
A Trace-based Java JIT Compiler
Retrofitted from a Method-based Compiler

Hiroshi Inoue†, Hiroshige Hayashizaki†, Peng Wu‡ and Toshio Nakatani†
† IBM Research – Tokyo

{inouehrs, hayashiz, nakatani}@jp.ibm.com
‡ IBM Research – T.J. Watson Research Center

pengwu@us.ibm.com

Abstract—This paper describes our trace-based JIT compiler
(trace-JIT) for Java developed from a production-quality
method-based JIT compiler (method-JIT). We first describe the
design and implementation of our trace-JIT with emphasis on
how we retrofitted a method-JIT as a trace-based compiler. Then
we show that the trace-JIT often produces better quality code
than the method-JIT by extending the compilation scope.
Forming longer traces that span multiple methods turns out to be
more powerful than method inlining in extending the compilation
scope. It reduces method-invocation overhead and also offers
more compiler optimization opportunities. However, the trace-
JIT incurs additional runtime overhead compared to the method-
JIT that may be offset by gains from the improved code quality.
Overall, our trace-JIT achieved performance roughly
comparable to the baseline method-JIT. We also discuss the
issues in trace-based compilation from the viewpoint of compiler
optimizations. Our results show the potentials of trace-based
compilation as an alternative or complementary approach to
compiling languages with mature method-based compilers.

Keywords—trace-based compilation, JIT, Java

I. INTRODUCTION
Trace-based compilation uses dynamically-identified

frequently-executed code sequences (traces) as units for
compilation. This approach was first introduced by binary
translators and optimizers [1, 2], where method structures are
not available. Recently, trace-based compilation has gained
popularity in dynamic scripting languages because it provides
more opportunities for type specialization and concretization [3,
4, 5, 6] compared to the traditional method-based compilation.
In spite of the success of trace-based compilation in dynamic
language runtimes and binary translators, the benefits and
drawbacks of trace-based compilation against mature method-
based compilation have not yet been studied.

In this work, we explore trace-based compilation in Java as
an alternative or complement to method-based compilation.
Our motivation is to see if a trace-based JIT compiler (trace-
JIT) can address a limitation of traditional method-based JIT
compilers (method-JITs): limited compilation scope when
dealing with those with largely flat execution profile. Today's
method-JITs are very good at handling programs with hot spots,
but not programs with flat profiles. This is because method-
JITs cannot apply aggressive method inlining to cold methods
to avoid excessive code duplication. As a result, programs with
flat profile cannot be fully optimized. In contrast, trace-JIT can
potentially improve the compiled code quality by forming

larger compilation scopes than traditional method inlining even
in cold program regions.

To identify the benefits and drawbacks of the trace-based
compilation, we developed a trace-based JIT compiler based on
the IBM J9/TR Java VM and method-JIT [7]. We extended the
JVM to monitor the running Java program and to select hot
code sequences as traces to be compiled. The code generator in
the method-JIT was enhanced to accept a Java trace, which can
start from the middle of a method, span multiple methods, and
end at the middle of a method. We adapted most of the
optimizers used in the method-JIT for the standard optimization
level called warm to work in our trace-JIT. We also introduced
two new techniques, allowing JNI calls in trace and introducing
a shadow array to reduce hash lookup operations, to reduce the
runtime overhead in the trace-JIT.

Prior to our work, it has not been demonstrated that a
method-based optimization framework can be adapted for trace
compilation. A recent publication [8] proved the unsoundness
of some traditional optimizations such as dead store elimination
in trace compilation. Our technical challenge is to address the
unsoundness of method-based optimizations used in the trace-
JIT. We identified that such unsoundness comes mainly from
the mismatch between the trace compilation scope and the
method compilation scope (scope mismatch problem). This is
because some optimizations implicitly rely on properties that
are only true within a method scope. For example, the dead
store elimination assumes that local variables are dead after the
end of the (method) compilation scope, which is no longer
valid in the trace-JIT. We solve this problem by analyzing the
bytecode sequence of a method, regardless of the current
compilation scope. To achieve good optimizations in the trace-
JIT, we need to use information from outside of the current
(trace) compilation scope.

Our trace-JIT accelerated the latest DaCapo benchmark
suite [9] by about 9 times on POWER6 processors over
interpreted execution in the original JVM. It is about 4.5%
slower than the warm-opt method-JIT. Although the trace-JIT
often sped up the execution of compiled code, it incurred
additional overhead due to monitoring and transitioning
between compiled traces and the interpreter. The overall effect
of improved compiled code quality and additional overhead
depends on the application, but the relative performance of the
trace-JIT over the method-JIT ranged from 21.5% slower to
26.4% faster. In the best case, our trace-JIT outperformed even
the method-JIT with its full optimization capacities by 12.8%.
We believe that these results are promising for trace-based

compilation considering the fact that our trace-JIT still has a
huge optimization space to explore.

This paper makes the following contributions. (1) We
describe the design and implementation of our trace-JIT for
Java with emphasis on how we retrofitted a method-based
compiler as a trace-based compiler. We identified that the
differences of trace-JIT and method-JIT mainly come from the
scope mismatch. (2) We evaluate the trace-JIT using the
method-JIT as a reference point in steady-state performance,
startup performance, compiled code size, and compilation time.
Such a comparison sheds light on the effectiveness of the trace-
JIT with respect to a mature, state-of-the-art compiler, which
has never been done in previous evaluation of trace
compilation. Since the two compilers share the same interpreter,
libraries, garbage collector, and compilation framework, the
evaluation can provide some insights on the potential strength
of trace compilation over method compilation as well as
highlights its limitations. (3) We present two new techniques to
improve the trace-JIT performance by reducing the runtime
overhead.

The rest of the paper is organized as follows. Section II
discusses previous techniques. Section III gives an overview of
our trace-based JIT. Section IV illustrates our proposed
techniques to reduce the runtime overhead. Section V describes
our experimental results. Section VI considers remaining
problems in the trace-JIT and discusses future directions.
Finally, Section VII summarizes this work.

II. RELATED WORK
Dynamo [1] was the first trace-based optimizing compiler.

The traces are formed out of binaries by a binary interpreter.
Dynamo pioneered many early concepts of trace selection and
trace runtime management. The optimizer is extremely
lightweight and performs basic redundancy elimination
optimizations in a forward and a backward pass as well as basic
register allocation.

HotpathVM [10], YETI [11] and Maxpath [12] are trace-
JITs that target Java. HotpathVM emphasizes its efficiency in
domains where resources are quite constrained. It introduces a
tree-SSA representation for fast analysis. It also introduces
pseudo-instructions to represent information about the
surrounding context that is not part of the trace. This is similar
to the handling of scope mismatch in our trace-JIT. YETI
showed that the trace-based compilation eased the development
of a JIT compiler by allowing incremental implementation of
the compiler on top of the language VM. Maxpath is a trace-
JIT designed for Java environment without an interpreter. It
first compiles the Java programs using the non-optimizing
compiler with instrumentations to select hot sequences as traces.
The traces are then compiled by the optimizing trace compiler.
Maxpath reuses the code generator of Maxine method-JIT, and
achieved better performance than the method-JIT.

