of including JNI 
calls was most significant among all of the tested benchmarks. 
Though the JNI calls in Java programs look relatively rare, our 
results showed that proper handling of the JNI calls in trace 
selection is important for overall performance. 

VI. DISCUSSION AND FUTURE WORK  

A. Loop Optimization in Trace-JIT 
Though our trace-JIT uses many of the optimizers from the 

warm-opt method-JIT, we did not enable some of the loop 
optimizers, such as loop unrolling. This is because the loop 
optimizers for the method-JIT did not work well for the cyclic 
traces selected by our current selection algorithm. Figure 14 
shows an example of a loop selected as a cyclic trace by the 
current selection algorithm. Our trace selection algorithm 
captures hot loops by counting the number of taken backward 
branches as in the earlier selection algorithms. After identifying 
a hot backward branch, we record the next execution starting 
from the target address of the backward branch as a trace. This 
selection algorithm can capture the loop body of the hot loop, 
but the selected trace does not include loop preheader, such as 
the initialization of the loop induction variable. Because the 
loop preheader is not included in the selected cyclic trace, the 
loop optimizer cannot find the number of iterations to execute 
and hence it may miss an opportunity to optimize the loop. As 
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Figure 11. Relative performance of our trace-JIT over the 
warm-opt method-JIT with and without hash lookup 
reduction by using shadow arrays. 
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benchmark. 
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iconst_0
istore_1

loop: iload_1
iconst_4
if_icmpge exit
iinc 2, 1
iinc 1, 1
goto loop

exit: ...

Java code:
for (int i=0; i<4; i++) {

j ++;
}

a cyclic trace

backw
ard

branch

The loop preheader 
(initialization of the induction variable)
is not included in a cyclic trace.

Figure 14. Example of a cyclic trace selection. 
 



shown in Figure 6(b), cyclic traces consumed much of the total 
CPU time so that optimizing the cyclic traces is important to 
achieve higher performance. We also missed optimization 
opportunities for other optimizations, such as value propagation, 
within the hot loop because a cyclic trace always starts from 
the target address of the taken backward branch and it cannot 
include the code sequence before the loop.  

To overcome this limitation, we are planning to enhance the 
trace selection algorithm to include the loop preheader in a 
cyclic trace. Compared to a binary translation and optimization 
system, a JVM can tell the structure of the running program 
and hence it can select better traces to maximize the benefits of 
the later optimizations in the JIT compiler. Unfortunately, 
including the loop preheader in a trace may offset some of the 
advantage of the simple structure of traces. For example, the 
trace may include join points in the control flow. Although it 
has received little study to date, enhancing the trace selection 
algorithm to maximize optimization opportunities in the 
compiler would be important and interesting future work. 

B. Mixed Execution of Trace-JIT and Method-JIT 
Our trace-JIT is currently only designed for mixed 

execution with the interpreter. We showed that the trace-JIT 
can potentially generate better compiled code by extending the 
compilation scope if we could select long traces. The trace-JIT, 
however, may suffer from larger runtime overhead if it selects 
lots of short traces, especially in the hot spots of the running 
program. In such programs, combining the trace-JIT with the 
method-JIT can be a good way to improve the overall 
performance by taking advantage of both approaches. To 
identify the best methods for cooperation between the trace-JIT 
and the method-JIT is another important area for future work. 

VII. SUMMARY  
In this paper, we reported on the design and implementation 

of our trace-JIT we developed from a production-quality 
method-JIT in Java. We showed that our trace-JIT achieved on 
average about 95.5% of the method-JIT with a set of 
comparable optimizations. The trace-JIT achieved better 
compiled code performance than the method-JIT by extending 
the compilation scope. Hence selecting a longer trace is a key 
to achieve superior performance with trace-JIT. We also 
showed that our techniques to reduce runtime overhead 
significantly improved the performance of the trace-JIT.  

Our results showed that 1) retrofitting an existing method-
JIT for a trace-JIT is a practical approach to implement a trace-
JIT. We showed that, in some benchmarks, our trace-JIT 
developed from a method-JIT achieved better performance than 
the method-JIT without adding trace-specific optimization 
techniques. 2) Although the trace-based compilation has 
benefits and drawbacks over the method-based compilation, it 
is practical not only for binary translation systems or dynamic 
scripting languages, but also for the languages with mature 
method-based compilers. We believe that neither a method-
based nor a trace-based approach is a one-size-fits-all solution, 
and the best solution might be a mixture of trace-based and 
method-based compilation to take advantage of both 
approaches.  
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