Recently, trace compilation has been explored extensively
in compilation for dynamic scripting languages, such as PyPy
[5] for Python, SPUR [6] and TraceMonkey [3] for JavaScript,
and LuaJIT [4] and [13] for Lua, and Tamarin-Tracing for
ActionScript [14]. Such systems tend to recognize more
complex traces (such as traces representing nested loops). As

the traces become more complex, so does the functionality of
the optimizer. TraceMonkey, for example, performs extensive
type specialization for nested cyclic traces. SPUR performs
redundant guard elimination, indirect store-load forwarding,
invariant code motion, and loop unrolling. PyPy uses escape
analysis, store-load forwarding, and redundant guard
elimination for its traces.

One common trait of previous trace-JITs is that the
optimizer is specifically tailored to the simple topology of
traces in consideration for compilation speed as well as
reducing the development cost of the compiler itself. As a
result, the optimizer is simpler but also less powerful than a
typical method-based optimizer. In our work, we retrofitted a
method-based JIT for trace code generation and optimization.
Our approach can leverage existing mature optimization
infrastructures. Our trace optimizer is more powerful in the
sense that it is a true region-based optimizer that can potentially
optimize traces of arbitrary structures. It also opens up
opportunities to combine trace- and method-based compilation
in one framework with minimal maintenance overhead.

The most relevant theoretical work to ours is [8], where
Guo et al studied the soundness of traditional method-based
optimizations on trace compilation (and vice versa). The work
proved that traditional forward data-flow optimizations such as
folding and dead branch elimination are sound for trace
compilation; whereas backward data-flow optimizations such
as dead store elimination are not. These conclusions are
consistent with our experiences in retrofitting the method-JIT
to the trace-JIT. The unsoundness in backward data-flow, for
example, is rooted in the scope mismatch problem we pointed
out in the paper. One contribution of our work is that we
addressed the unsoundness problem by extending existing
method-based optimizations with special consideration of
traces.

Based on our results, we conclude that generating long
traces is a key to achieving good performance for a trace-JIT
because it reduces the transitioning overhead and improves the
opportunities for compiler optimizations. Zhao et al [15] also
pointed out that generating longer traces yielded more
optimization opportunities in their binary translator.

III. DESIGN OF OUR SYSTEM WITH TRACE-JIT
In this section, we describe the architecture of our trace-JIT

for Java, which is based on an IBM J9/TR JVM and method-
JIT. Figure 1 is an overview of the entire system. Our system
starts its execution using an interpreter until hot traces are
identified and compiled. We do not use the method-JIT in our
system, instead relying on mixed execution of the interpreter
and the trace-JIT.

A. Tracing Runtime and Trace Selection Algorithm
We implemented a new software component, a tracing run-

time, to monitor the execution of the running program and to
select hot code sequences to compile. The tracing runtime is
driven by execution events sent from the interpreter. To drive
the tracing runtime, we modified the Java interpreter to call the
tracing runtime at control-flow events including branches (goto,
if, or switch), method invocations, method returns, and

exception throws or catches. By abstracting at the level of
execution events, our tracing runtime supports multiple
language runtime systems including the JVM that we describe
in this paper.

Our trace selection algorithm first determines a point to
start a trace (a trace head) and then records the next execution
starting from the trace head as a trace, similar to the well-
known NET (Next Executing Tail) strategy [1]. To focus on the
basic trace-JIT characteristics, we currently collect only linear
traces or cyclic traces (where a cyclic trace has a jump to its
own trace head at the end). Hence we do not have any join
points in our traces except for the trace head of a cyclic trace.
Figure 2 shows examples of a linear trace and a cyclic trace.

To identify a hot trace head, we assign a counter called a
hotness counter for each potential trace head, which includes
the target of a taken backward branch and any bytecode that
immediately follows the exit point of an already formed trace
to achieve sufficiently high coverage for the JIT compiled code.
We manage the information associated with the bytecode
addresses, such as the hotness counter or the compiled code
address, using a globally synchronized hash map called a trace
cache. The trace selection engine increments the hotness
counter when it receives an event for the bytecode address and
it starts recording the execution to form a trace when the
hotness counter reaches a predefined threshold. We used 500 as
the threshold in this paper. For example, a loop head is selected
as a trace head after 500 iterations. We picked the threshold
based on the thresholds used in the baseline method-JIT to start
initial compilation.

In the recording mode, the trace selection engine records all
basic blocks (BBs) executed until one of the trace termination
conditions is satisfied. We terminate a trace when (1) it forms a
cycle in the recording buffer, (2) it executes a backward branch
(even it does not form a cycle), (3) it calls a native (JNI)
method that we cannot include in a trace, (4) it throws an
exception, or (5) the recording buffer becomes full. The default
size of the recording buffer is 128 BBs for one recording. As
we will describe in Section IV, we allow traces to include calls
to a selected set of JNI methods from the Java standard library
to maximize the performance. Calls to other JNI methods will
terminate the recording of a trace. If a trace forms a cycle by

jumping to its trace head, the trace becomes a cyclic trace. We
identify a cyclic execution patterns accurately by checking the
calling context of each BB in the trace [16]. Otherwise, the
trace becomes a linear trace. A trace collected by the selection
engine is sent to a shared waiting queue that is processed by the
compilation thread.

When the compilation thread compiles the trace, it puts the
entry point address of the compiled code in the trace cache.
Once the compiled code address becomes available in the trace
cache, the interpreter transfers control to the entry point of the
compiled code when the execution reaches the head of a trace.
At the exit of the compiled trace, it returns control to the
interpreter or directly dispatches the next compiled trace using
a technique called trace linking [1]. Currently we do not
employ a specialization technique and thus there is at most one
trace starting from the same bytecode address.

B. Trace-based JIT Compiler and Scope Mismatch
We implemented our trace-JIT by enhancing a mature

method-JIT instead of implementing it from scratch. Our trace-
JIT takes a Java bytecode sequence and the originating location
(Java method and bytecode index in the method) for each
bytecode in the trace as input.

In trace-based compilation, a compilation scope probably
does not match the method scope. Thus we need to assume that
local variables and operands in the operand stack may live at
the beginning and the end of the compilation scope, while all
these values must be dead in the method-based compilation.
We call this problem scope mismatch. Scope mismatch is a
large obstacle when implementing a trace-based compiler from
a method-based compiler. For example, the first bytecode in a
trace may require operands on the operand stack, but a
compiler cannot identify the type of the operands because the
value comes from outside the current compilation scope. To
handle problems caused by scope mismatch, we implemented a
helper function that analyzes the bytecode sequence of a
method, regardless of the current compilation scope. The helper
function identifies the type and liveness of operands on stack
and local variables at the specified program location. The
liveness information at compilation scope boundaries obtained
from this helper function is critical for both code generation
and optimization. For example, the IR (Intermediate

Tracing runtime

interpreterinterpreter

trace (Java bytecode)

trace selection
engine

trace selection
engine

IR generatorIR generator optimizersoptimizers

code generatorcode generator

trace dispatchertrace dispatcher garbage collector

code cachecode cache

class libraries

trace cache
(hash map)
trace cache
(hash map)

(e.g. hotness counter and
compiled code address)

Java VM

JIT compiler

modified componentmodified component

unmodified component

new componentnew component

execution events

compiled code

early redundancy
elimination

early redundancy
elimination

Figure 1. Overview of our trace-JIT system architecture.

AA

BB

CC

stubstub

entry

exit

exit

stubstub

exit

the program
may exit from
the trace at
conditional

branch,
virtual call
guard, or

return guard

stub blocks
to restore
JVM state

AA

BB

entry

stubstub

exit

stubstub

exit

stub block
for trace exit
caused by an

exception

the program
branches out
from the trace
if an exception

occurs

(a) linear trace (b) cyclic trace
(consists of 3 BBs) (consists of 2 BBs)

Figure 2. Example of (a) a linear trace and
(b) a cyclic trace. Each box shows a basic block.

Representation) generator, which translates Java bytecode to
the compiler’s IR, uses this helper function to identify the type
of the operands at the beginning of a trace and inserts the
appropriate load instruction before the first instruction.

C. Optimizers
Our trace-JIT uses most of the optimizers from the existing

method-JIT in the standard optimization level called warm.
Most of the issues in reusing these method-JIT optimizers were
due to scope mismatch. The problem often appears in
optimizations that rely on live range information such as dead
store elimination (DSE). Here, we explain how we modified
the optimizations of the existing method-based compilers to use
in the trace-JIT using DSE as an example. DSE for the method-
JIT assumes that all local variables are live only within the
current compilation scope, but this assumption is not true for
trace-JIT. Local variables may be accessed after exiting the
current trace. One naive modification for the trace-JIT is to
assume all local variables are live at the end of the compilation
scope, but this naive approach drastically reduces the benefits
of DSE. To prevent DSE from removing live variables without
sacrificing the advantages of DSE, we extend the use-def
analyzer and the live range analyzer, which are shared by
several optimizations including DSE and GC metadata genera-
tion, to identify the live variables at each trace exit by calling
the helper function described in Section III-B. In general, to
achieve good optimizations in the trace-JIT, we need to use
knowledge from outside of the current compilation scope.

In contrast, the DSE in the trace-JIT may miss opportunities
if the trace spans multiple methods. The method shown in
Figure 3 has an obvious dead store (istore_1 in line 7). The
method-JIT can easily remove this dead store without costly
global analysis because it is located at the end of the
compilation scope and the compilation scope matches the live
range of the variable. With trace-JIT, however, the live range
of the variable does not match the compilation scope and hence
the DSE cannot identify the dead store in the example if this
method appears in the middle of a trace. To enhance the
optimizations by expressing the live ranges in IR trees, we
introduced a new IR opcode to show the end of the live range
of a local variable (end-of-live-range mark). The IR generator
inserts the end-of-live-range mark at the end of method scope.
In the example of Figure 4, the IR generator inserts the end-of-
live-range mark for the two local variables of the getTotal()
method after Line 7. With the end-of-live-range mark, the DSE
can easily identify the dead store without costly global analysis
as in the method-JIT. We minimize the implementation effort
by defining the end-of-live-range IR opcode as a special case of
the store opcode, which is ignored in the code generator.
Because a store kills the live range of the existing variable,
most of the existing optimizers identify the new IR opcode
without modification. In general, it is important for trace-JIT
optimizers to be aware of the live range of local variables
regardless of the current compilation scope.

In addition to DSE, we also modified most of the
optimizations used in the warm-opt method-JIT, such as
common subexpression elimination, dead code elimination,
value propagation, and global register allocation. In the current
implementation, we do not enable some of the loop optimizers

nor the optimizers that are not applicable for the trace
compilation, such as method inlining. We will discuss a
fundamental problem in loop optimizations with the existing
trace selection algorithm in Section VI.

D. Java Stack Design and GC
Because we assume mixed execution of the interpreter and

the trace-JIT, our trace-JIT employs a Java stack design
compatible with the interpreter stack design to avoid overhead
in transition between the interpreter and compiled code caused
by on-stack replacement [17]. Figure 4 illustrates our Java
stack. We assure that the Java stack, including local variables,
stack frames, and operands, is compatible with that of the
interpreter at the end of a trace. To speed up the common path
of trace execution, we maintain the Java stack lazily. When a
method is invoked in the trace, the stack frame for the invoked
method is created at the end of the trace only when the frame is
still live at the end. The local variables in memory may become
invalid during the execution of a trace because we aggressively
allocate registers for local variables and also reorder loads and
stores to maximize the performance.

To ensure that the JVM states are compatible with the
interpreter at the trace exit points, we prepare an exit code
sequence for each bytecode that potentially leads to an exit
from the trace, including conditional branches, switches,

local
variables

local
variables

stack
frame
stack
frame

operandsoperands

local
variables

local
variables

stack
frame
stack
frame

local
variables

local
variables

JIT temps
(register
spill etc.)

JIT temps
(register
spill etc.)

C
om

pa
tib

le
 w

ith
 in

te
rp

re
te

r
(r

es
er

ve
d

ba
se

d
on

 m
ax

 p
os

si
bl

e
in

te
rp

re
te

r s
ta

ck

he
ig

ht
 in

 th
e

co
m

pi
la

tio
n

sc
op

e)

di
re

ct
io

n
of

 g
ro

w
th

local
variables

local
variables

stack
frame
stack
frame

local
variables

local
variables

stack
frame
stack
frame

operandsoperands

beginning of the trace during execution end of the trace

a newly created
stack frame is

filled in
at the end of

the trace

existing operands
on stack are loaded

at the beginning

local variables
in memory may

not be valid while
executing a trace

paramsparams paramsparams

paramsparams paramsparams paramsparams

existing before the trace
new

ly created in the trace

Figure 4. Java stack design of our trace-JIT.

 ...
1: aload_0
2: getfield field1
3: aload_0
4: getfield field2
5: iadd
6: dup
7: istore_1 (dead store)
8: ireturn
...

Java code:
public int getTotal() {

int result = field1 + field2;
return result;

}

We insert end-of-live-range marks
for local variables
at method boundaries in a trace.

Figure 3. Example of a dead store and end-of-live-range
marks.

invocations of a virtual or interface method, and method returns.
If an exception occurs during the execution of a compiled trace,
we exit from the trace and fall back to the interpreter. Thus we
also prepare an exit code sequence for each bytecode that can
potentially throw an exception, such as loads and stores for an
object’s field or numerical division instructions. Figure 2(b)
includes an example of an exit caused by a potential exception.

If a stack walk is required while a Java thread is executing a
compiled trace, for example when a stop-the-world garbage
collection begins, we fill in all of the live stack frames in the
Java stack before the stack walker in the JVM is initiated. We
prepare special metadata for this construction at the JIT
compilation time for each GC-safe point. We also provide a
bitmap to show all live references in the Java stack and the
registers for each GC-safe point in the same way as the
method-JIT. To generate this bitmap, we needed to extend the
live range analyzer in the method-JIT by taking into account
scope mismatch in the trace-JIT. For example, a local variable
may be live at the beginning of the compilation scope because
it is used before entering the trace that starts from the middle of
a method. Likewise, a local variable with no explicit reference
in the given scope may be live at the end of the compilation
scope because it is accessed after the trace ends in the middle
of a method. In extreme cases, there are live variables that were
never accessed in the compilation scope. Hence, it is not
possible to generate accurate live variable information only
from the bytecode sequence of the trace.

The changes in stack design affect only the stack walker in
the JVM. We do not need to modify the garbage collectors. Our
trace-JIT can run with any of the garbage collectors supported
in the original JVM.

E. Interprocedural Traces Support
Our trace-JIT takes a trace that might span multiple

(sometimes tens of) Java methods as input. Because there can
be multiple targets for a virtual method invocation or a method
return and the actual target can be different from the target
recorded on a trace, we insert runtime checks at method
boundaries. For each virtual method invocation, we insert a
class equality check as a runtime guard, which compares the
class of the receiver object and the class at the recording time
of the trace. If the class equality check fails, we exit from the
current trace. We also insert a guard for method return by
comparing the targets of the return at runtime and at recording
time. We avoid inserting a redundant check at a return
instruction if the corresponding invocation is also included in
the same trace.

F. Other Performance Optimizations
Our trace-JIT supports trace linking optimizations [1] to

reduce the overhead in the tracing runtime. We directly link
each trace exit to the entry point of the next trace without going
back to the interpreter if the trace exit has only one candidate
for the next program counter value. This is accomplished by
code patching to the exit code sequence. At linking time, we
check the Java stack requirements for both traces. If the
preceding trace requires a larger Java stack compared to the
following trace, then we skip the stack overflow check at the
beginning of the following trace. Such check can be skipped

because the following trace, which uses smaller Java stack than
the previous trace, cannot cause a stack overflow. When the
trace exit has multiple candidates for the next program counter
value, such as an exit at method return or virtual method
invocation, we do not use the trace linking. Instead, when a
trace ends with a method return, we inline the code to find the
next trace using the shadow array, as described in Section IV,
to avoid a transition to the interpreter.

In the IR generation phase, for each trace exit point we
need to prepare an exit code sequence, which restores the JVM
state compatible with that of the interpreter. The exit code
sequences increase the size of the generated compiler IR tree
and thus affect the compilation time. To minimize the increase
in the IR tree size, we employ a simple one-path value
propagation phase before the IR generation phase. We call it
early redundancy elimination. This phase identifies the
redundant NULL checks, virtual call guards, and conditional
branches. The later phase optimizer executes more detailed
analysis and redundant check elimination, but the earlier
redundancy elimination contributes to reducing the execution
time of the optimizers. By exploiting the simple topology of the
compilation scope, the execution time of the early redundancy
elimination phase is almost negligible. In the current
implementation, this phase is integrated with the IR generation
phase. We generate only one general code sequence to fill in
the stack frames in each trace and all exit points share the same
sequence. Because a trace frequently has lots of exit points, this
sharing greatly reduced the overall compiled code size.

G. Current Limitations
Currently we only support one optimization level and we do

not support upgrade compilation. The method-JIT already
supports upgrade compilation to higher optimization levels. At
the higher optimization levels, a profiling mechanism plays an
important role to generate specialized compiled code. We do
not yet support any profiling mechanism in the current
implementation of our trace-JIT. The trace selection itself is a
kind of profiling and thus more detailed profiling, such as value
profiling, can be implemented in the trace selection phase with
little additional overhead.

We do not specialize the optimizations for the trace-JIT and
so they can accept any IR trees, including trees containing join
points in the control flow. Also, we do not carefully tune the
optimizations for trace compilation. Hence there are huge
opportunities to improve both the optimized code quality and
the compilation speed by exploiting a simpler structure of the
traces that have no inner join points in the control flow. Only
the early redundancy elimination phase executed prior to the IR
generator exploits a simple topology of the traces to reduce the
compilation time. Though we do not employ the trace-specific
optimization techniques after the IR tree is generated, the
baseline method-JIT already covers most of the optimizations
used by the previous trace-based compilers. For example, the
baseline method-JIT has an optimization to move instructions
to cold blocks based on execution frequency. In our trace-JIT,
we treat an exit code sequence as a cold block and hence
redundant computations are moved to the exit code sequence.
Even with the same optimizations, the trace-JIT can leverage
the benefits of the trace, such as a larger compilation scope and

simpler control flow. For example, basic-block-local
optimizations are often more effective for trace-JIT than for
method-JIT, because the main path of a trace forms a large
extended basic block.

IV. RUNTIME OVERHEAD REDUCTION
This section describes two new techniques we introduced to

reduce the runtime overhead in the trace-JIT.

A. Hash Lookup Reduction Using a Shadow Array
In our trace-JIT, the overhead to search the global hash

table (trace cache) is significant, because we frequently search
the address of the compiled code or the hotness counter
associated with the current bytecode address from the trace
cache. To avoid such overhead, we allocate a shadow array for
each method to directly find the address of the compiled code
or the hotness counter. Because we allocate one word (4 bytes)
for each bytecode index in a method, the size of the shadow
array entry is four times larger than the bytecode itself. To
avoid excessive memory consumption by the shadow array, we
allocate the shadow array entry only when a potential trace
head is identified in the method for the first time. The shadow
array element associated with a bytecode index holds the
address for the hotness counter until compiled code starting
from that address becomes available. After the compiled code
becomes available, we replace the address of the hotness
counter with the compiled code address to maximize the
steady-state performance. The number of hash table lookups
becomes negligible when we use the shadow array. We will
describe the performance improvements and the memory
overhead for the shadow array in Section V.

B. JNI Inclusion in Trace
In HotpathVM [10], a trace is always terminated when the

trace encounters a native (JNI) method call. When a JNI call
appears frequently on hot paths of a running program, this stop-
at-JNI approach causes frequent trace exits. This incurs
significant transition overhead. In our trace selection algorithm,
we allow some JNI methods in traces (JNI inclusion): to
continue a trace at a method call to certain native methods, and
to allow a trace to call such native methods without exiting
from the trace. The JNI inclusion can reduce the runtime
overhead and improve the compiled code quality by generating
longer traces. Also, the baseline method-JIT inlines the
frequently used JNI methods, such as the methods of the
java.lang.StrictMath class, into the compiled code. By allowing
these JNI calls in the traces, our trace-JIT can leverage this JNI
call inlining capability of the baseline method-JIT.

To simplify the implementation, we allow JNI inclusion
only for certain JNI methods in the standard libraries that are
known to never cause Java-related events (GC, exceptions, or
any other JNI interface calls including Java method callbacks).
We do not need to modify the native methods to be called from
a trace. JNI method calls in traces are handled in a similar way
to those of the method-JIT. The benefits of JNI inclusion are
quite significant in some programs and the maximum
acceleration we observed solely from this technique was about
2.7 times.

V. PERFORMANCE EVALUATION
This section evaluates our trace-JIT by comparing it to the

method-JIT. We ran the evaluation on an IBM BladeCenter
JS22 using 4 cores of 4.0-GHz POWER6 processors with 2
SMT threads per core. The system has 16 GB of system
memory and runs AIX 6.1. The size of the Java heap was 512
MB using 16-MB pages and we used the generational garbage
collector. To focus on the differences between method-based
and trace-based compilations, we compare the performance of
our trace-JIT against the method-JIT with the warm
optimization level, which uses almost the same set of
optimizations as the trace-JIT. For this configuration of the
method-JIT, we add a JVM option: -Xjit:optLevel=warm. We
also compared the trace-JIT against the method-JIT with its full
optimization capacities by enabling the upgrade compilation to
higher optimization levels (full opt). In our evaluation, we used
DaCapo 9.12 [9] running with the default data size in our tests.
We did not include the tradesoap benchmark because the
baseline system with the method-JIT sometimes caused an
error for this benchmark. For each result, we report the average
of 16 runs along with the 95% confidence interval.

A. Performance of Trace-JIT and Method-JIT
Figure 5 compares the steady-state performance of our

trace-JIT to the method-JIT with two optimization levels. We
took the average of 5 iterations after 20 iterations of warm up
in each run (but 5 iterations of warm up for eclipse and 50
iterations for fop because they run much longer and shorter,
respectively, compared to the other benchmarks). Compared to
the warm-opt method-JIT, our trace-JIT outperformed the
method-JIT in three benchmarks, while it was slower in seven
benchmarks. The overall average performance of our trace-JIT
was 95.5% of the warm-opt method-JIT. Compared to the full-
opt method-JIT, the performance of our trace-JIT was 92.8%
on average. For the jython benchmark, which is a python
runtime implemented on top of the JVM, our trace-JIT
outperformed the warm-opt method-JIT by 26.4% and the full
opt by 12.8%. In contrast, our trace-JIT was slower than the
warm-opt method-JIT by more than 15% for three benchmarks
(eclipse, sunflow, and tomcat).

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

av
ror

a
ba

tik

ec
lip

se fop h2
jyt

ho
n

lui
nd

ex

lus
ea

rch pm
d

su
nfl

ow

tom
ca

t

tra
de

be
an

s
xa

lan

ge
om

ea
n

re
la

tiv
e

pe
rfo

rm
an

ce
 o

ve
r m

et
ho

d-
JI

T
(w

ar
m

 o
pt

). method-JIT (warm opt)
method-JIT (full opt)
our trace-JIT (warm opt)

hi
gh

er
 is

 fa
st

er

Figure 5. Relative steady-state performance of our trace-
JIT over method-JIT for each benchmark.

For further insight into the causes of the performance
differences between the trace-JIT and the method-JIT, Figure
6(a) shows profiles of the CPU time for three benchmarks
broken down into the JVM components based on how much
active CPU time was spent in each component as measured by
using the hardware performance monitor of the processor. We
normalized the profiles based on the peak performance of the
warm-opt method-JIT shown in Figure 5. We show the results
for jython, in which our trace-JIT was 26.4% faster than the
warm-opt method-JIT, for avrora, in which the trace-JIT was
roughly tied with the method-JIT, and for tomcat, in which the
trace-JIT was 15.6% slower than the method-JIT.

In jython and avrora, the JIT-generated code components
for trace-JIT were shorter than those for the warm-opt and full-
opt method-JIT. Since in all of the benchmarks more than 99%
of the bytecode is executed out of compiled traces, this means
that the trace-JIT generated better code for these two
benchmarks. However, the JIT-generated code component for
tomcat was larger than the method-JIT. Thus, for this
benchmark, our trace-JIT failed to generate better code
compared to the method-JIT. Note that the longer CPU time in
the Native library component for trace-JIT was because some
native methods were not inlined into the compiled code in the
trace-JIT, while they were inlined into the compiled code in the

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

method-JIT
(warm opt)

method-JIT
(full opt)

our trace-JIT
(warm opt)

no
rm

al
iz

ed
 C

P
U

 ti
m

e
.

OS Kernel
GC
Runtime
Native library
JIT-compiled code

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

no
rm

al
iz

ed
 C

P
U

 ti
m

e

cyclic trace
linear trace

sh
or

te
r

is
 fa

st
er

0

50
0

10
00

15
00

20
00

trace length in number of Java bytecodes

CPU time breakdown of JIT-compiled code by trace length and type jython (a) (b)CPU time breakdown by components

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

no
rm

al
iz

ed
 C

P
U

 ti
m

e

cyclic trace
linear trace

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

method-JIT
(warm opt)

method-JIT
(full opt)

our trace-JIT
(warm opt)

no
rm

al
iz

ed
 C

P
U

 ti
m

e
.

OS Kernel
GC
Runtime
Native library
JIT-compiled code

sh
or

te
r

is
 fa

st
er

trace length in number of Java bytecodes

CPU time breakdown of JIT-compiled code by trace length and type avrora (a) (b)CPU time breakdown by components

0

50
0

10
00

15
00

20
00

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

no
rm

al
iz

ed
 C

P
U

 ti
m

e

cyclic trace
linear trace

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

method-JIT
(warm opt)

method-JIT
(full opt)

our trace-JIT
(warm opt)

no
rm

al
iz

ed
 C

P
U

 ti
m

e
.

OS Kernel
GC
Runtime
Native library
JIT-compiled code

sh
or

te
r

is
 fa

st
er

trace length in number of Java bytecodes

CPU time breakdown of JIT-compiled code by trace length and type tomcat (a) (b)CPU time breakdown by components

0

50
0

10
00

15
00

20
00

Figure 6. (a) CPU time breakdown into JVM components and (b) detailed breakdown of CPU time spent in JIT-
compiled code by trace length and type.

method-JIT. Hence we added this component to the JIT-
compiled code component for a fair comparison.

In all three benchmarks, there is a net increase of CPU time
in the runtime component for the trace-JIT. Most of this
increased CPU time in the runtime was spent in transitioning
code between the traces and the interpreter and in the hook
interface that monitors the control-flow events for the trace
selection. In jython, the reduction in the JIT-generated code
components was more significant than the increase in the
runtime components due to the additional runtime overhead. As
a result, the trace-JIT outperformed the method-JIT. In avrora,
the improvement in the JIT-compiled code and the increased
runtime overhead were almost comparable and hence the trace-
JIT achieved similar performance to the method-JIT. For
tomcat, the trace-JIT was not able to compete with the method-
JIT due to the additional runtime overhead and the inferior JIT-
compiled code performance.

To show the causes of the differences among the three
benchmarks, we show a detailed breakdown of the CPU time
spent in the JIT-compiled code within the trace-JIT by the trace
length (in number of Java bytecodes) and the topology (cyclic
or linear) in Figure 6(b). In the figure, the x-axis shows the
trace length and a larger value means a longer trace. Obviously,
jython spent much more CPU time in the long traces compared
to the other two benchmarks. For example, the ratio of CPU
time spent in traces longer than 1,000 bytecodes was 40.1% for
jython, while it was only 11.4% for avrora and 6.4% for
tomcat. A longer trace tends to span more methods, and hence
it reduces method invocation overheads and offers more
optimization opportunities to the JIT compiler by extending the
compilation scope. Also, longer traces (or highly iterated cyclic
traces) mean less transitioning between traces, and thus less
runtime overhead. In contrast, shorter linear traces cause
frequent transitioning between compiled traces and the
interpreter. In tomcat, about a half of the CPU time was spent
in linear traces shorter than 400 bytecodes. Such transitioning
overhead is charged in both the JIT-compiled code component
and the runtime component in the breakdowns. In the JIT-
compiled code, we ensure that the JVM states are compatible
with those of the interpreter before exiting the compiled code.
Then we find the next trace to execute in the runtime. The trace
linking and our shadow array technique greatly reduce this
runtime overhead, but the overhead still matters for the overall
performance of some benchmarks.

These results show that generating longer traces is quite
important for trace-based compilers to achieve superior
performance. The method-JIT also extends the compilation
scope by method inlining to some extent, but the trace-JIT is
more capable to extend the compilation scope. That is the main
potential area where the trace-based compilation may beat
method-based compilation in certain scenarios.

B. Compiled Code Size and Total Compilation Time
Figure 7 shows the relative compiled code size of our trace-

JIT and the method-JIT. The relative size of the generated code
from the trace-JIT ranged from 52% smaller (luindex) to 4.9
times larger (pmd) relative to the warm-opt method-JIT.
Averaging all of the benchmarks, the trace-JIT generated

10.5% more code. The larger code size for the trace-JIT was
caused by the redundant trace selection and the extra code size
used for exit stubs.

The trace selection algorithm in our trace-JIT emphasizes
the performance over the code size by allowing duplication
among traces. For example, the same method called from many
different places may appear in many traces because it achieves
an effect equivalent to method inlining. The warm-opt and full-
opt method-JIT also allow duplication by method inlining, but
we found that duplication by method inlining was more limited
than duplication by our trace selection. Method inlining in the
method-JIT is well tuned to inline only important methods
without significant code bloat. We observed that the compiled
code size for trace-JIT was smaller than that of the method-JIT
when we use the NET [1] selection algorithm, which greatly
reduces the duplications, but the performance of the trace-JIT
was degraded. How to design selection algorithms that balance
between trace length and space efficiency is still future work.
For example, adaptively combining the current selection
algorithm with another selection algorithm with good space
efficiency, such as NET, might be a good approach to reduce
the code size in the trace-JIT.

In the compiled traces, the exit stubs occupy on average
44.9% of the total code size. Because we need to prepare an
exit code sequence for each potential trace exit, reducing the
number of instructions in each exit stub could greatly reduce

0.0
0.5
1.0

1.5
2.0
2.5
3.0
3.5

4.0
4.5
5.0

av
ror

a
ba

tik

ec
lip

se fop h2
jyt

ho
n

lui
nd

ex

lus
ea

rch pm
d

su
nfl

ow

tom
ca

t

tra
de

be
an

s
xa

lan

ge
om

ea
n

re
la

tiv
e

co
m

pi
le

d
co

de
 s

iz
e

ov
er

 m
et

ho
d-

JI
T

(w
ar

m
) ..

method-JIT (warm opt)
method-JIT (full opt)
our trace-JIT (warm opt)

sm
al

le
r

is
 b

et
te

r

Figure 7. Relative compiled code size of our trace-JIT over
method-JIT for each benchmark.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

av
ror

a
ba

tik

ec
lip

se fop h2
jyt

ho
n

lui
nd

ex

lus
ea

rch pm
d

su
nfl

ow

tom
ca

t

tra
de

be
an

s
xa

lan

ge
om

ea
n

re
la

tiv
e

co
m

pi
la

tio
n

tim
e

ov
er

 m
et

ho
d-

JI
T

(w
ar

m
) .

method-JIT (warm opt)
method-JIT (full opt)
our trace-JIT (warm opt)

sm
al

le
r

is
 b

et
te

r

Figure 8. Relative compilation time of our trace-JIT over
method-JIT for each benchmark.

the overall code size. We already minimized the exit stubs by
omitting unnecessary exit stubs and also by sharing the same
code among the stubs, as described in Section III. On the
positive side of the trace-based compilation, traces include only
frequently executed code sequence and hence rarely executed
code blocks such as error handlers are not compiled. Because
the method-JIT compiles the entire method including these
cold blocks, the trace-JIT can potentially reduce the code size
compared to the method-JIT.

Figure 8 shows the total compilation time of our trace-JIT
and the method-JIT. On average, our trace-JIT consumed
27.0% more compilation time than the warm-opt method-JIT.
The full-opt method-JIT had much longer compilation time due
to more aggressive optimizations used in upgrade compilation
for hot methods. In general, trace-based compilers sometimes
had much shorter compilation time than method-based
compilers by exploiting a simpler topology of the compilation
scope. However, because our trace-JIT reuses the optimizers
originally developed for the method-JIT, the compilation time
for our trace-JIT was not shorter than that of the method-JIT.
For the worst case, the trace-JIT consumed 2.5 times more
compilation time than the warm-opt method-JIT in jython and
pmd. In jython our trace-JIT formed very long traces, as shown
in Figure 6. The long traces tend to require more compilation
time than shorter traces in exchange for more optimization
opportunities, even if the total amounts of code to compile
were comparable. The long compilation time in pmd was due
to a large amount of duplicated code among traces.

C. Startup Performance
Figure 9 compares the startup performance of the trace-JIT

and the method-JIT. Here, we use the performance of the first
iteration of each benchmark as the startup performance. In
Figure 5 we show the startup performance relative to the
steady-state performance of the warm-opt method-JIT.
Obviously, the startup performance of the trace-JIT is strongly
correlated with the total compilation time shown in Figure 8
because the execution time of the first iteration includes much
of the total compilation time. Faster startup performance with
the full-opt method-JIT was due to the fact that it starts
compilation with a lower optimization level (cold) and then
gradually upgrades only the important methods.

D. Memory Usage
Figure 10 shows breakdowns of the memory usage into

major data structures related to the JIT compilers, averaged for
all of the benchmarks. Because we built our trace-JIT on top of
the method-JIT, the trace-JIT consumes more memory than the
method-JIT due to additional data structures specific to the
trace-JIT. In the figure, trace structure is a data structure that
manages the current status of an already formed trace. It is
allocated for each trace. BB structure is a data structure that
represents each basic block included in a trace. BB structure is
not required for execution after the trace including the BB is
compiled. In the current implementation, however, we do not
delete BB structures after compilation as we collect statistics.
As already described, the trace cache is a large hash table to
manage information associated with each byte code address,
and the shadow array is used to reduce the number of searches

in the trace cache. These trace-specific structures were about
twice as large as the total compiled code. We also saw
increases in the unaccountable memory consumption (others in
the figure) for our trace-JIT. We suspect that this was due to
the fact that our trace-JIT required more working memory to
compile targets having larger compilation scope than the
method-JIT. In fact, we found the largest increases for jython,
in which the trace-JIT formed long traces.

E. Effect of Maximum Trace Length
In our trace-JIT, the maximum trace length is limited by the

size of the trace recording buffer as described in Section III and
the default size of the buffer is 128 BBs. We decided on this
default value based on our experiments. The trace buffer size
involves a trade off between the compiled code size, which
often dominates the startup performance, and the steady-state
performance. For example, using 256 BBs as the recording
buffer size increased the compiled code size by 7.9% while it
increased the steady-state performance by 0.4%. Most of the
tested benchmarks were not accelerated by using a larger buffer
size. Among the benchmarks jython showed the largest speed
up of 6.2%. In jython, many hot traces are terminated due to
the buffer size limitation and hence the buffer size larger than
128 BBs increased the performance. Because jython
benchmark in the DaCapo suite executes rather simple python
programs, many long traces that span both translated python

0.0

0.2

0.4

0.6

0.8

1.0

av
ror

a
ba

tik

ec
lip

se fop h2
jyt

ho
n

luind
ex

luse
arch pm

d

su
nfl

ow
tomca

t

tra
de

be
an

s
xa

lan

ge
om

ean

pe
rfo

rm
an

ce
 o

f t
he

 fi
rs

t i
te

ra
tio

n
ov

er
 s

te
ay

-s
ta

te .
pe

rfo
rm

an
ce

 o
f m

et
ho

d-
JI

T
(w

ar
m

 o
pt

) .

method-JIT (warm opt)
method-JIT (full opt)
our trace-JIT (warm opt)

hi
gh

er
 is

 fa
st

er

Figure 9. Startup performance (performance of the first
iteration) over steady state performance of method-JIT (warm
opt) for each benchmark.

480
490
500
510
520
530
540
550
560
570
580
590
600
610
620

trace-JIT method-JIT
(warm opt)

m
em

or
y

us
ag

e
(M

B
)

(non-zero
origin)

(non-zero
origin)

510

512

514

516

518

520

522

524

526

528

530

trace-JIT method-JIT
(warm opt)

others
BB structure
shadow array
trace structure
trace cache
GC metadata
compiled code
Java heap

Figure 10. Comparison of the memory usage by our trace-JIT
and method-JIT (warm) on average of all benchmarks.

code and jython runtime code are formed without hitting a loop,
which terminates the trace. This is one of the best possible
cases for the trace-based compilation over method-based
compilation. When using 64 BBs as the recording buffer size,
we observed about 2.2% performance degradation in exchange
for 10.6% smaller compiled code size on average.

F. Effect of Our Runtime Overhead Reduction Techniques in
Trace-JIT
Figure 11 compares the performance of our trace-JIT with

and without our hash lookup reduction technique. The graph
shows that this technique enhanced the performance of the
trace-JIT in all of the programs, with an average improvement
of 27.4%. This was because the number of hash lookups was
quite significant in the trace-JIT without our hash lookup
reduction technique. In fact, we observed more than one
million lookups per second during our evaluations. With our
reduction technique, however, we observed only negligible
number of lookups. Our technique used some additional
memory for the shadow array for each method to achieve this
performance improvement. Figure 12 illustrates the total size of
the allocated shadow arrays for each benchmark. The total size
of the shadow arrays was 1.3 MB on average, as shown in
Figure 10, and up to 6.8 MB. We believe that this memory
consumption was reasonable for the achieved performance
improvements.

Figure 13 shows how the JNI inclusion affected the overall
performance of the trace-JIT. The improvement was quite
significant in sunflow (2.7 times improvement), while the
improvement was not significant in some other benchmarks.
Terminating a trace at each JNI call increased the runtime
overhead and also reduced the opportunities for compiler
optimizations by shortening the trace lengths. In sunflow, a JNI
call appears in a hot loop and hence the effect of including JNI
calls was most significant among all of the tested benchmarks.
Though the JNI calls in Java programs look relatively rare, our
results showed that proper handling of the JNI calls in trace
selection is important for overall performance.

VI. DISCUSSION AND FUTURE WORK

A. Loop Optimization in Trace-JIT
Though our trace-JIT uses many of the optimizers from the

warm-opt method-JIT, we did not enable some of the loop
optimizers, such as loop unrolling. This is because the loop
optimizers for the method-JIT did not work well for the cyclic
traces selected by our current selection algorithm. Figure 14
shows an example of a loop selected as a cyclic trace by the
current selection algorithm. Our trace selection algorithm
captures hot loops by counting the number of taken backward
branches as in the earlier selection algorithms. After identifying
a hot backward branch, we record the next execution starting
from the target address of the backward branch as a trace. This
selection algorithm can capture the loop body of the hot loop,
but the selected trace does not include loop preheader, such as
the initialization of the loop induction variable. Because the
loop preheader is not included in the selected cyclic trace, the
loop optimizer cannot find the number of iterations to execute
and hence it may miss an opportunity to optimize the loop. As

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

av
ror

a
ba

tik

ec
lip

se fop h2
jyt

ho
n

lui
nd

ex

lus
ea

rch pm
d

su
nfl

ow

tom
ca

t

tra
de

be
an

s
xa

lan

ge
om

ea
n

re
la

tiv
e

pe
rfo

rm
an

ce
 o

ve
r m

et
ho

d-
JI

T
(w

ar
m

 o
pt

).

trace-JIT
trace-JIT without shadow array

hi
gh

er
 is

 fa
st

er

Figure 11. Relative performance of our trace-JIT over the
warm-opt method-JIT with and without hash lookup
reduction by using shadow arrays.

0

1000

2000

3000

4000

5000

6000

7000

8000

av
ror

a
ba

tik

ec
lip

se fop h2
jyt

ho
n

lui
nd

ex

lus
ea

rch pm
d

su
nfl

ow

tom
ca

t

tra
de

be
an

s
xa

lan

ge
om

ea
n

to
ta

l s
ha

do
w

 a
rra

y
si

ze
 (K

B
) .

sm
al

le
r

is
 b

et
te

r

Figure 12. Total shadow array size in KB for each
benchmark.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

av
ror

a
ba

tik

ec
lip

se fop h2
jyt

ho
n

lui
nd

ex

lus
ea

rch pm
d

su
nfl

ow

tom
ca

t

tra
de

be
an

s
xa

lan

ge
om

ea
n

re
la

tiv
e

pe
rfo

rm
an

ce
 o

ve
r m

et
ho

d-
JI

T
(w

ar
m

 o
pt

).

trace-JIT
trace-JIT without JNI inclusion

hi
gh

er
 is

 fa
st

er
Figure 13. Relative performance of trace-JIT over warm-
opt method-JIT with and without JNI inclusion.

...
iconst_0
istore_1

loop: iload_1
iconst_4
if_icmpge exit
iinc 2, 1
iinc 1, 1
goto loop

exit: ...

Java code:
for (int i=0; i<4; i++) {

j ++;
}

a cyclic trace

backw
ard

branch

The loop preheader
(initialization of the induction variable)
is not included in a cyclic trace.

Figure 14. Example of a cyclic trace selection.

shown in Figure 6(b), cyclic traces consumed much of the total
CPU time so that optimizing the cyclic traces is important to
achieve higher performance. We also missed optimization
opportunities for other optimizations, such as value propagation,
within the hot loop because a cyclic trace always starts from
the target address of the taken backward branch and it cannot
include the code sequence before the loop.

To overcome this limitation, we are planning to enhance the
trace selection algorithm to include the loop preheader in a
cyclic trace. Compared to a binary translation and optimization
system, a JVM can tell the structure of the running program
and hence it can select better traces to maximize the benefits of
the later optimizations in the JIT compiler. Unfortunately,
including the loop preheader in a trace may offset some of the
advantage of the simple structure of traces. For example, the
trace may include join points in the control flow. Although it
has received little study to date, enhancing the trace selection
algorithm to maximize optimization opportunities in the
compiler would be important and interesting future work.

B. Mixed Execution of Trace-JIT and Method-JIT
Our trace-JIT is currently only designed for mixed

execution with the interpreter. We showed that the trace-JIT
can potentially generate better compiled code by extending the
compilation scope if we could select long traces. The trace-JIT,
however, may suffer from larger runtime overhead if it selects
lots of short traces, especially in the hot spots of the running
program. In such programs, combining the trace-JIT with the
method-JIT can be a good way to improve the overall
performance by taking advantage of both approaches. To
identify the best methods for cooperation between the trace-JIT
and the method-JIT is another important area for future work.

VII. SUMMARY
In this paper, we reported on the design and implementation

of our trace-JIT we developed from a production-quality
method-JIT in Java. We showed that our trace-JIT achieved on
average about 95.5% of the method-JIT with a set of
comparable optimizations. The trace-JIT achieved better
compiled code performance than the method-JIT by extending
the compilation scope. Hence selecting a longer trace is a key
to achieve superior performance with trace-JIT. We also
showed that our techniques to reduce runtime overhead
significantly improved the performance of the trace-JIT.

Our results showed that 1) retrofitting an existing method-
JIT for a trace-JIT is a practical approach to implement a trace-
JIT. We showed that, in some benchmarks, our trace-JIT
developed from a method-JIT achieved better performance than
the method-JIT without adding trace-specific optimization
techniques. 2) Although the trace-based compilation has
benefits and drawbacks over the method-based compilation, it
is practical not only for binary translation systems or dynamic
scripting languages, but also for the languages with mature
method-based compilers. We believe that neither a method-
based nor a trace-based approach is a one-size-fits-all solution,
and the best solution might be a mixture of trace-based and
method-based compilation to take advantage of both
approaches.

REFERENCES
[1] Bala, V., Duesterwald, E., and Banerjia, S., “Dynamo: A Transparent

Runtime Optimization System,” In Proceedings of the ACM
Programming Language Design and Implementation, pp. 1–12, 2000.

[2] Bruening, D., Garnett, T., and Amarasinghe, S., “An infrastructure for
adaptive dynamic optimization,” In Proceedings of the ACM/IEEE
International Symposium on Code Generation and Optimization, pp.
465–478, 2003.

[3] Gal, A., et al., “Trace-based Just-In-Time Type Specialization for
Dynamic Languages,” In Proceedings of the ACM SIGPLAN conference
on Programming language design and implementation, pp. 465–478,
2009.

[4] LuaJIT design note. http://lua-users.org/lists/lua-l/2009-11/
msg00089.html

[5] Bolz, C., Cuni, A., Fijalkowski, M., and Rigo, A., “Tracing the Meta-
Level: PyPy’s Tracing JIT Compiler,” In Proceedings of the 4th
workshop on the Implementation, Compilation, Optimization of Object-
Oriented Languages and Programming Systems, pp. 18–25, 2009.

[6] Bebenita, M., Brandner, F., Fahndrich, M., Logozzo, F., Schulte, W.,
Tillmann, N., and Venter, H., “SPUR: A trace-based JIT compiler for
CIL,” In Proceedings of the ACM international conference on Object
oriented programming systems languages and applications, pp. 708–725,
2010.

[7] Grcevski, N., Kielstra, A., Stoodley, K., Stoodley, M., and Sundaresan,
V., “Java just-in-time compiler and virtual machine improvements for
server and middleware applications,” In Proceedings of the USENIX
Virtual Machine Research and Technology Symposium, pp. 151–162,
2004.

[8] Guo, S. and Palserg, J., “The Essence of Compiling with Traces,” in
Proceedings of 38th Symposium on Principles of Programming
Languages, 2011. (to be published)

[9] The DaCapo benchmark suite. http://dacapobench.org/
[10] Gal, A., Probst, C., and Franz, M., “HotPathVM: An Effective JIT

Compiler for Resource-constrained Devices,” In Proceedings of the
International Conference on Virtual Execution Environments, pp. 144–
153, 2006.

[11] Zaleski, M., Demke-Brown, A., and Stoodley, K., “YETI: a graduallY
Extensible Trace Interpreter,” In Proceedings of the 3rd ACM/USENIX
international conference on Virtual Execution Environments, pp. 83–93,
2007.

[12] Bebenita, M., Chang, M., Wagner, G., Gal, A., Wimmer, C., and Franz,
M., “Trace-based compilation in execution environments without
interpreters,” In Proceedings of the 8th International Conference on the
Principles and Practice of Programming in Java, pp. 59–68, 2010.

[13] Yermolovich. A, Wimmer, C., and Franz, M, “Optimization of dynamic
languages using hierarchical layering of virtual machines,“ In
Proceedings of the 5th Symposium on Dynamic Languages, pp. 79–88,
2009.

[14] Mandelin, D., “Tamarin Tracing Internals, Part I to V,” 2008.
http://blog.mozilla.com/dmandelin/2008/05/.

[15] Zhao, C., Wu, Y., Steffan, J., and Amza, C., “Lengthening Traces to
Improve Opportunities for Dynamic Optimization,” In Proceedings of
the Workshop on Interaction between Compilers and Computer
Architectures, 2008.

[16] Hayashizaki, H., Wu, P., Inoue, H., Serrano M., and Nakatani, T.,
"Improving the Performance of Trace-based Systems by False Loop
Filtering," In Proceedings of Sixteenth International Conference on
Architectural Support for Programming Languages and Operating
Systems, 2011. (to be published)

[17] Suganuma, T., Yasue, T., and Nakatani, T., “A region-based compilation
technique for dynamic compilers,” ACM Trans. Program. Lang. Syst.,
Vol. 28 (1), pp. 134–174, 2006.

Java is a trademark of Sun Microsystems, Inc. AIX and POWER6 are
registered trademarks of International Business Machines Corporation.
Other company, product, and service names may be trademarks or
service marks of others.

